1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUISelDAGToDAG.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "AMDGPUSubtarget.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "MCTargetDesc/R600MCTargetDesc.h" 21 #include "R600RegisterInfo.h" 22 #include "SIISelLowering.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "llvm/Analysis/UniformityAnalysis.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/CodeGen/SelectionDAGISel.h" 29 #include "llvm/CodeGen/SelectionDAGNodes.h" 30 #include "llvm/IR/IntrinsicsAMDGPU.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/Support/ErrorHandling.h" 33 34 #ifdef EXPENSIVE_CHECKS 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/IR/Dominators.h" 37 #endif 38 39 #define DEBUG_TYPE "amdgpu-isel" 40 41 using namespace llvm; 42 43 //===----------------------------------------------------------------------===// 44 // Instruction Selector Implementation 45 //===----------------------------------------------------------------------===// 46 47 namespace { 48 static SDValue stripBitcast(SDValue Val) { 49 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 50 } 51 52 // Figure out if this is really an extract of the high 16-bits of a dword. 53 static bool isExtractHiElt(SDValue In, SDValue &Out) { 54 In = stripBitcast(In); 55 56 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 57 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 58 if (!Idx->isOne()) 59 return false; 60 Out = In.getOperand(0); 61 return true; 62 } 63 } 64 65 if (In.getOpcode() != ISD::TRUNCATE) 66 return false; 67 68 SDValue Srl = In.getOperand(0); 69 if (Srl.getOpcode() == ISD::SRL) { 70 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 71 if (ShiftAmt->getZExtValue() == 16) { 72 Out = stripBitcast(Srl.getOperand(0)); 73 return true; 74 } 75 } 76 } 77 78 return false; 79 } 80 81 // Look through operations that obscure just looking at the low 16-bits of the 82 // same register. 83 static SDValue stripExtractLoElt(SDValue In) { 84 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 85 SDValue Idx = In.getOperand(1); 86 if (isNullConstant(Idx) && In.getValueSizeInBits() <= 32) 87 return In.getOperand(0); 88 } 89 90 if (In.getOpcode() == ISD::TRUNCATE) { 91 SDValue Src = In.getOperand(0); 92 if (Src.getValueType().getSizeInBits() == 32) 93 return stripBitcast(Src); 94 } 95 96 return In; 97 } 98 99 } // end anonymous namespace 100 101 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 102 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 103 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 104 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 105 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 106 #ifdef EXPENSIVE_CHECKS 107 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 108 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 109 #endif 110 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 111 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 112 113 /// This pass converts a legalized DAG into a AMDGPU-specific 114 // DAG, ready for instruction scheduling. 115 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM, 116 CodeGenOptLevel OptLevel) { 117 return new AMDGPUDAGToDAGISel(TM, OptLevel); 118 } 119 120 AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM, 121 CodeGenOptLevel OptLevel) 122 : SelectionDAGISel(ID, TM, OptLevel) { 123 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 124 } 125 126 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 127 #ifdef EXPENSIVE_CHECKS 128 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 129 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 130 for (auto &L : LI->getLoopsInPreorder()) { 131 assert(L->isLCSSAForm(DT)); 132 } 133 #endif 134 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 135 Mode = SIModeRegisterDefaults(MF.getFunction(), *Subtarget); 136 return SelectionDAGISel::runOnMachineFunction(MF); 137 } 138 139 bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const { 140 // XXX - only need to list legal operations. 141 switch (Opc) { 142 case ISD::FADD: 143 case ISD::FSUB: 144 case ISD::FMUL: 145 case ISD::FDIV: 146 case ISD::FREM: 147 case ISD::FCANONICALIZE: 148 case ISD::UINT_TO_FP: 149 case ISD::SINT_TO_FP: 150 case ISD::FABS: 151 // Fabs is lowered to a bit operation, but it's an and which will clear the 152 // high bits anyway. 153 case ISD::FSQRT: 154 case ISD::FSIN: 155 case ISD::FCOS: 156 case ISD::FPOWI: 157 case ISD::FPOW: 158 case ISD::FLOG: 159 case ISD::FLOG2: 160 case ISD::FLOG10: 161 case ISD::FEXP: 162 case ISD::FEXP2: 163 case ISD::FCEIL: 164 case ISD::FTRUNC: 165 case ISD::FRINT: 166 case ISD::FNEARBYINT: 167 case ISD::FROUNDEVEN: 168 case ISD::FROUND: 169 case ISD::FFLOOR: 170 case ISD::FMINNUM: 171 case ISD::FMAXNUM: 172 case ISD::FLDEXP: 173 case AMDGPUISD::FRACT: 174 case AMDGPUISD::CLAMP: 175 case AMDGPUISD::COS_HW: 176 case AMDGPUISD::SIN_HW: 177 case AMDGPUISD::FMIN3: 178 case AMDGPUISD::FMAX3: 179 case AMDGPUISD::FMED3: 180 case AMDGPUISD::FMAD_FTZ: 181 case AMDGPUISD::RCP: 182 case AMDGPUISD::RSQ: 183 case AMDGPUISD::RCP_IFLAG: 184 // On gfx10, all 16-bit instructions preserve the high bits. 185 return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9; 186 case ISD::FP_ROUND: 187 // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the 188 // high bits on gfx9. 189 // TODO: If we had the source node we could see if the source was fma/mad 190 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 191 case ISD::FMA: 192 case ISD::FMAD: 193 case AMDGPUISD::DIV_FIXUP: 194 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 195 default: 196 // fcopysign, select and others may be lowered to 32-bit bit operations 197 // which don't zero the high bits. 198 return false; 199 } 200 } 201 202 void AMDGPUDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 203 AU.addRequired<AMDGPUArgumentUsageInfo>(); 204 AU.addRequired<UniformityInfoWrapperPass>(); 205 #ifdef EXPENSIVE_CHECKS 206 AU.addRequired<DominatorTreeWrapperPass>(); 207 AU.addRequired<LoopInfoWrapperPass>(); 208 #endif 209 SelectionDAGISel::getAnalysisUsage(AU); 210 } 211 212 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 213 assert(Subtarget->d16PreservesUnusedBits()); 214 MVT VT = N->getValueType(0).getSimpleVT(); 215 if (VT != MVT::v2i16 && VT != MVT::v2f16) 216 return false; 217 218 SDValue Lo = N->getOperand(0); 219 SDValue Hi = N->getOperand(1); 220 221 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 222 223 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 224 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 225 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 226 227 // Need to check for possible indirect dependencies on the other half of the 228 // vector to avoid introducing a cycle. 229 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 230 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 231 232 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 233 SDValue Ops[] = { 234 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 235 }; 236 237 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 238 if (LdHi->getMemoryVT() == MVT::i8) { 239 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 240 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 241 } else { 242 assert(LdHi->getMemoryVT() == MVT::i16); 243 } 244 245 SDValue NewLoadHi = 246 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 247 Ops, LdHi->getMemoryVT(), 248 LdHi->getMemOperand()); 249 250 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 251 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 252 return true; 253 } 254 255 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 256 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 257 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 258 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 259 if (LdLo && Lo.hasOneUse()) { 260 SDValue TiedIn = getHi16Elt(Hi); 261 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 262 return false; 263 264 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 265 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 266 if (LdLo->getMemoryVT() == MVT::i8) { 267 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 268 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 269 } else { 270 assert(LdLo->getMemoryVT() == MVT::i16); 271 } 272 273 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 274 275 SDValue Ops[] = { 276 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 277 }; 278 279 SDValue NewLoadLo = 280 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 281 Ops, LdLo->getMemoryVT(), 282 LdLo->getMemOperand()); 283 284 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 285 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 286 return true; 287 } 288 289 return false; 290 } 291 292 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 293 if (!Subtarget->d16PreservesUnusedBits()) 294 return; 295 296 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 297 298 bool MadeChange = false; 299 while (Position != CurDAG->allnodes_begin()) { 300 SDNode *N = &*--Position; 301 if (N->use_empty()) 302 continue; 303 304 switch (N->getOpcode()) { 305 case ISD::BUILD_VECTOR: 306 // TODO: Match load d16 from shl (extload:i16), 16 307 MadeChange |= matchLoadD16FromBuildVector(N); 308 break; 309 default: 310 break; 311 } 312 } 313 314 if (MadeChange) { 315 CurDAG->RemoveDeadNodes(); 316 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 317 CurDAG->dump();); 318 } 319 } 320 321 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N) const { 322 if (N->isUndef()) 323 return true; 324 325 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 326 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 327 return TII->isInlineConstant(C->getAPIntValue()); 328 329 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 330 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 331 332 return false; 333 } 334 335 /// Determine the register class for \p OpNo 336 /// \returns The register class of the virtual register that will be used for 337 /// the given operand number \OpNo or NULL if the register class cannot be 338 /// determined. 339 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 340 unsigned OpNo) const { 341 if (!N->isMachineOpcode()) { 342 if (N->getOpcode() == ISD::CopyToReg) { 343 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 344 if (Reg.isVirtual()) { 345 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 346 return MRI.getRegClass(Reg); 347 } 348 349 const SIRegisterInfo *TRI 350 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 351 return TRI->getPhysRegBaseClass(Reg); 352 } 353 354 return nullptr; 355 } 356 357 switch (N->getMachineOpcode()) { 358 default: { 359 const MCInstrDesc &Desc = 360 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 361 unsigned OpIdx = Desc.getNumDefs() + OpNo; 362 if (OpIdx >= Desc.getNumOperands()) 363 return nullptr; 364 int RegClass = Desc.operands()[OpIdx].RegClass; 365 if (RegClass == -1) 366 return nullptr; 367 368 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 369 } 370 case AMDGPU::REG_SEQUENCE: { 371 unsigned RCID = N->getConstantOperandVal(0); 372 const TargetRegisterClass *SuperRC = 373 Subtarget->getRegisterInfo()->getRegClass(RCID); 374 375 SDValue SubRegOp = N->getOperand(OpNo + 1); 376 unsigned SubRegIdx = SubRegOp->getAsZExtVal(); 377 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 378 SubRegIdx); 379 } 380 } 381 } 382 383 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 384 SDValue Glue) const { 385 SmallVector <SDValue, 8> Ops; 386 Ops.push_back(NewChain); // Replace the chain. 387 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 388 Ops.push_back(N->getOperand(i)); 389 390 Ops.push_back(Glue); 391 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 392 } 393 394 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 395 const SITargetLowering& Lowering = 396 *static_cast<const SITargetLowering*>(getTargetLowering()); 397 398 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 399 400 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 401 return glueCopyToOp(N, M0, M0.getValue(1)); 402 } 403 404 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 405 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 406 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 407 if (Subtarget->ldsRequiresM0Init()) 408 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 409 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 410 MachineFunction &MF = CurDAG->getMachineFunction(); 411 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 412 return 413 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 414 } 415 return N; 416 } 417 418 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 419 EVT VT) const { 420 SDNode *Lo = CurDAG->getMachineNode( 421 AMDGPU::S_MOV_B32, DL, MVT::i32, 422 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 423 SDNode *Hi = 424 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 425 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 426 const SDValue Ops[] = { 427 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 428 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 429 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 430 431 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 432 } 433 434 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 435 EVT VT = N->getValueType(0); 436 unsigned NumVectorElts = VT.getVectorNumElements(); 437 EVT EltVT = VT.getVectorElementType(); 438 SDLoc DL(N); 439 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 440 441 if (NumVectorElts == 1) { 442 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 443 RegClass); 444 return; 445 } 446 447 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 448 "supported yet"); 449 // 32 = Max Num Vector Elements 450 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 451 // 1 = Vector Register Class 452 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 453 454 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 455 Triple::amdgcn; 456 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 457 bool IsRegSeq = true; 458 unsigned NOps = N->getNumOperands(); 459 for (unsigned i = 0; i < NOps; i++) { 460 // XXX: Why is this here? 461 if (isa<RegisterSDNode>(N->getOperand(i))) { 462 IsRegSeq = false; 463 break; 464 } 465 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 466 : R600RegisterInfo::getSubRegFromChannel(i); 467 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 468 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 469 } 470 if (NOps != NumVectorElts) { 471 // Fill in the missing undef elements if this was a scalar_to_vector. 472 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 473 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 474 DL, EltVT); 475 for (unsigned i = NOps; i < NumVectorElts; ++i) { 476 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 477 : R600RegisterInfo::getSubRegFromChannel(i); 478 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 479 RegSeqArgs[1 + (2 * i) + 1] = 480 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 481 } 482 } 483 484 if (!IsRegSeq) 485 SelectCode(N); 486 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 487 } 488 489 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 490 unsigned int Opc = N->getOpcode(); 491 if (N->isMachineOpcode()) { 492 N->setNodeId(-1); 493 return; // Already selected. 494 } 495 496 // isa<MemSDNode> almost works but is slightly too permissive for some DS 497 // intrinsics. 498 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 499 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 500 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX) { 501 N = glueCopyToM0LDSInit(N); 502 SelectCode(N); 503 return; 504 } 505 506 switch (Opc) { 507 default: 508 break; 509 // We are selecting i64 ADD here instead of custom lower it during 510 // DAG legalization, so we can fold some i64 ADDs used for address 511 // calculation into the LOAD and STORE instructions. 512 case ISD::ADDC: 513 case ISD::ADDE: 514 case ISD::SUBC: 515 case ISD::SUBE: { 516 if (N->getValueType(0) != MVT::i64) 517 break; 518 519 SelectADD_SUB_I64(N); 520 return; 521 } 522 case ISD::UADDO_CARRY: 523 case ISD::USUBO_CARRY: 524 if (N->getValueType(0) != MVT::i32) 525 break; 526 527 SelectAddcSubb(N); 528 return; 529 case ISD::UADDO: 530 case ISD::USUBO: { 531 SelectUADDO_USUBO(N); 532 return; 533 } 534 case AMDGPUISD::FMUL_W_CHAIN: { 535 SelectFMUL_W_CHAIN(N); 536 return; 537 } 538 case AMDGPUISD::FMA_W_CHAIN: { 539 SelectFMA_W_CHAIN(N); 540 return; 541 } 542 543 case ISD::SCALAR_TO_VECTOR: 544 case ISD::BUILD_VECTOR: { 545 EVT VT = N->getValueType(0); 546 unsigned NumVectorElts = VT.getVectorNumElements(); 547 if (VT.getScalarSizeInBits() == 16) { 548 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 549 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 550 ReplaceNode(N, Packed); 551 return; 552 } 553 } 554 555 break; 556 } 557 558 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 559 unsigned RegClassID = 560 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 561 SelectBuildVector(N, RegClassID); 562 return; 563 } 564 case ISD::BUILD_PAIR: { 565 SDValue RC, SubReg0, SubReg1; 566 SDLoc DL(N); 567 if (N->getValueType(0) == MVT::i128) { 568 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 569 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 570 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 571 } else if (N->getValueType(0) == MVT::i64) { 572 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 573 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 574 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 575 } else { 576 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 577 } 578 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 579 N->getOperand(1), SubReg1 }; 580 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 581 N->getValueType(0), Ops)); 582 return; 583 } 584 585 case ISD::Constant: 586 case ISD::ConstantFP: { 587 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 588 break; 589 590 uint64_t Imm; 591 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) { 592 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 593 if (AMDGPU::isValid32BitLiteral(Imm, true)) 594 break; 595 } else { 596 ConstantSDNode *C = cast<ConstantSDNode>(N); 597 Imm = C->getZExtValue(); 598 if (AMDGPU::isValid32BitLiteral(Imm, false)) 599 break; 600 } 601 602 SDLoc DL(N); 603 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 604 return; 605 } 606 case AMDGPUISD::BFE_I32: 607 case AMDGPUISD::BFE_U32: { 608 // There is a scalar version available, but unlike the vector version which 609 // has a separate operand for the offset and width, the scalar version packs 610 // the width and offset into a single operand. Try to move to the scalar 611 // version if the offsets are constant, so that we can try to keep extended 612 // loads of kernel arguments in SGPRs. 613 614 // TODO: Technically we could try to pattern match scalar bitshifts of 615 // dynamic values, but it's probably not useful. 616 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 617 if (!Offset) 618 break; 619 620 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 621 if (!Width) 622 break; 623 624 bool Signed = Opc == AMDGPUISD::BFE_I32; 625 626 uint32_t OffsetVal = Offset->getZExtValue(); 627 uint32_t WidthVal = Width->getZExtValue(); 628 629 ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal, 630 WidthVal)); 631 return; 632 } 633 case AMDGPUISD::DIV_SCALE: { 634 SelectDIV_SCALE(N); 635 return; 636 } 637 case AMDGPUISD::MAD_I64_I32: 638 case AMDGPUISD::MAD_U64_U32: { 639 SelectMAD_64_32(N); 640 return; 641 } 642 case ISD::SMUL_LOHI: 643 case ISD::UMUL_LOHI: 644 return SelectMUL_LOHI(N); 645 case ISD::CopyToReg: { 646 const SITargetLowering& Lowering = 647 *static_cast<const SITargetLowering*>(getTargetLowering()); 648 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 649 break; 650 } 651 case ISD::AND: 652 case ISD::SRL: 653 case ISD::SRA: 654 case ISD::SIGN_EXTEND_INREG: 655 if (N->getValueType(0) != MVT::i32) 656 break; 657 658 SelectS_BFE(N); 659 return; 660 case ISD::BRCOND: 661 SelectBRCOND(N); 662 return; 663 case ISD::FP_EXTEND: 664 SelectFP_EXTEND(N); 665 return; 666 case AMDGPUISD::CVT_PKRTZ_F16_F32: 667 case AMDGPUISD::CVT_PKNORM_I16_F32: 668 case AMDGPUISD::CVT_PKNORM_U16_F32: 669 case AMDGPUISD::CVT_PK_U16_U32: 670 case AMDGPUISD::CVT_PK_I16_I32: { 671 // Hack around using a legal type if f16 is illegal. 672 if (N->getValueType(0) == MVT::i32) { 673 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 674 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 675 { N->getOperand(0), N->getOperand(1) }); 676 SelectCode(N); 677 return; 678 } 679 680 break; 681 } 682 case ISD::INTRINSIC_W_CHAIN: { 683 SelectINTRINSIC_W_CHAIN(N); 684 return; 685 } 686 case ISD::INTRINSIC_WO_CHAIN: { 687 SelectINTRINSIC_WO_CHAIN(N); 688 return; 689 } 690 case ISD::INTRINSIC_VOID: { 691 SelectINTRINSIC_VOID(N); 692 return; 693 } 694 case AMDGPUISD::WAVE_ADDRESS: { 695 SelectWAVE_ADDRESS(N); 696 return; 697 } 698 case ISD::STACKRESTORE: { 699 SelectSTACKRESTORE(N); 700 return; 701 } 702 } 703 704 SelectCode(N); 705 } 706 707 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 708 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 709 const Instruction *Term = BB->getTerminator(); 710 return Term->getMetadata("amdgpu.uniform") || 711 Term->getMetadata("structurizecfg.uniform"); 712 } 713 714 bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N, 715 unsigned ShAmtBits) const { 716 assert(N->getOpcode() == ISD::AND); 717 718 const APInt &RHS = N->getConstantOperandAPInt(1); 719 if (RHS.countr_one() >= ShAmtBits) 720 return true; 721 722 const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero; 723 return (LHSKnownZeros | RHS).countr_one() >= ShAmtBits; 724 } 725 726 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 727 SDValue &N0, SDValue &N1) { 728 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 729 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 730 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 731 // (i64 (bitcast (v2i32 (build_vector 732 // (or (extract_vector_elt V, 0), OFFSET), 733 // (extract_vector_elt V, 1))))) 734 SDValue Lo = Addr.getOperand(0).getOperand(0); 735 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 736 SDValue BaseLo = Lo.getOperand(0); 737 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 738 // Check that split base (Lo and Hi) are extracted from the same one. 739 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 740 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 741 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 742 // Lo is statically extracted from index 0. 743 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 744 BaseLo.getConstantOperandVal(1) == 0 && 745 // Hi is statically extracted from index 0. 746 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 747 BaseHi.getConstantOperandVal(1) == 1) { 748 N0 = BaseLo.getOperand(0).getOperand(0); 749 N1 = Lo.getOperand(1); 750 return true; 751 } 752 } 753 } 754 return false; 755 } 756 757 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 758 SDValue &RHS) const { 759 if (CurDAG->isBaseWithConstantOffset(Addr)) { 760 LHS = Addr.getOperand(0); 761 RHS = Addr.getOperand(1); 762 return true; 763 } 764 765 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { 766 assert(LHS && RHS && isa<ConstantSDNode>(RHS)); 767 return true; 768 } 769 770 return false; 771 } 772 773 StringRef AMDGPUDAGToDAGISel::getPassName() const { 774 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 775 } 776 777 //===----------------------------------------------------------------------===// 778 // Complex Patterns 779 //===----------------------------------------------------------------------===// 780 781 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 782 SDValue &Offset) { 783 return false; 784 } 785 786 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 787 SDValue &Offset) { 788 ConstantSDNode *C; 789 SDLoc DL(Addr); 790 791 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 792 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 793 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 794 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 795 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 796 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 797 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 798 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 799 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 800 Base = Addr.getOperand(0); 801 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 802 } else { 803 Base = Addr; 804 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 805 } 806 807 return true; 808 } 809 810 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 811 const SDLoc &DL) const { 812 SDNode *Mov = CurDAG->getMachineNode( 813 AMDGPU::S_MOV_B32, DL, MVT::i32, 814 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 815 return SDValue(Mov, 0); 816 } 817 818 // FIXME: Should only handle uaddo_carry/usubo_carry 819 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 820 SDLoc DL(N); 821 SDValue LHS = N->getOperand(0); 822 SDValue RHS = N->getOperand(1); 823 824 unsigned Opcode = N->getOpcode(); 825 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 826 bool ProduceCarry = 827 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 828 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 829 830 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 831 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 832 833 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 834 DL, MVT::i32, LHS, Sub0); 835 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 836 DL, MVT::i32, LHS, Sub1); 837 838 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 839 DL, MVT::i32, RHS, Sub0); 840 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 841 DL, MVT::i32, RHS, Sub1); 842 843 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 844 845 static const unsigned OpcMap[2][2][2] = { 846 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 847 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 848 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 849 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 850 851 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 852 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 853 854 SDNode *AddLo; 855 if (!ConsumeCarry) { 856 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 857 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 858 } else { 859 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 860 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 861 } 862 SDValue AddHiArgs[] = { 863 SDValue(Hi0, 0), 864 SDValue(Hi1, 0), 865 SDValue(AddLo, 1) 866 }; 867 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 868 869 SDValue RegSequenceArgs[] = { 870 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 871 SDValue(AddLo,0), 872 Sub0, 873 SDValue(AddHi,0), 874 Sub1, 875 }; 876 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 877 MVT::i64, RegSequenceArgs); 878 879 if (ProduceCarry) { 880 // Replace the carry-use 881 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 882 } 883 884 // Replace the remaining uses. 885 ReplaceNode(N, RegSequence); 886 } 887 888 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 889 SDLoc DL(N); 890 SDValue LHS = N->getOperand(0); 891 SDValue RHS = N->getOperand(1); 892 SDValue CI = N->getOperand(2); 893 894 if (N->isDivergent()) { 895 unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::V_ADDC_U32_e64 896 : AMDGPU::V_SUBB_U32_e64; 897 CurDAG->SelectNodeTo( 898 N, Opc, N->getVTList(), 899 {LHS, RHS, CI, 900 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 901 } else { 902 unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::S_ADD_CO_PSEUDO 903 : AMDGPU::S_SUB_CO_PSEUDO; 904 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 905 } 906 } 907 908 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 909 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 910 // carry out despite the _i32 name. These were renamed in VI to _U32. 911 // FIXME: We should probably rename the opcodes here. 912 bool IsAdd = N->getOpcode() == ISD::UADDO; 913 bool IsVALU = N->isDivergent(); 914 915 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 916 ++UI) 917 if (UI.getUse().getResNo() == 1) { 918 if ((IsAdd && (UI->getOpcode() != ISD::UADDO_CARRY)) || 919 (!IsAdd && (UI->getOpcode() != ISD::USUBO_CARRY))) { 920 IsVALU = true; 921 break; 922 } 923 } 924 925 if (IsVALU) { 926 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 927 928 CurDAG->SelectNodeTo( 929 N, Opc, N->getVTList(), 930 {N->getOperand(0), N->getOperand(1), 931 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 932 } else { 933 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 934 : AMDGPU::S_USUBO_PSEUDO; 935 936 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 937 {N->getOperand(0), N->getOperand(1)}); 938 } 939 } 940 941 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 942 SDLoc SL(N); 943 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 944 SDValue Ops[10]; 945 946 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 947 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 948 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 949 Ops[8] = N->getOperand(0); 950 Ops[9] = N->getOperand(4); 951 952 // If there are no source modifiers, prefer fmac over fma because it can use 953 // the smaller VOP2 encoding. 954 bool UseFMAC = Subtarget->hasDLInsts() && 955 cast<ConstantSDNode>(Ops[0])->isZero() && 956 cast<ConstantSDNode>(Ops[2])->isZero() && 957 cast<ConstantSDNode>(Ops[4])->isZero(); 958 unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64; 959 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops); 960 } 961 962 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 963 SDLoc SL(N); 964 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 965 SDValue Ops[8]; 966 967 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 968 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 969 Ops[6] = N->getOperand(0); 970 Ops[7] = N->getOperand(3); 971 972 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 973 } 974 975 // We need to handle this here because tablegen doesn't support matching 976 // instructions with multiple outputs. 977 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 978 SDLoc SL(N); 979 EVT VT = N->getValueType(0); 980 981 assert(VT == MVT::f32 || VT == MVT::f64); 982 983 unsigned Opc 984 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; 985 986 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, 987 // omod 988 SDValue Ops[8]; 989 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 990 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); 991 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); 992 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 993 } 994 995 // We need to handle this here because tablegen doesn't support matching 996 // instructions with multiple outputs. 997 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 998 SDLoc SL(N); 999 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1000 unsigned Opc; 1001 if (Subtarget->hasMADIntraFwdBug()) 1002 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 1003 : AMDGPU::V_MAD_U64_U32_gfx11_e64; 1004 else 1005 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1006 1007 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1008 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1009 Clamp }; 1010 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1011 } 1012 1013 // We need to handle this here because tablegen doesn't support matching 1014 // instructions with multiple outputs. 1015 void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) { 1016 SDLoc SL(N); 1017 bool Signed = N->getOpcode() == ISD::SMUL_LOHI; 1018 unsigned Opc; 1019 if (Subtarget->hasMADIntraFwdBug()) 1020 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 1021 : AMDGPU::V_MAD_U64_U32_gfx11_e64; 1022 else 1023 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1024 1025 SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64); 1026 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1027 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp}; 1028 SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops); 1029 if (!SDValue(N, 0).use_empty()) { 1030 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32); 1031 SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1032 MVT::i32, SDValue(Mad, 0), Sub0); 1033 ReplaceUses(SDValue(N, 0), SDValue(Lo, 0)); 1034 } 1035 if (!SDValue(N, 1).use_empty()) { 1036 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32); 1037 SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1038 MVT::i32, SDValue(Mad, 0), Sub1); 1039 ReplaceUses(SDValue(N, 1), SDValue(Hi, 0)); 1040 } 1041 CurDAG->RemoveDeadNode(N); 1042 } 1043 1044 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { 1045 if (!isUInt<16>(Offset)) 1046 return false; 1047 1048 if (!Base || Subtarget->hasUsableDSOffset() || 1049 Subtarget->unsafeDSOffsetFoldingEnabled()) 1050 return true; 1051 1052 // On Southern Islands instruction with a negative base value and an offset 1053 // don't seem to work. 1054 return CurDAG->SignBitIsZero(Base); 1055 } 1056 1057 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1058 SDValue &Offset) const { 1059 SDLoc DL(Addr); 1060 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1061 SDValue N0 = Addr.getOperand(0); 1062 SDValue N1 = Addr.getOperand(1); 1063 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1064 if (isDSOffsetLegal(N0, C1->getSExtValue())) { 1065 // (add n0, c0) 1066 Base = N0; 1067 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1068 return true; 1069 } 1070 } else if (Addr.getOpcode() == ISD::SUB) { 1071 // sub C, x -> add (sub 0, x), C 1072 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1073 int64_t ByteOffset = C->getSExtValue(); 1074 if (isDSOffsetLegal(SDValue(), ByteOffset)) { 1075 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1076 1077 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1078 // the known bits in isDSOffsetLegal. We need to emit the selected node 1079 // here, so this is thrown away. 1080 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1081 Zero, Addr.getOperand(1)); 1082 1083 if (isDSOffsetLegal(Sub, ByteOffset)) { 1084 SmallVector<SDValue, 3> Opnds; 1085 Opnds.push_back(Zero); 1086 Opnds.push_back(Addr.getOperand(1)); 1087 1088 // FIXME: Select to VOP3 version for with-carry. 1089 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1090 if (Subtarget->hasAddNoCarry()) { 1091 SubOp = AMDGPU::V_SUB_U32_e64; 1092 Opnds.push_back( 1093 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1094 } 1095 1096 MachineSDNode *MachineSub = 1097 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1098 1099 Base = SDValue(MachineSub, 0); 1100 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1101 return true; 1102 } 1103 } 1104 } 1105 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1106 // If we have a constant address, prefer to put the constant into the 1107 // offset. This can save moves to load the constant address since multiple 1108 // operations can share the zero base address register, and enables merging 1109 // into read2 / write2 instructions. 1110 1111 SDLoc DL(Addr); 1112 1113 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { 1114 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1115 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1116 DL, MVT::i32, Zero); 1117 Base = SDValue(MovZero, 0); 1118 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1119 return true; 1120 } 1121 } 1122 1123 // default case 1124 Base = Addr; 1125 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1126 return true; 1127 } 1128 1129 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, 1130 unsigned Offset1, 1131 unsigned Size) const { 1132 if (Offset0 % Size != 0 || Offset1 % Size != 0) 1133 return false; 1134 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) 1135 return false; 1136 1137 if (!Base || Subtarget->hasUsableDSOffset() || 1138 Subtarget->unsafeDSOffsetFoldingEnabled()) 1139 return true; 1140 1141 // On Southern Islands instruction with a negative base value and an offset 1142 // don't seem to work. 1143 return CurDAG->SignBitIsZero(Base); 1144 } 1145 1146 // Return whether the operation has NoUnsignedWrap property. 1147 static bool isNoUnsignedWrap(SDValue Addr) { 1148 return (Addr.getOpcode() == ISD::ADD && 1149 Addr->getFlags().hasNoUnsignedWrap()) || 1150 Addr->getOpcode() == ISD::OR; 1151 } 1152 1153 // Check that the base address of flat scratch load/store in the form of `base + 1154 // offset` is legal to be put in SGPR/VGPR (i.e. unsigned per hardware 1155 // requirement). We always treat the first operand as the base address here. 1156 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegal(SDValue Addr) const { 1157 if (isNoUnsignedWrap(Addr)) 1158 return true; 1159 1160 // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative 1161 // values. 1162 if (AMDGPU::isGFX12Plus(*Subtarget)) 1163 return true; 1164 1165 auto LHS = Addr.getOperand(0); 1166 auto RHS = Addr.getOperand(1); 1167 1168 // If the immediate offset is negative and within certain range, the base 1169 // address cannot also be negative. If the base is also negative, the sum 1170 // would be either negative or much larger than the valid range of scratch 1171 // memory a thread can access. 1172 ConstantSDNode *ImmOp = nullptr; 1173 if (Addr.getOpcode() == ISD::ADD && (ImmOp = dyn_cast<ConstantSDNode>(RHS))) { 1174 if (ImmOp->getSExtValue() < 0 && ImmOp->getSExtValue() > -0x40000000) 1175 return true; 1176 } 1177 1178 return CurDAG->SignBitIsZero(LHS); 1179 } 1180 1181 // Check address value in SGPR/VGPR are legal for flat scratch in the form 1182 // of: SGPR + VGPR. 1183 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSV(SDValue Addr) const { 1184 if (isNoUnsignedWrap(Addr)) 1185 return true; 1186 1187 auto LHS = Addr.getOperand(0); 1188 auto RHS = Addr.getOperand(1); 1189 return CurDAG->SignBitIsZero(RHS) && CurDAG->SignBitIsZero(LHS); 1190 } 1191 1192 // Check address value in SGPR/VGPR are legal for flat scratch in the form 1193 // of: SGPR + VGPR + Imm. 1194 bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSVImm(SDValue Addr) const { 1195 auto Base = Addr.getOperand(0); 1196 auto *RHSImm = cast<ConstantSDNode>(Addr.getOperand(1)); 1197 // If the immediate offset is negative and within certain range, the base 1198 // address cannot also be negative. If the base is also negative, the sum 1199 // would be either negative or much larger than the valid range of scratch 1200 // memory a thread can access. 1201 if (isNoUnsignedWrap(Base) && 1202 (isNoUnsignedWrap(Addr) || 1203 (RHSImm->getSExtValue() < 0 && RHSImm->getSExtValue() > -0x40000000))) 1204 return true; 1205 1206 auto LHS = Base.getOperand(0); 1207 auto RHS = Base.getOperand(1); 1208 return CurDAG->SignBitIsZero(RHS) && CurDAG->SignBitIsZero(LHS); 1209 } 1210 1211 // TODO: If offset is too big, put low 16-bit into offset. 1212 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1213 SDValue &Offset0, 1214 SDValue &Offset1) const { 1215 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); 1216 } 1217 1218 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1219 SDValue &Offset0, 1220 SDValue &Offset1) const { 1221 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); 1222 } 1223 1224 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1225 SDValue &Offset0, SDValue &Offset1, 1226 unsigned Size) const { 1227 SDLoc DL(Addr); 1228 1229 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1230 SDValue N0 = Addr.getOperand(0); 1231 SDValue N1 = Addr.getOperand(1); 1232 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1233 unsigned OffsetValue0 = C1->getZExtValue(); 1234 unsigned OffsetValue1 = OffsetValue0 + Size; 1235 1236 // (add n0, c0) 1237 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { 1238 Base = N0; 1239 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1240 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1241 return true; 1242 } 1243 } else if (Addr.getOpcode() == ISD::SUB) { 1244 // sub C, x -> add (sub 0, x), C 1245 if (const ConstantSDNode *C = 1246 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1247 unsigned OffsetValue0 = C->getZExtValue(); 1248 unsigned OffsetValue1 = OffsetValue0 + Size; 1249 1250 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1251 SDLoc DL(Addr); 1252 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1253 1254 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1255 // the known bits in isDSOffsetLegal. We need to emit the selected node 1256 // here, so this is thrown away. 1257 SDValue Sub = 1258 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1259 1260 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { 1261 SmallVector<SDValue, 3> Opnds; 1262 Opnds.push_back(Zero); 1263 Opnds.push_back(Addr.getOperand(1)); 1264 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1265 if (Subtarget->hasAddNoCarry()) { 1266 SubOp = AMDGPU::V_SUB_U32_e64; 1267 Opnds.push_back( 1268 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1269 } 1270 1271 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1272 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); 1273 1274 Base = SDValue(MachineSub, 0); 1275 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1276 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1277 return true; 1278 } 1279 } 1280 } 1281 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1282 unsigned OffsetValue0 = CAddr->getZExtValue(); 1283 unsigned OffsetValue1 = OffsetValue0 + Size; 1284 1285 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1286 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1287 MachineSDNode *MovZero = 1288 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1289 Base = SDValue(MovZero, 0); 1290 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1291 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1292 return true; 1293 } 1294 } 1295 1296 // default case 1297 1298 Base = Addr; 1299 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1300 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1301 return true; 1302 } 1303 1304 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, 1305 SDValue &SOffset, SDValue &Offset, 1306 SDValue &Offen, SDValue &Idxen, 1307 SDValue &Addr64) const { 1308 // Subtarget prefers to use flat instruction 1309 // FIXME: This should be a pattern predicate and not reach here 1310 if (Subtarget->useFlatForGlobal()) 1311 return false; 1312 1313 SDLoc DL(Addr); 1314 1315 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1316 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1317 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1318 SOffset = Subtarget->hasRestrictedSOffset() 1319 ? CurDAG->getRegister(AMDGPU::SGPR_NULL, MVT::i32) 1320 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1321 1322 ConstantSDNode *C1 = nullptr; 1323 SDValue N0 = Addr; 1324 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1325 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1326 if (isUInt<32>(C1->getZExtValue())) 1327 N0 = Addr.getOperand(0); 1328 else 1329 C1 = nullptr; 1330 } 1331 1332 if (N0.getOpcode() == ISD::ADD) { 1333 // (add N2, N3) -> addr64, or 1334 // (add (add N2, N3), C1) -> addr64 1335 SDValue N2 = N0.getOperand(0); 1336 SDValue N3 = N0.getOperand(1); 1337 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1338 1339 if (N2->isDivergent()) { 1340 if (N3->isDivergent()) { 1341 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1342 // addr64, and construct the resource from a 0 address. 1343 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1344 VAddr = N0; 1345 } else { 1346 // N2 is divergent, N3 is not. 1347 Ptr = N3; 1348 VAddr = N2; 1349 } 1350 } else { 1351 // N2 is not divergent. 1352 Ptr = N2; 1353 VAddr = N3; 1354 } 1355 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1356 } else if (N0->isDivergent()) { 1357 // N0 is divergent. Use it as the addr64, and construct the resource from a 1358 // 0 address. 1359 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1360 VAddr = N0; 1361 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1362 } else { 1363 // N0 -> offset, or 1364 // (N0 + C1) -> offset 1365 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1366 Ptr = N0; 1367 } 1368 1369 if (!C1) { 1370 // No offset. 1371 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1372 return true; 1373 } 1374 1375 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1376 if (TII->isLegalMUBUFImmOffset(C1->getZExtValue())) { 1377 // Legal offset for instruction. 1378 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 1379 return true; 1380 } 1381 1382 // Illegal offset, store it in soffset. 1383 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1384 SOffset = 1385 SDValue(CurDAG->getMachineNode( 1386 AMDGPU::S_MOV_B32, DL, MVT::i32, 1387 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1388 0); 1389 return true; 1390 } 1391 1392 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1393 SDValue &VAddr, SDValue &SOffset, 1394 SDValue &Offset) const { 1395 SDValue Ptr, Offen, Idxen, Addr64; 1396 1397 // addr64 bit was removed for volcanic islands. 1398 // FIXME: This should be a pattern predicate and not reach here 1399 if (!Subtarget->hasAddr64()) 1400 return false; 1401 1402 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1403 return false; 1404 1405 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1406 if (C->getSExtValue()) { 1407 SDLoc DL(Addr); 1408 1409 const SITargetLowering& Lowering = 1410 *static_cast<const SITargetLowering*>(getTargetLowering()); 1411 1412 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1413 return true; 1414 } 1415 1416 return false; 1417 } 1418 1419 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1420 SDLoc DL(N); 1421 1422 auto *FI = dyn_cast<FrameIndexSDNode>(N); 1423 SDValue TFI = 1424 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; 1425 1426 // We rebase the base address into an absolute stack address and hence 1427 // use constant 0 for soffset. This value must be retained until 1428 // frame elimination and eliminateFrameIndex will choose the appropriate 1429 // frame register if need be. 1430 return std::pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1431 } 1432 1433 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1434 SDValue Addr, SDValue &Rsrc, 1435 SDValue &VAddr, SDValue &SOffset, 1436 SDValue &ImmOffset) const { 1437 1438 SDLoc DL(Addr); 1439 MachineFunction &MF = CurDAG->getMachineFunction(); 1440 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1441 1442 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1443 1444 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1445 int64_t Imm = CAddr->getSExtValue(); 1446 const int64_t NullPtr = 1447 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1448 // Don't fold null pointer. 1449 if (Imm != NullPtr) { 1450 const uint32_t MaxOffset = SIInstrInfo::getMaxMUBUFImmOffset(*Subtarget); 1451 SDValue HighBits = 1452 CurDAG->getTargetConstant(Imm & ~MaxOffset, DL, MVT::i32); 1453 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1454 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1455 VAddr = SDValue(MovHighBits, 0); 1456 1457 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1458 ImmOffset = CurDAG->getTargetConstant(Imm & MaxOffset, DL, MVT::i32); 1459 return true; 1460 } 1461 } 1462 1463 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1464 // (add n0, c1) 1465 1466 SDValue N0 = Addr.getOperand(0); 1467 SDValue N1 = Addr.getOperand(1); 1468 1469 // Offsets in vaddr must be positive if range checking is enabled. 1470 // 1471 // The total computation of vaddr + soffset + offset must not overflow. If 1472 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1473 // overflowing. 1474 // 1475 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1476 // always perform a range check. If a negative vaddr base index was used, 1477 // this would fail the range check. The overall address computation would 1478 // compute a valid address, but this doesn't happen due to the range 1479 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1480 // 1481 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1482 // MUBUF vaddr, but not on older subtargets which can only do this if the 1483 // sign bit is known 0. 1484 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1485 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1486 if (TII->isLegalMUBUFImmOffset(C1->getZExtValue()) && 1487 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1488 CurDAG->SignBitIsZero(N0))) { 1489 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1490 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 1491 return true; 1492 } 1493 } 1494 1495 // (node) 1496 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1497 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1498 return true; 1499 } 1500 1501 static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) { 1502 if (Val.getOpcode() != ISD::CopyFromReg) 1503 return false; 1504 auto Reg = cast<RegisterSDNode>(Val.getOperand(1))->getReg(); 1505 if (!Reg.isPhysical()) 1506 return false; 1507 auto RC = TRI.getPhysRegBaseClass(Reg); 1508 return RC && TRI.isSGPRClass(RC); 1509 } 1510 1511 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1512 SDValue Addr, 1513 SDValue &SRsrc, 1514 SDValue &SOffset, 1515 SDValue &Offset) const { 1516 const SIRegisterInfo *TRI = 1517 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 1518 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1519 MachineFunction &MF = CurDAG->getMachineFunction(); 1520 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1521 SDLoc DL(Addr); 1522 1523 // CopyFromReg <sgpr> 1524 if (IsCopyFromSGPR(*TRI, Addr)) { 1525 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1526 SOffset = Addr; 1527 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1528 return true; 1529 } 1530 1531 ConstantSDNode *CAddr; 1532 if (Addr.getOpcode() == ISD::ADD) { 1533 // Add (CopyFromReg <sgpr>) <constant> 1534 CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); 1535 if (!CAddr || !TII->isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1536 return false; 1537 if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0))) 1538 return false; 1539 1540 SOffset = Addr.getOperand(0); 1541 } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) && 1542 TII->isLegalMUBUFImmOffset(CAddr->getZExtValue())) { 1543 // <constant> 1544 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1545 } else { 1546 return false; 1547 } 1548 1549 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1550 1551 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i32); 1552 return true; 1553 } 1554 1555 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1556 SDValue &SOffset, SDValue &Offset 1557 ) const { 1558 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1559 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1560 1561 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1562 return false; 1563 1564 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1565 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1566 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1567 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1568 APInt::getAllOnes(32).getZExtValue(); // Size 1569 SDLoc DL(Addr); 1570 1571 const SITargetLowering& Lowering = 1572 *static_cast<const SITargetLowering*>(getTargetLowering()); 1573 1574 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1575 return true; 1576 } 1577 return false; 1578 } 1579 1580 bool AMDGPUDAGToDAGISel::SelectBUFSOffset(SDValue ByteOffsetNode, 1581 SDValue &SOffset) const { 1582 if (Subtarget->hasRestrictedSOffset()) { 1583 if (auto SOffsetConst = dyn_cast<ConstantSDNode>(ByteOffsetNode)) { 1584 if (SOffsetConst->isZero()) { 1585 SOffset = CurDAG->getRegister(AMDGPU::SGPR_NULL, MVT::i32); 1586 return true; 1587 } 1588 } 1589 } 1590 1591 SOffset = ByteOffsetNode; 1592 return true; 1593 } 1594 1595 // Find a load or store from corresponding pattern root. 1596 // Roots may be build_vector, bitconvert or their combinations. 1597 static MemSDNode* findMemSDNode(SDNode *N) { 1598 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1599 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1600 return MN; 1601 assert(isa<BuildVectorSDNode>(N)); 1602 for (SDValue V : N->op_values()) 1603 if (MemSDNode *MN = 1604 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1605 return MN; 1606 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1607 } 1608 1609 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr, 1610 SDValue &VAddr, SDValue &Offset, 1611 uint64_t FlatVariant) const { 1612 int64_t OffsetVal = 0; 1613 1614 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1615 1616 bool CanHaveFlatSegmentOffsetBug = 1617 Subtarget->hasFlatSegmentOffsetBug() && 1618 FlatVariant == SIInstrFlags::FLAT && 1619 (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS); 1620 1621 if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) { 1622 SDValue N0, N1; 1623 if (isBaseWithConstantOffset64(Addr, N0, N1) && 1624 (FlatVariant != SIInstrFlags::FlatScratch || 1625 isFlatScratchBaseLegal(Addr))) { 1626 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1627 1628 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1629 if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) { 1630 Addr = N0; 1631 OffsetVal = COffsetVal; 1632 } else { 1633 // If the offset doesn't fit, put the low bits into the offset field and 1634 // add the rest. 1635 // 1636 // For a FLAT instruction the hardware decides whether to access 1637 // global/scratch/shared memory based on the high bits of vaddr, 1638 // ignoring the offset field, so we have to ensure that when we add 1639 // remainder to vaddr it still points into the same underlying object. 1640 // The easiest way to do that is to make sure that we split the offset 1641 // into two pieces that are both >= 0 or both <= 0. 1642 1643 SDLoc DL(N); 1644 uint64_t RemainderOffset; 1645 1646 std::tie(OffsetVal, RemainderOffset) = 1647 TII->splitFlatOffset(COffsetVal, AS, FlatVariant); 1648 1649 SDValue AddOffsetLo = 1650 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1651 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1652 1653 if (Addr.getValueType().getSizeInBits() == 32) { 1654 SmallVector<SDValue, 3> Opnds; 1655 Opnds.push_back(N0); 1656 Opnds.push_back(AddOffsetLo); 1657 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; 1658 if (Subtarget->hasAddNoCarry()) { 1659 AddOp = AMDGPU::V_ADD_U32_e64; 1660 Opnds.push_back(Clamp); 1661 } 1662 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); 1663 } else { 1664 // TODO: Should this try to use a scalar add pseudo if the base address 1665 // is uniform and saddr is usable? 1666 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1667 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1668 1669 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1670 DL, MVT::i32, N0, Sub0); 1671 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1672 DL, MVT::i32, N0, Sub1); 1673 1674 SDValue AddOffsetHi = 1675 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1676 1677 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1678 1679 SDNode *Add = 1680 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1681 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1682 1683 SDNode *Addc = CurDAG->getMachineNode( 1684 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1685 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1686 1687 SDValue RegSequenceArgs[] = { 1688 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1689 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1690 1691 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1692 MVT::i64, RegSequenceArgs), 1693 0); 1694 } 1695 } 1696 } 1697 } 1698 1699 VAddr = Addr; 1700 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 1701 return true; 1702 } 1703 1704 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr, 1705 SDValue &VAddr, 1706 SDValue &Offset) const { 1707 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT); 1708 } 1709 1710 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr, 1711 SDValue &VAddr, 1712 SDValue &Offset) const { 1713 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal); 1714 } 1715 1716 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr, 1717 SDValue &VAddr, 1718 SDValue &Offset) const { 1719 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, 1720 SIInstrFlags::FlatScratch); 1721 } 1722 1723 // If this matches zero_extend i32:x, return x 1724 static SDValue matchZExtFromI32(SDValue Op) { 1725 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1726 return SDValue(); 1727 1728 SDValue ExtSrc = Op.getOperand(0); 1729 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1730 } 1731 1732 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1733 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1734 SDValue Addr, 1735 SDValue &SAddr, 1736 SDValue &VOffset, 1737 SDValue &Offset) const { 1738 int64_t ImmOffset = 0; 1739 1740 // Match the immediate offset first, which canonically is moved as low as 1741 // possible. 1742 1743 SDValue LHS, RHS; 1744 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1745 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1746 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1747 1748 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, 1749 SIInstrFlags::FlatGlobal)) { 1750 Addr = LHS; 1751 ImmOffset = COffsetVal; 1752 } else if (!LHS->isDivergent()) { 1753 if (COffsetVal > 0) { 1754 SDLoc SL(N); 1755 // saddr + large_offset -> saddr + 1756 // (voffset = large_offset & ~MaxOffset) + 1757 // (large_offset & MaxOffset); 1758 int64_t SplitImmOffset, RemainderOffset; 1759 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1760 COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal); 1761 1762 if (isUInt<32>(RemainderOffset)) { 1763 SDNode *VMov = CurDAG->getMachineNode( 1764 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1765 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1766 VOffset = SDValue(VMov, 0); 1767 SAddr = LHS; 1768 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i32); 1769 return true; 1770 } 1771 } 1772 1773 // We are adding a 64 bit SGPR and a constant. If constant bus limit 1774 // is 1 we would need to perform 1 or 2 extra moves for each half of 1775 // the constant and it is better to do a scalar add and then issue a 1776 // single VALU instruction to materialize zero. Otherwise it is less 1777 // instructions to perform VALU adds with immediates or inline literals. 1778 unsigned NumLiterals = 1779 !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) + 1780 !TII->isInlineConstant(APInt(32, COffsetVal >> 32)); 1781 if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals) 1782 return false; 1783 } 1784 } 1785 1786 // Match the variable offset. 1787 if (Addr.getOpcode() == ISD::ADD) { 1788 LHS = Addr.getOperand(0); 1789 RHS = Addr.getOperand(1); 1790 1791 if (!LHS->isDivergent()) { 1792 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1793 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1794 SAddr = LHS; 1795 VOffset = ZextRHS; 1796 } 1797 } 1798 1799 if (!SAddr && !RHS->isDivergent()) { 1800 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1801 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1802 SAddr = RHS; 1803 VOffset = ZextLHS; 1804 } 1805 } 1806 1807 if (SAddr) { 1808 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i32); 1809 return true; 1810 } 1811 } 1812 1813 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || 1814 isa<ConstantSDNode>(Addr)) 1815 return false; 1816 1817 // It's cheaper to materialize a single 32-bit zero for vaddr than the two 1818 // moves required to copy a 64-bit SGPR to VGPR. 1819 SAddr = Addr; 1820 SDNode *VMov = 1821 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, 1822 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); 1823 VOffset = SDValue(VMov, 0); 1824 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i32); 1825 return true; 1826 } 1827 1828 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) { 1829 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { 1830 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); 1831 } else if (SAddr.getOpcode() == ISD::ADD && 1832 isa<FrameIndexSDNode>(SAddr.getOperand(0))) { 1833 // Materialize this into a scalar move for scalar address to avoid 1834 // readfirstlane. 1835 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); 1836 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1837 FI->getValueType(0)); 1838 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr), 1839 MVT::i32, TFI, SAddr.getOperand(1)), 1840 0); 1841 } 1842 1843 return SAddr; 1844 } 1845 1846 // Match (32-bit SGPR base) + sext(imm offset) 1847 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr, 1848 SDValue &SAddr, 1849 SDValue &Offset) const { 1850 if (Addr->isDivergent()) 1851 return false; 1852 1853 SDLoc DL(Addr); 1854 1855 int64_t COffsetVal = 0; 1856 1857 if (CurDAG->isBaseWithConstantOffset(Addr) && isFlatScratchBaseLegal(Addr)) { 1858 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); 1859 SAddr = Addr.getOperand(0); 1860 } else { 1861 SAddr = Addr; 1862 } 1863 1864 SAddr = SelectSAddrFI(CurDAG, SAddr); 1865 1866 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1867 1868 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, 1869 SIInstrFlags::FlatScratch)) { 1870 int64_t SplitImmOffset, RemainderOffset; 1871 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1872 COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch); 1873 1874 COffsetVal = SplitImmOffset; 1875 1876 SDValue AddOffset = 1877 SAddr.getOpcode() == ISD::TargetFrameIndex 1878 ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL) 1879 : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32); 1880 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32, 1881 SAddr, AddOffset), 1882 0); 1883 } 1884 1885 Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16); 1886 1887 return true; 1888 } 1889 1890 // Check whether the flat scratch SVS swizzle bug affects this access. 1891 bool AMDGPUDAGToDAGISel::checkFlatScratchSVSSwizzleBug( 1892 SDValue VAddr, SDValue SAddr, uint64_t ImmOffset) const { 1893 if (!Subtarget->hasFlatScratchSVSSwizzleBug()) 1894 return false; 1895 1896 // The bug affects the swizzling of SVS accesses if there is any carry out 1897 // from the two low order bits (i.e. from bit 1 into bit 2) when adding 1898 // voffset to (soffset + inst_offset). 1899 KnownBits VKnown = CurDAG->computeKnownBits(VAddr); 1900 KnownBits SKnown = KnownBits::computeForAddSub( 1901 true, false, CurDAG->computeKnownBits(SAddr), 1902 KnownBits::makeConstant(APInt(32, ImmOffset))); 1903 uint64_t VMax = VKnown.getMaxValue().getZExtValue(); 1904 uint64_t SMax = SKnown.getMaxValue().getZExtValue(); 1905 return (VMax & 3) + (SMax & 3) >= 4; 1906 } 1907 1908 bool AMDGPUDAGToDAGISel::SelectScratchSVAddr(SDNode *N, SDValue Addr, 1909 SDValue &VAddr, SDValue &SAddr, 1910 SDValue &Offset) const { 1911 int64_t ImmOffset = 0; 1912 1913 SDValue LHS, RHS; 1914 SDValue OrigAddr = Addr; 1915 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1916 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1917 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1918 1919 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) { 1920 Addr = LHS; 1921 ImmOffset = COffsetVal; 1922 } else if (!LHS->isDivergent() && COffsetVal > 0) { 1923 SDLoc SL(N); 1924 // saddr + large_offset -> saddr + (vaddr = large_offset & ~MaxOffset) + 1925 // (large_offset & MaxOffset); 1926 int64_t SplitImmOffset, RemainderOffset; 1927 std::tie(SplitImmOffset, RemainderOffset) 1928 = TII->splitFlatOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true); 1929 1930 if (isUInt<32>(RemainderOffset)) { 1931 SDNode *VMov = CurDAG->getMachineNode( 1932 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1933 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1934 VAddr = SDValue(VMov, 0); 1935 SAddr = LHS; 1936 if (!isFlatScratchBaseLegal(Addr)) 1937 return false; 1938 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, SplitImmOffset)) 1939 return false; 1940 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1941 return true; 1942 } 1943 } 1944 } 1945 1946 if (Addr.getOpcode() != ISD::ADD) 1947 return false; 1948 1949 LHS = Addr.getOperand(0); 1950 RHS = Addr.getOperand(1); 1951 1952 if (!LHS->isDivergent() && RHS->isDivergent()) { 1953 SAddr = LHS; 1954 VAddr = RHS; 1955 } else if (!RHS->isDivergent() && LHS->isDivergent()) { 1956 SAddr = RHS; 1957 VAddr = LHS; 1958 } else { 1959 return false; 1960 } 1961 1962 if (OrigAddr != Addr) { 1963 if (!isFlatScratchBaseLegalSVImm(OrigAddr)) 1964 return false; 1965 } else { 1966 if (!isFlatScratchBaseLegalSV(OrigAddr)) 1967 return false; 1968 } 1969 1970 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset)) 1971 return false; 1972 SAddr = SelectSAddrFI(CurDAG, SAddr); 1973 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1974 return true; 1975 } 1976 1977 // Match an immediate (if Offset is not null) or an SGPR (if SOffset is 1978 // not null) offset. If Imm32Only is true, match only 32-bit immediate 1979 // offsets available on CI. 1980 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1981 SDValue *SOffset, SDValue *Offset, 1982 bool Imm32Only, bool IsBuffer) const { 1983 assert((!SOffset || !Offset) && 1984 "Cannot match both soffset and offset at the same time!"); 1985 1986 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1987 if (!C) { 1988 if (!SOffset) 1989 return false; 1990 if (ByteOffsetNode.getValueType().isScalarInteger() && 1991 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1992 *SOffset = ByteOffsetNode; 1993 return true; 1994 } 1995 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 1996 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 1997 *SOffset = ByteOffsetNode.getOperand(0); 1998 return true; 1999 } 2000 } 2001 return false; 2002 } 2003 2004 SDLoc SL(ByteOffsetNode); 2005 2006 // GFX9 and GFX10 have signed byte immediate offsets. The immediate 2007 // offset for S_BUFFER instructions is unsigned. 2008 int64_t ByteOffset = IsBuffer ? C->getZExtValue() : C->getSExtValue(); 2009 std::optional<int64_t> EncodedOffset = 2010 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, IsBuffer); 2011 if (EncodedOffset && Offset && !Imm32Only) { 2012 *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 2013 return true; 2014 } 2015 2016 // SGPR and literal offsets are unsigned. 2017 if (ByteOffset < 0) 2018 return false; 2019 2020 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 2021 if (EncodedOffset && Offset && Imm32Only) { 2022 *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 2023 return true; 2024 } 2025 2026 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 2027 return false; 2028 2029 if (SOffset) { 2030 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 2031 *SOffset = SDValue( 2032 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 2033 return true; 2034 } 2035 2036 return false; 2037 } 2038 2039 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 2040 if (Addr.getValueType() != MVT::i32) 2041 return Addr; 2042 2043 // Zero-extend a 32-bit address. 2044 SDLoc SL(Addr); 2045 2046 const MachineFunction &MF = CurDAG->getMachineFunction(); 2047 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2048 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 2049 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 2050 2051 const SDValue Ops[] = { 2052 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 2053 Addr, 2054 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2055 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 2056 0), 2057 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 2058 }; 2059 2060 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 2061 Ops), 0); 2062 } 2063 2064 // Match a base and an immediate (if Offset is not null) or an SGPR (if 2065 // SOffset is not null) or an immediate+SGPR offset. If Imm32Only is 2066 // true, match only 32-bit immediate offsets available on CI. 2067 bool AMDGPUDAGToDAGISel::SelectSMRDBaseOffset(SDValue Addr, SDValue &SBase, 2068 SDValue *SOffset, SDValue *Offset, 2069 bool Imm32Only, 2070 bool IsBuffer) const { 2071 if (SOffset && Offset) { 2072 assert(!Imm32Only && !IsBuffer); 2073 SDValue B; 2074 return SelectSMRDBaseOffset(Addr, B, nullptr, Offset) && 2075 SelectSMRDBaseOffset(B, SBase, SOffset, nullptr); 2076 } 2077 2078 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 2079 // wraparound, because s_load instructions perform the addition in 64 bits. 2080 if (Addr.getValueType() == MVT::i32 && Addr.getOpcode() == ISD::ADD && 2081 !Addr->getFlags().hasNoUnsignedWrap()) 2082 return false; 2083 2084 SDValue N0, N1; 2085 // Extract the base and offset if possible. 2086 if (CurDAG->isBaseWithConstantOffset(Addr) || Addr.getOpcode() == ISD::ADD) { 2087 N0 = Addr.getOperand(0); 2088 N1 = Addr.getOperand(1); 2089 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 2090 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 2091 } 2092 if (!N0 || !N1) 2093 return false; 2094 if (SelectSMRDOffset(N1, SOffset, Offset, Imm32Only, IsBuffer)) { 2095 SBase = N0; 2096 return true; 2097 } 2098 if (SelectSMRDOffset(N0, SOffset, Offset, Imm32Only, IsBuffer)) { 2099 SBase = N1; 2100 return true; 2101 } 2102 return false; 2103 } 2104 2105 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 2106 SDValue *SOffset, SDValue *Offset, 2107 bool Imm32Only) const { 2108 if (SelectSMRDBaseOffset(Addr, SBase, SOffset, Offset, Imm32Only)) { 2109 SBase = Expand32BitAddress(SBase); 2110 return true; 2111 } 2112 2113 if (Addr.getValueType() == MVT::i32 && Offset && !SOffset) { 2114 SBase = Expand32BitAddress(Addr); 2115 *Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); 2116 return true; 2117 } 2118 2119 return false; 2120 } 2121 2122 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 2123 SDValue &Offset) const { 2124 return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset); 2125 } 2126 2127 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 2128 SDValue &Offset) const { 2129 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2130 return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset, 2131 /* Imm32Only */ true); 2132 } 2133 2134 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 2135 SDValue &SOffset) const { 2136 return SelectSMRD(Addr, SBase, &SOffset, /* Offset */ nullptr); 2137 } 2138 2139 bool AMDGPUDAGToDAGISel::SelectSMRDSgprImm(SDValue Addr, SDValue &SBase, 2140 SDValue &SOffset, 2141 SDValue &Offset) const { 2142 return SelectSMRD(Addr, SBase, &SOffset, &Offset); 2143 } 2144 2145 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue N, SDValue &Offset) const { 2146 return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset, 2147 /* Imm32Only */ false, /* IsBuffer */ true); 2148 } 2149 2150 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue N, 2151 SDValue &Offset) const { 2152 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2153 return SelectSMRDOffset(N, /* SOffset */ nullptr, &Offset, 2154 /* Imm32Only */ true, /* IsBuffer */ true); 2155 } 2156 2157 bool AMDGPUDAGToDAGISel::SelectSMRDBufferSgprImm(SDValue N, SDValue &SOffset, 2158 SDValue &Offset) const { 2159 // Match the (soffset + offset) pair as a 32-bit register base and 2160 // an immediate offset. 2161 return N.getValueType() == MVT::i32 && 2162 SelectSMRDBaseOffset(N, /* SBase */ SOffset, /* SOffset*/ nullptr, 2163 &Offset, /* Imm32Only */ false, 2164 /* IsBuffer */ true); 2165 } 2166 2167 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 2168 SDValue &Base, 2169 SDValue &Offset) const { 2170 SDLoc DL(Index); 2171 2172 if (CurDAG->isBaseWithConstantOffset(Index)) { 2173 SDValue N0 = Index.getOperand(0); 2174 SDValue N1 = Index.getOperand(1); 2175 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 2176 2177 // (add n0, c0) 2178 // Don't peel off the offset (c0) if doing so could possibly lead 2179 // the base (n0) to be negative. 2180 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 2181 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 2182 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 2183 Base = N0; 2184 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 2185 return true; 2186 } 2187 } 2188 2189 if (isa<ConstantSDNode>(Index)) 2190 return false; 2191 2192 Base = Index; 2193 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2194 return true; 2195 } 2196 2197 SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL, 2198 SDValue Val, uint32_t Offset, 2199 uint32_t Width) { 2200 if (Val->isDivergent()) { 2201 unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64; 2202 SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32); 2203 SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32); 2204 2205 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W); 2206 } 2207 unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2208 // Transformation function, pack the offset and width of a BFE into 2209 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 2210 // source, bits [5:0] contain the offset and bits [22:16] the width. 2211 uint32_t PackedVal = Offset | (Width << 16); 2212 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 2213 2214 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 2215 } 2216 2217 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 2218 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 2219 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 2220 // Predicate: 0 < b <= c < 32 2221 2222 const SDValue &Shl = N->getOperand(0); 2223 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 2224 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2225 2226 if (B && C) { 2227 uint32_t BVal = B->getZExtValue(); 2228 uint32_t CVal = C->getZExtValue(); 2229 2230 if (0 < BVal && BVal <= CVal && CVal < 32) { 2231 bool Signed = N->getOpcode() == ISD::SRA; 2232 ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2233 32 - CVal)); 2234 return; 2235 } 2236 } 2237 SelectCode(N); 2238 } 2239 2240 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2241 switch (N->getOpcode()) { 2242 case ISD::AND: 2243 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2244 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2245 // Predicate: isMask(mask) 2246 const SDValue &Srl = N->getOperand(0); 2247 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2248 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2249 2250 if (Shift && Mask) { 2251 uint32_t ShiftVal = Shift->getZExtValue(); 2252 uint32_t MaskVal = Mask->getZExtValue(); 2253 2254 if (isMask_32(MaskVal)) { 2255 uint32_t WidthVal = llvm::popcount(MaskVal); 2256 ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal, 2257 WidthVal)); 2258 return; 2259 } 2260 } 2261 } 2262 break; 2263 case ISD::SRL: 2264 if (N->getOperand(0).getOpcode() == ISD::AND) { 2265 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2266 // Predicate: isMask(mask >> b) 2267 const SDValue &And = N->getOperand(0); 2268 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2269 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2270 2271 if (Shift && Mask) { 2272 uint32_t ShiftVal = Shift->getZExtValue(); 2273 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2274 2275 if (isMask_32(MaskVal)) { 2276 uint32_t WidthVal = llvm::popcount(MaskVal); 2277 ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal, 2278 WidthVal)); 2279 return; 2280 } 2281 } 2282 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2283 SelectS_BFEFromShifts(N); 2284 return; 2285 } 2286 break; 2287 case ISD::SRA: 2288 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2289 SelectS_BFEFromShifts(N); 2290 return; 2291 } 2292 break; 2293 2294 case ISD::SIGN_EXTEND_INREG: { 2295 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2296 SDValue Src = N->getOperand(0); 2297 if (Src.getOpcode() != ISD::SRL) 2298 break; 2299 2300 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2301 if (!Amt) 2302 break; 2303 2304 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2305 ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0), 2306 Amt->getZExtValue(), Width)); 2307 return; 2308 } 2309 } 2310 2311 SelectCode(N); 2312 } 2313 2314 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2315 assert(N->getOpcode() == ISD::BRCOND); 2316 if (!N->hasOneUse()) 2317 return false; 2318 2319 SDValue Cond = N->getOperand(1); 2320 if (Cond.getOpcode() == ISD::CopyToReg) 2321 Cond = Cond.getOperand(2); 2322 2323 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2324 return false; 2325 2326 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2327 if (VT == MVT::i32) 2328 return true; 2329 2330 if (VT == MVT::i64) { 2331 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2332 2333 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2334 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2335 } 2336 2337 return false; 2338 } 2339 2340 static SDValue combineBallotPattern(SDValue VCMP, bool &Negate) { 2341 assert(VCMP->getOpcode() == AMDGPUISD::SETCC); 2342 // Special case for amdgcn.ballot: 2343 // %Cond = i1 (and/or combination of i1 ISD::SETCCs) 2344 // %VCMP = i(WaveSize) AMDGPUISD::SETCC (ext %Cond), 0, setne/seteq 2345 // => 2346 // Use i1 %Cond value instead of i(WaveSize) %VCMP. 2347 // This is possible because divergent ISD::SETCC is selected as V_CMP and 2348 // Cond becomes a i(WaveSize) full mask value. 2349 // Note that ballot doesn't use SETEQ condition but its easy to support it 2350 // here for completeness, so in this case Negate is set true on return. 2351 auto VCMP_CC = cast<CondCodeSDNode>(VCMP.getOperand(2))->get(); 2352 if ((VCMP_CC == ISD::SETEQ || VCMP_CC == ISD::SETNE) && 2353 isNullConstant(VCMP.getOperand(1))) { 2354 2355 auto Cond = VCMP.getOperand(0); 2356 if (ISD::isExtOpcode(Cond->getOpcode())) // Skip extension. 2357 Cond = Cond.getOperand(0); 2358 2359 if (isBoolSGPR(Cond)) { 2360 Negate = VCMP_CC == ISD::SETEQ; 2361 return Cond; 2362 } 2363 } 2364 return SDValue(); 2365 } 2366 2367 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2368 SDValue Cond = N->getOperand(1); 2369 2370 if (Cond.isUndef()) { 2371 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2372 N->getOperand(2), N->getOperand(0)); 2373 return; 2374 } 2375 2376 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2377 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2378 2379 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2380 bool AndExec = !UseSCCBr; 2381 bool Negate = false; 2382 2383 if (Cond.getOpcode() == ISD::SETCC && 2384 Cond->getOperand(0)->getOpcode() == AMDGPUISD::SETCC) { 2385 SDValue VCMP = Cond->getOperand(0); 2386 auto CC = cast<CondCodeSDNode>(Cond->getOperand(2))->get(); 2387 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && 2388 isNullConstant(Cond->getOperand(1)) && 2389 // TODO: make condition below an assert after fixing ballot bitwidth. 2390 VCMP.getValueType().getSizeInBits() == ST->getWavefrontSize()) { 2391 // %VCMP = i(WaveSize) AMDGPUISD::SETCC ... 2392 // %C = i1 ISD::SETCC %VCMP, 0, setne/seteq 2393 // BRCOND i1 %C, %BB 2394 // => 2395 // %VCMP = i(WaveSize) AMDGPUISD::SETCC ... 2396 // VCC = COPY i(WaveSize) %VCMP 2397 // S_CBRANCH_VCCNZ/VCCZ %BB 2398 Negate = CC == ISD::SETEQ; 2399 bool NegatedBallot = false; 2400 if (auto BallotCond = combineBallotPattern(VCMP, NegatedBallot)) { 2401 Cond = BallotCond; 2402 UseSCCBr = !BallotCond->isDivergent(); 2403 Negate = Negate ^ NegatedBallot; 2404 } else { 2405 // TODO: don't use SCC here assuming that AMDGPUISD::SETCC is always 2406 // selected as V_CMP, but this may change for uniform condition. 2407 Cond = VCMP; 2408 UseSCCBr = false; 2409 } 2410 } 2411 // Cond is either V_CMP resulted from AMDGPUISD::SETCC or a combination of 2412 // V_CMPs resulted from ballot or ballot has uniform condition and SCC is 2413 // used. 2414 AndExec = false; 2415 } 2416 2417 unsigned BrOp = 2418 UseSCCBr ? (Negate ? AMDGPU::S_CBRANCH_SCC0 : AMDGPU::S_CBRANCH_SCC1) 2419 : (Negate ? AMDGPU::S_CBRANCH_VCCZ : AMDGPU::S_CBRANCH_VCCNZ); 2420 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2421 SDLoc SL(N); 2422 2423 if (AndExec) { 2424 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2425 // analyzed what generates the vcc value, so we do not know whether vcc 2426 // bits for disabled lanes are 0. Thus we need to mask out bits for 2427 // disabled lanes. 2428 // 2429 // For the case that we select S_CBRANCH_SCC1 and it gets 2430 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2431 // SIInstrInfo::moveToVALU which inserts the S_AND). 2432 // 2433 // We could add an analysis of what generates the vcc value here and omit 2434 // the S_AND when is unnecessary. But it would be better to add a separate 2435 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2436 // catches both cases. 2437 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2438 : AMDGPU::S_AND_B64, 2439 SL, MVT::i1, 2440 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2441 : AMDGPU::EXEC, 2442 MVT::i1), 2443 Cond), 2444 0); 2445 } 2446 2447 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2448 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2449 N->getOperand(2), // Basic Block 2450 VCC.getValue(0)); 2451 } 2452 2453 void AMDGPUDAGToDAGISel::SelectFP_EXTEND(SDNode *N) { 2454 if (Subtarget->hasSALUFloatInsts() && N->getValueType(0) == MVT::f32 && 2455 !N->isDivergent()) { 2456 SDValue Src = N->getOperand(0); 2457 if (Src.getValueType() == MVT::f16) { 2458 if (isExtractHiElt(Src, Src)) { 2459 CurDAG->SelectNodeTo(N, AMDGPU::S_CVT_HI_F32_F16, N->getVTList(), 2460 {Src}); 2461 return; 2462 } 2463 } 2464 } 2465 2466 SelectCode(N); 2467 } 2468 2469 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2470 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2471 // be copied to an SGPR with readfirstlane. 2472 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2473 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2474 2475 SDValue Chain = N->getOperand(0); 2476 SDValue Ptr = N->getOperand(2); 2477 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2478 MachineMemOperand *MMO = M->getMemOperand(); 2479 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2480 2481 SDValue Offset; 2482 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2483 SDValue PtrBase = Ptr.getOperand(0); 2484 SDValue PtrOffset = Ptr.getOperand(1); 2485 2486 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); 2487 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { 2488 N = glueCopyToM0(N, PtrBase); 2489 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2490 } 2491 } 2492 2493 if (!Offset) { 2494 N = glueCopyToM0(N, Ptr); 2495 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2496 } 2497 2498 SDValue Ops[] = { 2499 Offset, 2500 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2501 Chain, 2502 N->getOperand(N->getNumOperands() - 1) // New glue 2503 }; 2504 2505 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2506 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2507 } 2508 2509 // We need to handle this here because tablegen doesn't support matching 2510 // instructions with multiple outputs. 2511 void AMDGPUDAGToDAGISel::SelectDSBvhStackIntrinsic(SDNode *N) { 2512 unsigned Opc = AMDGPU::DS_BVH_STACK_RTN_B32; 2513 SDValue Ops[] = {N->getOperand(2), N->getOperand(3), N->getOperand(4), 2514 N->getOperand(5), N->getOperand(0)}; 2515 2516 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2517 MachineMemOperand *MMO = M->getMemOperand(); 2518 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2519 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2520 } 2521 2522 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2523 switch (IntrID) { 2524 case Intrinsic::amdgcn_ds_gws_init: 2525 return AMDGPU::DS_GWS_INIT; 2526 case Intrinsic::amdgcn_ds_gws_barrier: 2527 return AMDGPU::DS_GWS_BARRIER; 2528 case Intrinsic::amdgcn_ds_gws_sema_v: 2529 return AMDGPU::DS_GWS_SEMA_V; 2530 case Intrinsic::amdgcn_ds_gws_sema_br: 2531 return AMDGPU::DS_GWS_SEMA_BR; 2532 case Intrinsic::amdgcn_ds_gws_sema_p: 2533 return AMDGPU::DS_GWS_SEMA_P; 2534 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2535 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2536 default: 2537 llvm_unreachable("not a gws intrinsic"); 2538 } 2539 } 2540 2541 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2542 if (!Subtarget->hasGWS() || 2543 (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2544 !Subtarget->hasGWSSemaReleaseAll())) { 2545 // Let this error. 2546 SelectCode(N); 2547 return; 2548 } 2549 2550 // Chain, intrinsic ID, vsrc, offset 2551 const bool HasVSrc = N->getNumOperands() == 4; 2552 assert(HasVSrc || N->getNumOperands() == 3); 2553 2554 SDLoc SL(N); 2555 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2556 int ImmOffset = 0; 2557 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2558 MachineMemOperand *MMO = M->getMemOperand(); 2559 2560 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2561 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2562 2563 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2564 // offset field) % 64. Some versions of the programming guide omit the m0 2565 // part, or claim it's from offset 0. 2566 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2567 // If we have a constant offset, try to use the 0 in m0 as the base. 2568 // TODO: Look into changing the default m0 initialization value. If the 2569 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2570 // the immediate offset. 2571 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2572 ImmOffset = ConstOffset->getZExtValue(); 2573 } else { 2574 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2575 ImmOffset = BaseOffset.getConstantOperandVal(1); 2576 BaseOffset = BaseOffset.getOperand(0); 2577 } 2578 2579 // Prefer to do the shift in an SGPR since it should be possible to use m0 2580 // as the result directly. If it's already an SGPR, it will be eliminated 2581 // later. 2582 SDNode *SGPROffset 2583 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2584 BaseOffset); 2585 // Shift to offset in m0 2586 SDNode *M0Base 2587 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2588 SDValue(SGPROffset, 0), 2589 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2590 glueCopyToM0(N, SDValue(M0Base, 0)); 2591 } 2592 2593 SDValue Chain = N->getOperand(0); 2594 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2595 2596 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2597 SmallVector<SDValue, 5> Ops; 2598 if (HasVSrc) 2599 Ops.push_back(N->getOperand(2)); 2600 Ops.push_back(OffsetField); 2601 Ops.push_back(Chain); 2602 2603 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2604 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2605 } 2606 2607 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2608 if (Subtarget->getLDSBankCount() != 16) { 2609 // This is a single instruction with a pattern. 2610 SelectCode(N); 2611 return; 2612 } 2613 2614 SDLoc DL(N); 2615 2616 // This requires 2 instructions. It is possible to write a pattern to support 2617 // this, but the generated isel emitter doesn't correctly deal with multiple 2618 // output instructions using the same physical register input. The copy to m0 2619 // is incorrectly placed before the second instruction. 2620 // 2621 // TODO: Match source modifiers. 2622 // 2623 // def : Pat < 2624 // (int_amdgcn_interp_p1_f16 2625 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2626 // (i32 timm:$attrchan), (i32 timm:$attr), 2627 // (i1 timm:$high), M0), 2628 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2629 // timm:$attrchan, 0, 2630 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2631 // let Predicates = [has16BankLDS]; 2632 // } 2633 2634 // 16 bank LDS 2635 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2636 N->getOperand(5), SDValue()); 2637 2638 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2639 2640 SDNode *InterpMov = 2641 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2642 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2643 N->getOperand(3), // Attr 2644 N->getOperand(2), // Attrchan 2645 ToM0.getValue(1) // In glue 2646 }); 2647 2648 SDNode *InterpP1LV = 2649 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2650 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2651 N->getOperand(1), // Src0 2652 N->getOperand(3), // Attr 2653 N->getOperand(2), // Attrchan 2654 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2655 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2656 N->getOperand(4), // high 2657 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2658 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2659 SDValue(InterpMov, 1) 2660 }); 2661 2662 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2663 } 2664 2665 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2666 unsigned IntrID = N->getConstantOperandVal(1); 2667 switch (IntrID) { 2668 case Intrinsic::amdgcn_ds_append: 2669 case Intrinsic::amdgcn_ds_consume: { 2670 if (N->getValueType(0) != MVT::i32) 2671 break; 2672 SelectDSAppendConsume(N, IntrID); 2673 return; 2674 } 2675 case Intrinsic::amdgcn_ds_bvh_stack_rtn: 2676 SelectDSBvhStackIntrinsic(N); 2677 return; 2678 } 2679 2680 SelectCode(N); 2681 } 2682 2683 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2684 unsigned IntrID = N->getConstantOperandVal(0); 2685 unsigned Opcode; 2686 switch (IntrID) { 2687 case Intrinsic::amdgcn_wqm: 2688 Opcode = AMDGPU::WQM; 2689 break; 2690 case Intrinsic::amdgcn_softwqm: 2691 Opcode = AMDGPU::SOFT_WQM; 2692 break; 2693 case Intrinsic::amdgcn_wwm: 2694 case Intrinsic::amdgcn_strict_wwm: 2695 Opcode = AMDGPU::STRICT_WWM; 2696 break; 2697 case Intrinsic::amdgcn_strict_wqm: 2698 Opcode = AMDGPU::STRICT_WQM; 2699 break; 2700 case Intrinsic::amdgcn_interp_p1_f16: 2701 SelectInterpP1F16(N); 2702 return; 2703 case Intrinsic::amdgcn_inverse_ballot: 2704 switch (N->getOperand(1).getValueSizeInBits()) { 2705 case 32: 2706 Opcode = AMDGPU::S_INVERSE_BALLOT_U32; 2707 break; 2708 case 64: 2709 Opcode = AMDGPU::S_INVERSE_BALLOT_U64; 2710 break; 2711 default: 2712 llvm_unreachable("Unsupported size for inverse ballot mask."); 2713 } 2714 break; 2715 default: 2716 SelectCode(N); 2717 return; 2718 } 2719 2720 SDValue Src = N->getOperand(1); 2721 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2722 } 2723 2724 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2725 unsigned IntrID = N->getConstantOperandVal(1); 2726 switch (IntrID) { 2727 case Intrinsic::amdgcn_ds_gws_init: 2728 case Intrinsic::amdgcn_ds_gws_barrier: 2729 case Intrinsic::amdgcn_ds_gws_sema_v: 2730 case Intrinsic::amdgcn_ds_gws_sema_br: 2731 case Intrinsic::amdgcn_ds_gws_sema_p: 2732 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2733 SelectDS_GWS(N, IntrID); 2734 return; 2735 default: 2736 break; 2737 } 2738 2739 SelectCode(N); 2740 } 2741 2742 void AMDGPUDAGToDAGISel::SelectWAVE_ADDRESS(SDNode *N) { 2743 SDValue Log2WaveSize = 2744 CurDAG->getTargetConstant(Subtarget->getWavefrontSizeLog2(), SDLoc(N), MVT::i32); 2745 CurDAG->SelectNodeTo(N, AMDGPU::S_LSHR_B32, N->getVTList(), 2746 {N->getOperand(0), Log2WaveSize}); 2747 } 2748 2749 void AMDGPUDAGToDAGISel::SelectSTACKRESTORE(SDNode *N) { 2750 SDValue SrcVal = N->getOperand(1); 2751 if (SrcVal.getValueType() != MVT::i32) { 2752 SelectCode(N); // Emit default error 2753 return; 2754 } 2755 2756 SDValue CopyVal; 2757 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 2758 SDLoc SL(N); 2759 2760 if (SrcVal.getOpcode() == AMDGPUISD::WAVE_ADDRESS) { 2761 CopyVal = SrcVal.getOperand(0); 2762 } else { 2763 SDValue Log2WaveSize = CurDAG->getTargetConstant( 2764 Subtarget->getWavefrontSizeLog2(), SL, MVT::i32); 2765 2766 if (N->isDivergent()) { 2767 SrcVal = SDValue(CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, 2768 MVT::i32, SrcVal), 2769 0); 2770 } 2771 2772 CopyVal = SDValue(CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2773 {SrcVal, Log2WaveSize}), 2774 0); 2775 } 2776 2777 SDValue CopyToSP = CurDAG->getCopyToReg(N->getOperand(0), SL, SP, CopyVal); 2778 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyToSP); 2779 } 2780 2781 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2782 unsigned &Mods, 2783 bool IsCanonicalizing, 2784 bool AllowAbs) const { 2785 Mods = SISrcMods::NONE; 2786 Src = In; 2787 2788 if (Src.getOpcode() == ISD::FNEG) { 2789 Mods |= SISrcMods::NEG; 2790 Src = Src.getOperand(0); 2791 } else if (Src.getOpcode() == ISD::FSUB && IsCanonicalizing) { 2792 // Fold fsub [+-]0 into fneg. This may not have folded depending on the 2793 // denormal mode, but we're implicitly canonicalizing in a source operand. 2794 auto *LHS = dyn_cast<ConstantFPSDNode>(Src.getOperand(0)); 2795 if (LHS && LHS->isZero()) { 2796 Mods |= SISrcMods::NEG; 2797 Src = Src.getOperand(1); 2798 } 2799 } 2800 2801 if (AllowAbs && Src.getOpcode() == ISD::FABS) { 2802 Mods |= SISrcMods::ABS; 2803 Src = Src.getOperand(0); 2804 } 2805 2806 return true; 2807 } 2808 2809 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2810 SDValue &SrcMods) const { 2811 unsigned Mods; 2812 if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/true, 2813 /*AllowAbs=*/true)) { 2814 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2815 return true; 2816 } 2817 2818 return false; 2819 } 2820 2821 bool AMDGPUDAGToDAGISel::SelectVOP3ModsNonCanonicalizing( 2822 SDValue In, SDValue &Src, SDValue &SrcMods) const { 2823 unsigned Mods; 2824 if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/false, 2825 /*AllowAbs=*/true)) { 2826 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2827 return true; 2828 } 2829 2830 return false; 2831 } 2832 2833 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, 2834 SDValue &SrcMods) const { 2835 unsigned Mods; 2836 if (SelectVOP3ModsImpl(In, Src, Mods, 2837 /*IsCanonicalizing=*/true, 2838 /*AllowAbs=*/false)) { 2839 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2840 return true; 2841 } 2842 2843 return false; 2844 } 2845 2846 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2847 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2848 return false; 2849 2850 Src = In; 2851 return true; 2852 } 2853 2854 bool AMDGPUDAGToDAGISel::SelectVINTERPModsImpl(SDValue In, SDValue &Src, 2855 SDValue &SrcMods, 2856 bool OpSel) const { 2857 unsigned Mods; 2858 if (SelectVOP3ModsImpl(In, Src, Mods, 2859 /*IsCanonicalizing=*/true, 2860 /*AllowAbs=*/false)) { 2861 if (OpSel) 2862 Mods |= SISrcMods::OP_SEL_0; 2863 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2864 return true; 2865 } 2866 2867 return false; 2868 } 2869 2870 bool AMDGPUDAGToDAGISel::SelectVINTERPMods(SDValue In, SDValue &Src, 2871 SDValue &SrcMods) const { 2872 return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ false); 2873 } 2874 2875 bool AMDGPUDAGToDAGISel::SelectVINTERPModsHi(SDValue In, SDValue &Src, 2876 SDValue &SrcMods) const { 2877 return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ true); 2878 } 2879 2880 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2881 SDValue &SrcMods, SDValue &Clamp, 2882 SDValue &Omod) const { 2883 SDLoc DL(In); 2884 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2885 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2886 2887 return SelectVOP3Mods(In, Src, SrcMods); 2888 } 2889 2890 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, 2891 SDValue &SrcMods, SDValue &Clamp, 2892 SDValue &Omod) const { 2893 SDLoc DL(In); 2894 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2895 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2896 2897 return SelectVOP3BMods(In, Src, SrcMods); 2898 } 2899 2900 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2901 SDValue &Clamp, SDValue &Omod) const { 2902 Src = In; 2903 2904 SDLoc DL(In); 2905 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2906 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2907 2908 return true; 2909 } 2910 2911 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2912 SDValue &SrcMods, bool IsDOT) const { 2913 unsigned Mods = SISrcMods::NONE; 2914 Src = In; 2915 2916 // TODO: Handle G_FSUB 0 as fneg 2917 if (Src.getOpcode() == ISD::FNEG) { 2918 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2919 Src = Src.getOperand(0); 2920 } 2921 2922 if (Src.getOpcode() == ISD::BUILD_VECTOR && Src.getNumOperands() == 2 && 2923 (!IsDOT || !Subtarget->hasDOTOpSelHazard())) { 2924 unsigned VecMods = Mods; 2925 2926 SDValue Lo = stripBitcast(Src.getOperand(0)); 2927 SDValue Hi = stripBitcast(Src.getOperand(1)); 2928 2929 if (Lo.getOpcode() == ISD::FNEG) { 2930 Lo = stripBitcast(Lo.getOperand(0)); 2931 Mods ^= SISrcMods::NEG; 2932 } 2933 2934 if (Hi.getOpcode() == ISD::FNEG) { 2935 Hi = stripBitcast(Hi.getOperand(0)); 2936 Mods ^= SISrcMods::NEG_HI; 2937 } 2938 2939 if (isExtractHiElt(Lo, Lo)) 2940 Mods |= SISrcMods::OP_SEL_0; 2941 2942 if (isExtractHiElt(Hi, Hi)) 2943 Mods |= SISrcMods::OP_SEL_1; 2944 2945 unsigned VecSize = Src.getValueSizeInBits(); 2946 Lo = stripExtractLoElt(Lo); 2947 Hi = stripExtractLoElt(Hi); 2948 2949 if (Lo.getValueSizeInBits() > VecSize) { 2950 Lo = CurDAG->getTargetExtractSubreg( 2951 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2952 MVT::getIntegerVT(VecSize), Lo); 2953 } 2954 2955 if (Hi.getValueSizeInBits() > VecSize) { 2956 Hi = CurDAG->getTargetExtractSubreg( 2957 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2958 MVT::getIntegerVT(VecSize), Hi); 2959 } 2960 2961 assert(Lo.getValueSizeInBits() <= VecSize && 2962 Hi.getValueSizeInBits() <= VecSize); 2963 2964 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2965 // Really a scalar input. Just select from the low half of the register to 2966 // avoid packing. 2967 2968 if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { 2969 Src = Lo; 2970 } else { 2971 assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); 2972 2973 SDLoc SL(In); 2974 SDValue Undef = SDValue( 2975 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL, 2976 Lo.getValueType()), 0); 2977 auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID 2978 : AMDGPU::SReg_64RegClassID; 2979 const SDValue Ops[] = { 2980 CurDAG->getTargetConstant(RC, SL, MVT::i32), 2981 Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2982 Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) }; 2983 2984 Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL, 2985 Src.getValueType(), Ops), 0); 2986 } 2987 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2988 return true; 2989 } 2990 2991 if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) { 2992 uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF() 2993 .bitcastToAPInt().getZExtValue(); 2994 if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) { 2995 Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64); 2996 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2997 return true; 2998 } 2999 } 3000 3001 Mods = VecMods; 3002 } 3003 3004 // Packed instructions do not have abs modifiers. 3005 Mods |= SISrcMods::OP_SEL_1; 3006 3007 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3008 return true; 3009 } 3010 3011 bool AMDGPUDAGToDAGISel::SelectVOP3PModsDOT(SDValue In, SDValue &Src, 3012 SDValue &SrcMods) const { 3013 return SelectVOP3PMods(In, Src, SrcMods, true); 3014 } 3015 3016 bool AMDGPUDAGToDAGISel::SelectDotIUVOP3PMods(SDValue In, SDValue &Src) const { 3017 const ConstantSDNode *C = cast<ConstantSDNode>(In); 3018 // Literal i1 value set in intrinsic, represents SrcMods for the next operand. 3019 // 1 promotes packed values to signed, 0 treats them as unsigned. 3020 assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value"); 3021 3022 unsigned Mods = SISrcMods::OP_SEL_1; 3023 unsigned SrcSign = C->getZExtValue(); 3024 if (SrcSign == 1) 3025 Mods ^= SISrcMods::NEG; 3026 3027 Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3028 return true; 3029 } 3030 3031 bool AMDGPUDAGToDAGISel::SelectWMMAOpSelVOP3PMods(SDValue In, 3032 SDValue &Src) const { 3033 const ConstantSDNode *C = cast<ConstantSDNode>(In); 3034 assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value"); 3035 3036 unsigned Mods = SISrcMods::OP_SEL_1; 3037 unsigned SrcVal = C->getZExtValue(); 3038 if (SrcVal == 1) 3039 Mods |= SISrcMods::OP_SEL_0; 3040 3041 Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3042 return true; 3043 } 3044 3045 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 3046 SDValue &SrcMods) const { 3047 Src = In; 3048 // FIXME: Handle op_sel 3049 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 3050 return true; 3051 } 3052 3053 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 3054 SDValue &SrcMods) const { 3055 // FIXME: Handle op_sel 3056 return SelectVOP3Mods(In, Src, SrcMods); 3057 } 3058 3059 // The return value is not whether the match is possible (which it always is), 3060 // but whether or not it a conversion is really used. 3061 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 3062 unsigned &Mods) const { 3063 Mods = 0; 3064 SelectVOP3ModsImpl(In, Src, Mods); 3065 3066 if (Src.getOpcode() == ISD::FP_EXTEND) { 3067 Src = Src.getOperand(0); 3068 assert(Src.getValueType() == MVT::f16); 3069 Src = stripBitcast(Src); 3070 3071 // Be careful about folding modifiers if we already have an abs. fneg is 3072 // applied last, so we don't want to apply an earlier fneg. 3073 if ((Mods & SISrcMods::ABS) == 0) { 3074 unsigned ModsTmp; 3075 SelectVOP3ModsImpl(Src, Src, ModsTmp); 3076 3077 if ((ModsTmp & SISrcMods::NEG) != 0) 3078 Mods ^= SISrcMods::NEG; 3079 3080 if ((ModsTmp & SISrcMods::ABS) != 0) 3081 Mods |= SISrcMods::ABS; 3082 } 3083 3084 // op_sel/op_sel_hi decide the source type and source. 3085 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 3086 // If the sources's op_sel is set, it picks the high half of the source 3087 // register. 3088 3089 Mods |= SISrcMods::OP_SEL_1; 3090 if (isExtractHiElt(Src, Src)) { 3091 Mods |= SISrcMods::OP_SEL_0; 3092 3093 // TODO: Should we try to look for neg/abs here? 3094 } 3095 3096 return true; 3097 } 3098 3099 return false; 3100 } 3101 3102 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsExt(SDValue In, SDValue &Src, 3103 SDValue &SrcMods) const { 3104 unsigned Mods = 0; 3105 if (!SelectVOP3PMadMixModsImpl(In, Src, Mods)) 3106 return false; 3107 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3108 return true; 3109 } 3110 3111 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 3112 SDValue &SrcMods) const { 3113 unsigned Mods = 0; 3114 SelectVOP3PMadMixModsImpl(In, Src, Mods); 3115 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 3116 return true; 3117 } 3118 3119 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 3120 if (In.isUndef()) 3121 return CurDAG->getUNDEF(MVT::i32); 3122 3123 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 3124 SDLoc SL(In); 3125 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 3126 } 3127 3128 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 3129 SDLoc SL(In); 3130 return CurDAG->getConstant( 3131 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 3132 } 3133 3134 SDValue Src; 3135 if (isExtractHiElt(In, Src)) 3136 return Src; 3137 3138 return SDValue(); 3139 } 3140 3141 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 3142 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 3143 3144 const SIRegisterInfo *SIRI = 3145 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 3146 const SIInstrInfo * SII = 3147 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 3148 3149 unsigned Limit = 0; 3150 bool AllUsesAcceptSReg = true; 3151 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 3152 Limit < 10 && U != E; ++U, ++Limit) { 3153 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 3154 3155 // If the register class is unknown, it could be an unknown 3156 // register class that needs to be an SGPR, e.g. an inline asm 3157 // constraint 3158 if (!RC || SIRI->isSGPRClass(RC)) 3159 return false; 3160 3161 if (RC != &AMDGPU::VS_32RegClass && RC != &AMDGPU::VS_64RegClass) { 3162 AllUsesAcceptSReg = false; 3163 SDNode * User = *U; 3164 if (User->isMachineOpcode()) { 3165 unsigned Opc = User->getMachineOpcode(); 3166 const MCInstrDesc &Desc = SII->get(Opc); 3167 if (Desc.isCommutable()) { 3168 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 3169 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 3170 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 3171 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 3172 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 3173 if (CommutedRC == &AMDGPU::VS_32RegClass || 3174 CommutedRC == &AMDGPU::VS_64RegClass) 3175 AllUsesAcceptSReg = true; 3176 } 3177 } 3178 } 3179 // If "AllUsesAcceptSReg == false" so far we haven't succeeded 3180 // commuting current user. This means have at least one use 3181 // that strictly require VGPR. Thus, we will not attempt to commute 3182 // other user instructions. 3183 if (!AllUsesAcceptSReg) 3184 break; 3185 } 3186 } 3187 return !AllUsesAcceptSReg && (Limit < 10); 3188 } 3189 3190 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 3191 auto Ld = cast<LoadSDNode>(N); 3192 3193 if (N->isDivergent() && !AMDGPUInstrInfo::isUniformMMO(Ld->getMemOperand())) 3194 return false; 3195 3196 return Ld->getAlign() >= Align(4) && 3197 ((Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 3198 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) || 3199 (Subtarget->getScalarizeGlobalBehavior() && 3200 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 3201 Ld->isSimple() && 3202 static_cast<const SITargetLowering *>(getTargetLowering()) 3203 ->isMemOpHasNoClobberedMemOperand(N))); 3204 } 3205 3206 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 3207 const AMDGPUTargetLowering& Lowering = 3208 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 3209 bool IsModified = false; 3210 do { 3211 IsModified = false; 3212 3213 // Go over all selected nodes and try to fold them a bit more 3214 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 3215 while (Position != CurDAG->allnodes_end()) { 3216 SDNode *Node = &*Position++; 3217 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 3218 if (!MachineNode) 3219 continue; 3220 3221 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 3222 if (ResNode != Node) { 3223 if (ResNode) 3224 ReplaceUses(Node, ResNode); 3225 IsModified = true; 3226 } 3227 } 3228 CurDAG->RemoveDeadNodes(); 3229 } while (IsModified); 3230 } 3231 3232 char AMDGPUDAGToDAGISel::ID = 0; 3233