1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "SIModeRegisterDefaults.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/UniformityAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/InstVisitor.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/Utils/IntegerDivision.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 35 #define DEBUG_TYPE "amdgpu-codegenprepare" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 namespace { 41 42 static cl::opt<bool> WidenLoads( 43 "amdgpu-codegenprepare-widen-constant-loads", 44 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 45 cl::ReallyHidden, 46 cl::init(false)); 47 48 static cl::opt<bool> Widen16BitOps( 49 "amdgpu-codegenprepare-widen-16-bit-ops", 50 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 51 cl::ReallyHidden, 52 cl::init(true)); 53 54 static cl::opt<bool> 55 BreakLargePHIs("amdgpu-codegenprepare-break-large-phis", 56 cl::desc("Break large PHI nodes for DAGISel"), 57 cl::ReallyHidden, cl::init(true)); 58 59 static cl::opt<bool> 60 ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis", 61 cl::desc("For testing purposes, always break large " 62 "PHIs even if it isn't profitable."), 63 cl::ReallyHidden, cl::init(false)); 64 65 static cl::opt<unsigned> BreakLargePHIsThreshold( 66 "amdgpu-codegenprepare-break-large-phis-threshold", 67 cl::desc("Minimum type size in bits for breaking large PHI nodes"), 68 cl::ReallyHidden, cl::init(32)); 69 70 static cl::opt<bool> UseMul24Intrin( 71 "amdgpu-codegenprepare-mul24", 72 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 73 cl::ReallyHidden, 74 cl::init(true)); 75 76 // Legalize 64-bit division by using the generic IR expansion. 77 static cl::opt<bool> ExpandDiv64InIR( 78 "amdgpu-codegenprepare-expand-div64", 79 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 80 cl::ReallyHidden, 81 cl::init(false)); 82 83 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 84 // and is used for testing the legalizer. 85 static cl::opt<bool> DisableIDivExpand( 86 "amdgpu-codegenprepare-disable-idiv-expansion", 87 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 88 cl::ReallyHidden, 89 cl::init(false)); 90 91 // Disable processing of fdiv so we can better test the backend implementations. 92 static cl::opt<bool> DisableFDivExpand( 93 "amdgpu-codegenprepare-disable-fdiv-expansion", 94 cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"), 95 cl::ReallyHidden, 96 cl::init(false)); 97 98 class AMDGPUCodeGenPrepareImpl 99 : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> { 100 public: 101 const GCNSubtarget *ST = nullptr; 102 const AMDGPUTargetMachine *TM = nullptr; 103 const TargetLibraryInfo *TLInfo = nullptr; 104 AssumptionCache *AC = nullptr; 105 DominatorTree *DT = nullptr; 106 UniformityInfo *UA = nullptr; 107 Module *Mod = nullptr; 108 const DataLayout *DL = nullptr; 109 bool HasUnsafeFPMath = false; 110 bool HasFP32DenormalFlush = false; 111 bool FlowChanged = false; 112 mutable Function *SqrtF32 = nullptr; 113 mutable Function *LdexpF32 = nullptr; 114 115 DenseMap<const PHINode *, bool> BreakPhiNodesCache; 116 117 Function *getSqrtF32() const { 118 if (SqrtF32) 119 return SqrtF32; 120 121 LLVMContext &Ctx = Mod->getContext(); 122 SqrtF32 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_sqrt, 123 {Type::getFloatTy(Ctx)}); 124 return SqrtF32; 125 } 126 127 Function *getLdexpF32() const { 128 if (LdexpF32) 129 return LdexpF32; 130 131 LLVMContext &Ctx = Mod->getContext(); 132 LdexpF32 = Intrinsic::getDeclaration( 133 Mod, Intrinsic::ldexp, {Type::getFloatTy(Ctx), Type::getInt32Ty(Ctx)}); 134 return LdexpF32; 135 } 136 137 bool canBreakPHINode(const PHINode &I); 138 139 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 140 /// binary operation \p V. 141 /// 142 /// \returns Binary operation \p V. 143 /// \returns \p T's base element bit width. 144 unsigned getBaseElementBitWidth(const Type *T) const; 145 146 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 147 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 148 /// is returned. 149 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 150 151 /// \returns True if binary operation \p I is a signed binary operation, false 152 /// otherwise. 153 bool isSigned(const BinaryOperator &I) const; 154 155 /// \returns True if the condition of 'select' operation \p I comes from a 156 /// signed 'icmp' operation, false otherwise. 157 bool isSigned(const SelectInst &I) const; 158 159 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 160 /// false otherwise. 161 bool needsPromotionToI32(const Type *T) const; 162 163 /// Return true if \p T is a legal scalar floating point type. 164 bool isLegalFloatingTy(const Type *T) const; 165 166 /// Wrapper to pass all the arguments to computeKnownFPClass 167 KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested, 168 const Instruction *CtxI) const { 169 return llvm::computeKnownFPClass(V, *DL, Interested, 0, TLInfo, AC, CtxI, 170 DT); 171 } 172 173 bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const { 174 return HasFP32DenormalFlush || 175 computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal(); 176 } 177 178 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 179 /// operation. 180 /// 181 /// \details \p I's base element bit width must be greater than 1 and less 182 /// than or equal 16. Promotion is done by sign or zero extending operands to 183 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 184 /// truncating the result of 32 bit binary operation back to \p I's original 185 /// type. Division operation is not promoted. 186 /// 187 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 188 /// false otherwise. 189 bool promoteUniformOpToI32(BinaryOperator &I) const; 190 191 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 192 /// 193 /// \details \p I's base element bit width must be greater than 1 and less 194 /// than or equal 16. Promotion is done by sign or zero extending operands to 195 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 196 /// 197 /// \returns True. 198 bool promoteUniformOpToI32(ICmpInst &I) const; 199 200 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 201 /// operation. 202 /// 203 /// \details \p I's base element bit width must be greater than 1 and less 204 /// than or equal 16. Promotion is done by sign or zero extending operands to 205 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 206 /// result of 32 bit 'select' operation back to \p I's original type. 207 /// 208 /// \returns True. 209 bool promoteUniformOpToI32(SelectInst &I) const; 210 211 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 212 /// intrinsic. 213 /// 214 /// \details \p I's base element bit width must be greater than 1 and less 215 /// than or equal 16. Promotion is done by zero extending the operand to 32 216 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 217 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 218 /// shift amount is 32 minus \p I's base element bit width), and truncating 219 /// the result of the shift operation back to \p I's original type. 220 /// 221 /// \returns True. 222 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 223 224 /// \returns The minimum number of bits needed to store the value of \Op as an 225 /// unsigned integer. Truncating to this size and then zero-extending to 226 /// the original will not change the value. 227 unsigned numBitsUnsigned(Value *Op) const; 228 229 /// \returns The minimum number of bits needed to store the value of \Op as a 230 /// signed integer. Truncating to this size and then sign-extending to 231 /// the original size will not change the value. 232 unsigned numBitsSigned(Value *Op) const; 233 234 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 235 /// SelectionDAG has an issue where an and asserting the bits are known 236 bool replaceMulWithMul24(BinaryOperator &I) const; 237 238 /// Perform same function as equivalently named function in DAGCombiner. Since 239 /// we expand some divisions here, we need to perform this before obscuring. 240 bool foldBinOpIntoSelect(BinaryOperator &I) const; 241 242 bool divHasSpecialOptimization(BinaryOperator &I, 243 Value *Num, Value *Den) const; 244 int getDivNumBits(BinaryOperator &I, 245 Value *Num, Value *Den, 246 unsigned AtLeast, bool Signed) const; 247 248 /// Expands 24 bit div or rem. 249 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 250 Value *Num, Value *Den, 251 bool IsDiv, bool IsSigned) const; 252 253 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 254 Value *Num, Value *Den, unsigned NumBits, 255 bool IsDiv, bool IsSigned) const; 256 257 /// Expands 32 bit div or rem. 258 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 259 Value *Num, Value *Den) const; 260 261 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 262 Value *Num, Value *Den) const; 263 void expandDivRem64(BinaryOperator &I) const; 264 265 /// Widen a scalar load. 266 /// 267 /// \details \p Widen scalar load for uniform, small type loads from constant 268 // memory / to a full 32-bits and then truncate the input to allow a scalar 269 // load instead of a vector load. 270 // 271 /// \returns True. 272 273 bool canWidenScalarExtLoad(LoadInst &I) const; 274 275 Value *matchFractPat(IntrinsicInst &I); 276 Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); 277 278 bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF, 279 FastMathFlags SqrtFMF) const; 280 281 Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den, 282 FastMathFlags DivFMF, FastMathFlags SqrtFMF, 283 const Instruction *CtxI) const; 284 285 Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den, 286 FastMathFlags FMF, const Instruction *CtxI) const; 287 Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den, 288 float ReqdAccuracy) const; 289 290 Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den, 291 FastMathFlags DivFMF, FastMathFlags SqrtFMF, 292 Value *RsqOp, const Instruction *FDiv, 293 float ReqdAccuracy) const; 294 295 std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder, 296 Value *Src) const; 297 298 Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src, 299 bool IsNegative) const; 300 Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS, 301 FastMathFlags FMF) const; 302 Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src, 303 FastMathFlags FMF) const; 304 305 public: 306 bool visitFDiv(BinaryOperator &I); 307 308 bool visitInstruction(Instruction &I) { return false; } 309 bool visitBinaryOperator(BinaryOperator &I); 310 bool visitLoadInst(LoadInst &I); 311 bool visitICmpInst(ICmpInst &I); 312 bool visitSelectInst(SelectInst &I); 313 bool visitPHINode(PHINode &I); 314 bool visitAddrSpaceCastInst(AddrSpaceCastInst &I); 315 316 bool visitIntrinsicInst(IntrinsicInst &I); 317 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 318 bool visitMinNum(IntrinsicInst &I); 319 bool visitSqrt(IntrinsicInst &I); 320 bool run(Function &F); 321 }; 322 323 class AMDGPUCodeGenPrepare : public FunctionPass { 324 private: 325 AMDGPUCodeGenPrepareImpl Impl; 326 327 public: 328 static char ID; 329 AMDGPUCodeGenPrepare() : FunctionPass(ID) { 330 initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry()); 331 } 332 void getAnalysisUsage(AnalysisUsage &AU) const override { 333 AU.addRequired<AssumptionCacheTracker>(); 334 AU.addRequired<UniformityInfoWrapperPass>(); 335 AU.addRequired<TargetLibraryInfoWrapperPass>(); 336 337 // FIXME: Division expansion needs to preserve the dominator tree. 338 if (!ExpandDiv64InIR) 339 AU.setPreservesAll(); 340 } 341 bool runOnFunction(Function &F) override; 342 bool doInitialization(Module &M) override; 343 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 344 }; 345 346 } // end anonymous namespace 347 348 bool AMDGPUCodeGenPrepareImpl::run(Function &F) { 349 BreakPhiNodesCache.clear(); 350 bool MadeChange = false; 351 352 Function::iterator NextBB; 353 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 354 BasicBlock *BB = &*FI; 355 NextBB = std::next(FI); 356 357 BasicBlock::iterator Next; 358 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 359 I = Next) { 360 Next = std::next(I); 361 362 MadeChange |= visit(*I); 363 364 if (Next != E) { // Control flow changed 365 BasicBlock *NextInstBB = Next->getParent(); 366 if (NextInstBB != BB) { 367 BB = NextInstBB; 368 E = BB->end(); 369 FE = F.end(); 370 } 371 } 372 } 373 } 374 return MadeChange; 375 } 376 377 unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const { 378 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 379 380 if (T->isIntegerTy()) 381 return T->getIntegerBitWidth(); 382 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 383 } 384 385 Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const { 386 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 387 388 if (T->isIntegerTy()) 389 return B.getInt32Ty(); 390 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 391 } 392 393 bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const { 394 return I.getOpcode() == Instruction::AShr || 395 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 396 } 397 398 bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const { 399 return isa<ICmpInst>(I.getOperand(0)) ? 400 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 401 } 402 403 bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const { 404 if (!Widen16BitOps) 405 return false; 406 407 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 408 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 409 return true; 410 411 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 412 // TODO: The set of packed operations is more limited, so may want to 413 // promote some anyway. 414 if (ST->hasVOP3PInsts()) 415 return false; 416 417 return needsPromotionToI32(VT->getElementType()); 418 } 419 420 return false; 421 } 422 423 bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const { 424 return Ty->isFloatTy() || Ty->isDoubleTy() || 425 (Ty->isHalfTy() && ST->has16BitInsts()); 426 } 427 428 // Return true if the op promoted to i32 should have nsw set. 429 static bool promotedOpIsNSW(const Instruction &I) { 430 switch (I.getOpcode()) { 431 case Instruction::Shl: 432 case Instruction::Add: 433 case Instruction::Sub: 434 return true; 435 case Instruction::Mul: 436 return I.hasNoUnsignedWrap(); 437 default: 438 return false; 439 } 440 } 441 442 // Return true if the op promoted to i32 should have nuw set. 443 static bool promotedOpIsNUW(const Instruction &I) { 444 switch (I.getOpcode()) { 445 case Instruction::Shl: 446 case Instruction::Add: 447 case Instruction::Mul: 448 return true; 449 case Instruction::Sub: 450 return I.hasNoUnsignedWrap(); 451 default: 452 return false; 453 } 454 } 455 456 bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const { 457 Type *Ty = I.getType(); 458 const DataLayout &DL = Mod->getDataLayout(); 459 int TySize = DL.getTypeSizeInBits(Ty); 460 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 461 462 return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I); 463 } 464 465 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const { 466 assert(needsPromotionToI32(I.getType()) && 467 "I does not need promotion to i32"); 468 469 if (I.getOpcode() == Instruction::SDiv || 470 I.getOpcode() == Instruction::UDiv || 471 I.getOpcode() == Instruction::SRem || 472 I.getOpcode() == Instruction::URem) 473 return false; 474 475 IRBuilder<> Builder(&I); 476 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 477 478 Type *I32Ty = getI32Ty(Builder, I.getType()); 479 Value *ExtOp0 = nullptr; 480 Value *ExtOp1 = nullptr; 481 Value *ExtRes = nullptr; 482 Value *TruncRes = nullptr; 483 484 if (isSigned(I)) { 485 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 486 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 487 } else { 488 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 489 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 490 } 491 492 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 493 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 494 if (promotedOpIsNSW(cast<Instruction>(I))) 495 Inst->setHasNoSignedWrap(); 496 497 if (promotedOpIsNUW(cast<Instruction>(I))) 498 Inst->setHasNoUnsignedWrap(); 499 500 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 501 Inst->setIsExact(ExactOp->isExact()); 502 } 503 504 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 505 506 I.replaceAllUsesWith(TruncRes); 507 I.eraseFromParent(); 508 509 return true; 510 } 511 512 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const { 513 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 514 "I does not need promotion to i32"); 515 516 IRBuilder<> Builder(&I); 517 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 518 519 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 520 Value *ExtOp0 = nullptr; 521 Value *ExtOp1 = nullptr; 522 Value *NewICmp = nullptr; 523 524 if (I.isSigned()) { 525 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 526 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 527 } else { 528 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 529 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 530 } 531 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 532 533 I.replaceAllUsesWith(NewICmp); 534 I.eraseFromParent(); 535 536 return true; 537 } 538 539 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const { 540 assert(needsPromotionToI32(I.getType()) && 541 "I does not need promotion to i32"); 542 543 IRBuilder<> Builder(&I); 544 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 545 546 Type *I32Ty = getI32Ty(Builder, I.getType()); 547 Value *ExtOp1 = nullptr; 548 Value *ExtOp2 = nullptr; 549 Value *ExtRes = nullptr; 550 Value *TruncRes = nullptr; 551 552 if (isSigned(I)) { 553 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 554 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 555 } else { 556 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 557 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 558 } 559 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 560 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 561 562 I.replaceAllUsesWith(TruncRes); 563 I.eraseFromParent(); 564 565 return true; 566 } 567 568 bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32( 569 IntrinsicInst &I) const { 570 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 571 "I must be bitreverse intrinsic"); 572 assert(needsPromotionToI32(I.getType()) && 573 "I does not need promotion to i32"); 574 575 IRBuilder<> Builder(&I); 576 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 577 578 Type *I32Ty = getI32Ty(Builder, I.getType()); 579 Function *I32 = 580 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 581 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 582 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 583 Value *LShrOp = 584 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 585 Value *TruncRes = 586 Builder.CreateTrunc(LShrOp, I.getType()); 587 588 I.replaceAllUsesWith(TruncRes); 589 I.eraseFromParent(); 590 591 return true; 592 } 593 594 unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const { 595 return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits(); 596 } 597 598 unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const { 599 return ComputeMaxSignificantBits(Op, *DL, 0, AC); 600 } 601 602 static void extractValues(IRBuilder<> &Builder, 603 SmallVectorImpl<Value *> &Values, Value *V) { 604 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 605 if (!VT) { 606 Values.push_back(V); 607 return; 608 } 609 610 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 611 Values.push_back(Builder.CreateExtractElement(V, I)); 612 } 613 614 static Value *insertValues(IRBuilder<> &Builder, 615 Type *Ty, 616 SmallVectorImpl<Value *> &Values) { 617 if (!Ty->isVectorTy()) { 618 assert(Values.size() == 1); 619 return Values[0]; 620 } 621 622 Value *NewVal = PoisonValue::get(Ty); 623 for (int I = 0, E = Values.size(); I != E; ++I) 624 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 625 626 return NewVal; 627 } 628 629 bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const { 630 if (I.getOpcode() != Instruction::Mul) 631 return false; 632 633 Type *Ty = I.getType(); 634 unsigned Size = Ty->getScalarSizeInBits(); 635 if (Size <= 16 && ST->has16BitInsts()) 636 return false; 637 638 // Prefer scalar if this could be s_mul_i32 639 if (UA->isUniform(&I)) 640 return false; 641 642 Value *LHS = I.getOperand(0); 643 Value *RHS = I.getOperand(1); 644 IRBuilder<> Builder(&I); 645 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 646 647 unsigned LHSBits = 0, RHSBits = 0; 648 bool IsSigned = false; 649 650 if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && 651 (RHSBits = numBitsUnsigned(RHS)) <= 24) { 652 IsSigned = false; 653 654 } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && 655 (RHSBits = numBitsSigned(RHS)) <= 24) { 656 IsSigned = true; 657 658 } else 659 return false; 660 661 SmallVector<Value *, 4> LHSVals; 662 SmallVector<Value *, 4> RHSVals; 663 SmallVector<Value *, 4> ResultVals; 664 extractValues(Builder, LHSVals, LHS); 665 extractValues(Builder, RHSVals, RHS); 666 667 IntegerType *I32Ty = Builder.getInt32Ty(); 668 IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty; 669 Type *DstTy = LHSVals[0]->getType(); 670 671 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 672 Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty) 673 : Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 674 Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty) 675 : Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 676 Intrinsic::ID ID = 677 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 678 Value *Result = Builder.CreateIntrinsic(ID, {IntrinTy}, {LHS, RHS}); 679 Result = IsSigned ? Builder.CreateSExtOrTrunc(Result, DstTy) 680 : Builder.CreateZExtOrTrunc(Result, DstTy); 681 ResultVals.push_back(Result); 682 } 683 684 Value *NewVal = insertValues(Builder, Ty, ResultVals); 685 NewVal->takeName(&I); 686 I.replaceAllUsesWith(NewVal); 687 I.eraseFromParent(); 688 689 return true; 690 } 691 692 // Find a select instruction, which may have been casted. This is mostly to deal 693 // with cases where i16 selects were promoted here to i32. 694 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 695 Cast = nullptr; 696 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 697 return Sel; 698 699 if ((Cast = dyn_cast<CastInst>(V))) { 700 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 701 return Sel; 702 } 703 704 return nullptr; 705 } 706 707 bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const { 708 // Don't do this unless the old select is going away. We want to eliminate the 709 // binary operator, not replace a binop with a select. 710 int SelOpNo = 0; 711 712 CastInst *CastOp; 713 714 // TODO: Should probably try to handle some cases with multiple 715 // users. Duplicating the select may be profitable for division. 716 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 717 if (!Sel || !Sel->hasOneUse()) { 718 SelOpNo = 1; 719 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 720 } 721 722 if (!Sel || !Sel->hasOneUse()) 723 return false; 724 725 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 726 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 727 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 728 if (!CBO || !CT || !CF) 729 return false; 730 731 if (CastOp) { 732 if (!CastOp->hasOneUse()) 733 return false; 734 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 735 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 736 } 737 738 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 739 // need to handle divisions here. 740 Constant *FoldedT = SelOpNo ? 741 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 742 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 743 if (!FoldedT || isa<ConstantExpr>(FoldedT)) 744 return false; 745 746 Constant *FoldedF = SelOpNo ? 747 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 748 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 749 if (!FoldedF || isa<ConstantExpr>(FoldedF)) 750 return false; 751 752 IRBuilder<> Builder(&BO); 753 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 754 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 755 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 756 757 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 758 FoldedT, FoldedF); 759 NewSelect->takeName(&BO); 760 BO.replaceAllUsesWith(NewSelect); 761 BO.eraseFromParent(); 762 if (CastOp) 763 CastOp->eraseFromParent(); 764 Sel->eraseFromParent(); 765 return true; 766 } 767 768 std::pair<Value *, Value *> 769 AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder, 770 Value *Src) const { 771 Type *Ty = Src->getType(); 772 Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp, 773 {Ty, Builder.getInt32Ty()}, Src); 774 Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0}); 775 776 // Bypass the bug workaround for the exponent result since it doesn't matter. 777 // TODO: Does the bug workaround even really need to consider the exponent 778 // result? It's unspecified by the spec. 779 780 Value *FrexpExp = 781 ST->hasFractBug() 782 ? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp, 783 {Builder.getInt32Ty(), Ty}, Src) 784 : Builder.CreateExtractValue(Frexp, {1}); 785 return {FrexpMant, FrexpExp}; 786 } 787 788 /// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals. 789 Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder, 790 Value *Src, 791 bool IsNegative) const { 792 // Same as for 1.0, but expand the sign out of the constant. 793 // -1.0 / x -> rcp (fneg x) 794 if (IsNegative) 795 Src = Builder.CreateFNeg(Src); 796 797 // The rcp instruction doesn't support denormals, so scale the input 798 // out of the denormal range and convert at the end. 799 // 800 // Expand as 2^-n * (1.0 / (x * 2^n)) 801 802 // TODO: Skip scaling if input is known never denormal and the input 803 // range won't underflow to denormal. The hard part is knowing the 804 // result. We need a range check, the result could be denormal for 805 // 0x1p+126 < den <= 0x1p+127. 806 auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src); 807 Value *ScaleFactor = Builder.CreateNeg(FrexpExp); 808 Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant); 809 return Builder.CreateCall(getLdexpF32(), {Rcp, ScaleFactor}); 810 } 811 812 /// Emit a 2ulp expansion for fdiv by using frexp for input scaling. 813 Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, 814 Value *RHS, 815 FastMathFlags FMF) const { 816 // If we have have to work around the fract/frexp bug, we're worse off than 817 // using the fdiv.fast expansion. The full safe expansion is faster if we have 818 // fast FMA. 819 if (HasFP32DenormalFlush && ST->hasFractBug() && !ST->hasFastFMAF32() && 820 (!FMF.noNaNs() || !FMF.noInfs())) 821 return nullptr; 822 823 // We're scaling the LHS to avoid a denormal input, and scale the denominator 824 // to avoid large values underflowing the result. 825 auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS); 826 827 Value *Rcp = 828 Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS); 829 830 auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS); 831 Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp); 832 833 // We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the 834 // result. 835 Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS); 836 return Builder.CreateCall(getLdexpF32(), {Mul, ExpDiff}); 837 } 838 839 /// Emit a sqrt that handles denormals and is accurate to 2ulp. 840 Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder, 841 Value *Src, 842 FastMathFlags FMF) const { 843 Type *Ty = Src->getType(); 844 APFloat SmallestNormal = 845 APFloat::getSmallestNormalized(Ty->getFltSemantics()); 846 Value *NeedScale = 847 Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); 848 849 ConstantInt *Zero = Builder.getInt32(0); 850 Value *InputScaleFactor = 851 Builder.CreateSelect(NeedScale, Builder.getInt32(32), Zero); 852 853 Value *Scaled = Builder.CreateCall(getLdexpF32(), {Src, InputScaleFactor}); 854 855 Value *Sqrt = Builder.CreateCall(getSqrtF32(), Scaled); 856 857 Value *OutputScaleFactor = 858 Builder.CreateSelect(NeedScale, Builder.getInt32(-16), Zero); 859 return Builder.CreateCall(getLdexpF32(), {Sqrt, OutputScaleFactor}); 860 } 861 862 /// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals. 863 static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src, 864 bool IsNegative) { 865 // bool need_scale = x < 0x1p-126f; 866 // float input_scale = need_scale ? 0x1.0p+24f : 1.0f; 867 // float output_scale = need_scale ? 0x1.0p+12f : 1.0f; 868 // rsq(x * input_scale) * output_scale; 869 870 Type *Ty = Src->getType(); 871 APFloat SmallestNormal = 872 APFloat::getSmallestNormalized(Ty->getFltSemantics()); 873 Value *NeedScale = 874 Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); 875 Constant *One = ConstantFP::get(Ty, 1.0); 876 Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24); 877 Constant *OutputScale = 878 ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12); 879 880 Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One); 881 882 Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor); 883 Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput); 884 Value *OutputScaleFactor = Builder.CreateSelect( 885 NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One); 886 887 return Builder.CreateFMul(Rsq, OutputScaleFactor); 888 } 889 890 bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp, 891 FastMathFlags DivFMF, 892 FastMathFlags SqrtFMF) const { 893 // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. 894 if (!DivFMF.allowContract() || !SqrtFMF.allowContract()) 895 return false; 896 897 // v_rsq_f32 gives 1ulp 898 return SqrtFMF.approxFunc() || HasUnsafeFPMath || 899 SqrtOp->getFPAccuracy() >= 1.0f; 900 } 901 902 Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq( 903 IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF, 904 const FastMathFlags SqrtFMF, const Instruction *CtxI) const { 905 // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. 906 assert(DivFMF.allowContract() && SqrtFMF.allowContract()); 907 908 // rsq_f16 is accurate to 0.51 ulp. 909 // rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 910 // rsq_f64 is never accurate. 911 const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num); 912 if (!CLHS) 913 return nullptr; 914 915 assert(Den->getType()->isFloatTy()); 916 917 bool IsNegative = false; 918 919 // TODO: Handle other numerator values with arcp. 920 if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) { 921 // Add in the sqrt flags. 922 IRBuilder<>::FastMathFlagGuard Guard(Builder); 923 Builder.setFastMathFlags(DivFMF | SqrtFMF); 924 925 if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath || 926 canIgnoreDenormalInput(Den, CtxI)) { 927 Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den); 928 // -1.0 / sqrt(x) -> fneg(rsq(x)) 929 return IsNegative ? Builder.CreateFNeg(Result) : Result; 930 } 931 932 return emitRsqIEEE1ULP(Builder, Den, IsNegative); 933 } 934 935 return nullptr; 936 } 937 938 // Optimize fdiv with rcp: 939 // 940 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 941 // allowed with unsafe-fp-math or afn. 942 // 943 // a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0 944 Value * 945 AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num, 946 Value *Den, FastMathFlags FMF, 947 const Instruction *CtxI) const { 948 // rcp_f16 is accurate to 0.51 ulp. 949 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 950 // rcp_f64 is never accurate. 951 assert(Den->getType()->isFloatTy()); 952 953 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 954 bool IsNegative = false; 955 if (CLHS->isExactlyValue(1.0) || 956 (IsNegative = CLHS->isExactlyValue(-1.0))) { 957 Value *Src = Den; 958 959 if (HasFP32DenormalFlush || FMF.approxFunc()) { 960 // -1.0 / x -> 1.0 / fneg(x) 961 if (IsNegative) 962 Src = Builder.CreateFNeg(Src); 963 964 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 965 // the CI documentation has a worst case error of 1 ulp. 966 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK 967 // to use it as long as we aren't trying to use denormals. 968 // 969 // v_rcp_f16 and v_rsq_f16 DO support denormals. 970 971 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 972 // insert rsq intrinsic here. 973 974 // 1.0 / x -> rcp(x) 975 return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src); 976 } 977 978 // TODO: If the input isn't denormal, and we know the input exponent isn't 979 // big enough to introduce a denormal we can avoid the scaling. 980 return emitRcpIEEE1ULP(Builder, Src, IsNegative); 981 } 982 } 983 984 if (FMF.allowReciprocal()) { 985 // x / y -> x * (1.0 / y) 986 987 // TODO: Could avoid denormal scaling and use raw rcp if we knew the output 988 // will never underflow. 989 if (HasFP32DenormalFlush || FMF.approxFunc()) { 990 Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den); 991 return Builder.CreateFMul(Num, Recip); 992 } 993 994 Value *Recip = emitRcpIEEE1ULP(Builder, Den, false); 995 return Builder.CreateFMul(Num, Recip); 996 } 997 998 return nullptr; 999 } 1000 1001 // optimize with fdiv.fast: 1002 // 1003 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 1004 // 1005 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 1006 // 1007 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 1008 Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast( 1009 IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const { 1010 // fdiv.fast can achieve 2.5 ULP accuracy. 1011 if (ReqdAccuracy < 2.5f) 1012 return nullptr; 1013 1014 // Only have fdiv.fast for f32. 1015 assert(Den->getType()->isFloatTy()); 1016 1017 bool NumIsOne = false; 1018 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 1019 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 1020 NumIsOne = true; 1021 } 1022 1023 // fdiv does not support denormals. But 1.0/x is always fine to use it. 1024 // 1025 // TODO: This works for any value with a specific known exponent range, don't 1026 // just limit to constant 1. 1027 if (!HasFP32DenormalFlush && !NumIsOne) 1028 return nullptr; 1029 1030 return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den}); 1031 } 1032 1033 Value *AMDGPUCodeGenPrepareImpl::visitFDivElement( 1034 IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF, 1035 FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst, 1036 float ReqdDivAccuracy) const { 1037 if (RsqOp) { 1038 Value *Rsq = 1039 optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst); 1040 if (Rsq) 1041 return Rsq; 1042 } 1043 1044 Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst); 1045 if (Rcp) 1046 return Rcp; 1047 1048 // In the basic case fdiv_fast has the same instruction count as the frexp div 1049 // expansion. Slightly prefer fdiv_fast since it ends in an fmul that can 1050 // potentially be fused into a user. Also, materialization of the constants 1051 // can be reused for multiple instances. 1052 Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy); 1053 if (FDivFast) 1054 return FDivFast; 1055 1056 return emitFrexpDiv(Builder, Num, Den, DivFMF); 1057 } 1058 1059 // Optimizations is performed based on fpmath, fast math flags as well as 1060 // denormals to optimize fdiv with either rcp or fdiv.fast. 1061 // 1062 // With rcp: 1063 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 1064 // allowed with unsafe-fp-math or afn. 1065 // 1066 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 1067 // 1068 // With fdiv.fast: 1069 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 1070 // 1071 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 1072 // 1073 // NOTE: rcp is the preference in cases that both are legal. 1074 bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) { 1075 if (DisableFDivExpand) 1076 return false; 1077 1078 Type *Ty = FDiv.getType()->getScalarType(); 1079 if (!Ty->isFloatTy()) 1080 return false; 1081 1082 // The f64 rcp/rsq approximations are pretty inaccurate. We can do an 1083 // expansion around them in codegen. f16 is good enough to always use. 1084 1085 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 1086 const FastMathFlags DivFMF = FPOp->getFastMathFlags(); 1087 const float ReqdAccuracy = FPOp->getFPAccuracy(); 1088 1089 FastMathFlags SqrtFMF; 1090 1091 Value *Num = FDiv.getOperand(0); 1092 Value *Den = FDiv.getOperand(1); 1093 1094 Value *RsqOp = nullptr; 1095 auto *DenII = dyn_cast<IntrinsicInst>(Den); 1096 if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt && 1097 DenII->hasOneUse()) { 1098 const auto *SqrtOp = cast<FPMathOperator>(DenII); 1099 SqrtFMF = SqrtOp->getFastMathFlags(); 1100 if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF)) 1101 RsqOp = SqrtOp->getOperand(0); 1102 } 1103 1104 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 1105 // 1106 // Defer to codegen to handle this. 1107 // 1108 // TODO: Decide on an interpretation for interactions between afn + arcp + 1109 // !fpmath, and make it consistent between here and codegen. For now, defer 1110 // expansion of afn to codegen. The current interpretation is so aggressive we 1111 // don't need any pre-consideration here when we have better information. A 1112 // more conservative interpretation could use handling here. 1113 const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc(); 1114 if (!RsqOp && AllowInaccurateRcp) 1115 return false; 1116 1117 // Defer the correct implementations to codegen. 1118 if (ReqdAccuracy < 1.0f) 1119 return false; 1120 1121 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 1122 Builder.setFastMathFlags(DivFMF); 1123 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 1124 1125 SmallVector<Value *, 4> NumVals; 1126 SmallVector<Value *, 4> DenVals; 1127 SmallVector<Value *, 4> RsqDenVals; 1128 extractValues(Builder, NumVals, Num); 1129 extractValues(Builder, DenVals, Den); 1130 1131 if (RsqOp) 1132 extractValues(Builder, RsqDenVals, RsqOp); 1133 1134 SmallVector<Value *, 4> ResultVals(NumVals.size()); 1135 for (int I = 0, E = NumVals.size(); I != E; ++I) { 1136 Value *NumElt = NumVals[I]; 1137 Value *DenElt = DenVals[I]; 1138 Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr; 1139 1140 Value *NewElt = 1141 visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt, 1142 cast<Instruction>(FPOp), ReqdAccuracy); 1143 if (!NewElt) { 1144 // Keep the original, but scalarized. 1145 1146 // This has the unfortunate side effect of sometimes scalarizing when 1147 // we're not going to do anything. 1148 NewElt = Builder.CreateFDiv(NumElt, DenElt); 1149 if (auto *NewEltInst = dyn_cast<Instruction>(NewElt)) 1150 NewEltInst->copyMetadata(FDiv); 1151 } 1152 1153 ResultVals[I] = NewElt; 1154 } 1155 1156 Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals); 1157 1158 if (NewVal) { 1159 FDiv.replaceAllUsesWith(NewVal); 1160 NewVal->takeName(&FDiv); 1161 RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLInfo); 1162 } 1163 1164 return true; 1165 } 1166 1167 static bool hasUnsafeFPMath(const Function &F) { 1168 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 1169 return Attr.getValueAsBool(); 1170 } 1171 1172 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 1173 Value *LHS, Value *RHS) { 1174 Type *I32Ty = Builder.getInt32Ty(); 1175 Type *I64Ty = Builder.getInt64Ty(); 1176 1177 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 1178 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 1179 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 1180 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 1181 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 1182 Hi = Builder.CreateTrunc(Hi, I32Ty); 1183 return std::pair(Lo, Hi); 1184 } 1185 1186 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 1187 return getMul64(Builder, LHS, RHS).second; 1188 } 1189 1190 /// Figure out how many bits are really needed for this division. \p AtLeast is 1191 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 1192 /// first one is insufficient. Returns -1 on failure. 1193 int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num, 1194 Value *Den, unsigned AtLeast, 1195 bool IsSigned) const { 1196 const DataLayout &DL = Mod->getDataLayout(); 1197 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 1198 if (LHSSignBits < AtLeast) 1199 return -1; 1200 1201 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 1202 if (RHSSignBits < AtLeast) 1203 return -1; 1204 1205 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1206 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 1207 if (IsSigned) 1208 ++DivBits; 1209 return DivBits; 1210 } 1211 1212 // The fractional part of a float is enough to accurately represent up to 1213 // a 24-bit signed integer. 1214 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder, 1215 BinaryOperator &I, Value *Num, 1216 Value *Den, bool IsDiv, 1217 bool IsSigned) const { 1218 unsigned SSBits = Num->getType()->getScalarSizeInBits(); 1219 // If Num bits <= 24, assume 0 signbits. 1220 unsigned AtLeast = (SSBits <= 24) ? 0 : (SSBits - 24 + IsSigned); 1221 int DivBits = getDivNumBits(I, Num, Den, AtLeast, IsSigned); 1222 if (DivBits == -1) 1223 return nullptr; 1224 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 1225 } 1226 1227 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl( 1228 IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, 1229 unsigned DivBits, bool IsDiv, bool IsSigned) const { 1230 Type *I32Ty = Builder.getInt32Ty(); 1231 Num = Builder.CreateTrunc(Num, I32Ty); 1232 Den = Builder.CreateTrunc(Den, I32Ty); 1233 1234 Type *F32Ty = Builder.getFloatTy(); 1235 ConstantInt *One = Builder.getInt32(1); 1236 Value *JQ = One; 1237 1238 if (IsSigned) { 1239 // char|short jq = ia ^ ib; 1240 JQ = Builder.CreateXor(Num, Den); 1241 1242 // jq = jq >> (bitsize - 2) 1243 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 1244 1245 // jq = jq | 0x1 1246 JQ = Builder.CreateOr(JQ, One); 1247 } 1248 1249 // int ia = (int)LHS; 1250 Value *IA = Num; 1251 1252 // int ib, (int)RHS; 1253 Value *IB = Den; 1254 1255 // float fa = (float)ia; 1256 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 1257 : Builder.CreateUIToFP(IA, F32Ty); 1258 1259 // float fb = (float)ib; 1260 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 1261 : Builder.CreateUIToFP(IB,F32Ty); 1262 1263 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 1264 Builder.getFloatTy()); 1265 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 1266 Value *FQM = Builder.CreateFMul(FA, RCP); 1267 1268 // fq = trunc(fqm); 1269 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 1270 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 1271 1272 // float fqneg = -fq; 1273 Value *FQNeg = Builder.CreateFNeg(FQ); 1274 1275 // float fr = mad(fqneg, fb, fa); 1276 auto FMAD = !ST->hasMadMacF32Insts() 1277 ? Intrinsic::fma 1278 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 1279 Value *FR = Builder.CreateIntrinsic(FMAD, 1280 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 1281 1282 // int iq = (int)fq; 1283 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 1284 : Builder.CreateFPToUI(FQ, I32Ty); 1285 1286 // fr = fabs(fr); 1287 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 1288 1289 // fb = fabs(fb); 1290 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 1291 1292 // int cv = fr >= fb; 1293 Value *CV = Builder.CreateFCmpOGE(FR, FB); 1294 1295 // jq = (cv ? jq : 0); 1296 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 1297 1298 // dst = iq + jq; 1299 Value *Div = Builder.CreateAdd(IQ, JQ); 1300 1301 Value *Res = Div; 1302 if (!IsDiv) { 1303 // Rem needs compensation, it's easier to recompute it 1304 Value *Rem = Builder.CreateMul(Div, Den); 1305 Res = Builder.CreateSub(Num, Rem); 1306 } 1307 1308 if (DivBits != 0 && DivBits < 32) { 1309 // Extend in register from the number of bits this divide really is. 1310 if (IsSigned) { 1311 int InRegBits = 32 - DivBits; 1312 1313 Res = Builder.CreateShl(Res, InRegBits); 1314 Res = Builder.CreateAShr(Res, InRegBits); 1315 } else { 1316 ConstantInt *TruncMask 1317 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 1318 Res = Builder.CreateAnd(Res, TruncMask); 1319 } 1320 } 1321 1322 return Res; 1323 } 1324 1325 // Try to recognize special cases the DAG will emit special, better expansions 1326 // than the general expansion we do here. 1327 1328 // TODO: It would be better to just directly handle those optimizations here. 1329 bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I, 1330 Value *Num, 1331 Value *Den) const { 1332 if (Constant *C = dyn_cast<Constant>(Den)) { 1333 // Arbitrary constants get a better expansion as long as a wider mulhi is 1334 // legal. 1335 if (C->getType()->getScalarSizeInBits() <= 32) 1336 return true; 1337 1338 // TODO: Sdiv check for not exact for some reason. 1339 1340 // If there's no wider mulhi, there's only a better expansion for powers of 1341 // two. 1342 // TODO: Should really know for each vector element. 1343 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 1344 return true; 1345 1346 return false; 1347 } 1348 1349 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1350 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1351 if (BinOpDen->getOpcode() == Instruction::Shl && 1352 isa<Constant>(BinOpDen->getOperand(0)) && 1353 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 1354 0, AC, &I, DT)) { 1355 return true; 1356 } 1357 } 1358 1359 return false; 1360 } 1361 1362 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1363 // Check whether the sign can be determined statically. 1364 KnownBits Known = computeKnownBits(V, *DL); 1365 if (Known.isNegative()) 1366 return Constant::getAllOnesValue(V->getType()); 1367 if (Known.isNonNegative()) 1368 return Constant::getNullValue(V->getType()); 1369 return Builder.CreateAShr(V, Builder.getInt32(31)); 1370 } 1371 1372 Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder, 1373 BinaryOperator &I, Value *X, 1374 Value *Y) const { 1375 Instruction::BinaryOps Opc = I.getOpcode(); 1376 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1377 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1378 1379 FastMathFlags FMF; 1380 FMF.setFast(); 1381 Builder.setFastMathFlags(FMF); 1382 1383 if (divHasSpecialOptimization(I, X, Y)) 1384 return nullptr; // Keep it for later optimization. 1385 1386 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1387 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1388 1389 Type *Ty = X->getType(); 1390 Type *I32Ty = Builder.getInt32Ty(); 1391 Type *F32Ty = Builder.getFloatTy(); 1392 1393 if (Ty->getScalarSizeInBits() != 32) { 1394 if (IsSigned) { 1395 X = Builder.CreateSExtOrTrunc(X, I32Ty); 1396 Y = Builder.CreateSExtOrTrunc(Y, I32Ty); 1397 } else { 1398 X = Builder.CreateZExtOrTrunc(X, I32Ty); 1399 Y = Builder.CreateZExtOrTrunc(Y, I32Ty); 1400 } 1401 } 1402 1403 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1404 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1405 Builder.CreateZExtOrTrunc(Res, Ty); 1406 } 1407 1408 ConstantInt *Zero = Builder.getInt32(0); 1409 ConstantInt *One = Builder.getInt32(1); 1410 1411 Value *Sign = nullptr; 1412 if (IsSigned) { 1413 Value *SignX = getSign32(X, Builder, DL); 1414 Value *SignY = getSign32(Y, Builder, DL); 1415 // Remainder sign is the same as LHS 1416 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1417 1418 X = Builder.CreateAdd(X, SignX); 1419 Y = Builder.CreateAdd(Y, SignY); 1420 1421 X = Builder.CreateXor(X, SignX); 1422 Y = Builder.CreateXor(Y, SignY); 1423 } 1424 1425 // The algorithm here is based on ideas from "Software Integer Division", Tom 1426 // Rodeheffer, August 2008. 1427 // 1428 // unsigned udiv(unsigned x, unsigned y) { 1429 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1430 // // that this is a lower bound on inv(y), even if some of the calculations 1431 // // round up. 1432 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1433 // 1434 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1435 // // Empirically this is guaranteed to give a "two-y" lower bound on 1436 // // inv(y). 1437 // z += umulh(z, -y * z); 1438 // 1439 // // Quotient/remainder estimate. 1440 // unsigned q = umulh(x, z); 1441 // unsigned r = x - q * y; 1442 // 1443 // // Two rounds of quotient/remainder refinement. 1444 // if (r >= y) { 1445 // ++q; 1446 // r -= y; 1447 // } 1448 // if (r >= y) { 1449 // ++q; 1450 // r -= y; 1451 // } 1452 // 1453 // return q; 1454 // } 1455 1456 // Initial estimate of inv(y). 1457 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1458 Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 1459 Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 1460 Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE)); 1461 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1462 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1463 1464 // One round of UNR. 1465 Value *NegY = Builder.CreateSub(Zero, Y); 1466 Value *NegYZ = Builder.CreateMul(NegY, Z); 1467 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1468 1469 // Quotient/remainder estimate. 1470 Value *Q = getMulHu(Builder, X, Z); 1471 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1472 1473 // First quotient/remainder refinement. 1474 Value *Cond = Builder.CreateICmpUGE(R, Y); 1475 if (IsDiv) 1476 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1477 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1478 1479 // Second quotient/remainder refinement. 1480 Cond = Builder.CreateICmpUGE(R, Y); 1481 Value *Res; 1482 if (IsDiv) 1483 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1484 else 1485 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1486 1487 if (IsSigned) { 1488 Res = Builder.CreateXor(Res, Sign); 1489 Res = Builder.CreateSub(Res, Sign); 1490 Res = Builder.CreateSExtOrTrunc(Res, Ty); 1491 } else { 1492 Res = Builder.CreateZExtOrTrunc(Res, Ty); 1493 } 1494 return Res; 1495 } 1496 1497 Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder, 1498 BinaryOperator &I, Value *Num, 1499 Value *Den) const { 1500 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1501 return nullptr; // Keep it for later optimization. 1502 1503 Instruction::BinaryOps Opc = I.getOpcode(); 1504 1505 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1506 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1507 1508 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1509 if (NumDivBits == -1) 1510 return nullptr; 1511 1512 Value *Narrowed = nullptr; 1513 if (NumDivBits <= 24) { 1514 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1515 IsDiv, IsSigned); 1516 } else if (NumDivBits <= 32) { 1517 Narrowed = expandDivRem32(Builder, I, Num, Den); 1518 } 1519 1520 if (Narrowed) { 1521 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1522 Builder.CreateZExt(Narrowed, Num->getType()); 1523 } 1524 1525 return nullptr; 1526 } 1527 1528 void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const { 1529 Instruction::BinaryOps Opc = I.getOpcode(); 1530 // Do the general expansion. 1531 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1532 expandDivisionUpTo64Bits(&I); 1533 return; 1534 } 1535 1536 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1537 expandRemainderUpTo64Bits(&I); 1538 return; 1539 } 1540 1541 llvm_unreachable("not a division"); 1542 } 1543 1544 bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) { 1545 if (foldBinOpIntoSelect(I)) 1546 return true; 1547 1548 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1549 UA->isUniform(&I) && promoteUniformOpToI32(I)) 1550 return true; 1551 1552 if (UseMul24Intrin && replaceMulWithMul24(I)) 1553 return true; 1554 1555 bool Changed = false; 1556 Instruction::BinaryOps Opc = I.getOpcode(); 1557 Type *Ty = I.getType(); 1558 Value *NewDiv = nullptr; 1559 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1560 1561 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1562 1563 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1564 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1565 ScalarSize <= 64 && 1566 !DisableIDivExpand) { 1567 Value *Num = I.getOperand(0); 1568 Value *Den = I.getOperand(1); 1569 IRBuilder<> Builder(&I); 1570 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1571 1572 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1573 NewDiv = PoisonValue::get(VT); 1574 1575 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1576 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1577 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1578 1579 Value *NewElt; 1580 if (ScalarSize <= 32) { 1581 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1582 if (!NewElt) 1583 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1584 } else { 1585 // See if this 64-bit division can be shrunk to 32/24-bits before 1586 // producing the general expansion. 1587 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1588 if (!NewElt) { 1589 // The general 64-bit expansion introduces control flow and doesn't 1590 // return the new value. Just insert a scalar copy and defer 1591 // expanding it. 1592 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1593 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1594 } 1595 } 1596 1597 if (auto *NewEltI = dyn_cast<Instruction>(NewElt)) 1598 NewEltI->copyIRFlags(&I); 1599 1600 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1601 } 1602 } else { 1603 if (ScalarSize <= 32) 1604 NewDiv = expandDivRem32(Builder, I, Num, Den); 1605 else { 1606 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1607 if (!NewDiv) 1608 Div64ToExpand.push_back(&I); 1609 } 1610 } 1611 1612 if (NewDiv) { 1613 I.replaceAllUsesWith(NewDiv); 1614 I.eraseFromParent(); 1615 Changed = true; 1616 } 1617 } 1618 1619 if (ExpandDiv64InIR) { 1620 // TODO: We get much worse code in specially handled constant cases. 1621 for (BinaryOperator *Div : Div64ToExpand) { 1622 expandDivRem64(*Div); 1623 FlowChanged = true; 1624 Changed = true; 1625 } 1626 } 1627 1628 return Changed; 1629 } 1630 1631 bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) { 1632 if (!WidenLoads) 1633 return false; 1634 1635 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1636 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1637 canWidenScalarExtLoad(I)) { 1638 IRBuilder<> Builder(&I); 1639 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1640 1641 Type *I32Ty = Builder.getInt32Ty(); 1642 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand()); 1643 WidenLoad->copyMetadata(I); 1644 1645 // If we have range metadata, we need to convert the type, and not make 1646 // assumptions about the high bits. 1647 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1648 ConstantInt *Lower = 1649 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1650 1651 if (Lower->isNullValue()) { 1652 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1653 } else { 1654 Metadata *LowAndHigh[] = { 1655 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1656 // Don't make assumptions about the high bits. 1657 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1658 }; 1659 1660 WidenLoad->setMetadata(LLVMContext::MD_range, 1661 MDNode::get(Mod->getContext(), LowAndHigh)); 1662 } 1663 } 1664 1665 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1666 Type *IntNTy = Builder.getIntNTy(TySize); 1667 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1668 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1669 I.replaceAllUsesWith(ValOrig); 1670 I.eraseFromParent(); 1671 return true; 1672 } 1673 1674 return false; 1675 } 1676 1677 bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) { 1678 bool Changed = false; 1679 1680 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1681 UA->isUniform(&I)) 1682 Changed |= promoteUniformOpToI32(I); 1683 1684 return Changed; 1685 } 1686 1687 bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) { 1688 Value *Cond = I.getCondition(); 1689 Value *TrueVal = I.getTrueValue(); 1690 Value *FalseVal = I.getFalseValue(); 1691 Value *CmpVal; 1692 FCmpInst::Predicate Pred; 1693 1694 if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) { 1695 if (UA->isUniform(&I)) 1696 return promoteUniformOpToI32(I); 1697 return false; 1698 } 1699 1700 // Match fract pattern with nan check. 1701 if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN()))) 1702 return false; 1703 1704 FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I); 1705 if (!FPOp) 1706 return false; 1707 1708 IRBuilder<> Builder(&I); 1709 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 1710 1711 auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal); 1712 auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal); 1713 1714 Value *Fract = nullptr; 1715 if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && 1716 CmpVal == matchFractPat(*IIFalse)) { 1717 // isnan(x) ? x : fract(x) 1718 Fract = applyFractPat(Builder, CmpVal); 1719 } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && 1720 CmpVal == matchFractPat(*IITrue)) { 1721 // !isnan(x) ? fract(x) : x 1722 Fract = applyFractPat(Builder, CmpVal); 1723 } else 1724 return false; 1725 1726 Fract->takeName(&I); 1727 I.replaceAllUsesWith(Fract); 1728 RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 1729 return true; 1730 } 1731 1732 static bool areInSameBB(const Value *A, const Value *B) { 1733 const auto *IA = dyn_cast<Instruction>(A); 1734 const auto *IB = dyn_cast<Instruction>(B); 1735 return IA && IB && IA->getParent() == IB->getParent(); 1736 } 1737 1738 // Helper for breaking large PHIs that returns true when an extractelement on V 1739 // is likely to be folded away by the DAG combiner. 1740 static bool isInterestingPHIIncomingValue(const Value *V) { 1741 const auto *FVT = dyn_cast<FixedVectorType>(V->getType()); 1742 if (!FVT) 1743 return false; 1744 1745 const Value *CurVal = V; 1746 1747 // Check for insertelements, keeping track of the elements covered. 1748 BitVector EltsCovered(FVT->getNumElements()); 1749 while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) { 1750 const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2)); 1751 1752 // Non constant index/out of bounds index -> folding is unlikely. 1753 // The latter is more of a sanity check because canonical IR should just 1754 // have replaced those with poison. 1755 if (!Idx || Idx->getZExtValue() >= FVT->getNumElements()) 1756 return false; 1757 1758 const auto *VecSrc = IE->getOperand(0); 1759 1760 // If the vector source is another instruction, it must be in the same basic 1761 // block. Otherwise, the DAGCombiner won't see the whole thing and is 1762 // unlikely to be able to do anything interesting here. 1763 if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE)) 1764 return false; 1765 1766 CurVal = VecSrc; 1767 EltsCovered.set(Idx->getZExtValue()); 1768 1769 // All elements covered. 1770 if (EltsCovered.all()) 1771 return true; 1772 } 1773 1774 // We either didn't find a single insertelement, or the insertelement chain 1775 // ended before all elements were covered. Check for other interesting values. 1776 1777 // Constants are always interesting because we can just constant fold the 1778 // extractelements. 1779 if (isa<Constant>(CurVal)) 1780 return true; 1781 1782 // shufflevector is likely to be profitable if either operand is a constant, 1783 // or if either source is in the same block. 1784 // This is because shufflevector is most often lowered as a series of 1785 // insert/extract elements anyway. 1786 if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) { 1787 return isa<Constant>(SV->getOperand(1)) || 1788 areInSameBB(SV, SV->getOperand(0)) || 1789 areInSameBB(SV, SV->getOperand(1)); 1790 } 1791 1792 return false; 1793 } 1794 1795 static void collectPHINodes(const PHINode &I, 1796 SmallPtrSet<const PHINode *, 8> &SeenPHIs) { 1797 const auto [It, Inserted] = SeenPHIs.insert(&I); 1798 if (!Inserted) 1799 return; 1800 1801 for (const Value *Inc : I.incoming_values()) { 1802 if (const auto *PhiInc = dyn_cast<PHINode>(Inc)) 1803 collectPHINodes(*PhiInc, SeenPHIs); 1804 } 1805 1806 for (const User *U : I.users()) { 1807 if (const auto *PhiU = dyn_cast<PHINode>(U)) 1808 collectPHINodes(*PhiU, SeenPHIs); 1809 } 1810 } 1811 1812 bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) { 1813 // Check in the cache first. 1814 if (const auto It = BreakPhiNodesCache.find(&I); 1815 It != BreakPhiNodesCache.end()) 1816 return It->second; 1817 1818 // We consider PHI nodes as part of "chains", so given a PHI node I, we 1819 // recursively consider all its users and incoming values that are also PHI 1820 // nodes. We then make a decision about all of those PHIs at once. Either they 1821 // all get broken up, or none of them do. That way, we avoid cases where a 1822 // single PHI is/is not broken and we end up reforming/exploding a vector 1823 // multiple times, or even worse, doing it in a loop. 1824 SmallPtrSet<const PHINode *, 8> WorkList; 1825 collectPHINodes(I, WorkList); 1826 1827 #ifndef NDEBUG 1828 // Check that none of the PHI nodes in the worklist are in the map. If some of 1829 // them are, it means we're not good enough at collecting related PHIs. 1830 for (const PHINode *WLP : WorkList) { 1831 assert(BreakPhiNodesCache.count(WLP) == 0); 1832 } 1833 #endif 1834 1835 // To consider a PHI profitable to break, we need to see some interesting 1836 // incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist 1837 // must have one to consider all PHIs breakable. 1838 // 1839 // This threshold has been determined through performance testing. 1840 // 1841 // Note that the computation below is equivalent to 1842 // 1843 // (unsigned)ceil((K / 3.0) * 2) 1844 // 1845 // It's simply written this way to avoid mixing integral/FP arithmetic. 1846 const auto Threshold = (alignTo(WorkList.size() * 2, 3) / 3); 1847 unsigned NumBreakablePHIs = 0; 1848 bool CanBreak = false; 1849 for (const PHINode *Cur : WorkList) { 1850 // Don't break PHIs that have no interesting incoming values. That is, where 1851 // there is no clear opportunity to fold the "extractelement" instructions 1852 // we would add. 1853 // 1854 // Note: IC does not run after this pass, so we're only interested in the 1855 // foldings that the DAG combiner can do. 1856 if (any_of(Cur->incoming_values(), isInterestingPHIIncomingValue)) { 1857 if (++NumBreakablePHIs >= Threshold) { 1858 CanBreak = true; 1859 break; 1860 } 1861 } 1862 } 1863 1864 for (const PHINode *Cur : WorkList) 1865 BreakPhiNodesCache[Cur] = CanBreak; 1866 1867 return CanBreak; 1868 } 1869 1870 /// Helper class for "break large PHIs" (visitPHINode). 1871 /// 1872 /// This represents a slice of a PHI's incoming value, which is made up of: 1873 /// - The type of the slice (Ty) 1874 /// - The index in the incoming value's vector where the slice starts (Idx) 1875 /// - The number of elements in the slice (NumElts). 1876 /// It also keeps track of the NewPHI node inserted for this particular slice. 1877 /// 1878 /// Slice examples: 1879 /// <4 x i64> -> Split into four i64 slices. 1880 /// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1] 1881 /// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail. 1882 /// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1] 1883 class VectorSlice { 1884 public: 1885 VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts) 1886 : Ty(Ty), Idx(Idx), NumElts(NumElts) {} 1887 1888 Type *Ty = nullptr; 1889 unsigned Idx = 0; 1890 unsigned NumElts = 0; 1891 PHINode *NewPHI = nullptr; 1892 1893 /// Slice \p Inc according to the information contained within this slice. 1894 /// This is cached, so if called multiple times for the same \p BB & \p Inc 1895 /// pair, it returns the same Sliced value as well. 1896 /// 1897 /// Note this *intentionally* does not return the same value for, say, 1898 /// [%bb.0, %0] & [%bb.1, %0] as: 1899 /// - It could cause issues with dominance (e.g. if bb.1 is seen first, then 1900 /// the value in bb.1 may not be reachable from bb.0 if it's its 1901 /// predecessor.) 1902 /// - We also want to make our extract instructions as local as possible so 1903 /// the DAG has better chances of folding them out. Duplicating them like 1904 /// that is beneficial in that regard. 1905 /// 1906 /// This is both a minor optimization to avoid creating duplicate 1907 /// instructions, but also a requirement for correctness. It is not forbidden 1908 /// for a PHI node to have the same [BB, Val] pair multiple times. If we 1909 /// returned a new value each time, those previously identical pairs would all 1910 /// have different incoming values (from the same block) and it'd cause a "PHI 1911 /// node has multiple entries for the same basic block with different incoming 1912 /// values!" verifier error. 1913 Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) { 1914 Value *&Res = SlicedVals[{BB, Inc}]; 1915 if (Res) 1916 return Res; 1917 1918 IRBuilder<> B(BB->getTerminator()); 1919 if (Instruction *IncInst = dyn_cast<Instruction>(Inc)) 1920 B.SetCurrentDebugLocation(IncInst->getDebugLoc()); 1921 1922 if (NumElts > 1) { 1923 SmallVector<int, 4> Mask; 1924 for (unsigned K = Idx; K < (Idx + NumElts); ++K) 1925 Mask.push_back(K); 1926 Res = B.CreateShuffleVector(Inc, Mask, NewValName); 1927 } else 1928 Res = B.CreateExtractElement(Inc, Idx, NewValName); 1929 1930 return Res; 1931 } 1932 1933 private: 1934 SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals; 1935 }; 1936 1937 bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) { 1938 // Break-up fixed-vector PHIs into smaller pieces. 1939 // Default threshold is 32, so it breaks up any vector that's >32 bits into 1940 // its elements, or into 32-bit pieces (for 8/16 bit elts). 1941 // 1942 // This is only helpful for DAGISel because it doesn't handle large PHIs as 1943 // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. 1944 // With large, odd-sized PHIs we may end up needing many `build_vector` 1945 // operations with most elements being "undef". This inhibits a lot of 1946 // optimization opportunities and can result in unreasonably high register 1947 // pressure and the inevitable stack spilling. 1948 if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) 1949 return false; 1950 1951 FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType()); 1952 if (!FVT || FVT->getNumElements() == 1 || 1953 DL->getTypeSizeInBits(FVT) <= BreakLargePHIsThreshold) 1954 return false; 1955 1956 if (!ForceBreakLargePHIs && !canBreakPHINode(I)) 1957 return false; 1958 1959 std::vector<VectorSlice> Slices; 1960 1961 Type *EltTy = FVT->getElementType(); 1962 { 1963 unsigned Idx = 0; 1964 // For 8/16 bits type, don't scalarize fully but break it up into as many 1965 // 32-bit slices as we can, and scalarize the tail. 1966 const unsigned EltSize = DL->getTypeSizeInBits(EltTy); 1967 const unsigned NumElts = FVT->getNumElements(); 1968 if (EltSize == 8 || EltSize == 16) { 1969 const unsigned SubVecSize = (32 / EltSize); 1970 Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); 1971 for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; 1972 Idx += SubVecSize) 1973 Slices.emplace_back(SubVecTy, Idx, SubVecSize); 1974 } 1975 1976 // Scalarize all remaining elements. 1977 for (; Idx < NumElts; ++Idx) 1978 Slices.emplace_back(EltTy, Idx, 1); 1979 } 1980 1981 assert(Slices.size() > 1); 1982 1983 // Create one PHI per vector piece. The "VectorSlice" class takes care of 1984 // creating the necessary instruction to extract the relevant slices of each 1985 // incoming value. 1986 IRBuilder<> B(I.getParent()); 1987 B.SetCurrentDebugLocation(I.getDebugLoc()); 1988 1989 unsigned IncNameSuffix = 0; 1990 for (VectorSlice &S : Slices) { 1991 // We need to reset the build on each iteration, because getSlicedVal may 1992 // have inserted something into I's BB. 1993 B.SetInsertPoint(I.getParent()->getFirstNonPHIIt()); 1994 S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); 1995 1996 for (const auto &[Idx, BB] : enumerate(I.blocks())) { 1997 S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx), 1998 "largephi.extractslice" + 1999 std::to_string(IncNameSuffix++)), 2000 BB); 2001 } 2002 } 2003 2004 // And replace this PHI with a vector of all the previous PHI values. 2005 Value *Vec = PoisonValue::get(FVT); 2006 unsigned NameSuffix = 0; 2007 for (VectorSlice &S : Slices) { 2008 const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); 2009 if (S.NumElts > 1) 2010 Vec = 2011 B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); 2012 else 2013 Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); 2014 } 2015 2016 I.replaceAllUsesWith(Vec); 2017 I.eraseFromParent(); 2018 return true; 2019 } 2020 2021 /// \param V Value to check 2022 /// \param DL DataLayout 2023 /// \param TM TargetMachine (TODO: remove once DL contains nullptr values) 2024 /// \param AS Target Address Space 2025 /// \return true if \p V cannot be the null value of \p AS, false otherwise. 2026 static bool isPtrKnownNeverNull(const Value *V, const DataLayout &DL, 2027 const AMDGPUTargetMachine &TM, unsigned AS) { 2028 // Pointer cannot be null if it's a block address, GV or alloca. 2029 // NOTE: We don't support extern_weak, but if we did, we'd need to check for 2030 // it as the symbol could be null in such cases. 2031 if (isa<BlockAddress>(V) || isa<GlobalValue>(V) || isa<AllocaInst>(V)) 2032 return true; 2033 2034 // Check nonnull arguments. 2035 if (const auto *Arg = dyn_cast<Argument>(V); Arg && Arg->hasNonNullAttr()) 2036 return true; 2037 2038 // getUnderlyingObject may have looked through another addrspacecast, although 2039 // the optimizable situations most likely folded out by now. 2040 if (AS != cast<PointerType>(V->getType())->getAddressSpace()) 2041 return false; 2042 2043 // TODO: Calls that return nonnull? 2044 2045 // For all other things, use KnownBits. 2046 // We either use 0 or all bits set to indicate null, so check whether the 2047 // value can be zero or all ones. 2048 // 2049 // TODO: Use ValueTracking's isKnownNeverNull if it becomes aware that some 2050 // address spaces have non-zero null values. 2051 auto SrcPtrKB = computeKnownBits(V, DL); 2052 const auto NullVal = TM.getNullPointerValue(AS); 2053 2054 assert(SrcPtrKB.getBitWidth() == DL.getPointerSizeInBits(AS)); 2055 assert((NullVal == 0 || NullVal == -1) && 2056 "don't know how to check for this null value!"); 2057 return NullVal ? !SrcPtrKB.getMaxValue().isAllOnes() : SrcPtrKB.isNonZero(); 2058 } 2059 2060 bool AMDGPUCodeGenPrepareImpl::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 2061 // Intrinsic doesn't support vectors, also it seems that it's often difficult 2062 // to prove that a vector cannot have any nulls in it so it's unclear if it's 2063 // worth supporting. 2064 if (I.getType()->isVectorTy()) 2065 return false; 2066 2067 // Check if this can be lowered to a amdgcn.addrspacecast.nonnull. 2068 // This is only worthwhile for casts from/to priv/local to flat. 2069 const unsigned SrcAS = I.getSrcAddressSpace(); 2070 const unsigned DstAS = I.getDestAddressSpace(); 2071 2072 bool CanLower = false; 2073 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) 2074 CanLower = (DstAS == AMDGPUAS::LOCAL_ADDRESS || 2075 DstAS == AMDGPUAS::PRIVATE_ADDRESS); 2076 else if (DstAS == AMDGPUAS::FLAT_ADDRESS) 2077 CanLower = (SrcAS == AMDGPUAS::LOCAL_ADDRESS || 2078 SrcAS == AMDGPUAS::PRIVATE_ADDRESS); 2079 if (!CanLower) 2080 return false; 2081 2082 SmallVector<const Value *, 4> WorkList; 2083 getUnderlyingObjects(I.getOperand(0), WorkList); 2084 if (!all_of(WorkList, [&](const Value *V) { 2085 return isPtrKnownNeverNull(V, *DL, *TM, SrcAS); 2086 })) 2087 return false; 2088 2089 IRBuilder<> B(&I); 2090 auto *Intrin = B.CreateIntrinsic( 2091 I.getType(), Intrinsic::amdgcn_addrspacecast_nonnull, {I.getOperand(0)}); 2092 I.replaceAllUsesWith(Intrin); 2093 I.eraseFromParent(); 2094 return true; 2095 } 2096 2097 bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) { 2098 switch (I.getIntrinsicID()) { 2099 case Intrinsic::bitreverse: 2100 return visitBitreverseIntrinsicInst(I); 2101 case Intrinsic::minnum: 2102 return visitMinNum(I); 2103 case Intrinsic::sqrt: 2104 return visitSqrt(I); 2105 default: 2106 return false; 2107 } 2108 } 2109 2110 bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 2111 bool Changed = false; 2112 2113 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 2114 UA->isUniform(&I)) 2115 Changed |= promoteUniformBitreverseToI32(I); 2116 2117 return Changed; 2118 } 2119 2120 /// Match non-nan fract pattern. 2121 /// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0) 2122 /// 2123 /// If fract is a useful instruction for the subtarget. Does not account for the 2124 /// nan handling; the instruction has a nan check on the input value. 2125 Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) { 2126 if (ST->hasFractBug()) 2127 return nullptr; 2128 2129 if (I.getIntrinsicID() != Intrinsic::minnum) 2130 return nullptr; 2131 2132 Type *Ty = I.getType(); 2133 if (!isLegalFloatingTy(Ty->getScalarType())) 2134 return nullptr; 2135 2136 Value *Arg0 = I.getArgOperand(0); 2137 Value *Arg1 = I.getArgOperand(1); 2138 2139 const APFloat *C; 2140 if (!match(Arg1, m_APFloat(C))) 2141 return nullptr; 2142 2143 APFloat One(1.0); 2144 bool LosesInfo; 2145 One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo); 2146 2147 // Match nextafter(1.0, -1) 2148 One.next(true); 2149 if (One != *C) 2150 return nullptr; 2151 2152 Value *FloorSrc; 2153 if (match(Arg0, m_FSub(m_Value(FloorSrc), 2154 m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc))))) 2155 return FloorSrc; 2156 return nullptr; 2157 } 2158 2159 Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder, 2160 Value *FractArg) { 2161 SmallVector<Value *, 4> FractVals; 2162 extractValues(Builder, FractVals, FractArg); 2163 2164 SmallVector<Value *, 4> ResultVals(FractVals.size()); 2165 2166 Type *Ty = FractArg->getType()->getScalarType(); 2167 for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { 2168 ResultVals[I] = 2169 Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]}); 2170 } 2171 2172 return insertValues(Builder, FractArg->getType(), ResultVals); 2173 } 2174 2175 bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) { 2176 Value *FractArg = matchFractPat(I); 2177 if (!FractArg) 2178 return false; 2179 2180 // Match pattern for fract intrinsic in contexts where the nan check has been 2181 // optimized out (and hope the knowledge the source can't be nan wasn't lost). 2182 if (!I.hasNoNaNs() && 2183 !isKnownNeverNaN(FractArg, /*Depth=*/0, SimplifyQuery(*DL, TLInfo))) 2184 return false; 2185 2186 IRBuilder<> Builder(&I); 2187 FastMathFlags FMF = I.getFastMathFlags(); 2188 FMF.setNoNaNs(); 2189 Builder.setFastMathFlags(FMF); 2190 2191 Value *Fract = applyFractPat(Builder, FractArg); 2192 Fract->takeName(&I); 2193 I.replaceAllUsesWith(Fract); 2194 2195 RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 2196 return true; 2197 } 2198 2199 static bool isOneOrNegOne(const Value *Val) { 2200 const APFloat *C; 2201 return match(Val, m_APFloat(C)) && C->getExactLog2Abs() == 0; 2202 } 2203 2204 // Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way. 2205 bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) { 2206 Type *Ty = Sqrt.getType()->getScalarType(); 2207 if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST->has16BitInsts())) 2208 return false; 2209 2210 const FPMathOperator *FPOp = cast<const FPMathOperator>(&Sqrt); 2211 FastMathFlags SqrtFMF = FPOp->getFastMathFlags(); 2212 2213 // We're trying to handle the fast-but-not-that-fast case only. The lowering 2214 // of fast llvm.sqrt will give the raw instruction anyway. 2215 if (SqrtFMF.approxFunc() || HasUnsafeFPMath) 2216 return false; 2217 2218 const float ReqdAccuracy = FPOp->getFPAccuracy(); 2219 2220 // Defer correctly rounded expansion to codegen. 2221 if (ReqdAccuracy < 1.0f) 2222 return false; 2223 2224 // FIXME: This is an ugly hack for this pass using forward iteration instead 2225 // of reverse. If it worked like a normal combiner, the rsq would form before 2226 // we saw a sqrt call. 2227 auto *FDiv = 2228 dyn_cast_or_null<FPMathOperator>(Sqrt.getUniqueUndroppableUser()); 2229 if (FDiv && FDiv->getOpcode() == Instruction::FDiv && 2230 FDiv->getFPAccuracy() >= 1.0f && 2231 canOptimizeWithRsq(FPOp, FDiv->getFastMathFlags(), SqrtFMF) && 2232 // TODO: We should also handle the arcp case for the fdiv with non-1 value 2233 isOneOrNegOne(FDiv->getOperand(0))) 2234 return false; 2235 2236 Value *SrcVal = Sqrt.getOperand(0); 2237 bool CanTreatAsDAZ = canIgnoreDenormalInput(SrcVal, &Sqrt); 2238 2239 // The raw instruction is 1 ulp, but the correction for denormal handling 2240 // brings it to 2. 2241 if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f) 2242 return false; 2243 2244 IRBuilder<> Builder(&Sqrt); 2245 SmallVector<Value *, 4> SrcVals; 2246 extractValues(Builder, SrcVals, SrcVal); 2247 2248 SmallVector<Value *, 4> ResultVals(SrcVals.size()); 2249 for (int I = 0, E = SrcVals.size(); I != E; ++I) { 2250 if (CanTreatAsDAZ) 2251 ResultVals[I] = Builder.CreateCall(getSqrtF32(), SrcVals[I]); 2252 else 2253 ResultVals[I] = emitSqrtIEEE2ULP(Builder, SrcVals[I], SqrtFMF); 2254 } 2255 2256 Value *NewSqrt = insertValues(Builder, Sqrt.getType(), ResultVals); 2257 NewSqrt->takeName(&Sqrt); 2258 Sqrt.replaceAllUsesWith(NewSqrt); 2259 Sqrt.eraseFromParent(); 2260 return true; 2261 } 2262 2263 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 2264 Impl.Mod = &M; 2265 Impl.DL = &Impl.Mod->getDataLayout(); 2266 Impl.SqrtF32 = nullptr; 2267 Impl.LdexpF32 = nullptr; 2268 return false; 2269 } 2270 2271 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 2272 if (skipFunction(F)) 2273 return false; 2274 2275 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 2276 if (!TPC) 2277 return false; 2278 2279 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 2280 Impl.TM = &TM; 2281 Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2282 Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); 2283 Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2284 Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 2285 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 2286 Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr; 2287 Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); 2288 SIModeRegisterDefaults Mode(F, *Impl.ST); 2289 Impl.HasFP32DenormalFlush = 2290 Mode.FP32Denormals == DenormalMode::getPreserveSign(); 2291 return Impl.run(F); 2292 } 2293 2294 PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F, 2295 FunctionAnalysisManager &FAM) { 2296 AMDGPUCodeGenPrepareImpl Impl; 2297 Impl.Mod = F.getParent(); 2298 Impl.DL = &Impl.Mod->getDataLayout(); 2299 Impl.TM = static_cast<const AMDGPUTargetMachine *>(&TM); 2300 Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F); 2301 Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); 2302 Impl.AC = &FAM.getResult<AssumptionAnalysis>(F); 2303 Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F); 2304 Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 2305 Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); 2306 SIModeRegisterDefaults Mode(F, *Impl.ST); 2307 Impl.HasFP32DenormalFlush = 2308 Mode.FP32Denormals == DenormalMode::getPreserveSign(); 2309 PreservedAnalyses PA = PreservedAnalyses::none(); 2310 if (!Impl.FlowChanged) 2311 PA.preserveSet<CFGAnalyses>(); 2312 return Impl.run(F) ? PA : PreservedAnalyses::all(); 2313 } 2314 2315 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 2316 "AMDGPU IR optimizations", false, false) 2317 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2318 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2319 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 2320 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 2321 false, false) 2322 2323 char AMDGPUCodeGenPrepare::ID = 0; 2324 2325 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 2326 return new AMDGPUCodeGenPrepare(); 2327 } 2328