xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp (revision 9dba64be9536c28e4800e06512b7f29b43ade345)
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass does misc. AMDGPU optimizations on IR before instruction
11 /// selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstVisitor.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include <cassert>
44 #include <iterator>
45 
46 #define DEBUG_TYPE "amdgpu-codegenprepare"
47 
48 using namespace llvm;
49 
50 namespace {
51 
52 static cl::opt<bool> WidenLoads(
53   "amdgpu-codegenprepare-widen-constant-loads",
54   cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
55   cl::ReallyHidden,
56   cl::init(true));
57 
58 static cl::opt<bool> UseMul24Intrin(
59   "amdgpu-codegenprepare-mul24",
60   cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
61   cl::ReallyHidden,
62   cl::init(true));
63 
64 class AMDGPUCodeGenPrepare : public FunctionPass,
65                              public InstVisitor<AMDGPUCodeGenPrepare, bool> {
66   const GCNSubtarget *ST = nullptr;
67   AssumptionCache *AC = nullptr;
68   LegacyDivergenceAnalysis *DA = nullptr;
69   Module *Mod = nullptr;
70   const DataLayout *DL = nullptr;
71   bool HasUnsafeFPMath = false;
72 
73   /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
74   /// binary operation \p V.
75   ///
76   /// \returns Binary operation \p V.
77   /// \returns \p T's base element bit width.
78   unsigned getBaseElementBitWidth(const Type *T) const;
79 
80   /// \returns Equivalent 32 bit integer type for given type \p T. For example,
81   /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
82   /// is returned.
83   Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
84 
85   /// \returns True if binary operation \p I is a signed binary operation, false
86   /// otherwise.
87   bool isSigned(const BinaryOperator &I) const;
88 
89   /// \returns True if the condition of 'select' operation \p I comes from a
90   /// signed 'icmp' operation, false otherwise.
91   bool isSigned(const SelectInst &I) const;
92 
93   /// \returns True if type \p T needs to be promoted to 32 bit integer type,
94   /// false otherwise.
95   bool needsPromotionToI32(const Type *T) const;
96 
97   /// Promotes uniform binary operation \p I to equivalent 32 bit binary
98   /// operation.
99   ///
100   /// \details \p I's base element bit width must be greater than 1 and less
101   /// than or equal 16. Promotion is done by sign or zero extending operands to
102   /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
103   /// truncating the result of 32 bit binary operation back to \p I's original
104   /// type. Division operation is not promoted.
105   ///
106   /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
107   /// false otherwise.
108   bool promoteUniformOpToI32(BinaryOperator &I) const;
109 
110   /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
111   ///
112   /// \details \p I's base element bit width must be greater than 1 and less
113   /// than or equal 16. Promotion is done by sign or zero extending operands to
114   /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
115   ///
116   /// \returns True.
117   bool promoteUniformOpToI32(ICmpInst &I) const;
118 
119   /// Promotes uniform 'select' operation \p I to 32 bit 'select'
120   /// operation.
121   ///
122   /// \details \p I's base element bit width must be greater than 1 and less
123   /// than or equal 16. Promotion is done by sign or zero extending operands to
124   /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
125   /// result of 32 bit 'select' operation back to \p I's original type.
126   ///
127   /// \returns True.
128   bool promoteUniformOpToI32(SelectInst &I) const;
129 
130   /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
131   /// intrinsic.
132   ///
133   /// \details \p I's base element bit width must be greater than 1 and less
134   /// than or equal 16. Promotion is done by zero extending the operand to 32
135   /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
136   /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
137   /// shift amount is 32 minus \p I's base element bit width), and truncating
138   /// the result of the shift operation back to \p I's original type.
139   ///
140   /// \returns True.
141   bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
142 
143 
144   unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
145   unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
146   bool isI24(Value *V, unsigned ScalarSize) const;
147   bool isU24(Value *V, unsigned ScalarSize) const;
148 
149   /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
150   /// SelectionDAG has an issue where an and asserting the bits are known
151   bool replaceMulWithMul24(BinaryOperator &I) const;
152 
153   /// Expands 24 bit div or rem.
154   Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
155                         Value *Num, Value *Den,
156                         bool IsDiv, bool IsSigned) const;
157 
158   /// Expands 32 bit div or rem.
159   Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
160                         Value *Num, Value *Den) const;
161 
162   /// Widen a scalar load.
163   ///
164   /// \details \p Widen scalar load for uniform, small type loads from constant
165   //  memory / to a full 32-bits and then truncate the input to allow a scalar
166   //  load instead of a vector load.
167   //
168   /// \returns True.
169 
170   bool canWidenScalarExtLoad(LoadInst &I) const;
171 
172 public:
173   static char ID;
174 
175   AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
176 
177   bool visitFDiv(BinaryOperator &I);
178 
179   bool visitInstruction(Instruction &I) { return false; }
180   bool visitBinaryOperator(BinaryOperator &I);
181   bool visitLoadInst(LoadInst &I);
182   bool visitICmpInst(ICmpInst &I);
183   bool visitSelectInst(SelectInst &I);
184 
185   bool visitIntrinsicInst(IntrinsicInst &I);
186   bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
187 
188   bool doInitialization(Module &M) override;
189   bool runOnFunction(Function &F) override;
190 
191   StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
192 
193   void getAnalysisUsage(AnalysisUsage &AU) const override {
194     AU.addRequired<AssumptionCacheTracker>();
195     AU.addRequired<LegacyDivergenceAnalysis>();
196     AU.setPreservesAll();
197  }
198 };
199 
200 } // end anonymous namespace
201 
202 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
203   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
204 
205   if (T->isIntegerTy())
206     return T->getIntegerBitWidth();
207   return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
208 }
209 
210 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
211   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
212 
213   if (T->isIntegerTy())
214     return B.getInt32Ty();
215   return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements());
216 }
217 
218 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
219   return I.getOpcode() == Instruction::AShr ||
220       I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
221 }
222 
223 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
224   return isa<ICmpInst>(I.getOperand(0)) ?
225       cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
226 }
227 
228 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
229   const IntegerType *IntTy = dyn_cast<IntegerType>(T);
230   if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
231     return true;
232 
233   if (const VectorType *VT = dyn_cast<VectorType>(T)) {
234     // TODO: The set of packed operations is more limited, so may want to
235     // promote some anyway.
236     if (ST->hasVOP3PInsts())
237       return false;
238 
239     return needsPromotionToI32(VT->getElementType());
240   }
241 
242   return false;
243 }
244 
245 // Return true if the op promoted to i32 should have nsw set.
246 static bool promotedOpIsNSW(const Instruction &I) {
247   switch (I.getOpcode()) {
248   case Instruction::Shl:
249   case Instruction::Add:
250   case Instruction::Sub:
251     return true;
252   case Instruction::Mul:
253     return I.hasNoUnsignedWrap();
254   default:
255     return false;
256   }
257 }
258 
259 // Return true if the op promoted to i32 should have nuw set.
260 static bool promotedOpIsNUW(const Instruction &I) {
261   switch (I.getOpcode()) {
262   case Instruction::Shl:
263   case Instruction::Add:
264   case Instruction::Mul:
265     return true;
266   case Instruction::Sub:
267     return I.hasNoUnsignedWrap();
268   default:
269     return false;
270   }
271 }
272 
273 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
274   Type *Ty = I.getType();
275   const DataLayout &DL = Mod->getDataLayout();
276   int TySize = DL.getTypeSizeInBits(Ty);
277   unsigned Align = I.getAlignment() ?
278                    I.getAlignment() : DL.getABITypeAlignment(Ty);
279 
280   return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I);
281 }
282 
283 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
284   assert(needsPromotionToI32(I.getType()) &&
285          "I does not need promotion to i32");
286 
287   if (I.getOpcode() == Instruction::SDiv ||
288       I.getOpcode() == Instruction::UDiv ||
289       I.getOpcode() == Instruction::SRem ||
290       I.getOpcode() == Instruction::URem)
291     return false;
292 
293   IRBuilder<> Builder(&I);
294   Builder.SetCurrentDebugLocation(I.getDebugLoc());
295 
296   Type *I32Ty = getI32Ty(Builder, I.getType());
297   Value *ExtOp0 = nullptr;
298   Value *ExtOp1 = nullptr;
299   Value *ExtRes = nullptr;
300   Value *TruncRes = nullptr;
301 
302   if (isSigned(I)) {
303     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
304     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
305   } else {
306     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
307     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
308   }
309 
310   ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
311   if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
312     if (promotedOpIsNSW(cast<Instruction>(I)))
313       Inst->setHasNoSignedWrap();
314 
315     if (promotedOpIsNUW(cast<Instruction>(I)))
316       Inst->setHasNoUnsignedWrap();
317 
318     if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
319       Inst->setIsExact(ExactOp->isExact());
320   }
321 
322   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
323 
324   I.replaceAllUsesWith(TruncRes);
325   I.eraseFromParent();
326 
327   return true;
328 }
329 
330 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
331   assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
332          "I does not need promotion to i32");
333 
334   IRBuilder<> Builder(&I);
335   Builder.SetCurrentDebugLocation(I.getDebugLoc());
336 
337   Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
338   Value *ExtOp0 = nullptr;
339   Value *ExtOp1 = nullptr;
340   Value *NewICmp  = nullptr;
341 
342   if (I.isSigned()) {
343     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
344     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
345   } else {
346     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
347     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
348   }
349   NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
350 
351   I.replaceAllUsesWith(NewICmp);
352   I.eraseFromParent();
353 
354   return true;
355 }
356 
357 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
358   assert(needsPromotionToI32(I.getType()) &&
359          "I does not need promotion to i32");
360 
361   IRBuilder<> Builder(&I);
362   Builder.SetCurrentDebugLocation(I.getDebugLoc());
363 
364   Type *I32Ty = getI32Ty(Builder, I.getType());
365   Value *ExtOp1 = nullptr;
366   Value *ExtOp2 = nullptr;
367   Value *ExtRes = nullptr;
368   Value *TruncRes = nullptr;
369 
370   if (isSigned(I)) {
371     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
372     ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
373   } else {
374     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
375     ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
376   }
377   ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
378   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
379 
380   I.replaceAllUsesWith(TruncRes);
381   I.eraseFromParent();
382 
383   return true;
384 }
385 
386 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
387     IntrinsicInst &I) const {
388   assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
389          "I must be bitreverse intrinsic");
390   assert(needsPromotionToI32(I.getType()) &&
391          "I does not need promotion to i32");
392 
393   IRBuilder<> Builder(&I);
394   Builder.SetCurrentDebugLocation(I.getDebugLoc());
395 
396   Type *I32Ty = getI32Ty(Builder, I.getType());
397   Function *I32 =
398       Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
399   Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
400   Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
401   Value *LShrOp =
402       Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
403   Value *TruncRes =
404       Builder.CreateTrunc(LShrOp, I.getType());
405 
406   I.replaceAllUsesWith(TruncRes);
407   I.eraseFromParent();
408 
409   return true;
410 }
411 
412 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
413                                                unsigned ScalarSize) const {
414   KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
415   return ScalarSize - Known.countMinLeadingZeros();
416 }
417 
418 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
419                                              unsigned ScalarSize) const {
420   // In order for this to be a signed 24-bit value, bit 23, must
421   // be a sign bit.
422   return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
423 }
424 
425 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const {
426   return ScalarSize >= 24 && // Types less than 24-bit should be treated
427                                      // as unsigned 24-bit values.
428     numBitsSigned(V, ScalarSize) < 24;
429 }
430 
431 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const {
432   return numBitsUnsigned(V, ScalarSize) <= 24;
433 }
434 
435 static void extractValues(IRBuilder<> &Builder,
436                           SmallVectorImpl<Value *> &Values, Value *V) {
437   VectorType *VT = dyn_cast<VectorType>(V->getType());
438   if (!VT) {
439     Values.push_back(V);
440     return;
441   }
442 
443   for (int I = 0, E = VT->getNumElements(); I != E; ++I)
444     Values.push_back(Builder.CreateExtractElement(V, I));
445 }
446 
447 static Value *insertValues(IRBuilder<> &Builder,
448                            Type *Ty,
449                            SmallVectorImpl<Value *> &Values) {
450   if (Values.size() == 1)
451     return Values[0];
452 
453   Value *NewVal = UndefValue::get(Ty);
454   for (int I = 0, E = Values.size(); I != E; ++I)
455     NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
456 
457   return NewVal;
458 }
459 
460 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
461   if (I.getOpcode() != Instruction::Mul)
462     return false;
463 
464   Type *Ty = I.getType();
465   unsigned Size = Ty->getScalarSizeInBits();
466   if (Size <= 16 && ST->has16BitInsts())
467     return false;
468 
469   // Prefer scalar if this could be s_mul_i32
470   if (DA->isUniform(&I))
471     return false;
472 
473   Value *LHS = I.getOperand(0);
474   Value *RHS = I.getOperand(1);
475   IRBuilder<> Builder(&I);
476   Builder.SetCurrentDebugLocation(I.getDebugLoc());
477 
478   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
479 
480   // TODO: Should this try to match mulhi24?
481   if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) {
482     IntrID = Intrinsic::amdgcn_mul_u24;
483   } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) {
484     IntrID = Intrinsic::amdgcn_mul_i24;
485   } else
486     return false;
487 
488   SmallVector<Value *, 4> LHSVals;
489   SmallVector<Value *, 4> RHSVals;
490   SmallVector<Value *, 4> ResultVals;
491   extractValues(Builder, LHSVals, LHS);
492   extractValues(Builder, RHSVals, RHS);
493 
494 
495   IntegerType *I32Ty = Builder.getInt32Ty();
496   FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
497   for (int I = 0, E = LHSVals.size(); I != E; ++I) {
498     Value *LHS, *RHS;
499     if (IntrID == Intrinsic::amdgcn_mul_u24) {
500       LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
501       RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
502     } else {
503       LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
504       RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
505     }
506 
507     Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});
508 
509     if (IntrID == Intrinsic::amdgcn_mul_u24) {
510       ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
511                                                      LHSVals[I]->getType()));
512     } else {
513       ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
514                                                      LHSVals[I]->getType()));
515     }
516   }
517 
518   Value *NewVal = insertValues(Builder, Ty, ResultVals);
519   NewVal->takeName(&I);
520   I.replaceAllUsesWith(NewVal);
521   I.eraseFromParent();
522 
523   return true;
524 }
525 
526 static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) {
527   const ConstantFP *CNum = dyn_cast<ConstantFP>(Num);
528   if (!CNum)
529     return HasDenormals;
530 
531   if (UnsafeDiv)
532     return true;
533 
534   bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0);
535 
536   // Reciprocal f32 is handled separately without denormals.
537   return HasDenormals ^ IsOne;
538 }
539 
540 // Insert an intrinsic for fast fdiv for safe math situations where we can
541 // reduce precision. Leave fdiv for situations where the generic node is
542 // expected to be optimized.
543 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
544   Type *Ty = FDiv.getType();
545 
546   if (!Ty->getScalarType()->isFloatTy())
547     return false;
548 
549   MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath);
550   if (!FPMath)
551     return false;
552 
553   const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
554   float ULP = FPOp->getFPAccuracy();
555   if (ULP < 2.5f)
556     return false;
557 
558   FastMathFlags FMF = FPOp->getFastMathFlags();
559   bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() ||
560                                       FMF.allowReciprocal();
561 
562   // With UnsafeDiv node will be optimized to just rcp and mul.
563   if (UnsafeDiv)
564     return false;
565 
566   IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath);
567   Builder.setFastMathFlags(FMF);
568   Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
569 
570   Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
571 
572   Value *Num = FDiv.getOperand(0);
573   Value *Den = FDiv.getOperand(1);
574 
575   Value *NewFDiv = nullptr;
576 
577   bool HasDenormals = ST->hasFP32Denormals();
578   if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
579     NewFDiv = UndefValue::get(VT);
580 
581     // FIXME: Doesn't do the right thing for cases where the vector is partially
582     // constant. This works when the scalarizer pass is run first.
583     for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
584       Value *NumEltI = Builder.CreateExtractElement(Num, I);
585       Value *DenEltI = Builder.CreateExtractElement(Den, I);
586       Value *NewElt;
587 
588       if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasDenormals)) {
589         NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
590       } else {
591         NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI });
592       }
593 
594       NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
595     }
596   } else {
597     if (!shouldKeepFDivF32(Num, UnsafeDiv, HasDenormals))
598       NewFDiv = Builder.CreateCall(Decl, { Num, Den });
599   }
600 
601   if (NewFDiv) {
602     FDiv.replaceAllUsesWith(NewFDiv);
603     NewFDiv->takeName(&FDiv);
604     FDiv.eraseFromParent();
605   }
606 
607   return !!NewFDiv;
608 }
609 
610 static bool hasUnsafeFPMath(const Function &F) {
611   Attribute Attr = F.getFnAttribute("unsafe-fp-math");
612   return Attr.getValueAsString() == "true";
613 }
614 
615 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
616                                           Value *LHS, Value *RHS) {
617   Type *I32Ty = Builder.getInt32Ty();
618   Type *I64Ty = Builder.getInt64Ty();
619 
620   Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
621   Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
622   Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
623   Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
624   Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
625   Hi = Builder.CreateTrunc(Hi, I32Ty);
626   return std::make_pair(Lo, Hi);
627 }
628 
629 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
630   return getMul64(Builder, LHS, RHS).second;
631 }
632 
633 // The fractional part of a float is enough to accurately represent up to
634 // a 24-bit signed integer.
635 Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
636                                             BinaryOperator &I,
637                                             Value *Num, Value *Den,
638                                             bool IsDiv, bool IsSigned) const {
639   assert(Num->getType()->isIntegerTy(32));
640 
641   const DataLayout &DL = Mod->getDataLayout();
642   unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
643   if (LHSSignBits < 9)
644     return nullptr;
645 
646   unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
647   if (RHSSignBits < 9)
648     return nullptr;
649 
650 
651   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
652   unsigned DivBits = 32 - SignBits;
653   if (IsSigned)
654     ++DivBits;
655 
656   Type *Ty = Num->getType();
657   Type *I32Ty = Builder.getInt32Ty();
658   Type *F32Ty = Builder.getFloatTy();
659   ConstantInt *One = Builder.getInt32(1);
660   Value *JQ = One;
661 
662   if (IsSigned) {
663     // char|short jq = ia ^ ib;
664     JQ = Builder.CreateXor(Num, Den);
665 
666     // jq = jq >> (bitsize - 2)
667     JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
668 
669     // jq = jq | 0x1
670     JQ = Builder.CreateOr(JQ, One);
671   }
672 
673   // int ia = (int)LHS;
674   Value *IA = Num;
675 
676   // int ib, (int)RHS;
677   Value *IB = Den;
678 
679   // float fa = (float)ia;
680   Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
681                        : Builder.CreateUIToFP(IA, F32Ty);
682 
683   // float fb = (float)ib;
684   Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
685                        : Builder.CreateUIToFP(IB,F32Ty);
686 
687   Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB);
688   Value *FQM = Builder.CreateFMul(FA, RCP);
689 
690   // fq = trunc(fqm);
691   CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
692   FQ->copyFastMathFlags(Builder.getFastMathFlags());
693 
694   // float fqneg = -fq;
695   Value *FQNeg = Builder.CreateFNeg(FQ);
696 
697   // float fr = mad(fqneg, fb, fa);
698   Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz,
699                                       {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
700 
701   // int iq = (int)fq;
702   Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
703                        : Builder.CreateFPToUI(FQ, I32Ty);
704 
705   // fr = fabs(fr);
706   FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
707 
708   // fb = fabs(fb);
709   FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
710 
711   // int cv = fr >= fb;
712   Value *CV = Builder.CreateFCmpOGE(FR, FB);
713 
714   // jq = (cv ? jq : 0);
715   JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
716 
717   // dst = iq + jq;
718   Value *Div = Builder.CreateAdd(IQ, JQ);
719 
720   Value *Res = Div;
721   if (!IsDiv) {
722     // Rem needs compensation, it's easier to recompute it
723     Value *Rem = Builder.CreateMul(Div, Den);
724     Res = Builder.CreateSub(Num, Rem);
725   }
726 
727   // Truncate to number of bits this divide really is.
728   if (IsSigned) {
729     Res = Builder.CreateTrunc(Res, Builder.getIntNTy(DivBits));
730     Res = Builder.CreateSExt(Res, Ty);
731   } else {
732     ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
733     Res = Builder.CreateAnd(Res, TruncMask);
734   }
735 
736   return Res;
737 }
738 
739 Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
740                                             BinaryOperator &I,
741                                             Value *Num, Value *Den) const {
742   Instruction::BinaryOps Opc = I.getOpcode();
743   assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
744          Opc == Instruction::SRem || Opc == Instruction::SDiv);
745 
746   FastMathFlags FMF;
747   FMF.setFast();
748   Builder.setFastMathFlags(FMF);
749 
750   if (isa<Constant>(Den))
751     return nullptr; // Keep it for optimization
752 
753   bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
754   bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
755 
756   Type *Ty = Num->getType();
757   Type *I32Ty = Builder.getInt32Ty();
758   Type *F32Ty = Builder.getFloatTy();
759 
760   if (Ty->getScalarSizeInBits() < 32) {
761     if (IsSigned) {
762       Num = Builder.CreateSExt(Num, I32Ty);
763       Den = Builder.CreateSExt(Den, I32Ty);
764     } else {
765       Num = Builder.CreateZExt(Num, I32Ty);
766       Den = Builder.CreateZExt(Den, I32Ty);
767     }
768   }
769 
770   if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) {
771     Res = Builder.CreateTrunc(Res, Ty);
772     return Res;
773   }
774 
775   ConstantInt *Zero = Builder.getInt32(0);
776   ConstantInt *One = Builder.getInt32(1);
777   ConstantInt *MinusOne = Builder.getInt32(~0);
778 
779   Value *Sign = nullptr;
780   if (IsSigned) {
781     ConstantInt *K31 = Builder.getInt32(31);
782     Value *LHSign = Builder.CreateAShr(Num, K31);
783     Value *RHSign = Builder.CreateAShr(Den, K31);
784     // Remainder sign is the same as LHS
785     Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign;
786 
787     Num = Builder.CreateAdd(Num, LHSign);
788     Den = Builder.CreateAdd(Den, RHSign);
789 
790     Num = Builder.CreateXor(Num, LHSign);
791     Den = Builder.CreateXor(Den, RHSign);
792   }
793 
794   // RCP =  URECIP(Den) = 2^32 / Den + e
795   // e is rounding error.
796   Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty);
797   Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32);
798   Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000));
799   Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1);
800   Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty);
801 
802   // RCP_LO, RCP_HI = mul(RCP, Den) */
803   Value *RCP_LO, *RCP_HI;
804   std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den);
805 
806   // NEG_RCP_LO = -RCP_LO
807   Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO);
808 
809   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
810   Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero);
811   Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO);
812 
813   // Calculate the rounding error from the URECIP instruction
814   // E = mulhu(ABS_RCP_LO, RCP)
815   Value *E = getMulHu(Builder, ABS_RCP_LO, RCP);
816 
817   // RCP_A_E = RCP + E
818   Value *RCP_A_E = Builder.CreateAdd(RCP, E);
819 
820   // RCP_S_E = RCP - E
821   Value *RCP_S_E = Builder.CreateSub(RCP, E);
822 
823   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
824   Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E);
825 
826   // Quotient = mulhu(Tmp0, Num)
827   Value *Quotient = getMulHu(Builder, Tmp0, Num);
828 
829   // Num_S_Remainder = Quotient * Den
830   Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den);
831 
832   // Remainder = Num - Num_S_Remainder
833   Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder);
834 
835   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
836   Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den);
837   Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero);
838 
839   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
840   Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder);
841   Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC,
842                                                   MinusOne, Zero);
843 
844   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
845   Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero);
846   Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero);
847 
848   Value *Res;
849   if (IsDiv) {
850     // Quotient_A_One = Quotient + 1
851     Value *Quotient_A_One = Builder.CreateAdd(Quotient, One);
852 
853     // Quotient_S_One = Quotient - 1
854     Value *Quotient_S_One = Builder.CreateSub(Quotient, One);
855 
856     // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
857     Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One);
858 
859     // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
860     Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One);
861   } else {
862     // Remainder_S_Den = Remainder - Den
863     Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den);
864 
865     // Remainder_A_Den = Remainder + Den
866     Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den);
867 
868     // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
869     Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den);
870 
871     // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
872     Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den);
873   }
874 
875   if (IsSigned) {
876     Res = Builder.CreateXor(Res, Sign);
877     Res = Builder.CreateSub(Res, Sign);
878   }
879 
880   Res = Builder.CreateTrunc(Res, Ty);
881 
882   return Res;
883 }
884 
885 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
886   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
887       DA->isUniform(&I) && promoteUniformOpToI32(I))
888     return true;
889 
890   if (UseMul24Intrin && replaceMulWithMul24(I))
891     return true;
892 
893   bool Changed = false;
894   Instruction::BinaryOps Opc = I.getOpcode();
895   Type *Ty = I.getType();
896   Value *NewDiv = nullptr;
897   if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
898        Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
899       Ty->getScalarSizeInBits() <= 32) {
900     Value *Num = I.getOperand(0);
901     Value *Den = I.getOperand(1);
902     IRBuilder<> Builder(&I);
903     Builder.SetCurrentDebugLocation(I.getDebugLoc());
904 
905     if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
906       NewDiv = UndefValue::get(VT);
907 
908       for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
909         Value *NumEltN = Builder.CreateExtractElement(Num, N);
910         Value *DenEltN = Builder.CreateExtractElement(Den, N);
911         Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
912         if (!NewElt)
913           NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
914         NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
915       }
916     } else {
917       NewDiv = expandDivRem32(Builder, I, Num, Den);
918     }
919 
920     if (NewDiv) {
921       I.replaceAllUsesWith(NewDiv);
922       I.eraseFromParent();
923       Changed = true;
924     }
925   }
926 
927   return Changed;
928 }
929 
930 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
931   if (!WidenLoads)
932     return false;
933 
934   if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
935        I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
936       canWidenScalarExtLoad(I)) {
937     IRBuilder<> Builder(&I);
938     Builder.SetCurrentDebugLocation(I.getDebugLoc());
939 
940     Type *I32Ty = Builder.getInt32Ty();
941     Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
942     Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
943     LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
944     WidenLoad->copyMetadata(I);
945 
946     // If we have range metadata, we need to convert the type, and not make
947     // assumptions about the high bits.
948     if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
949       ConstantInt *Lower =
950         mdconst::extract<ConstantInt>(Range->getOperand(0));
951 
952       if (Lower->getValue().isNullValue()) {
953         WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
954       } else {
955         Metadata *LowAndHigh[] = {
956           ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
957           // Don't make assumptions about the high bits.
958           ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
959         };
960 
961         WidenLoad->setMetadata(LLVMContext::MD_range,
962                                MDNode::get(Mod->getContext(), LowAndHigh));
963       }
964     }
965 
966     int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
967     Type *IntNTy = Builder.getIntNTy(TySize);
968     Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
969     Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
970     I.replaceAllUsesWith(ValOrig);
971     I.eraseFromParent();
972     return true;
973   }
974 
975   return false;
976 }
977 
978 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
979   bool Changed = false;
980 
981   if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
982       DA->isUniform(&I))
983     Changed |= promoteUniformOpToI32(I);
984 
985   return Changed;
986 }
987 
988 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
989   bool Changed = false;
990 
991   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
992       DA->isUniform(&I))
993     Changed |= promoteUniformOpToI32(I);
994 
995   return Changed;
996 }
997 
998 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
999   switch (I.getIntrinsicID()) {
1000   case Intrinsic::bitreverse:
1001     return visitBitreverseIntrinsicInst(I);
1002   default:
1003     return false;
1004   }
1005 }
1006 
1007 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
1008   bool Changed = false;
1009 
1010   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1011       DA->isUniform(&I))
1012     Changed |= promoteUniformBitreverseToI32(I);
1013 
1014   return Changed;
1015 }
1016 
1017 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
1018   Mod = &M;
1019   DL = &Mod->getDataLayout();
1020   return false;
1021 }
1022 
1023 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
1024   if (skipFunction(F))
1025     return false;
1026 
1027   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1028   if (!TPC)
1029     return false;
1030 
1031   const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
1032   ST = &TM.getSubtarget<GCNSubtarget>(F);
1033   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1034   DA = &getAnalysis<LegacyDivergenceAnalysis>();
1035   HasUnsafeFPMath = hasUnsafeFPMath(F);
1036 
1037   bool MadeChange = false;
1038 
1039   for (BasicBlock &BB : F) {
1040     BasicBlock::iterator Next;
1041     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) {
1042       Next = std::next(I);
1043       MadeChange |= visit(*I);
1044     }
1045   }
1046 
1047   return MadeChange;
1048 }
1049 
1050 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
1051                       "AMDGPU IR optimizations", false, false)
1052 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1053 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
1054 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
1055                     false, false)
1056 
1057 char AMDGPUCodeGenPrepare::ID = 0;
1058 
1059 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
1060   return new AMDGPUCodeGenPrepare();
1061 }
1062