xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp (revision 90b5fc95832da64a5f56295e687379732c33718f)
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass does misc. AMDGPU optimizations on IR before instruction
11 /// selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "llvm/ADT/FloatingPointMode.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InstVisitor.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Transforms/Utils/IntegerDivision.h"
48 #include <cassert>
49 #include <iterator>
50 
51 #define DEBUG_TYPE "amdgpu-codegenprepare"
52 
53 using namespace llvm;
54 
55 namespace {
56 
57 static cl::opt<bool> WidenLoads(
58   "amdgpu-codegenprepare-widen-constant-loads",
59   cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
60   cl::ReallyHidden,
61   cl::init(false));
62 
63 static cl::opt<bool> UseMul24Intrin(
64   "amdgpu-codegenprepare-mul24",
65   cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
66   cl::ReallyHidden,
67   cl::init(true));
68 
69 // Legalize 64-bit division by using the generic IR expansion.
70 static cl::opt<bool> ExpandDiv64InIR(
71   "amdgpu-codegenprepare-expand-div64",
72   cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
73   cl::ReallyHidden,
74   cl::init(false));
75 
76 // Leave all division operations as they are. This supersedes ExpandDiv64InIR
77 // and is used for testing the legalizer.
78 static cl::opt<bool> DisableIDivExpand(
79   "amdgpu-codegenprepare-disable-idiv-expansion",
80   cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
81   cl::ReallyHidden,
82   cl::init(false));
83 
84 class AMDGPUCodeGenPrepare : public FunctionPass,
85                              public InstVisitor<AMDGPUCodeGenPrepare, bool> {
86   const GCNSubtarget *ST = nullptr;
87   AssumptionCache *AC = nullptr;
88   DominatorTree *DT = nullptr;
89   LegacyDivergenceAnalysis *DA = nullptr;
90   Module *Mod = nullptr;
91   const DataLayout *DL = nullptr;
92   bool HasUnsafeFPMath = false;
93   bool HasFP32Denormals = false;
94 
95   /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
96   /// binary operation \p V.
97   ///
98   /// \returns Binary operation \p V.
99   /// \returns \p T's base element bit width.
100   unsigned getBaseElementBitWidth(const Type *T) const;
101 
102   /// \returns Equivalent 32 bit integer type for given type \p T. For example,
103   /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
104   /// is returned.
105   Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
106 
107   /// \returns True if binary operation \p I is a signed binary operation, false
108   /// otherwise.
109   bool isSigned(const BinaryOperator &I) const;
110 
111   /// \returns True if the condition of 'select' operation \p I comes from a
112   /// signed 'icmp' operation, false otherwise.
113   bool isSigned(const SelectInst &I) const;
114 
115   /// \returns True if type \p T needs to be promoted to 32 bit integer type,
116   /// false otherwise.
117   bool needsPromotionToI32(const Type *T) const;
118 
119   /// Promotes uniform binary operation \p I to equivalent 32 bit binary
120   /// operation.
121   ///
122   /// \details \p I's base element bit width must be greater than 1 and less
123   /// than or equal 16. Promotion is done by sign or zero extending operands to
124   /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
125   /// truncating the result of 32 bit binary operation back to \p I's original
126   /// type. Division operation is not promoted.
127   ///
128   /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
129   /// false otherwise.
130   bool promoteUniformOpToI32(BinaryOperator &I) const;
131 
132   /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
133   ///
134   /// \details \p I's base element bit width must be greater than 1 and less
135   /// than or equal 16. Promotion is done by sign or zero extending operands to
136   /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
137   ///
138   /// \returns True.
139   bool promoteUniformOpToI32(ICmpInst &I) const;
140 
141   /// Promotes uniform 'select' operation \p I to 32 bit 'select'
142   /// operation.
143   ///
144   /// \details \p I's base element bit width must be greater than 1 and less
145   /// than or equal 16. Promotion is done by sign or zero extending operands to
146   /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
147   /// result of 32 bit 'select' operation back to \p I's original type.
148   ///
149   /// \returns True.
150   bool promoteUniformOpToI32(SelectInst &I) const;
151 
152   /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
153   /// intrinsic.
154   ///
155   /// \details \p I's base element bit width must be greater than 1 and less
156   /// than or equal 16. Promotion is done by zero extending the operand to 32
157   /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
158   /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
159   /// shift amount is 32 minus \p I's base element bit width), and truncating
160   /// the result of the shift operation back to \p I's original type.
161   ///
162   /// \returns True.
163   bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
164 
165 
166   unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
167   unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
168   bool isI24(Value *V, unsigned ScalarSize) const;
169   bool isU24(Value *V, unsigned ScalarSize) const;
170 
171   /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
172   /// SelectionDAG has an issue where an and asserting the bits are known
173   bool replaceMulWithMul24(BinaryOperator &I) const;
174 
175   /// Perform same function as equivalently named function in DAGCombiner. Since
176   /// we expand some divisions here, we need to perform this before obscuring.
177   bool foldBinOpIntoSelect(BinaryOperator &I) const;
178 
179   bool divHasSpecialOptimization(BinaryOperator &I,
180                                  Value *Num, Value *Den) const;
181   int getDivNumBits(BinaryOperator &I,
182                     Value *Num, Value *Den,
183                     unsigned AtLeast, bool Signed) const;
184 
185   /// Expands 24 bit div or rem.
186   Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
187                         Value *Num, Value *Den,
188                         bool IsDiv, bool IsSigned) const;
189 
190   Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
191                             Value *Num, Value *Den, unsigned NumBits,
192                             bool IsDiv, bool IsSigned) const;
193 
194   /// Expands 32 bit div or rem.
195   Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
196                         Value *Num, Value *Den) const;
197 
198   Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
199                         Value *Num, Value *Den) const;
200   void expandDivRem64(BinaryOperator &I) const;
201 
202   /// Widen a scalar load.
203   ///
204   /// \details \p Widen scalar load for uniform, small type loads from constant
205   //  memory / to a full 32-bits and then truncate the input to allow a scalar
206   //  load instead of a vector load.
207   //
208   /// \returns True.
209 
210   bool canWidenScalarExtLoad(LoadInst &I) const;
211 
212 public:
213   static char ID;
214 
215   AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
216 
217   bool visitFDiv(BinaryOperator &I);
218 
219   bool visitInstruction(Instruction &I) { return false; }
220   bool visitBinaryOperator(BinaryOperator &I);
221   bool visitLoadInst(LoadInst &I);
222   bool visitICmpInst(ICmpInst &I);
223   bool visitSelectInst(SelectInst &I);
224 
225   bool visitIntrinsicInst(IntrinsicInst &I);
226   bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
227 
228   bool doInitialization(Module &M) override;
229   bool runOnFunction(Function &F) override;
230 
231   StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
232 
233   void getAnalysisUsage(AnalysisUsage &AU) const override {
234     AU.addRequired<AssumptionCacheTracker>();
235     AU.addRequired<LegacyDivergenceAnalysis>();
236 
237     // FIXME: Division expansion needs to preserve the dominator tree.
238     if (!ExpandDiv64InIR)
239       AU.setPreservesAll();
240  }
241 };
242 
243 } // end anonymous namespace
244 
245 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
246   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
247 
248   if (T->isIntegerTy())
249     return T->getIntegerBitWidth();
250   return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
251 }
252 
253 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
254   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
255 
256   if (T->isIntegerTy())
257     return B.getInt32Ty();
258   return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
259 }
260 
261 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
262   return I.getOpcode() == Instruction::AShr ||
263       I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
264 }
265 
266 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
267   return isa<ICmpInst>(I.getOperand(0)) ?
268       cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
269 }
270 
271 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
272   const IntegerType *IntTy = dyn_cast<IntegerType>(T);
273   if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
274     return true;
275 
276   if (const VectorType *VT = dyn_cast<VectorType>(T)) {
277     // TODO: The set of packed operations is more limited, so may want to
278     // promote some anyway.
279     if (ST->hasVOP3PInsts())
280       return false;
281 
282     return needsPromotionToI32(VT->getElementType());
283   }
284 
285   return false;
286 }
287 
288 // Return true if the op promoted to i32 should have nsw set.
289 static bool promotedOpIsNSW(const Instruction &I) {
290   switch (I.getOpcode()) {
291   case Instruction::Shl:
292   case Instruction::Add:
293   case Instruction::Sub:
294     return true;
295   case Instruction::Mul:
296     return I.hasNoUnsignedWrap();
297   default:
298     return false;
299   }
300 }
301 
302 // Return true if the op promoted to i32 should have nuw set.
303 static bool promotedOpIsNUW(const Instruction &I) {
304   switch (I.getOpcode()) {
305   case Instruction::Shl:
306   case Instruction::Add:
307   case Instruction::Mul:
308     return true;
309   case Instruction::Sub:
310     return I.hasNoUnsignedWrap();
311   default:
312     return false;
313   }
314 }
315 
316 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
317   Type *Ty = I.getType();
318   const DataLayout &DL = Mod->getDataLayout();
319   int TySize = DL.getTypeSizeInBits(Ty);
320   Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
321 
322   return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I);
323 }
324 
325 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
326   assert(needsPromotionToI32(I.getType()) &&
327          "I does not need promotion to i32");
328 
329   if (I.getOpcode() == Instruction::SDiv ||
330       I.getOpcode() == Instruction::UDiv ||
331       I.getOpcode() == Instruction::SRem ||
332       I.getOpcode() == Instruction::URem)
333     return false;
334 
335   IRBuilder<> Builder(&I);
336   Builder.SetCurrentDebugLocation(I.getDebugLoc());
337 
338   Type *I32Ty = getI32Ty(Builder, I.getType());
339   Value *ExtOp0 = nullptr;
340   Value *ExtOp1 = nullptr;
341   Value *ExtRes = nullptr;
342   Value *TruncRes = nullptr;
343 
344   if (isSigned(I)) {
345     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
346     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
347   } else {
348     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
349     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
350   }
351 
352   ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
353   if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
354     if (promotedOpIsNSW(cast<Instruction>(I)))
355       Inst->setHasNoSignedWrap();
356 
357     if (promotedOpIsNUW(cast<Instruction>(I)))
358       Inst->setHasNoUnsignedWrap();
359 
360     if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
361       Inst->setIsExact(ExactOp->isExact());
362   }
363 
364   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
365 
366   I.replaceAllUsesWith(TruncRes);
367   I.eraseFromParent();
368 
369   return true;
370 }
371 
372 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
373   assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
374          "I does not need promotion to i32");
375 
376   IRBuilder<> Builder(&I);
377   Builder.SetCurrentDebugLocation(I.getDebugLoc());
378 
379   Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
380   Value *ExtOp0 = nullptr;
381   Value *ExtOp1 = nullptr;
382   Value *NewICmp  = nullptr;
383 
384   if (I.isSigned()) {
385     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
386     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
387   } else {
388     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
389     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
390   }
391   NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
392 
393   I.replaceAllUsesWith(NewICmp);
394   I.eraseFromParent();
395 
396   return true;
397 }
398 
399 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
400   assert(needsPromotionToI32(I.getType()) &&
401          "I does not need promotion to i32");
402 
403   IRBuilder<> Builder(&I);
404   Builder.SetCurrentDebugLocation(I.getDebugLoc());
405 
406   Type *I32Ty = getI32Ty(Builder, I.getType());
407   Value *ExtOp1 = nullptr;
408   Value *ExtOp2 = nullptr;
409   Value *ExtRes = nullptr;
410   Value *TruncRes = nullptr;
411 
412   if (isSigned(I)) {
413     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
414     ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
415   } else {
416     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
417     ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
418   }
419   ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
420   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
421 
422   I.replaceAllUsesWith(TruncRes);
423   I.eraseFromParent();
424 
425   return true;
426 }
427 
428 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
429     IntrinsicInst &I) const {
430   assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
431          "I must be bitreverse intrinsic");
432   assert(needsPromotionToI32(I.getType()) &&
433          "I does not need promotion to i32");
434 
435   IRBuilder<> Builder(&I);
436   Builder.SetCurrentDebugLocation(I.getDebugLoc());
437 
438   Type *I32Ty = getI32Ty(Builder, I.getType());
439   Function *I32 =
440       Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
441   Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
442   Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
443   Value *LShrOp =
444       Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
445   Value *TruncRes =
446       Builder.CreateTrunc(LShrOp, I.getType());
447 
448   I.replaceAllUsesWith(TruncRes);
449   I.eraseFromParent();
450 
451   return true;
452 }
453 
454 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
455                                                unsigned ScalarSize) const {
456   KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
457   return ScalarSize - Known.countMinLeadingZeros();
458 }
459 
460 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
461                                              unsigned ScalarSize) const {
462   // In order for this to be a signed 24-bit value, bit 23, must
463   // be a sign bit.
464   return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
465 }
466 
467 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const {
468   return ScalarSize >= 24 && // Types less than 24-bit should be treated
469                                      // as unsigned 24-bit values.
470     numBitsSigned(V, ScalarSize) < 24;
471 }
472 
473 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const {
474   return numBitsUnsigned(V, ScalarSize) <= 24;
475 }
476 
477 static void extractValues(IRBuilder<> &Builder,
478                           SmallVectorImpl<Value *> &Values, Value *V) {
479   auto *VT = dyn_cast<FixedVectorType>(V->getType());
480   if (!VT) {
481     Values.push_back(V);
482     return;
483   }
484 
485   for (int I = 0, E = VT->getNumElements(); I != E; ++I)
486     Values.push_back(Builder.CreateExtractElement(V, I));
487 }
488 
489 static Value *insertValues(IRBuilder<> &Builder,
490                            Type *Ty,
491                            SmallVectorImpl<Value *> &Values) {
492   if (Values.size() == 1)
493     return Values[0];
494 
495   Value *NewVal = UndefValue::get(Ty);
496   for (int I = 0, E = Values.size(); I != E; ++I)
497     NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
498 
499   return NewVal;
500 }
501 
502 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
503   if (I.getOpcode() != Instruction::Mul)
504     return false;
505 
506   Type *Ty = I.getType();
507   unsigned Size = Ty->getScalarSizeInBits();
508   if (Size <= 16 && ST->has16BitInsts())
509     return false;
510 
511   // Prefer scalar if this could be s_mul_i32
512   if (DA->isUniform(&I))
513     return false;
514 
515   Value *LHS = I.getOperand(0);
516   Value *RHS = I.getOperand(1);
517   IRBuilder<> Builder(&I);
518   Builder.SetCurrentDebugLocation(I.getDebugLoc());
519 
520   Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
521 
522   // TODO: Should this try to match mulhi24?
523   if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) {
524     IntrID = Intrinsic::amdgcn_mul_u24;
525   } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) {
526     IntrID = Intrinsic::amdgcn_mul_i24;
527   } else
528     return false;
529 
530   SmallVector<Value *, 4> LHSVals;
531   SmallVector<Value *, 4> RHSVals;
532   SmallVector<Value *, 4> ResultVals;
533   extractValues(Builder, LHSVals, LHS);
534   extractValues(Builder, RHSVals, RHS);
535 
536 
537   IntegerType *I32Ty = Builder.getInt32Ty();
538   FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
539   for (int I = 0, E = LHSVals.size(); I != E; ++I) {
540     Value *LHS, *RHS;
541     if (IntrID == Intrinsic::amdgcn_mul_u24) {
542       LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
543       RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
544     } else {
545       LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
546       RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
547     }
548 
549     Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});
550 
551     if (IntrID == Intrinsic::amdgcn_mul_u24) {
552       ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
553                                                      LHSVals[I]->getType()));
554     } else {
555       ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
556                                                      LHSVals[I]->getType()));
557     }
558   }
559 
560   Value *NewVal = insertValues(Builder, Ty, ResultVals);
561   NewVal->takeName(&I);
562   I.replaceAllUsesWith(NewVal);
563   I.eraseFromParent();
564 
565   return true;
566 }
567 
568 // Find a select instruction, which may have been casted. This is mostly to deal
569 // with cases where i16 selects were promoted here to i32.
570 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
571   Cast = nullptr;
572   if (SelectInst *Sel = dyn_cast<SelectInst>(V))
573     return Sel;
574 
575   if ((Cast = dyn_cast<CastInst>(V))) {
576     if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
577       return Sel;
578   }
579 
580   return nullptr;
581 }
582 
583 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const {
584   // Don't do this unless the old select is going away. We want to eliminate the
585   // binary operator, not replace a binop with a select.
586   int SelOpNo = 0;
587 
588   CastInst *CastOp;
589 
590   // TODO: Should probably try to handle some cases with multiple
591   // users. Duplicating the select may be profitable for division.
592   SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
593   if (!Sel || !Sel->hasOneUse()) {
594     SelOpNo = 1;
595     Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
596   }
597 
598   if (!Sel || !Sel->hasOneUse())
599     return false;
600 
601   Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
602   Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
603   Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
604   if (!CBO || !CT || !CF)
605     return false;
606 
607   if (CastOp) {
608     if (!CastOp->hasOneUse())
609       return false;
610     CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
611     CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
612   }
613 
614   // TODO: Handle special 0/-1 cases DAG combine does, although we only really
615   // need to handle divisions here.
616   Constant *FoldedT = SelOpNo ?
617     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
618     ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
619   if (isa<ConstantExpr>(FoldedT))
620     return false;
621 
622   Constant *FoldedF = SelOpNo ?
623     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
624     ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
625   if (isa<ConstantExpr>(FoldedF))
626     return false;
627 
628   IRBuilder<> Builder(&BO);
629   Builder.SetCurrentDebugLocation(BO.getDebugLoc());
630   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
631     Builder.setFastMathFlags(FPOp->getFastMathFlags());
632 
633   Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
634                                           FoldedT, FoldedF);
635   NewSelect->takeName(&BO);
636   BO.replaceAllUsesWith(NewSelect);
637   BO.eraseFromParent();
638   if (CastOp)
639     CastOp->eraseFromParent();
640   Sel->eraseFromParent();
641   return true;
642 }
643 
644 // Optimize fdiv with rcp:
645 //
646 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
647 //               allowed with unsafe-fp-math or afn.
648 //
649 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
650 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp,
651                               bool RcpIsAccurate, IRBuilder<> &Builder,
652                               Module *Mod) {
653 
654   if (!AllowInaccurateRcp && !RcpIsAccurate)
655     return nullptr;
656 
657   Type *Ty = Den->getType();
658   if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
659     if (AllowInaccurateRcp || RcpIsAccurate) {
660       if (CLHS->isExactlyValue(1.0)) {
661         Function *Decl = Intrinsic::getDeclaration(
662           Mod, Intrinsic::amdgcn_rcp, Ty);
663 
664         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
665         // the CI documentation has a worst case error of 1 ulp.
666         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
667         // use it as long as we aren't trying to use denormals.
668         //
669         // v_rcp_f16 and v_rsq_f16 DO support denormals.
670 
671         // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
672         //       insert rsq intrinsic here.
673 
674         // 1.0 / x -> rcp(x)
675         return Builder.CreateCall(Decl, { Den });
676       }
677 
678        // Same as for 1.0, but expand the sign out of the constant.
679       if (CLHS->isExactlyValue(-1.0)) {
680         Function *Decl = Intrinsic::getDeclaration(
681           Mod, Intrinsic::amdgcn_rcp, Ty);
682 
683          // -1.0 / x -> rcp (fneg x)
684          Value *FNeg = Builder.CreateFNeg(Den);
685          return Builder.CreateCall(Decl, { FNeg });
686        }
687     }
688   }
689 
690   if (AllowInaccurateRcp) {
691     Function *Decl = Intrinsic::getDeclaration(
692       Mod, Intrinsic::amdgcn_rcp, Ty);
693 
694     // Turn into multiply by the reciprocal.
695     // x / y -> x * (1.0 / y)
696     Value *Recip = Builder.CreateCall(Decl, { Den });
697     return Builder.CreateFMul(Num, Recip);
698   }
699   return nullptr;
700 }
701 
702 // optimize with fdiv.fast:
703 //
704 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
705 //
706 // 1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
707 //
708 // NOTE: optimizeWithRcp should be tried first because rcp is the preference.
709 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy,
710                                    bool HasDenormals, IRBuilder<> &Builder,
711                                    Module *Mod) {
712   // fdiv.fast can achieve 2.5 ULP accuracy.
713   if (ReqdAccuracy < 2.5f)
714     return nullptr;
715 
716   // Only have fdiv.fast for f32.
717   Type *Ty = Den->getType();
718   if (!Ty->isFloatTy())
719     return nullptr;
720 
721   bool NumIsOne = false;
722   if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
723     if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
724       NumIsOne = true;
725   }
726 
727   // fdiv does not support denormals. But 1.0/x is always fine to use it.
728   if (HasDenormals && !NumIsOne)
729     return nullptr;
730 
731   Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
732   return Builder.CreateCall(Decl, { Num, Den });
733 }
734 
735 // Optimizations is performed based on fpmath, fast math flags as well as
736 // denormals to optimize fdiv with either rcp or fdiv.fast.
737 //
738 // With rcp:
739 //   1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
740 //                 allowed with unsafe-fp-math or afn.
741 //
742 //   a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
743 //
744 // With fdiv.fast:
745 //   a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
746 //
747 //   1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
748 //
749 // NOTE: rcp is the preference in cases that both are legal.
750 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
751 
752   Type *Ty = FDiv.getType()->getScalarType();
753 
754   // No intrinsic for fdiv16 if target does not support f16.
755   if (Ty->isHalfTy() && !ST->has16BitInsts())
756     return false;
757 
758   const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
759   const float ReqdAccuracy =  FPOp->getFPAccuracy();
760 
761   // Inaccurate rcp is allowed with unsafe-fp-math or afn.
762   FastMathFlags FMF = FPOp->getFastMathFlags();
763   const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc();
764 
765   // rcp_f16 is accurate for !fpmath >= 1.0ulp.
766   // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
767   // rcp_f64 is never accurate.
768   const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) ||
769             (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f);
770 
771   IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
772   Builder.setFastMathFlags(FMF);
773   Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
774 
775   Value *Num = FDiv.getOperand(0);
776   Value *Den = FDiv.getOperand(1);
777 
778   Value *NewFDiv = nullptr;
779   if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) {
780     NewFDiv = UndefValue::get(VT);
781 
782     // FIXME: Doesn't do the right thing for cases where the vector is partially
783     // constant. This works when the scalarizer pass is run first.
784     for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
785       Value *NumEltI = Builder.CreateExtractElement(Num, I);
786       Value *DenEltI = Builder.CreateExtractElement(Den, I);
787       // Try rcp first.
788       Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp,
789                                       RcpIsAccurate, Builder, Mod);
790       if (!NewElt) // Try fdiv.fast.
791         NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy,
792                                       HasFP32Denormals, Builder, Mod);
793       if (!NewElt) // Keep the original.
794         NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
795 
796       NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
797     }
798   } else { // Scalar FDiv.
799     // Try rcp first.
800     NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate,
801                               Builder, Mod);
802     if (!NewFDiv) { // Try fdiv.fast.
803       NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals,
804                                      Builder, Mod);
805     }
806   }
807 
808   if (NewFDiv) {
809     FDiv.replaceAllUsesWith(NewFDiv);
810     NewFDiv->takeName(&FDiv);
811     FDiv.eraseFromParent();
812   }
813 
814   return !!NewFDiv;
815 }
816 
817 static bool hasUnsafeFPMath(const Function &F) {
818   Attribute Attr = F.getFnAttribute("unsafe-fp-math");
819   return Attr.getValueAsString() == "true";
820 }
821 
822 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
823                                           Value *LHS, Value *RHS) {
824   Type *I32Ty = Builder.getInt32Ty();
825   Type *I64Ty = Builder.getInt64Ty();
826 
827   Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
828   Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
829   Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
830   Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
831   Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
832   Hi = Builder.CreateTrunc(Hi, I32Ty);
833   return std::make_pair(Lo, Hi);
834 }
835 
836 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
837   return getMul64(Builder, LHS, RHS).second;
838 }
839 
840 /// Figure out how many bits are really needed for this ddivision. \p AtLeast is
841 /// an optimization hint to bypass the second ComputeNumSignBits call if we the
842 /// first one is insufficient. Returns -1 on failure.
843 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I,
844                                         Value *Num, Value *Den,
845                                         unsigned AtLeast, bool IsSigned) const {
846   const DataLayout &DL = Mod->getDataLayout();
847   unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
848   if (LHSSignBits < AtLeast)
849     return -1;
850 
851   unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
852   if (RHSSignBits < AtLeast)
853     return -1;
854 
855   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
856   unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
857   if (IsSigned)
858     ++DivBits;
859   return DivBits;
860 }
861 
862 // The fractional part of a float is enough to accurately represent up to
863 // a 24-bit signed integer.
864 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
865                                             BinaryOperator &I,
866                                             Value *Num, Value *Den,
867                                             bool IsDiv, bool IsSigned) const {
868   int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
869   if (DivBits == -1)
870     return nullptr;
871   return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
872 }
873 
874 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder,
875                                                 BinaryOperator &I,
876                                                 Value *Num, Value *Den,
877                                                 unsigned DivBits,
878                                                 bool IsDiv, bool IsSigned) const {
879   Type *I32Ty = Builder.getInt32Ty();
880   Num = Builder.CreateTrunc(Num, I32Ty);
881   Den = Builder.CreateTrunc(Den, I32Ty);
882 
883   Type *F32Ty = Builder.getFloatTy();
884   ConstantInt *One = Builder.getInt32(1);
885   Value *JQ = One;
886 
887   if (IsSigned) {
888     // char|short jq = ia ^ ib;
889     JQ = Builder.CreateXor(Num, Den);
890 
891     // jq = jq >> (bitsize - 2)
892     JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
893 
894     // jq = jq | 0x1
895     JQ = Builder.CreateOr(JQ, One);
896   }
897 
898   // int ia = (int)LHS;
899   Value *IA = Num;
900 
901   // int ib, (int)RHS;
902   Value *IB = Den;
903 
904   // float fa = (float)ia;
905   Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
906                        : Builder.CreateUIToFP(IA, F32Ty);
907 
908   // float fb = (float)ib;
909   Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
910                        : Builder.CreateUIToFP(IB,F32Ty);
911 
912   Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
913                                                 Builder.getFloatTy());
914   Value *RCP = Builder.CreateCall(RcpDecl, { FB });
915   Value *FQM = Builder.CreateFMul(FA, RCP);
916 
917   // fq = trunc(fqm);
918   CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
919   FQ->copyFastMathFlags(Builder.getFastMathFlags());
920 
921   // float fqneg = -fq;
922   Value *FQNeg = Builder.CreateFNeg(FQ);
923 
924   // float fr = mad(fqneg, fb, fa);
925   auto FMAD = !ST->hasMadMacF32Insts()
926                   ? Intrinsic::fma
927                   : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
928   Value *FR = Builder.CreateIntrinsic(FMAD,
929                                       {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
930 
931   // int iq = (int)fq;
932   Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
933                        : Builder.CreateFPToUI(FQ, I32Ty);
934 
935   // fr = fabs(fr);
936   FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
937 
938   // fb = fabs(fb);
939   FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
940 
941   // int cv = fr >= fb;
942   Value *CV = Builder.CreateFCmpOGE(FR, FB);
943 
944   // jq = (cv ? jq : 0);
945   JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
946 
947   // dst = iq + jq;
948   Value *Div = Builder.CreateAdd(IQ, JQ);
949 
950   Value *Res = Div;
951   if (!IsDiv) {
952     // Rem needs compensation, it's easier to recompute it
953     Value *Rem = Builder.CreateMul(Div, Den);
954     Res = Builder.CreateSub(Num, Rem);
955   }
956 
957   if (DivBits != 0 && DivBits < 32) {
958     // Extend in register from the number of bits this divide really is.
959     if (IsSigned) {
960       int InRegBits = 32 - DivBits;
961 
962       Res = Builder.CreateShl(Res, InRegBits);
963       Res = Builder.CreateAShr(Res, InRegBits);
964     } else {
965       ConstantInt *TruncMask
966         = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
967       Res = Builder.CreateAnd(Res, TruncMask);
968     }
969   }
970 
971   return Res;
972 }
973 
974 // Try to recognize special cases the DAG will emit special, better expansions
975 // than the general expansion we do here.
976 
977 // TODO: It would be better to just directly handle those optimizations here.
978 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization(
979   BinaryOperator &I, Value *Num, Value *Den) const {
980   if (Constant *C = dyn_cast<Constant>(Den)) {
981     // Arbitrary constants get a better expansion as long as a wider mulhi is
982     // legal.
983     if (C->getType()->getScalarSizeInBits() <= 32)
984       return true;
985 
986     // TODO: Sdiv check for not exact for some reason.
987 
988     // If there's no wider mulhi, there's only a better expansion for powers of
989     // two.
990     // TODO: Should really know for each vector element.
991     if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
992       return true;
993 
994     return false;
995   }
996 
997   if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
998     // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
999     if (BinOpDen->getOpcode() == Instruction::Shl &&
1000         isa<Constant>(BinOpDen->getOperand(0)) &&
1001         isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
1002                                0, AC, &I, DT)) {
1003       return true;
1004     }
1005   }
1006 
1007   return false;
1008 }
1009 
1010 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
1011   // Check whether the sign can be determined statically.
1012   KnownBits Known = computeKnownBits(V, *DL);
1013   if (Known.isNegative())
1014     return Constant::getAllOnesValue(V->getType());
1015   if (Known.isNonNegative())
1016     return Constant::getNullValue(V->getType());
1017   return Builder.CreateAShr(V, Builder.getInt32(31));
1018 }
1019 
1020 Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
1021                                             BinaryOperator &I, Value *X,
1022                                             Value *Y) const {
1023   Instruction::BinaryOps Opc = I.getOpcode();
1024   assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
1025          Opc == Instruction::SRem || Opc == Instruction::SDiv);
1026 
1027   FastMathFlags FMF;
1028   FMF.setFast();
1029   Builder.setFastMathFlags(FMF);
1030 
1031   if (divHasSpecialOptimization(I, X, Y))
1032     return nullptr;  // Keep it for later optimization.
1033 
1034   bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
1035   bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
1036 
1037   Type *Ty = X->getType();
1038   Type *I32Ty = Builder.getInt32Ty();
1039   Type *F32Ty = Builder.getFloatTy();
1040 
1041   if (Ty->getScalarSizeInBits() < 32) {
1042     if (IsSigned) {
1043       X = Builder.CreateSExt(X, I32Ty);
1044       Y = Builder.CreateSExt(Y, I32Ty);
1045     } else {
1046       X = Builder.CreateZExt(X, I32Ty);
1047       Y = Builder.CreateZExt(Y, I32Ty);
1048     }
1049   }
1050 
1051   if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
1052     return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
1053                       Builder.CreateZExtOrTrunc(Res, Ty);
1054   }
1055 
1056   ConstantInt *Zero = Builder.getInt32(0);
1057   ConstantInt *One = Builder.getInt32(1);
1058 
1059   Value *Sign = nullptr;
1060   if (IsSigned) {
1061     Value *SignX = getSign32(X, Builder, DL);
1062     Value *SignY = getSign32(Y, Builder, DL);
1063     // Remainder sign is the same as LHS
1064     Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
1065 
1066     X = Builder.CreateAdd(X, SignX);
1067     Y = Builder.CreateAdd(Y, SignY);
1068 
1069     X = Builder.CreateXor(X, SignX);
1070     Y = Builder.CreateXor(Y, SignY);
1071   }
1072 
1073   // The algorithm here is based on ideas from "Software Integer Division", Tom
1074   // Rodeheffer, August 2008.
1075   //
1076   // unsigned udiv(unsigned x, unsigned y) {
1077   //   // Initial estimate of inv(y). The constant is less than 2^32 to ensure
1078   //   // that this is a lower bound on inv(y), even if some of the calculations
1079   //   // round up.
1080   //   unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
1081   //
1082   //   // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
1083   //   // Empirically this is guaranteed to give a "two-y" lower bound on
1084   //   // inv(y).
1085   //   z += umulh(z, -y * z);
1086   //
1087   //   // Quotient/remainder estimate.
1088   //   unsigned q = umulh(x, z);
1089   //   unsigned r = x - q * y;
1090   //
1091   //   // Two rounds of quotient/remainder refinement.
1092   //   if (r >= y) {
1093   //     ++q;
1094   //     r -= y;
1095   //   }
1096   //   if (r >= y) {
1097   //     ++q;
1098   //     r -= y;
1099   //   }
1100   //
1101   //   return q;
1102   // }
1103 
1104   // Initial estimate of inv(y).
1105   Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
1106   Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
1107   Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
1108   Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE));
1109   Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
1110   Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
1111 
1112   // One round of UNR.
1113   Value *NegY = Builder.CreateSub(Zero, Y);
1114   Value *NegYZ = Builder.CreateMul(NegY, Z);
1115   Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
1116 
1117   // Quotient/remainder estimate.
1118   Value *Q = getMulHu(Builder, X, Z);
1119   Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
1120 
1121   // First quotient/remainder refinement.
1122   Value *Cond = Builder.CreateICmpUGE(R, Y);
1123   if (IsDiv)
1124     Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1125   R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1126 
1127   // Second quotient/remainder refinement.
1128   Cond = Builder.CreateICmpUGE(R, Y);
1129   Value *Res;
1130   if (IsDiv)
1131     Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1132   else
1133     Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1134 
1135   if (IsSigned) {
1136     Res = Builder.CreateXor(Res, Sign);
1137     Res = Builder.CreateSub(Res, Sign);
1138   }
1139 
1140   Res = Builder.CreateTrunc(Res, Ty);
1141 
1142   return Res;
1143 }
1144 
1145 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder,
1146                                             BinaryOperator &I,
1147                                             Value *Num, Value *Den) const {
1148   if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
1149     return nullptr;  // Keep it for later optimization.
1150 
1151   Instruction::BinaryOps Opc = I.getOpcode();
1152 
1153   bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
1154   bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
1155 
1156   int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
1157   if (NumDivBits == -1)
1158     return nullptr;
1159 
1160   Value *Narrowed = nullptr;
1161   if (NumDivBits <= 24) {
1162     Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
1163                                   IsDiv, IsSigned);
1164   } else if (NumDivBits <= 32) {
1165     Narrowed = expandDivRem32(Builder, I, Num, Den);
1166   }
1167 
1168   if (Narrowed) {
1169     return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
1170                       Builder.CreateZExt(Narrowed, Num->getType());
1171   }
1172 
1173   return nullptr;
1174 }
1175 
1176 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const {
1177   Instruction::BinaryOps Opc = I.getOpcode();
1178   // Do the general expansion.
1179   if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
1180     expandDivisionUpTo64Bits(&I);
1181     return;
1182   }
1183 
1184   if (Opc == Instruction::URem || Opc == Instruction::SRem) {
1185     expandRemainderUpTo64Bits(&I);
1186     return;
1187   }
1188 
1189   llvm_unreachable("not a division");
1190 }
1191 
1192 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
1193   if (foldBinOpIntoSelect(I))
1194     return true;
1195 
1196   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1197       DA->isUniform(&I) && promoteUniformOpToI32(I))
1198     return true;
1199 
1200   if (UseMul24Intrin && replaceMulWithMul24(I))
1201     return true;
1202 
1203   bool Changed = false;
1204   Instruction::BinaryOps Opc = I.getOpcode();
1205   Type *Ty = I.getType();
1206   Value *NewDiv = nullptr;
1207   unsigned ScalarSize = Ty->getScalarSizeInBits();
1208 
1209   SmallVector<BinaryOperator *, 8> Div64ToExpand;
1210 
1211   if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
1212        Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
1213       ScalarSize <= 64 &&
1214       !DisableIDivExpand) {
1215     Value *Num = I.getOperand(0);
1216     Value *Den = I.getOperand(1);
1217     IRBuilder<> Builder(&I);
1218     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1219 
1220     if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1221       NewDiv = UndefValue::get(VT);
1222 
1223       for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
1224         Value *NumEltN = Builder.CreateExtractElement(Num, N);
1225         Value *DenEltN = Builder.CreateExtractElement(Den, N);
1226 
1227         Value *NewElt;
1228         if (ScalarSize <= 32) {
1229           NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
1230           if (!NewElt)
1231             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1232         } else {
1233           // See if this 64-bit division can be shrunk to 32/24-bits before
1234           // producing the general expansion.
1235           NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
1236           if (!NewElt) {
1237             // The general 64-bit expansion introduces control flow and doesn't
1238             // return the new value. Just insert a scalar copy and defer
1239             // expanding it.
1240             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1241             Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
1242           }
1243         }
1244 
1245         NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
1246       }
1247     } else {
1248       if (ScalarSize <= 32)
1249         NewDiv = expandDivRem32(Builder, I, Num, Den);
1250       else {
1251         NewDiv = shrinkDivRem64(Builder, I, Num, Den);
1252         if (!NewDiv)
1253           Div64ToExpand.push_back(&I);
1254       }
1255     }
1256 
1257     if (NewDiv) {
1258       I.replaceAllUsesWith(NewDiv);
1259       I.eraseFromParent();
1260       Changed = true;
1261     }
1262   }
1263 
1264   if (ExpandDiv64InIR) {
1265     // TODO: We get much worse code in specially handled constant cases.
1266     for (BinaryOperator *Div : Div64ToExpand) {
1267       expandDivRem64(*Div);
1268       Changed = true;
1269     }
1270   }
1271 
1272   return Changed;
1273 }
1274 
1275 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
1276   if (!WidenLoads)
1277     return false;
1278 
1279   if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
1280        I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
1281       canWidenScalarExtLoad(I)) {
1282     IRBuilder<> Builder(&I);
1283     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1284 
1285     Type *I32Ty = Builder.getInt32Ty();
1286     Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
1287     Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
1288     LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
1289     WidenLoad->copyMetadata(I);
1290 
1291     // If we have range metadata, we need to convert the type, and not make
1292     // assumptions about the high bits.
1293     if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
1294       ConstantInt *Lower =
1295         mdconst::extract<ConstantInt>(Range->getOperand(0));
1296 
1297       if (Lower->getValue().isNullValue()) {
1298         WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
1299       } else {
1300         Metadata *LowAndHigh[] = {
1301           ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
1302           // Don't make assumptions about the high bits.
1303           ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
1304         };
1305 
1306         WidenLoad->setMetadata(LLVMContext::MD_range,
1307                                MDNode::get(Mod->getContext(), LowAndHigh));
1308       }
1309     }
1310 
1311     int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
1312     Type *IntNTy = Builder.getIntNTy(TySize);
1313     Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
1314     Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
1315     I.replaceAllUsesWith(ValOrig);
1316     I.eraseFromParent();
1317     return true;
1318   }
1319 
1320   return false;
1321 }
1322 
1323 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
1324   bool Changed = false;
1325 
1326   if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
1327       DA->isUniform(&I))
1328     Changed |= promoteUniformOpToI32(I);
1329 
1330   return Changed;
1331 }
1332 
1333 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
1334   bool Changed = false;
1335 
1336   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1337       DA->isUniform(&I))
1338     Changed |= promoteUniformOpToI32(I);
1339 
1340   return Changed;
1341 }
1342 
1343 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
1344   switch (I.getIntrinsicID()) {
1345   case Intrinsic::bitreverse:
1346     return visitBitreverseIntrinsicInst(I);
1347   default:
1348     return false;
1349   }
1350 }
1351 
1352 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
1353   bool Changed = false;
1354 
1355   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1356       DA->isUniform(&I))
1357     Changed |= promoteUniformBitreverseToI32(I);
1358 
1359   return Changed;
1360 }
1361 
1362 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
1363   Mod = &M;
1364   DL = &Mod->getDataLayout();
1365   return false;
1366 }
1367 
1368 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
1369   if (skipFunction(F))
1370     return false;
1371 
1372   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1373   if (!TPC)
1374     return false;
1375 
1376   const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
1377   ST = &TM.getSubtarget<GCNSubtarget>(F);
1378   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1379   DA = &getAnalysis<LegacyDivergenceAnalysis>();
1380 
1381   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1382   DT = DTWP ? &DTWP->getDomTree() : nullptr;
1383 
1384   HasUnsafeFPMath = hasUnsafeFPMath(F);
1385 
1386   AMDGPU::SIModeRegisterDefaults Mode(F);
1387   HasFP32Denormals = Mode.allFP32Denormals();
1388 
1389   bool MadeChange = false;
1390 
1391   Function::iterator NextBB;
1392   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
1393     BasicBlock *BB = &*FI;
1394     NextBB = std::next(FI);
1395 
1396     BasicBlock::iterator Next;
1397     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) {
1398       Next = std::next(I);
1399 
1400       MadeChange |= visit(*I);
1401 
1402       if (Next != E) { // Control flow changed
1403         BasicBlock *NextInstBB = Next->getParent();
1404         if (NextInstBB != BB) {
1405           BB = NextInstBB;
1406           E = BB->end();
1407           FE = F.end();
1408         }
1409       }
1410     }
1411   }
1412 
1413   return MadeChange;
1414 }
1415 
1416 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
1417                       "AMDGPU IR optimizations", false, false)
1418 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1419 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
1420 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
1421                     false, false)
1422 
1423 char AMDGPUCodeGenPrepare::ID = 0;
1424 
1425 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
1426   return new AMDGPUCodeGenPrepare();
1427 }
1428