xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass does misc. AMDGPU optimizations on IR before instruction
11 /// selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUTargetMachine.h"
17 #include "SIModeRegisterDefaults.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/UniformityAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/InstVisitor.h"
27 #include "llvm/IR/IntrinsicsAMDGPU.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Transforms/Utils/IntegerDivision.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 
35 #define DEBUG_TYPE "amdgpu-codegenprepare"
36 
37 using namespace llvm;
38 using namespace llvm::PatternMatch;
39 
40 namespace {
41 
42 static cl::opt<bool> WidenLoads(
43   "amdgpu-codegenprepare-widen-constant-loads",
44   cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
45   cl::ReallyHidden,
46   cl::init(false));
47 
48 static cl::opt<bool> Widen16BitOps(
49   "amdgpu-codegenprepare-widen-16-bit-ops",
50   cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"),
51   cl::ReallyHidden,
52   cl::init(true));
53 
54 static cl::opt<bool>
55     BreakLargePHIs("amdgpu-codegenprepare-break-large-phis",
56                    cl::desc("Break large PHI nodes for DAGISel"),
57                    cl::ReallyHidden, cl::init(true));
58 
59 static cl::opt<bool>
60     ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis",
61                         cl::desc("For testing purposes, always break large "
62                                  "PHIs even if it isn't profitable."),
63                         cl::ReallyHidden, cl::init(false));
64 
65 static cl::opt<unsigned> BreakLargePHIsThreshold(
66     "amdgpu-codegenprepare-break-large-phis-threshold",
67     cl::desc("Minimum type size in bits for breaking large PHI nodes"),
68     cl::ReallyHidden, cl::init(32));
69 
70 static cl::opt<bool> UseMul24Intrin(
71   "amdgpu-codegenprepare-mul24",
72   cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
73   cl::ReallyHidden,
74   cl::init(true));
75 
76 // Legalize 64-bit division by using the generic IR expansion.
77 static cl::opt<bool> ExpandDiv64InIR(
78   "amdgpu-codegenprepare-expand-div64",
79   cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
80   cl::ReallyHidden,
81   cl::init(false));
82 
83 // Leave all division operations as they are. This supersedes ExpandDiv64InIR
84 // and is used for testing the legalizer.
85 static cl::opt<bool> DisableIDivExpand(
86   "amdgpu-codegenprepare-disable-idiv-expansion",
87   cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
88   cl::ReallyHidden,
89   cl::init(false));
90 
91 // Disable processing of fdiv so we can better test the backend implementations.
92 static cl::opt<bool> DisableFDivExpand(
93   "amdgpu-codegenprepare-disable-fdiv-expansion",
94   cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"),
95   cl::ReallyHidden,
96   cl::init(false));
97 
98 class AMDGPUCodeGenPrepareImpl
99     : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> {
100 public:
101   const GCNSubtarget *ST = nullptr;
102   const TargetLibraryInfo *TLInfo = nullptr;
103   AssumptionCache *AC = nullptr;
104   DominatorTree *DT = nullptr;
105   UniformityInfo *UA = nullptr;
106   Module *Mod = nullptr;
107   const DataLayout *DL = nullptr;
108   bool HasUnsafeFPMath = false;
109   bool HasFP32DenormalFlush = false;
110   bool FlowChanged = false;
111   mutable Function *SqrtF32 = nullptr;
112   mutable Function *LdexpF32 = nullptr;
113 
114   DenseMap<const PHINode *, bool> BreakPhiNodesCache;
115 
116   Function *getSqrtF32() const {
117     if (SqrtF32)
118       return SqrtF32;
119 
120     LLVMContext &Ctx = Mod->getContext();
121     SqrtF32 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_sqrt,
122                                         {Type::getFloatTy(Ctx)});
123     return SqrtF32;
124   }
125 
126   Function *getLdexpF32() const {
127     if (LdexpF32)
128       return LdexpF32;
129 
130     LLVMContext &Ctx = Mod->getContext();
131     LdexpF32 = Intrinsic::getDeclaration(
132         Mod, Intrinsic::ldexp, {Type::getFloatTy(Ctx), Type::getInt32Ty(Ctx)});
133     return LdexpF32;
134   }
135 
136   bool canBreakPHINode(const PHINode &I);
137 
138   /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
139   /// binary operation \p V.
140   ///
141   /// \returns Binary operation \p V.
142   /// \returns \p T's base element bit width.
143   unsigned getBaseElementBitWidth(const Type *T) const;
144 
145   /// \returns Equivalent 32 bit integer type for given type \p T. For example,
146   /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
147   /// is returned.
148   Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
149 
150   /// \returns True if binary operation \p I is a signed binary operation, false
151   /// otherwise.
152   bool isSigned(const BinaryOperator &I) const;
153 
154   /// \returns True if the condition of 'select' operation \p I comes from a
155   /// signed 'icmp' operation, false otherwise.
156   bool isSigned(const SelectInst &I) const;
157 
158   /// \returns True if type \p T needs to be promoted to 32 bit integer type,
159   /// false otherwise.
160   bool needsPromotionToI32(const Type *T) const;
161 
162   /// Return true if \p T is a legal scalar floating point type.
163   bool isLegalFloatingTy(const Type *T) const;
164 
165   /// Wrapper to pass all the arguments to computeKnownFPClass
166   KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested,
167                                    const Instruction *CtxI) const {
168     return llvm::computeKnownFPClass(V, *DL, Interested, 0, TLInfo, AC, CtxI,
169                                      DT);
170   }
171 
172   bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const {
173     return HasFP32DenormalFlush ||
174            computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal();
175   }
176 
177   /// Promotes uniform binary operation \p I to equivalent 32 bit binary
178   /// operation.
179   ///
180   /// \details \p I's base element bit width must be greater than 1 and less
181   /// than or equal 16. Promotion is done by sign or zero extending operands to
182   /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
183   /// truncating the result of 32 bit binary operation back to \p I's original
184   /// type. Division operation is not promoted.
185   ///
186   /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
187   /// false otherwise.
188   bool promoteUniformOpToI32(BinaryOperator &I) const;
189 
190   /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
191   ///
192   /// \details \p I's base element bit width must be greater than 1 and less
193   /// than or equal 16. Promotion is done by sign or zero extending operands to
194   /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
195   ///
196   /// \returns True.
197   bool promoteUniformOpToI32(ICmpInst &I) const;
198 
199   /// Promotes uniform 'select' operation \p I to 32 bit 'select'
200   /// operation.
201   ///
202   /// \details \p I's base element bit width must be greater than 1 and less
203   /// than or equal 16. Promotion is done by sign or zero extending operands to
204   /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
205   /// result of 32 bit 'select' operation back to \p I's original type.
206   ///
207   /// \returns True.
208   bool promoteUniformOpToI32(SelectInst &I) const;
209 
210   /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
211   /// intrinsic.
212   ///
213   /// \details \p I's base element bit width must be greater than 1 and less
214   /// than or equal 16. Promotion is done by zero extending the operand to 32
215   /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
216   /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
217   /// shift amount is 32 minus \p I's base element bit width), and truncating
218   /// the result of the shift operation back to \p I's original type.
219   ///
220   /// \returns True.
221   bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
222 
223   /// \returns The minimum number of bits needed to store the value of \Op as an
224   /// unsigned integer. Truncating to this size and then zero-extending to
225   /// the original will not change the value.
226   unsigned numBitsUnsigned(Value *Op) const;
227 
228   /// \returns The minimum number of bits needed to store the value of \Op as a
229   /// signed integer. Truncating to this size and then sign-extending to
230   /// the original size will not change the value.
231   unsigned numBitsSigned(Value *Op) const;
232 
233   /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
234   /// SelectionDAG has an issue where an and asserting the bits are known
235   bool replaceMulWithMul24(BinaryOperator &I) const;
236 
237   /// Perform same function as equivalently named function in DAGCombiner. Since
238   /// we expand some divisions here, we need to perform this before obscuring.
239   bool foldBinOpIntoSelect(BinaryOperator &I) const;
240 
241   bool divHasSpecialOptimization(BinaryOperator &I,
242                                  Value *Num, Value *Den) const;
243   int getDivNumBits(BinaryOperator &I,
244                     Value *Num, Value *Den,
245                     unsigned AtLeast, bool Signed) const;
246 
247   /// Expands 24 bit div or rem.
248   Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
249                         Value *Num, Value *Den,
250                         bool IsDiv, bool IsSigned) const;
251 
252   Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
253                             Value *Num, Value *Den, unsigned NumBits,
254                             bool IsDiv, bool IsSigned) const;
255 
256   /// Expands 32 bit div or rem.
257   Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
258                         Value *Num, Value *Den) const;
259 
260   Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
261                         Value *Num, Value *Den) const;
262   void expandDivRem64(BinaryOperator &I) const;
263 
264   /// Widen a scalar load.
265   ///
266   /// \details \p Widen scalar load for uniform, small type loads from constant
267   //  memory / to a full 32-bits and then truncate the input to allow a scalar
268   //  load instead of a vector load.
269   //
270   /// \returns True.
271 
272   bool canWidenScalarExtLoad(LoadInst &I) const;
273 
274   Value *matchFractPat(IntrinsicInst &I);
275   Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg);
276 
277   bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF,
278                           FastMathFlags SqrtFMF) const;
279 
280   Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den,
281                          FastMathFlags DivFMF, FastMathFlags SqrtFMF,
282                          const Instruction *CtxI) const;
283 
284   Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den,
285                          FastMathFlags FMF, const Instruction *CtxI) const;
286   Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den,
287                               float ReqdAccuracy) const;
288 
289   Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den,
290                           FastMathFlags DivFMF, FastMathFlags SqrtFMF,
291                           Value *RsqOp, const Instruction *FDiv,
292                           float ReqdAccuracy) const;
293 
294   std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder,
295                                               Value *Src) const;
296 
297   Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src,
298                          bool IsNegative) const;
299   Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS,
300                       FastMathFlags FMF) const;
301   Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src,
302                           FastMathFlags FMF) const;
303 
304 public:
305   bool visitFDiv(BinaryOperator &I);
306 
307   bool visitInstruction(Instruction &I) { return false; }
308   bool visitBinaryOperator(BinaryOperator &I);
309   bool visitLoadInst(LoadInst &I);
310   bool visitICmpInst(ICmpInst &I);
311   bool visitSelectInst(SelectInst &I);
312   bool visitPHINode(PHINode &I);
313 
314   bool visitIntrinsicInst(IntrinsicInst &I);
315   bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
316   bool visitMinNum(IntrinsicInst &I);
317   bool visitSqrt(IntrinsicInst &I);
318   bool run(Function &F);
319 };
320 
321 class AMDGPUCodeGenPrepare : public FunctionPass {
322 private:
323   AMDGPUCodeGenPrepareImpl Impl;
324 
325 public:
326   static char ID;
327   AMDGPUCodeGenPrepare() : FunctionPass(ID) {
328     initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry());
329   }
330   void getAnalysisUsage(AnalysisUsage &AU) const override {
331     AU.addRequired<AssumptionCacheTracker>();
332     AU.addRequired<UniformityInfoWrapperPass>();
333     AU.addRequired<TargetLibraryInfoWrapperPass>();
334 
335     // FIXME: Division expansion needs to preserve the dominator tree.
336     if (!ExpandDiv64InIR)
337       AU.setPreservesAll();
338   }
339   bool runOnFunction(Function &F) override;
340   bool doInitialization(Module &M) override;
341   StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
342 };
343 
344 } // end anonymous namespace
345 
346 bool AMDGPUCodeGenPrepareImpl::run(Function &F) {
347   BreakPhiNodesCache.clear();
348   bool MadeChange = false;
349 
350   Function::iterator NextBB;
351   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
352     BasicBlock *BB = &*FI;
353     NextBB = std::next(FI);
354 
355     BasicBlock::iterator Next;
356     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
357          I = Next) {
358       Next = std::next(I);
359 
360       MadeChange |= visit(*I);
361 
362       if (Next != E) { // Control flow changed
363         BasicBlock *NextInstBB = Next->getParent();
364         if (NextInstBB != BB) {
365           BB = NextInstBB;
366           E = BB->end();
367           FE = F.end();
368         }
369       }
370     }
371   }
372   return MadeChange;
373 }
374 
375 unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const {
376   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
377 
378   if (T->isIntegerTy())
379     return T->getIntegerBitWidth();
380   return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
381 }
382 
383 Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const {
384   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
385 
386   if (T->isIntegerTy())
387     return B.getInt32Ty();
388   return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
389 }
390 
391 bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const {
392   return I.getOpcode() == Instruction::AShr ||
393       I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
394 }
395 
396 bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const {
397   return isa<ICmpInst>(I.getOperand(0)) ?
398       cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
399 }
400 
401 bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const {
402   if (!Widen16BitOps)
403     return false;
404 
405   const IntegerType *IntTy = dyn_cast<IntegerType>(T);
406   if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
407     return true;
408 
409   if (const VectorType *VT = dyn_cast<VectorType>(T)) {
410     // TODO: The set of packed operations is more limited, so may want to
411     // promote some anyway.
412     if (ST->hasVOP3PInsts())
413       return false;
414 
415     return needsPromotionToI32(VT->getElementType());
416   }
417 
418   return false;
419 }
420 
421 bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const {
422   return Ty->isFloatTy() || Ty->isDoubleTy() ||
423          (Ty->isHalfTy() && ST->has16BitInsts());
424 }
425 
426 // Return true if the op promoted to i32 should have nsw set.
427 static bool promotedOpIsNSW(const Instruction &I) {
428   switch (I.getOpcode()) {
429   case Instruction::Shl:
430   case Instruction::Add:
431   case Instruction::Sub:
432     return true;
433   case Instruction::Mul:
434     return I.hasNoUnsignedWrap();
435   default:
436     return false;
437   }
438 }
439 
440 // Return true if the op promoted to i32 should have nuw set.
441 static bool promotedOpIsNUW(const Instruction &I) {
442   switch (I.getOpcode()) {
443   case Instruction::Shl:
444   case Instruction::Add:
445   case Instruction::Mul:
446     return true;
447   case Instruction::Sub:
448     return I.hasNoUnsignedWrap();
449   default:
450     return false;
451   }
452 }
453 
454 bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const {
455   Type *Ty = I.getType();
456   const DataLayout &DL = Mod->getDataLayout();
457   int TySize = DL.getTypeSizeInBits(Ty);
458   Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
459 
460   return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I);
461 }
462 
463 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const {
464   assert(needsPromotionToI32(I.getType()) &&
465          "I does not need promotion to i32");
466 
467   if (I.getOpcode() == Instruction::SDiv ||
468       I.getOpcode() == Instruction::UDiv ||
469       I.getOpcode() == Instruction::SRem ||
470       I.getOpcode() == Instruction::URem)
471     return false;
472 
473   IRBuilder<> Builder(&I);
474   Builder.SetCurrentDebugLocation(I.getDebugLoc());
475 
476   Type *I32Ty = getI32Ty(Builder, I.getType());
477   Value *ExtOp0 = nullptr;
478   Value *ExtOp1 = nullptr;
479   Value *ExtRes = nullptr;
480   Value *TruncRes = nullptr;
481 
482   if (isSigned(I)) {
483     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
484     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
485   } else {
486     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
487     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
488   }
489 
490   ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
491   if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
492     if (promotedOpIsNSW(cast<Instruction>(I)))
493       Inst->setHasNoSignedWrap();
494 
495     if (promotedOpIsNUW(cast<Instruction>(I)))
496       Inst->setHasNoUnsignedWrap();
497 
498     if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
499       Inst->setIsExact(ExactOp->isExact());
500   }
501 
502   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
503 
504   I.replaceAllUsesWith(TruncRes);
505   I.eraseFromParent();
506 
507   return true;
508 }
509 
510 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const {
511   assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
512          "I does not need promotion to i32");
513 
514   IRBuilder<> Builder(&I);
515   Builder.SetCurrentDebugLocation(I.getDebugLoc());
516 
517   Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
518   Value *ExtOp0 = nullptr;
519   Value *ExtOp1 = nullptr;
520   Value *NewICmp  = nullptr;
521 
522   if (I.isSigned()) {
523     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
524     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
525   } else {
526     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
527     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
528   }
529   NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
530 
531   I.replaceAllUsesWith(NewICmp);
532   I.eraseFromParent();
533 
534   return true;
535 }
536 
537 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const {
538   assert(needsPromotionToI32(I.getType()) &&
539          "I does not need promotion to i32");
540 
541   IRBuilder<> Builder(&I);
542   Builder.SetCurrentDebugLocation(I.getDebugLoc());
543 
544   Type *I32Ty = getI32Ty(Builder, I.getType());
545   Value *ExtOp1 = nullptr;
546   Value *ExtOp2 = nullptr;
547   Value *ExtRes = nullptr;
548   Value *TruncRes = nullptr;
549 
550   if (isSigned(I)) {
551     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
552     ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
553   } else {
554     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
555     ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
556   }
557   ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
558   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
559 
560   I.replaceAllUsesWith(TruncRes);
561   I.eraseFromParent();
562 
563   return true;
564 }
565 
566 bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32(
567     IntrinsicInst &I) const {
568   assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
569          "I must be bitreverse intrinsic");
570   assert(needsPromotionToI32(I.getType()) &&
571          "I does not need promotion to i32");
572 
573   IRBuilder<> Builder(&I);
574   Builder.SetCurrentDebugLocation(I.getDebugLoc());
575 
576   Type *I32Ty = getI32Ty(Builder, I.getType());
577   Function *I32 =
578       Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
579   Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
580   Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
581   Value *LShrOp =
582       Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
583   Value *TruncRes =
584       Builder.CreateTrunc(LShrOp, I.getType());
585 
586   I.replaceAllUsesWith(TruncRes);
587   I.eraseFromParent();
588 
589   return true;
590 }
591 
592 unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const {
593   return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits();
594 }
595 
596 unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const {
597   return ComputeMaxSignificantBits(Op, *DL, 0, AC);
598 }
599 
600 static void extractValues(IRBuilder<> &Builder,
601                           SmallVectorImpl<Value *> &Values, Value *V) {
602   auto *VT = dyn_cast<FixedVectorType>(V->getType());
603   if (!VT) {
604     Values.push_back(V);
605     return;
606   }
607 
608   for (int I = 0, E = VT->getNumElements(); I != E; ++I)
609     Values.push_back(Builder.CreateExtractElement(V, I));
610 }
611 
612 static Value *insertValues(IRBuilder<> &Builder,
613                            Type *Ty,
614                            SmallVectorImpl<Value *> &Values) {
615   if (!Ty->isVectorTy()) {
616     assert(Values.size() == 1);
617     return Values[0];
618   }
619 
620   Value *NewVal = PoisonValue::get(Ty);
621   for (int I = 0, E = Values.size(); I != E; ++I)
622     NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
623 
624   return NewVal;
625 }
626 
627 bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const {
628   if (I.getOpcode() != Instruction::Mul)
629     return false;
630 
631   Type *Ty = I.getType();
632   unsigned Size = Ty->getScalarSizeInBits();
633   if (Size <= 16 && ST->has16BitInsts())
634     return false;
635 
636   // Prefer scalar if this could be s_mul_i32
637   if (UA->isUniform(&I))
638     return false;
639 
640   Value *LHS = I.getOperand(0);
641   Value *RHS = I.getOperand(1);
642   IRBuilder<> Builder(&I);
643   Builder.SetCurrentDebugLocation(I.getDebugLoc());
644 
645   unsigned LHSBits = 0, RHSBits = 0;
646   bool IsSigned = false;
647 
648   if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 &&
649       (RHSBits = numBitsUnsigned(RHS)) <= 24) {
650     IsSigned = false;
651 
652   } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 &&
653              (RHSBits = numBitsSigned(RHS)) <= 24) {
654     IsSigned = true;
655 
656   } else
657     return false;
658 
659   SmallVector<Value *, 4> LHSVals;
660   SmallVector<Value *, 4> RHSVals;
661   SmallVector<Value *, 4> ResultVals;
662   extractValues(Builder, LHSVals, LHS);
663   extractValues(Builder, RHSVals, RHS);
664 
665   IntegerType *I32Ty = Builder.getInt32Ty();
666   IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty;
667   Type *DstTy = LHSVals[0]->getType();
668 
669   for (int I = 0, E = LHSVals.size(); I != E; ++I) {
670     Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty)
671                           : Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
672     Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty)
673                           : Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
674     Intrinsic::ID ID =
675         IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24;
676     Value *Result = Builder.CreateIntrinsic(ID, {IntrinTy}, {LHS, RHS});
677     Result = IsSigned ? Builder.CreateSExtOrTrunc(Result, DstTy)
678                       : Builder.CreateZExtOrTrunc(Result, DstTy);
679     ResultVals.push_back(Result);
680   }
681 
682   Value *NewVal = insertValues(Builder, Ty, ResultVals);
683   NewVal->takeName(&I);
684   I.replaceAllUsesWith(NewVal);
685   I.eraseFromParent();
686 
687   return true;
688 }
689 
690 // Find a select instruction, which may have been casted. This is mostly to deal
691 // with cases where i16 selects were promoted here to i32.
692 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
693   Cast = nullptr;
694   if (SelectInst *Sel = dyn_cast<SelectInst>(V))
695     return Sel;
696 
697   if ((Cast = dyn_cast<CastInst>(V))) {
698     if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
699       return Sel;
700   }
701 
702   return nullptr;
703 }
704 
705 bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const {
706   // Don't do this unless the old select is going away. We want to eliminate the
707   // binary operator, not replace a binop with a select.
708   int SelOpNo = 0;
709 
710   CastInst *CastOp;
711 
712   // TODO: Should probably try to handle some cases with multiple
713   // users. Duplicating the select may be profitable for division.
714   SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
715   if (!Sel || !Sel->hasOneUse()) {
716     SelOpNo = 1;
717     Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
718   }
719 
720   if (!Sel || !Sel->hasOneUse())
721     return false;
722 
723   Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
724   Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
725   Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
726   if (!CBO || !CT || !CF)
727     return false;
728 
729   if (CastOp) {
730     if (!CastOp->hasOneUse())
731       return false;
732     CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
733     CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
734   }
735 
736   // TODO: Handle special 0/-1 cases DAG combine does, although we only really
737   // need to handle divisions here.
738   Constant *FoldedT = SelOpNo ?
739     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
740     ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
741   if (!FoldedT || isa<ConstantExpr>(FoldedT))
742     return false;
743 
744   Constant *FoldedF = SelOpNo ?
745     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
746     ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
747   if (!FoldedF || isa<ConstantExpr>(FoldedF))
748     return false;
749 
750   IRBuilder<> Builder(&BO);
751   Builder.SetCurrentDebugLocation(BO.getDebugLoc());
752   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
753     Builder.setFastMathFlags(FPOp->getFastMathFlags());
754 
755   Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
756                                           FoldedT, FoldedF);
757   NewSelect->takeName(&BO);
758   BO.replaceAllUsesWith(NewSelect);
759   BO.eraseFromParent();
760   if (CastOp)
761     CastOp->eraseFromParent();
762   Sel->eraseFromParent();
763   return true;
764 }
765 
766 std::pair<Value *, Value *>
767 AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder,
768                                           Value *Src) const {
769   Type *Ty = Src->getType();
770   Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp,
771                                          {Ty, Builder.getInt32Ty()}, Src);
772   Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0});
773 
774   // Bypass the bug workaround for the exponent result since it doesn't matter.
775   // TODO: Does the bug workaround even really need to consider the exponent
776   // result? It's unspecified by the spec.
777 
778   Value *FrexpExp =
779       ST->hasFractBug()
780           ? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp,
781                                     {Builder.getInt32Ty(), Ty}, Src)
782           : Builder.CreateExtractValue(Frexp, {1});
783   return {FrexpMant, FrexpExp};
784 }
785 
786 /// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals.
787 Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder,
788                                                  Value *Src,
789                                                  bool IsNegative) const {
790   // Same as for 1.0, but expand the sign out of the constant.
791   // -1.0 / x -> rcp (fneg x)
792   if (IsNegative)
793     Src = Builder.CreateFNeg(Src);
794 
795   // The rcp instruction doesn't support denormals, so scale the input
796   // out of the denormal range and convert at the end.
797   //
798   // Expand as 2^-n * (1.0 / (x * 2^n))
799 
800   // TODO: Skip scaling if input is known never denormal and the input
801   // range won't underflow to denormal. The hard part is knowing the
802   // result. We need a range check, the result could be denormal for
803   // 0x1p+126 < den <= 0x1p+127.
804   auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src);
805   Value *ScaleFactor = Builder.CreateNeg(FrexpExp);
806   Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant);
807   return Builder.CreateCall(getLdexpF32(), {Rcp, ScaleFactor});
808 }
809 
810 /// Emit a 2ulp expansion for fdiv by using frexp for input scaling.
811 Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS,
812                                               Value *RHS,
813                                               FastMathFlags FMF) const {
814   // If we have have to work around the fract/frexp bug, we're worse off than
815   // using the fdiv.fast expansion. The full safe expansion is faster if we have
816   // fast FMA.
817   if (HasFP32DenormalFlush && ST->hasFractBug() && !ST->hasFastFMAF32() &&
818       (!FMF.noNaNs() || !FMF.noInfs()))
819     return nullptr;
820 
821   // We're scaling the LHS to avoid a denormal input, and scale the denominator
822   // to avoid large values underflowing the result.
823   auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS);
824 
825   Value *Rcp =
826       Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS);
827 
828   auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS);
829   Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp);
830 
831   // We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the
832   // result.
833   Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS);
834   return Builder.CreateCall(getLdexpF32(), {Mul, ExpDiff});
835 }
836 
837 /// Emit a sqrt that handles denormals and is accurate to 2ulp.
838 Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder,
839                                                   Value *Src,
840                                                   FastMathFlags FMF) const {
841   Type *Ty = Src->getType();
842   APFloat SmallestNormal =
843       APFloat::getSmallestNormalized(Ty->getFltSemantics());
844   Value *NeedScale =
845       Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal));
846 
847   ConstantInt *Zero = Builder.getInt32(0);
848   Value *InputScaleFactor =
849       Builder.CreateSelect(NeedScale, Builder.getInt32(32), Zero);
850 
851   Value *Scaled = Builder.CreateCall(getLdexpF32(), {Src, InputScaleFactor});
852 
853   Value *Sqrt = Builder.CreateCall(getSqrtF32(), Scaled);
854 
855   Value *OutputScaleFactor =
856       Builder.CreateSelect(NeedScale, Builder.getInt32(-16), Zero);
857   return Builder.CreateCall(getLdexpF32(), {Sqrt, OutputScaleFactor});
858 }
859 
860 /// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals.
861 static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src,
862                               bool IsNegative) {
863   // bool need_scale = x < 0x1p-126f;
864   // float input_scale = need_scale ? 0x1.0p+24f : 1.0f;
865   // float output_scale = need_scale ? 0x1.0p+12f : 1.0f;
866   // rsq(x * input_scale) * output_scale;
867 
868   Type *Ty = Src->getType();
869   APFloat SmallestNormal =
870       APFloat::getSmallestNormalized(Ty->getFltSemantics());
871   Value *NeedScale =
872       Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal));
873   Constant *One = ConstantFP::get(Ty, 1.0);
874   Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24);
875   Constant *OutputScale =
876       ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12);
877 
878   Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One);
879 
880   Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor);
881   Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput);
882   Value *OutputScaleFactor = Builder.CreateSelect(
883       NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One);
884 
885   return Builder.CreateFMul(Rsq, OutputScaleFactor);
886 }
887 
888 bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp,
889                                                   FastMathFlags DivFMF,
890                                                   FastMathFlags SqrtFMF) const {
891   // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp.
892   if (!DivFMF.allowContract() || !SqrtFMF.allowContract())
893     return false;
894 
895   // v_rsq_f32 gives 1ulp
896   return SqrtFMF.approxFunc() || HasUnsafeFPMath ||
897          SqrtOp->getFPAccuracy() >= 1.0f;
898 }
899 
900 Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq(
901     IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF,
902     const FastMathFlags SqrtFMF, const Instruction *CtxI) const {
903   // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp.
904   assert(DivFMF.allowContract() && SqrtFMF.allowContract());
905 
906   // rsq_f16 is accurate to 0.51 ulp.
907   // rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
908   // rsq_f64 is never accurate.
909   const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num);
910   if (!CLHS)
911     return nullptr;
912 
913   assert(Den->getType()->isFloatTy());
914 
915   bool IsNegative = false;
916 
917   // TODO: Handle other numerator values with arcp.
918   if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) {
919     // Add in the sqrt flags.
920     IRBuilder<>::FastMathFlagGuard Guard(Builder);
921     Builder.setFastMathFlags(DivFMF | SqrtFMF);
922 
923     if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath ||
924         canIgnoreDenormalInput(Den, CtxI)) {
925       Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den);
926       // -1.0 / sqrt(x) -> fneg(rsq(x))
927       return IsNegative ? Builder.CreateFNeg(Result) : Result;
928     }
929 
930     return emitRsqIEEE1ULP(Builder, Den, IsNegative);
931   }
932 
933   return nullptr;
934 }
935 
936 // Optimize fdiv with rcp:
937 //
938 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
939 //               allowed with unsafe-fp-math or afn.
940 //
941 // a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0
942 Value *
943 AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num,
944                                           Value *Den, FastMathFlags FMF,
945                                           const Instruction *CtxI) const {
946   // rcp_f16 is accurate to 0.51 ulp.
947   // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
948   // rcp_f64 is never accurate.
949   assert(Den->getType()->isFloatTy());
950 
951   if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
952     bool IsNegative = false;
953     if (CLHS->isExactlyValue(1.0) ||
954         (IsNegative = CLHS->isExactlyValue(-1.0))) {
955       Value *Src = Den;
956 
957       if (HasFP32DenormalFlush || FMF.approxFunc()) {
958         // -1.0 / x -> 1.0 / fneg(x)
959         if (IsNegative)
960           Src = Builder.CreateFNeg(Src);
961 
962         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
963         // the CI documentation has a worst case error of 1 ulp.
964         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK
965         // to use it as long as we aren't trying to use denormals.
966         //
967         // v_rcp_f16 and v_rsq_f16 DO support denormals.
968 
969         // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
970         //       insert rsq intrinsic here.
971 
972         // 1.0 / x -> rcp(x)
973         return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src);
974       }
975 
976       // TODO: If the input isn't denormal, and we know the input exponent isn't
977       // big enough to introduce a denormal we can avoid the scaling.
978       return emitRcpIEEE1ULP(Builder, Src, IsNegative);
979     }
980   }
981 
982   if (FMF.allowReciprocal()) {
983     // x / y -> x * (1.0 / y)
984 
985     // TODO: Could avoid denormal scaling and use raw rcp if we knew the output
986     // will never underflow.
987     if (HasFP32DenormalFlush || FMF.approxFunc()) {
988       Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den);
989       return Builder.CreateFMul(Num, Recip);
990     }
991 
992     Value *Recip = emitRcpIEEE1ULP(Builder, Den, false);
993     return Builder.CreateFMul(Num, Recip);
994   }
995 
996   return nullptr;
997 }
998 
999 // optimize with fdiv.fast:
1000 //
1001 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
1002 //
1003 // 1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
1004 //
1005 // NOTE: optimizeWithRcp should be tried first because rcp is the preference.
1006 Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast(
1007     IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const {
1008   // fdiv.fast can achieve 2.5 ULP accuracy.
1009   if (ReqdAccuracy < 2.5f)
1010     return nullptr;
1011 
1012   // Only have fdiv.fast for f32.
1013   assert(Den->getType()->isFloatTy());
1014 
1015   bool NumIsOne = false;
1016   if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
1017     if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
1018       NumIsOne = true;
1019   }
1020 
1021   // fdiv does not support denormals. But 1.0/x is always fine to use it.
1022   //
1023   // TODO: This works for any value with a specific known exponent range, don't
1024   // just limit to constant 1.
1025   if (!HasFP32DenormalFlush && !NumIsOne)
1026     return nullptr;
1027 
1028   return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den});
1029 }
1030 
1031 Value *AMDGPUCodeGenPrepareImpl::visitFDivElement(
1032     IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF,
1033     FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst,
1034     float ReqdDivAccuracy) const {
1035   if (RsqOp) {
1036     Value *Rsq =
1037         optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst);
1038     if (Rsq)
1039       return Rsq;
1040   }
1041 
1042   Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst);
1043   if (Rcp)
1044     return Rcp;
1045 
1046   // In the basic case fdiv_fast has the same instruction count as the frexp div
1047   // expansion. Slightly prefer fdiv_fast since it ends in an fmul that can
1048   // potentially be fused into a user. Also, materialization of the constants
1049   // can be reused for multiple instances.
1050   Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy);
1051   if (FDivFast)
1052     return FDivFast;
1053 
1054   return emitFrexpDiv(Builder, Num, Den, DivFMF);
1055 }
1056 
1057 // Optimizations is performed based on fpmath, fast math flags as well as
1058 // denormals to optimize fdiv with either rcp or fdiv.fast.
1059 //
1060 // With rcp:
1061 //   1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
1062 //                 allowed with unsafe-fp-math or afn.
1063 //
1064 //   a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
1065 //
1066 // With fdiv.fast:
1067 //   a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
1068 //
1069 //   1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
1070 //
1071 // NOTE: rcp is the preference in cases that both are legal.
1072 bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) {
1073   if (DisableFDivExpand)
1074     return false;
1075 
1076   Type *Ty = FDiv.getType()->getScalarType();
1077   if (!Ty->isFloatTy())
1078     return false;
1079 
1080   // The f64 rcp/rsq approximations are pretty inaccurate. We can do an
1081   // expansion around them in codegen. f16 is good enough to always use.
1082 
1083   const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
1084   const FastMathFlags DivFMF = FPOp->getFastMathFlags();
1085   const float ReqdAccuracy = FPOp->getFPAccuracy();
1086 
1087   FastMathFlags SqrtFMF;
1088 
1089   Value *Num = FDiv.getOperand(0);
1090   Value *Den = FDiv.getOperand(1);
1091 
1092   Value *RsqOp = nullptr;
1093   auto *DenII = dyn_cast<IntrinsicInst>(Den);
1094   if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt &&
1095       DenII->hasOneUse()) {
1096     const auto *SqrtOp = cast<FPMathOperator>(DenII);
1097     SqrtFMF = SqrtOp->getFastMathFlags();
1098     if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF))
1099       RsqOp = SqrtOp->getOperand(0);
1100   }
1101 
1102   // Inaccurate rcp is allowed with unsafe-fp-math or afn.
1103   //
1104   // Defer to codegen to handle this.
1105   //
1106   // TODO: Decide on an interpretation for interactions between afn + arcp +
1107   // !fpmath, and make it consistent between here and codegen. For now, defer
1108   // expansion of afn to codegen. The current interpretation is so aggressive we
1109   // don't need any pre-consideration here when we have better information. A
1110   // more conservative interpretation could use handling here.
1111   const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc();
1112   if (!RsqOp && AllowInaccurateRcp)
1113     return false;
1114 
1115   // Defer the correct implementations to codegen.
1116   if (ReqdAccuracy < 1.0f)
1117     return false;
1118 
1119   IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
1120   Builder.setFastMathFlags(DivFMF);
1121   Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
1122 
1123   SmallVector<Value *, 4> NumVals;
1124   SmallVector<Value *, 4> DenVals;
1125   SmallVector<Value *, 4> RsqDenVals;
1126   extractValues(Builder, NumVals, Num);
1127   extractValues(Builder, DenVals, Den);
1128 
1129   if (RsqOp)
1130     extractValues(Builder, RsqDenVals, RsqOp);
1131 
1132   SmallVector<Value *, 4> ResultVals(NumVals.size());
1133   for (int I = 0, E = NumVals.size(); I != E; ++I) {
1134     Value *NumElt = NumVals[I];
1135     Value *DenElt = DenVals[I];
1136     Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr;
1137 
1138     Value *NewElt =
1139         visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt,
1140                          cast<Instruction>(FPOp), ReqdAccuracy);
1141     if (!NewElt) {
1142       // Keep the original, but scalarized.
1143 
1144       // This has the unfortunate side effect of sometimes scalarizing when
1145       // we're not going to do anything.
1146       NewElt = Builder.CreateFDiv(NumElt, DenElt);
1147       if (auto *NewEltInst = dyn_cast<Instruction>(NewElt))
1148         NewEltInst->copyMetadata(FDiv);
1149     }
1150 
1151     ResultVals[I] = NewElt;
1152   }
1153 
1154   Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals);
1155 
1156   if (NewVal) {
1157     FDiv.replaceAllUsesWith(NewVal);
1158     NewVal->takeName(&FDiv);
1159     RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLInfo);
1160   }
1161 
1162   return true;
1163 }
1164 
1165 static bool hasUnsafeFPMath(const Function &F) {
1166   Attribute Attr = F.getFnAttribute("unsafe-fp-math");
1167   return Attr.getValueAsBool();
1168 }
1169 
1170 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
1171                                           Value *LHS, Value *RHS) {
1172   Type *I32Ty = Builder.getInt32Ty();
1173   Type *I64Ty = Builder.getInt64Ty();
1174 
1175   Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
1176   Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
1177   Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
1178   Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
1179   Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
1180   Hi = Builder.CreateTrunc(Hi, I32Ty);
1181   return std::pair(Lo, Hi);
1182 }
1183 
1184 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
1185   return getMul64(Builder, LHS, RHS).second;
1186 }
1187 
1188 /// Figure out how many bits are really needed for this division. \p AtLeast is
1189 /// an optimization hint to bypass the second ComputeNumSignBits call if we the
1190 /// first one is insufficient. Returns -1 on failure.
1191 int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num,
1192                                             Value *Den, unsigned AtLeast,
1193                                             bool IsSigned) const {
1194   const DataLayout &DL = Mod->getDataLayout();
1195   unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
1196   if (LHSSignBits < AtLeast)
1197     return -1;
1198 
1199   unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
1200   if (RHSSignBits < AtLeast)
1201     return -1;
1202 
1203   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1204   unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
1205   if (IsSigned)
1206     ++DivBits;
1207   return DivBits;
1208 }
1209 
1210 // The fractional part of a float is enough to accurately represent up to
1211 // a 24-bit signed integer.
1212 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder,
1213                                                 BinaryOperator &I, Value *Num,
1214                                                 Value *Den, bool IsDiv,
1215                                                 bool IsSigned) const {
1216   int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
1217   if (DivBits == -1)
1218     return nullptr;
1219   return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
1220 }
1221 
1222 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl(
1223     IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den,
1224     unsigned DivBits, bool IsDiv, bool IsSigned) const {
1225   Type *I32Ty = Builder.getInt32Ty();
1226   Num = Builder.CreateTrunc(Num, I32Ty);
1227   Den = Builder.CreateTrunc(Den, I32Ty);
1228 
1229   Type *F32Ty = Builder.getFloatTy();
1230   ConstantInt *One = Builder.getInt32(1);
1231   Value *JQ = One;
1232 
1233   if (IsSigned) {
1234     // char|short jq = ia ^ ib;
1235     JQ = Builder.CreateXor(Num, Den);
1236 
1237     // jq = jq >> (bitsize - 2)
1238     JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
1239 
1240     // jq = jq | 0x1
1241     JQ = Builder.CreateOr(JQ, One);
1242   }
1243 
1244   // int ia = (int)LHS;
1245   Value *IA = Num;
1246 
1247   // int ib, (int)RHS;
1248   Value *IB = Den;
1249 
1250   // float fa = (float)ia;
1251   Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
1252                        : Builder.CreateUIToFP(IA, F32Ty);
1253 
1254   // float fb = (float)ib;
1255   Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
1256                        : Builder.CreateUIToFP(IB,F32Ty);
1257 
1258   Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
1259                                                 Builder.getFloatTy());
1260   Value *RCP = Builder.CreateCall(RcpDecl, { FB });
1261   Value *FQM = Builder.CreateFMul(FA, RCP);
1262 
1263   // fq = trunc(fqm);
1264   CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
1265   FQ->copyFastMathFlags(Builder.getFastMathFlags());
1266 
1267   // float fqneg = -fq;
1268   Value *FQNeg = Builder.CreateFNeg(FQ);
1269 
1270   // float fr = mad(fqneg, fb, fa);
1271   auto FMAD = !ST->hasMadMacF32Insts()
1272                   ? Intrinsic::fma
1273                   : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
1274   Value *FR = Builder.CreateIntrinsic(FMAD,
1275                                       {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
1276 
1277   // int iq = (int)fq;
1278   Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
1279                        : Builder.CreateFPToUI(FQ, I32Ty);
1280 
1281   // fr = fabs(fr);
1282   FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
1283 
1284   // fb = fabs(fb);
1285   FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
1286 
1287   // int cv = fr >= fb;
1288   Value *CV = Builder.CreateFCmpOGE(FR, FB);
1289 
1290   // jq = (cv ? jq : 0);
1291   JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
1292 
1293   // dst = iq + jq;
1294   Value *Div = Builder.CreateAdd(IQ, JQ);
1295 
1296   Value *Res = Div;
1297   if (!IsDiv) {
1298     // Rem needs compensation, it's easier to recompute it
1299     Value *Rem = Builder.CreateMul(Div, Den);
1300     Res = Builder.CreateSub(Num, Rem);
1301   }
1302 
1303   if (DivBits != 0 && DivBits < 32) {
1304     // Extend in register from the number of bits this divide really is.
1305     if (IsSigned) {
1306       int InRegBits = 32 - DivBits;
1307 
1308       Res = Builder.CreateShl(Res, InRegBits);
1309       Res = Builder.CreateAShr(Res, InRegBits);
1310     } else {
1311       ConstantInt *TruncMask
1312         = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
1313       Res = Builder.CreateAnd(Res, TruncMask);
1314     }
1315   }
1316 
1317   return Res;
1318 }
1319 
1320 // Try to recognize special cases the DAG will emit special, better expansions
1321 // than the general expansion we do here.
1322 
1323 // TODO: It would be better to just directly handle those optimizations here.
1324 bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I,
1325                                                          Value *Num,
1326                                                          Value *Den) const {
1327   if (Constant *C = dyn_cast<Constant>(Den)) {
1328     // Arbitrary constants get a better expansion as long as a wider mulhi is
1329     // legal.
1330     if (C->getType()->getScalarSizeInBits() <= 32)
1331       return true;
1332 
1333     // TODO: Sdiv check for not exact for some reason.
1334 
1335     // If there's no wider mulhi, there's only a better expansion for powers of
1336     // two.
1337     // TODO: Should really know for each vector element.
1338     if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
1339       return true;
1340 
1341     return false;
1342   }
1343 
1344   if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
1345     // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1346     if (BinOpDen->getOpcode() == Instruction::Shl &&
1347         isa<Constant>(BinOpDen->getOperand(0)) &&
1348         isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
1349                                0, AC, &I, DT)) {
1350       return true;
1351     }
1352   }
1353 
1354   return false;
1355 }
1356 
1357 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
1358   // Check whether the sign can be determined statically.
1359   KnownBits Known = computeKnownBits(V, *DL);
1360   if (Known.isNegative())
1361     return Constant::getAllOnesValue(V->getType());
1362   if (Known.isNonNegative())
1363     return Constant::getNullValue(V->getType());
1364   return Builder.CreateAShr(V, Builder.getInt32(31));
1365 }
1366 
1367 Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder,
1368                                                 BinaryOperator &I, Value *X,
1369                                                 Value *Y) const {
1370   Instruction::BinaryOps Opc = I.getOpcode();
1371   assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
1372          Opc == Instruction::SRem || Opc == Instruction::SDiv);
1373 
1374   FastMathFlags FMF;
1375   FMF.setFast();
1376   Builder.setFastMathFlags(FMF);
1377 
1378   if (divHasSpecialOptimization(I, X, Y))
1379     return nullptr;  // Keep it for later optimization.
1380 
1381   bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
1382   bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
1383 
1384   Type *Ty = X->getType();
1385   Type *I32Ty = Builder.getInt32Ty();
1386   Type *F32Ty = Builder.getFloatTy();
1387 
1388   if (Ty->getScalarSizeInBits() < 32) {
1389     if (IsSigned) {
1390       X = Builder.CreateSExt(X, I32Ty);
1391       Y = Builder.CreateSExt(Y, I32Ty);
1392     } else {
1393       X = Builder.CreateZExt(X, I32Ty);
1394       Y = Builder.CreateZExt(Y, I32Ty);
1395     }
1396   }
1397 
1398   if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
1399     return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
1400                       Builder.CreateZExtOrTrunc(Res, Ty);
1401   }
1402 
1403   ConstantInt *Zero = Builder.getInt32(0);
1404   ConstantInt *One = Builder.getInt32(1);
1405 
1406   Value *Sign = nullptr;
1407   if (IsSigned) {
1408     Value *SignX = getSign32(X, Builder, DL);
1409     Value *SignY = getSign32(Y, Builder, DL);
1410     // Remainder sign is the same as LHS
1411     Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
1412 
1413     X = Builder.CreateAdd(X, SignX);
1414     Y = Builder.CreateAdd(Y, SignY);
1415 
1416     X = Builder.CreateXor(X, SignX);
1417     Y = Builder.CreateXor(Y, SignY);
1418   }
1419 
1420   // The algorithm here is based on ideas from "Software Integer Division", Tom
1421   // Rodeheffer, August 2008.
1422   //
1423   // unsigned udiv(unsigned x, unsigned y) {
1424   //   // Initial estimate of inv(y). The constant is less than 2^32 to ensure
1425   //   // that this is a lower bound on inv(y), even if some of the calculations
1426   //   // round up.
1427   //   unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
1428   //
1429   //   // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
1430   //   // Empirically this is guaranteed to give a "two-y" lower bound on
1431   //   // inv(y).
1432   //   z += umulh(z, -y * z);
1433   //
1434   //   // Quotient/remainder estimate.
1435   //   unsigned q = umulh(x, z);
1436   //   unsigned r = x - q * y;
1437   //
1438   //   // Two rounds of quotient/remainder refinement.
1439   //   if (r >= y) {
1440   //     ++q;
1441   //     r -= y;
1442   //   }
1443   //   if (r >= y) {
1444   //     ++q;
1445   //     r -= y;
1446   //   }
1447   //
1448   //   return q;
1449   // }
1450 
1451   // Initial estimate of inv(y).
1452   Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
1453   Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
1454   Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
1455   Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE));
1456   Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
1457   Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
1458 
1459   // One round of UNR.
1460   Value *NegY = Builder.CreateSub(Zero, Y);
1461   Value *NegYZ = Builder.CreateMul(NegY, Z);
1462   Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
1463 
1464   // Quotient/remainder estimate.
1465   Value *Q = getMulHu(Builder, X, Z);
1466   Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
1467 
1468   // First quotient/remainder refinement.
1469   Value *Cond = Builder.CreateICmpUGE(R, Y);
1470   if (IsDiv)
1471     Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1472   R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1473 
1474   // Second quotient/remainder refinement.
1475   Cond = Builder.CreateICmpUGE(R, Y);
1476   Value *Res;
1477   if (IsDiv)
1478     Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1479   else
1480     Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1481 
1482   if (IsSigned) {
1483     Res = Builder.CreateXor(Res, Sign);
1484     Res = Builder.CreateSub(Res, Sign);
1485   }
1486 
1487   Res = Builder.CreateTrunc(Res, Ty);
1488 
1489   return Res;
1490 }
1491 
1492 Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder,
1493                                                 BinaryOperator &I, Value *Num,
1494                                                 Value *Den) const {
1495   if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
1496     return nullptr;  // Keep it for later optimization.
1497 
1498   Instruction::BinaryOps Opc = I.getOpcode();
1499 
1500   bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
1501   bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
1502 
1503   int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
1504   if (NumDivBits == -1)
1505     return nullptr;
1506 
1507   Value *Narrowed = nullptr;
1508   if (NumDivBits <= 24) {
1509     Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
1510                                   IsDiv, IsSigned);
1511   } else if (NumDivBits <= 32) {
1512     Narrowed = expandDivRem32(Builder, I, Num, Den);
1513   }
1514 
1515   if (Narrowed) {
1516     return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
1517                       Builder.CreateZExt(Narrowed, Num->getType());
1518   }
1519 
1520   return nullptr;
1521 }
1522 
1523 void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const {
1524   Instruction::BinaryOps Opc = I.getOpcode();
1525   // Do the general expansion.
1526   if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
1527     expandDivisionUpTo64Bits(&I);
1528     return;
1529   }
1530 
1531   if (Opc == Instruction::URem || Opc == Instruction::SRem) {
1532     expandRemainderUpTo64Bits(&I);
1533     return;
1534   }
1535 
1536   llvm_unreachable("not a division");
1537 }
1538 
1539 bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) {
1540   if (foldBinOpIntoSelect(I))
1541     return true;
1542 
1543   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1544       UA->isUniform(&I) && promoteUniformOpToI32(I))
1545     return true;
1546 
1547   if (UseMul24Intrin && replaceMulWithMul24(I))
1548     return true;
1549 
1550   bool Changed = false;
1551   Instruction::BinaryOps Opc = I.getOpcode();
1552   Type *Ty = I.getType();
1553   Value *NewDiv = nullptr;
1554   unsigned ScalarSize = Ty->getScalarSizeInBits();
1555 
1556   SmallVector<BinaryOperator *, 8> Div64ToExpand;
1557 
1558   if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
1559        Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
1560       ScalarSize <= 64 &&
1561       !DisableIDivExpand) {
1562     Value *Num = I.getOperand(0);
1563     Value *Den = I.getOperand(1);
1564     IRBuilder<> Builder(&I);
1565     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1566 
1567     if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1568       NewDiv = PoisonValue::get(VT);
1569 
1570       for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
1571         Value *NumEltN = Builder.CreateExtractElement(Num, N);
1572         Value *DenEltN = Builder.CreateExtractElement(Den, N);
1573 
1574         Value *NewElt;
1575         if (ScalarSize <= 32) {
1576           NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
1577           if (!NewElt)
1578             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1579         } else {
1580           // See if this 64-bit division can be shrunk to 32/24-bits before
1581           // producing the general expansion.
1582           NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
1583           if (!NewElt) {
1584             // The general 64-bit expansion introduces control flow and doesn't
1585             // return the new value. Just insert a scalar copy and defer
1586             // expanding it.
1587             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1588             Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
1589           }
1590         }
1591 
1592         NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
1593       }
1594     } else {
1595       if (ScalarSize <= 32)
1596         NewDiv = expandDivRem32(Builder, I, Num, Den);
1597       else {
1598         NewDiv = shrinkDivRem64(Builder, I, Num, Den);
1599         if (!NewDiv)
1600           Div64ToExpand.push_back(&I);
1601       }
1602     }
1603 
1604     if (NewDiv) {
1605       I.replaceAllUsesWith(NewDiv);
1606       I.eraseFromParent();
1607       Changed = true;
1608     }
1609   }
1610 
1611   if (ExpandDiv64InIR) {
1612     // TODO: We get much worse code in specially handled constant cases.
1613     for (BinaryOperator *Div : Div64ToExpand) {
1614       expandDivRem64(*Div);
1615       FlowChanged = true;
1616       Changed = true;
1617     }
1618   }
1619 
1620   return Changed;
1621 }
1622 
1623 bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) {
1624   if (!WidenLoads)
1625     return false;
1626 
1627   if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
1628        I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
1629       canWidenScalarExtLoad(I)) {
1630     IRBuilder<> Builder(&I);
1631     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1632 
1633     Type *I32Ty = Builder.getInt32Ty();
1634     LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand());
1635     WidenLoad->copyMetadata(I);
1636 
1637     // If we have range metadata, we need to convert the type, and not make
1638     // assumptions about the high bits.
1639     if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
1640       ConstantInt *Lower =
1641         mdconst::extract<ConstantInt>(Range->getOperand(0));
1642 
1643       if (Lower->isNullValue()) {
1644         WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
1645       } else {
1646         Metadata *LowAndHigh[] = {
1647           ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
1648           // Don't make assumptions about the high bits.
1649           ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
1650         };
1651 
1652         WidenLoad->setMetadata(LLVMContext::MD_range,
1653                                MDNode::get(Mod->getContext(), LowAndHigh));
1654       }
1655     }
1656 
1657     int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
1658     Type *IntNTy = Builder.getIntNTy(TySize);
1659     Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
1660     Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
1661     I.replaceAllUsesWith(ValOrig);
1662     I.eraseFromParent();
1663     return true;
1664   }
1665 
1666   return false;
1667 }
1668 
1669 bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) {
1670   bool Changed = false;
1671 
1672   if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
1673       UA->isUniform(&I))
1674     Changed |= promoteUniformOpToI32(I);
1675 
1676   return Changed;
1677 }
1678 
1679 bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) {
1680   Value *Cond = I.getCondition();
1681   Value *TrueVal = I.getTrueValue();
1682   Value *FalseVal = I.getFalseValue();
1683   Value *CmpVal;
1684   FCmpInst::Predicate Pred;
1685 
1686   if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) {
1687     if (UA->isUniform(&I))
1688       return promoteUniformOpToI32(I);
1689     return false;
1690   }
1691 
1692   // Match fract pattern with nan check.
1693   if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN())))
1694     return false;
1695 
1696   FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I);
1697   if (!FPOp)
1698     return false;
1699 
1700   IRBuilder<> Builder(&I);
1701   Builder.setFastMathFlags(FPOp->getFastMathFlags());
1702 
1703   auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal);
1704   auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal);
1705 
1706   Value *Fract = nullptr;
1707   if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse &&
1708       CmpVal == matchFractPat(*IIFalse)) {
1709     // isnan(x) ? x : fract(x)
1710     Fract = applyFractPat(Builder, CmpVal);
1711   } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue &&
1712              CmpVal == matchFractPat(*IITrue)) {
1713     // !isnan(x) ? fract(x) : x
1714     Fract = applyFractPat(Builder, CmpVal);
1715   } else
1716     return false;
1717 
1718   Fract->takeName(&I);
1719   I.replaceAllUsesWith(Fract);
1720   RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo);
1721   return true;
1722 }
1723 
1724 static bool areInSameBB(const Value *A, const Value *B) {
1725   const auto *IA = dyn_cast<Instruction>(A);
1726   const auto *IB = dyn_cast<Instruction>(B);
1727   return IA && IB && IA->getParent() == IB->getParent();
1728 }
1729 
1730 // Helper for breaking large PHIs that returns true when an extractelement on V
1731 // is likely to be folded away by the DAG combiner.
1732 static bool isInterestingPHIIncomingValue(const Value *V) {
1733   const auto *FVT = dyn_cast<FixedVectorType>(V->getType());
1734   if (!FVT)
1735     return false;
1736 
1737   const Value *CurVal = V;
1738 
1739   // Check for insertelements, keeping track of the elements covered.
1740   BitVector EltsCovered(FVT->getNumElements());
1741   while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) {
1742     const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2));
1743 
1744     // Non constant index/out of bounds index -> folding is unlikely.
1745     // The latter is more of a sanity check because canonical IR should just
1746     // have replaced those with poison.
1747     if (!Idx || Idx->getSExtValue() >= FVT->getNumElements())
1748       return false;
1749 
1750     const auto *VecSrc = IE->getOperand(0);
1751 
1752     // If the vector source is another instruction, it must be in the same basic
1753     // block. Otherwise, the DAGCombiner won't see the whole thing and is
1754     // unlikely to be able to do anything interesting here.
1755     if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE))
1756       return false;
1757 
1758     CurVal = VecSrc;
1759     EltsCovered.set(Idx->getSExtValue());
1760 
1761     // All elements covered.
1762     if (EltsCovered.all())
1763       return true;
1764   }
1765 
1766   // We either didn't find a single insertelement, or the insertelement chain
1767   // ended before all elements were covered. Check for other interesting values.
1768 
1769   // Constants are always interesting because we can just constant fold the
1770   // extractelements.
1771   if (isa<Constant>(CurVal))
1772     return true;
1773 
1774   // shufflevector is likely to be profitable if either operand is a constant,
1775   // or if either source is in the same block.
1776   // This is because shufflevector is most often lowered as a series of
1777   // insert/extract elements anyway.
1778   if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) {
1779     return isa<Constant>(SV->getOperand(1)) ||
1780            areInSameBB(SV, SV->getOperand(0)) ||
1781            areInSameBB(SV, SV->getOperand(1));
1782   }
1783 
1784   return false;
1785 }
1786 
1787 static void collectPHINodes(const PHINode &I,
1788                             SmallPtrSet<const PHINode *, 8> &SeenPHIs) {
1789   const auto [It, Inserted] = SeenPHIs.insert(&I);
1790   if (!Inserted)
1791     return;
1792 
1793   for (const Value *Inc : I.incoming_values()) {
1794     if (const auto *PhiInc = dyn_cast<PHINode>(Inc))
1795       collectPHINodes(*PhiInc, SeenPHIs);
1796   }
1797 
1798   for (const User *U : I.users()) {
1799     if (const auto *PhiU = dyn_cast<PHINode>(U))
1800       collectPHINodes(*PhiU, SeenPHIs);
1801   }
1802 }
1803 
1804 bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) {
1805   // Check in the cache first.
1806   if (const auto It = BreakPhiNodesCache.find(&I);
1807       It != BreakPhiNodesCache.end())
1808     return It->second;
1809 
1810   // We consider PHI nodes as part of "chains", so given a PHI node I, we
1811   // recursively consider all its users and incoming values that are also PHI
1812   // nodes. We then make a decision about all of those PHIs at once. Either they
1813   // all get broken up, or none of them do. That way, we avoid cases where a
1814   // single PHI is/is not broken and we end up reforming/exploding a vector
1815   // multiple times, or even worse, doing it in a loop.
1816   SmallPtrSet<const PHINode *, 8> WorkList;
1817   collectPHINodes(I, WorkList);
1818 
1819 #ifndef NDEBUG
1820   // Check that none of the PHI nodes in the worklist are in the map. If some of
1821   // them are, it means we're not good enough at collecting related PHIs.
1822   for (const PHINode *WLP : WorkList) {
1823     assert(BreakPhiNodesCache.count(WLP) == 0);
1824   }
1825 #endif
1826 
1827   // To consider a PHI profitable to break, we need to see some interesting
1828   // incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist
1829   // must have one to consider all PHIs breakable.
1830   //
1831   // This threshold has been determined through performance testing.
1832   //
1833   // Note that the computation below is equivalent to
1834   //
1835   //    (unsigned)ceil((K / 3.0) * 2)
1836   //
1837   // It's simply written this way to avoid mixing integral/FP arithmetic.
1838   const auto Threshold = (alignTo(WorkList.size() * 2, 3) / 3);
1839   unsigned NumBreakablePHIs = 0;
1840   bool CanBreak = false;
1841   for (const PHINode *Cur : WorkList) {
1842     // Don't break PHIs that have no interesting incoming values. That is, where
1843     // there is no clear opportunity to fold the "extractelement" instructions
1844     // we would add.
1845     //
1846     // Note: IC does not run after this pass, so we're only interested in the
1847     // foldings that the DAG combiner can do.
1848     if (any_of(Cur->incoming_values(), isInterestingPHIIncomingValue)) {
1849       if (++NumBreakablePHIs >= Threshold) {
1850         CanBreak = true;
1851         break;
1852       }
1853     }
1854   }
1855 
1856   for (const PHINode *Cur : WorkList)
1857     BreakPhiNodesCache[Cur] = CanBreak;
1858 
1859   return CanBreak;
1860 }
1861 
1862 /// Helper class for "break large PHIs" (visitPHINode).
1863 ///
1864 /// This represents a slice of a PHI's incoming value, which is made up of:
1865 ///   - The type of the slice (Ty)
1866 ///   - The index in the incoming value's vector where the slice starts (Idx)
1867 ///   - The number of elements in the slice (NumElts).
1868 /// It also keeps track of the NewPHI node inserted for this particular slice.
1869 ///
1870 /// Slice examples:
1871 ///   <4 x i64> -> Split into four i64 slices.
1872 ///     -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1]
1873 ///   <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail.
1874 ///     -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1]
1875 class VectorSlice {
1876 public:
1877   VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts)
1878       : Ty(Ty), Idx(Idx), NumElts(NumElts) {}
1879 
1880   Type *Ty = nullptr;
1881   unsigned Idx = 0;
1882   unsigned NumElts = 0;
1883   PHINode *NewPHI = nullptr;
1884 
1885   /// Slice \p Inc according to the information contained within this slice.
1886   /// This is cached, so if called multiple times for the same \p BB & \p Inc
1887   /// pair, it returns the same Sliced value as well.
1888   ///
1889   /// Note this *intentionally* does not return the same value for, say,
1890   /// [%bb.0, %0] & [%bb.1, %0] as:
1891   ///   - It could cause issues with dominance (e.g. if bb.1 is seen first, then
1892   ///   the value in bb.1 may not be reachable from bb.0 if it's its
1893   ///   predecessor.)
1894   ///   - We also want to make our extract instructions as local as possible so
1895   ///   the DAG has better chances of folding them out. Duplicating them like
1896   ///   that is beneficial in that regard.
1897   ///
1898   /// This is both a minor optimization to avoid creating duplicate
1899   /// instructions, but also a requirement for correctness. It is not forbidden
1900   /// for a PHI node to have the same [BB, Val] pair multiple times. If we
1901   /// returned a new value each time, those previously identical pairs would all
1902   /// have different incoming values (from the same block) and it'd cause a "PHI
1903   /// node has multiple entries for the same basic block with different incoming
1904   /// values!" verifier error.
1905   Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) {
1906     Value *&Res = SlicedVals[{BB, Inc}];
1907     if (Res)
1908       return Res;
1909 
1910     IRBuilder<> B(BB->getTerminator());
1911     if (Instruction *IncInst = dyn_cast<Instruction>(Inc))
1912       B.SetCurrentDebugLocation(IncInst->getDebugLoc());
1913 
1914     if (NumElts > 1) {
1915       SmallVector<int, 4> Mask;
1916       for (unsigned K = Idx; K < (Idx + NumElts); ++K)
1917         Mask.push_back(K);
1918       Res = B.CreateShuffleVector(Inc, Mask, NewValName);
1919     } else
1920       Res = B.CreateExtractElement(Inc, Idx, NewValName);
1921 
1922     return Res;
1923   }
1924 
1925 private:
1926   SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals;
1927 };
1928 
1929 bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) {
1930   // Break-up fixed-vector PHIs into smaller pieces.
1931   // Default threshold is 32, so it breaks up any vector that's >32 bits into
1932   // its elements, or into 32-bit pieces (for 8/16 bit elts).
1933   //
1934   // This is only helpful for DAGISel because it doesn't handle large PHIs as
1935   // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg.
1936   // With large, odd-sized PHIs we may end up needing many `build_vector`
1937   // operations with most elements being "undef". This inhibits a lot of
1938   // optimization opportunities and can result in unreasonably high register
1939   // pressure and the inevitable stack spilling.
1940   if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption)
1941     return false;
1942 
1943   FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType());
1944   if (!FVT || FVT->getNumElements() == 1 ||
1945       DL->getTypeSizeInBits(FVT) <= BreakLargePHIsThreshold)
1946     return false;
1947 
1948   if (!ForceBreakLargePHIs && !canBreakPHINode(I))
1949     return false;
1950 
1951   std::vector<VectorSlice> Slices;
1952 
1953   Type *EltTy = FVT->getElementType();
1954   {
1955     unsigned Idx = 0;
1956     // For 8/16 bits type, don't scalarize fully but break it up into as many
1957     // 32-bit slices as we can, and scalarize the tail.
1958     const unsigned EltSize = DL->getTypeSizeInBits(EltTy);
1959     const unsigned NumElts = FVT->getNumElements();
1960     if (EltSize == 8 || EltSize == 16) {
1961       const unsigned SubVecSize = (32 / EltSize);
1962       Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize);
1963       for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End;
1964            Idx += SubVecSize)
1965         Slices.emplace_back(SubVecTy, Idx, SubVecSize);
1966     }
1967 
1968     // Scalarize all remaining elements.
1969     for (; Idx < NumElts; ++Idx)
1970       Slices.emplace_back(EltTy, Idx, 1);
1971   }
1972 
1973   assert(Slices.size() > 1);
1974 
1975   // Create one PHI per vector piece. The "VectorSlice" class takes care of
1976   // creating the necessary instruction to extract the relevant slices of each
1977   // incoming value.
1978   IRBuilder<> B(I.getParent());
1979   B.SetCurrentDebugLocation(I.getDebugLoc());
1980 
1981   unsigned IncNameSuffix = 0;
1982   for (VectorSlice &S : Slices) {
1983     // We need to reset the build on each iteration, because getSlicedVal may
1984     // have inserted something into I's BB.
1985     B.SetInsertPoint(I.getParent()->getFirstNonPHI());
1986     S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues());
1987 
1988     for (const auto &[Idx, BB] : enumerate(I.blocks())) {
1989       S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx),
1990                                            "largephi.extractslice" +
1991                                                std::to_string(IncNameSuffix++)),
1992                             BB);
1993     }
1994   }
1995 
1996   // And replace this PHI with a vector of all the previous PHI values.
1997   Value *Vec = PoisonValue::get(FVT);
1998   unsigned NameSuffix = 0;
1999   for (VectorSlice &S : Slices) {
2000     const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++);
2001     if (S.NumElts > 1)
2002       Vec =
2003           B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName);
2004     else
2005       Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName);
2006   }
2007 
2008   I.replaceAllUsesWith(Vec);
2009   I.eraseFromParent();
2010   return true;
2011 }
2012 
2013 bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) {
2014   switch (I.getIntrinsicID()) {
2015   case Intrinsic::bitreverse:
2016     return visitBitreverseIntrinsicInst(I);
2017   case Intrinsic::minnum:
2018     return visitMinNum(I);
2019   case Intrinsic::sqrt:
2020     return visitSqrt(I);
2021   default:
2022     return false;
2023   }
2024 }
2025 
2026 bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
2027   bool Changed = false;
2028 
2029   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
2030       UA->isUniform(&I))
2031     Changed |= promoteUniformBitreverseToI32(I);
2032 
2033   return Changed;
2034 }
2035 
2036 /// Match non-nan fract pattern.
2037 ///   minnum(fsub(x, floor(x)), nextafter(1.0, -1.0)
2038 ///
2039 /// If fract is a useful instruction for the subtarget. Does not account for the
2040 /// nan handling; the instruction has a nan check on the input value.
2041 Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) {
2042   if (ST->hasFractBug())
2043     return nullptr;
2044 
2045   if (I.getIntrinsicID() != Intrinsic::minnum)
2046     return nullptr;
2047 
2048   Type *Ty = I.getType();
2049   if (!isLegalFloatingTy(Ty->getScalarType()))
2050     return nullptr;
2051 
2052   Value *Arg0 = I.getArgOperand(0);
2053   Value *Arg1 = I.getArgOperand(1);
2054 
2055   const APFloat *C;
2056   if (!match(Arg1, m_APFloat(C)))
2057     return nullptr;
2058 
2059   APFloat One(1.0);
2060   bool LosesInfo;
2061   One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo);
2062 
2063   // Match nextafter(1.0, -1)
2064   One.next(true);
2065   if (One != *C)
2066     return nullptr;
2067 
2068   Value *FloorSrc;
2069   if (match(Arg0, m_FSub(m_Value(FloorSrc),
2070                          m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc)))))
2071     return FloorSrc;
2072   return nullptr;
2073 }
2074 
2075 Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder,
2076                                                Value *FractArg) {
2077   SmallVector<Value *, 4> FractVals;
2078   extractValues(Builder, FractVals, FractArg);
2079 
2080   SmallVector<Value *, 4> ResultVals(FractVals.size());
2081 
2082   Type *Ty = FractArg->getType()->getScalarType();
2083   for (unsigned I = 0, E = FractVals.size(); I != E; ++I) {
2084     ResultVals[I] =
2085         Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]});
2086   }
2087 
2088   return insertValues(Builder, FractArg->getType(), ResultVals);
2089 }
2090 
2091 bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) {
2092   Value *FractArg = matchFractPat(I);
2093   if (!FractArg)
2094     return false;
2095 
2096   // Match pattern for fract intrinsic in contexts where the nan check has been
2097   // optimized out (and hope the knowledge the source can't be nan wasn't lost).
2098   if (!I.hasNoNaNs() && !isKnownNeverNaN(FractArg, *DL, TLInfo))
2099     return false;
2100 
2101   IRBuilder<> Builder(&I);
2102   FastMathFlags FMF = I.getFastMathFlags();
2103   FMF.setNoNaNs();
2104   Builder.setFastMathFlags(FMF);
2105 
2106   Value *Fract = applyFractPat(Builder, FractArg);
2107   Fract->takeName(&I);
2108   I.replaceAllUsesWith(Fract);
2109 
2110   RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo);
2111   return true;
2112 }
2113 
2114 static bool isOneOrNegOne(const Value *Val) {
2115   const APFloat *C;
2116   return match(Val, m_APFloat(C)) && C->getExactLog2Abs() == 0;
2117 }
2118 
2119 // Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way.
2120 bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) {
2121   Type *Ty = Sqrt.getType()->getScalarType();
2122   if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST->has16BitInsts()))
2123     return false;
2124 
2125   const FPMathOperator *FPOp = cast<const FPMathOperator>(&Sqrt);
2126   FastMathFlags SqrtFMF = FPOp->getFastMathFlags();
2127 
2128   // We're trying to handle the fast-but-not-that-fast case only. The lowering
2129   // of fast llvm.sqrt will give the raw instruction anyway.
2130   if (SqrtFMF.approxFunc() || HasUnsafeFPMath)
2131     return false;
2132 
2133   const float ReqdAccuracy = FPOp->getFPAccuracy();
2134 
2135   // Defer correctly rounded expansion to codegen.
2136   if (ReqdAccuracy < 1.0f)
2137     return false;
2138 
2139   // FIXME: This is an ugly hack for this pass using forward iteration instead
2140   // of reverse. If it worked like a normal combiner, the rsq would form before
2141   // we saw a sqrt call.
2142   auto *FDiv =
2143       dyn_cast_or_null<FPMathOperator>(Sqrt.getUniqueUndroppableUser());
2144   if (FDiv && FDiv->getOpcode() == Instruction::FDiv &&
2145       FDiv->getFPAccuracy() >= 1.0f &&
2146       canOptimizeWithRsq(FPOp, FDiv->getFastMathFlags(), SqrtFMF) &&
2147       // TODO: We should also handle the arcp case for the fdiv with non-1 value
2148       isOneOrNegOne(FDiv->getOperand(0)))
2149     return false;
2150 
2151   Value *SrcVal = Sqrt.getOperand(0);
2152   bool CanTreatAsDAZ = canIgnoreDenormalInput(SrcVal, &Sqrt);
2153 
2154   // The raw instruction is 1 ulp, but the correction for denormal handling
2155   // brings it to 2.
2156   if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f)
2157     return false;
2158 
2159   IRBuilder<> Builder(&Sqrt);
2160   SmallVector<Value *, 4> SrcVals;
2161   extractValues(Builder, SrcVals, SrcVal);
2162 
2163   SmallVector<Value *, 4> ResultVals(SrcVals.size());
2164   for (int I = 0, E = SrcVals.size(); I != E; ++I) {
2165     if (CanTreatAsDAZ)
2166       ResultVals[I] = Builder.CreateCall(getSqrtF32(), SrcVals[I]);
2167     else
2168       ResultVals[I] = emitSqrtIEEE2ULP(Builder, SrcVals[I], SqrtFMF);
2169   }
2170 
2171   Value *NewSqrt = insertValues(Builder, Sqrt.getType(), ResultVals);
2172   NewSqrt->takeName(&Sqrt);
2173   Sqrt.replaceAllUsesWith(NewSqrt);
2174   Sqrt.eraseFromParent();
2175   return true;
2176 }
2177 
2178 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
2179   Impl.Mod = &M;
2180   Impl.DL = &Impl.Mod->getDataLayout();
2181   Impl.SqrtF32 = nullptr;
2182   Impl.LdexpF32 = nullptr;
2183   return false;
2184 }
2185 
2186 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
2187   if (skipFunction(F))
2188     return false;
2189 
2190   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
2191   if (!TPC)
2192     return false;
2193 
2194   const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
2195   Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2196   Impl.ST = &TM.getSubtarget<GCNSubtarget>(F);
2197   Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2198   Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
2199   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
2200   Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr;
2201   Impl.HasUnsafeFPMath = hasUnsafeFPMath(F);
2202   SIModeRegisterDefaults Mode(F, *Impl.ST);
2203   Impl.HasFP32DenormalFlush =
2204       Mode.FP32Denormals == DenormalMode::getPreserveSign();
2205   return Impl.run(F);
2206 }
2207 
2208 PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F,
2209                                                 FunctionAnalysisManager &FAM) {
2210   AMDGPUCodeGenPrepareImpl Impl;
2211   Impl.Mod = F.getParent();
2212   Impl.DL = &Impl.Mod->getDataLayout();
2213   Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F);
2214   Impl.ST = &TM.getSubtarget<GCNSubtarget>(F);
2215   Impl.AC = &FAM.getResult<AssumptionAnalysis>(F);
2216   Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F);
2217   Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
2218   Impl.HasUnsafeFPMath = hasUnsafeFPMath(F);
2219   SIModeRegisterDefaults Mode(F, *Impl.ST);
2220   Impl.HasFP32DenormalFlush =
2221       Mode.FP32Denormals == DenormalMode::getPreserveSign();
2222   PreservedAnalyses PA = PreservedAnalyses::none();
2223   if (!Impl.FlowChanged)
2224     PA.preserveSet<CFGAnalyses>();
2225   return Impl.run(F) ? PA : PreservedAnalyses::all();
2226 }
2227 
2228 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
2229                       "AMDGPU IR optimizations", false, false)
2230 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2231 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2232 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
2233 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
2234                     false, false)
2235 
2236 char AMDGPUCodeGenPrepare::ID = 0;
2237 
2238 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
2239   return new AMDGPUCodeGenPrepare();
2240 }
2241