1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "SIModeRegisterDefaults.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/ConstantFolding.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/UniformityAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/InstVisitor.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Transforms/Utils/IntegerDivision.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 35 #define DEBUG_TYPE "amdgpu-codegenprepare" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 namespace { 41 42 static cl::opt<bool> WidenLoads( 43 "amdgpu-codegenprepare-widen-constant-loads", 44 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 45 cl::ReallyHidden, 46 cl::init(false)); 47 48 static cl::opt<bool> Widen16BitOps( 49 "amdgpu-codegenprepare-widen-16-bit-ops", 50 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 51 cl::ReallyHidden, 52 cl::init(true)); 53 54 static cl::opt<bool> 55 BreakLargePHIs("amdgpu-codegenprepare-break-large-phis", 56 cl::desc("Break large PHI nodes for DAGISel"), 57 cl::ReallyHidden, cl::init(true)); 58 59 static cl::opt<bool> 60 ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis", 61 cl::desc("For testing purposes, always break large " 62 "PHIs even if it isn't profitable."), 63 cl::ReallyHidden, cl::init(false)); 64 65 static cl::opt<unsigned> BreakLargePHIsThreshold( 66 "amdgpu-codegenprepare-break-large-phis-threshold", 67 cl::desc("Minimum type size in bits for breaking large PHI nodes"), 68 cl::ReallyHidden, cl::init(32)); 69 70 static cl::opt<bool> UseMul24Intrin( 71 "amdgpu-codegenprepare-mul24", 72 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 73 cl::ReallyHidden, 74 cl::init(true)); 75 76 // Legalize 64-bit division by using the generic IR expansion. 77 static cl::opt<bool> ExpandDiv64InIR( 78 "amdgpu-codegenprepare-expand-div64", 79 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 80 cl::ReallyHidden, 81 cl::init(false)); 82 83 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 84 // and is used for testing the legalizer. 85 static cl::opt<bool> DisableIDivExpand( 86 "amdgpu-codegenprepare-disable-idiv-expansion", 87 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 88 cl::ReallyHidden, 89 cl::init(false)); 90 91 // Disable processing of fdiv so we can better test the backend implementations. 92 static cl::opt<bool> DisableFDivExpand( 93 "amdgpu-codegenprepare-disable-fdiv-expansion", 94 cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"), 95 cl::ReallyHidden, 96 cl::init(false)); 97 98 class AMDGPUCodeGenPrepareImpl 99 : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> { 100 public: 101 const GCNSubtarget *ST = nullptr; 102 const TargetLibraryInfo *TLInfo = nullptr; 103 AssumptionCache *AC = nullptr; 104 DominatorTree *DT = nullptr; 105 UniformityInfo *UA = nullptr; 106 Module *Mod = nullptr; 107 const DataLayout *DL = nullptr; 108 bool HasUnsafeFPMath = false; 109 bool HasFP32DenormalFlush = false; 110 bool FlowChanged = false; 111 mutable Function *SqrtF32 = nullptr; 112 mutable Function *LdexpF32 = nullptr; 113 114 DenseMap<const PHINode *, bool> BreakPhiNodesCache; 115 116 Function *getSqrtF32() const { 117 if (SqrtF32) 118 return SqrtF32; 119 120 LLVMContext &Ctx = Mod->getContext(); 121 SqrtF32 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_sqrt, 122 {Type::getFloatTy(Ctx)}); 123 return SqrtF32; 124 } 125 126 Function *getLdexpF32() const { 127 if (LdexpF32) 128 return LdexpF32; 129 130 LLVMContext &Ctx = Mod->getContext(); 131 LdexpF32 = Intrinsic::getDeclaration( 132 Mod, Intrinsic::ldexp, {Type::getFloatTy(Ctx), Type::getInt32Ty(Ctx)}); 133 return LdexpF32; 134 } 135 136 bool canBreakPHINode(const PHINode &I); 137 138 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 139 /// binary operation \p V. 140 /// 141 /// \returns Binary operation \p V. 142 /// \returns \p T's base element bit width. 143 unsigned getBaseElementBitWidth(const Type *T) const; 144 145 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 146 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 147 /// is returned. 148 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 149 150 /// \returns True if binary operation \p I is a signed binary operation, false 151 /// otherwise. 152 bool isSigned(const BinaryOperator &I) const; 153 154 /// \returns True if the condition of 'select' operation \p I comes from a 155 /// signed 'icmp' operation, false otherwise. 156 bool isSigned(const SelectInst &I) const; 157 158 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 159 /// false otherwise. 160 bool needsPromotionToI32(const Type *T) const; 161 162 /// Return true if \p T is a legal scalar floating point type. 163 bool isLegalFloatingTy(const Type *T) const; 164 165 /// Wrapper to pass all the arguments to computeKnownFPClass 166 KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested, 167 const Instruction *CtxI) const { 168 return llvm::computeKnownFPClass(V, *DL, Interested, 0, TLInfo, AC, CtxI, 169 DT); 170 } 171 172 bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const { 173 return HasFP32DenormalFlush || 174 computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal(); 175 } 176 177 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 178 /// operation. 179 /// 180 /// \details \p I's base element bit width must be greater than 1 and less 181 /// than or equal 16. Promotion is done by sign or zero extending operands to 182 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 183 /// truncating the result of 32 bit binary operation back to \p I's original 184 /// type. Division operation is not promoted. 185 /// 186 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 187 /// false otherwise. 188 bool promoteUniformOpToI32(BinaryOperator &I) const; 189 190 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 191 /// 192 /// \details \p I's base element bit width must be greater than 1 and less 193 /// than or equal 16. Promotion is done by sign or zero extending operands to 194 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 195 /// 196 /// \returns True. 197 bool promoteUniformOpToI32(ICmpInst &I) const; 198 199 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 200 /// operation. 201 /// 202 /// \details \p I's base element bit width must be greater than 1 and less 203 /// than or equal 16. Promotion is done by sign or zero extending operands to 204 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 205 /// result of 32 bit 'select' operation back to \p I's original type. 206 /// 207 /// \returns True. 208 bool promoteUniformOpToI32(SelectInst &I) const; 209 210 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 211 /// intrinsic. 212 /// 213 /// \details \p I's base element bit width must be greater than 1 and less 214 /// than or equal 16. Promotion is done by zero extending the operand to 32 215 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 216 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 217 /// shift amount is 32 minus \p I's base element bit width), and truncating 218 /// the result of the shift operation back to \p I's original type. 219 /// 220 /// \returns True. 221 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 222 223 /// \returns The minimum number of bits needed to store the value of \Op as an 224 /// unsigned integer. Truncating to this size and then zero-extending to 225 /// the original will not change the value. 226 unsigned numBitsUnsigned(Value *Op) const; 227 228 /// \returns The minimum number of bits needed to store the value of \Op as a 229 /// signed integer. Truncating to this size and then sign-extending to 230 /// the original size will not change the value. 231 unsigned numBitsSigned(Value *Op) const; 232 233 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 234 /// SelectionDAG has an issue where an and asserting the bits are known 235 bool replaceMulWithMul24(BinaryOperator &I) const; 236 237 /// Perform same function as equivalently named function in DAGCombiner. Since 238 /// we expand some divisions here, we need to perform this before obscuring. 239 bool foldBinOpIntoSelect(BinaryOperator &I) const; 240 241 bool divHasSpecialOptimization(BinaryOperator &I, 242 Value *Num, Value *Den) const; 243 int getDivNumBits(BinaryOperator &I, 244 Value *Num, Value *Den, 245 unsigned AtLeast, bool Signed) const; 246 247 /// Expands 24 bit div or rem. 248 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 249 Value *Num, Value *Den, 250 bool IsDiv, bool IsSigned) const; 251 252 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 253 Value *Num, Value *Den, unsigned NumBits, 254 bool IsDiv, bool IsSigned) const; 255 256 /// Expands 32 bit div or rem. 257 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 258 Value *Num, Value *Den) const; 259 260 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 261 Value *Num, Value *Den) const; 262 void expandDivRem64(BinaryOperator &I) const; 263 264 /// Widen a scalar load. 265 /// 266 /// \details \p Widen scalar load for uniform, small type loads from constant 267 // memory / to a full 32-bits and then truncate the input to allow a scalar 268 // load instead of a vector load. 269 // 270 /// \returns True. 271 272 bool canWidenScalarExtLoad(LoadInst &I) const; 273 274 Value *matchFractPat(IntrinsicInst &I); 275 Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); 276 277 bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF, 278 FastMathFlags SqrtFMF) const; 279 280 Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den, 281 FastMathFlags DivFMF, FastMathFlags SqrtFMF, 282 const Instruction *CtxI) const; 283 284 Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den, 285 FastMathFlags FMF, const Instruction *CtxI) const; 286 Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den, 287 float ReqdAccuracy) const; 288 289 Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den, 290 FastMathFlags DivFMF, FastMathFlags SqrtFMF, 291 Value *RsqOp, const Instruction *FDiv, 292 float ReqdAccuracy) const; 293 294 std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder, 295 Value *Src) const; 296 297 Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src, 298 bool IsNegative) const; 299 Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS, 300 FastMathFlags FMF) const; 301 Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src, 302 FastMathFlags FMF) const; 303 304 public: 305 bool visitFDiv(BinaryOperator &I); 306 307 bool visitInstruction(Instruction &I) { return false; } 308 bool visitBinaryOperator(BinaryOperator &I); 309 bool visitLoadInst(LoadInst &I); 310 bool visitICmpInst(ICmpInst &I); 311 bool visitSelectInst(SelectInst &I); 312 bool visitPHINode(PHINode &I); 313 314 bool visitIntrinsicInst(IntrinsicInst &I); 315 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 316 bool visitMinNum(IntrinsicInst &I); 317 bool visitSqrt(IntrinsicInst &I); 318 bool run(Function &F); 319 }; 320 321 class AMDGPUCodeGenPrepare : public FunctionPass { 322 private: 323 AMDGPUCodeGenPrepareImpl Impl; 324 325 public: 326 static char ID; 327 AMDGPUCodeGenPrepare() : FunctionPass(ID) { 328 initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry()); 329 } 330 void getAnalysisUsage(AnalysisUsage &AU) const override { 331 AU.addRequired<AssumptionCacheTracker>(); 332 AU.addRequired<UniformityInfoWrapperPass>(); 333 AU.addRequired<TargetLibraryInfoWrapperPass>(); 334 335 // FIXME: Division expansion needs to preserve the dominator tree. 336 if (!ExpandDiv64InIR) 337 AU.setPreservesAll(); 338 } 339 bool runOnFunction(Function &F) override; 340 bool doInitialization(Module &M) override; 341 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 342 }; 343 344 } // end anonymous namespace 345 346 bool AMDGPUCodeGenPrepareImpl::run(Function &F) { 347 BreakPhiNodesCache.clear(); 348 bool MadeChange = false; 349 350 Function::iterator NextBB; 351 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 352 BasicBlock *BB = &*FI; 353 NextBB = std::next(FI); 354 355 BasicBlock::iterator Next; 356 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 357 I = Next) { 358 Next = std::next(I); 359 360 MadeChange |= visit(*I); 361 362 if (Next != E) { // Control flow changed 363 BasicBlock *NextInstBB = Next->getParent(); 364 if (NextInstBB != BB) { 365 BB = NextInstBB; 366 E = BB->end(); 367 FE = F.end(); 368 } 369 } 370 } 371 } 372 return MadeChange; 373 } 374 375 unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const { 376 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 377 378 if (T->isIntegerTy()) 379 return T->getIntegerBitWidth(); 380 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 381 } 382 383 Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const { 384 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 385 386 if (T->isIntegerTy()) 387 return B.getInt32Ty(); 388 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 389 } 390 391 bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const { 392 return I.getOpcode() == Instruction::AShr || 393 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 394 } 395 396 bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const { 397 return isa<ICmpInst>(I.getOperand(0)) ? 398 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 399 } 400 401 bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const { 402 if (!Widen16BitOps) 403 return false; 404 405 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 406 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 407 return true; 408 409 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 410 // TODO: The set of packed operations is more limited, so may want to 411 // promote some anyway. 412 if (ST->hasVOP3PInsts()) 413 return false; 414 415 return needsPromotionToI32(VT->getElementType()); 416 } 417 418 return false; 419 } 420 421 bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const { 422 return Ty->isFloatTy() || Ty->isDoubleTy() || 423 (Ty->isHalfTy() && ST->has16BitInsts()); 424 } 425 426 // Return true if the op promoted to i32 should have nsw set. 427 static bool promotedOpIsNSW(const Instruction &I) { 428 switch (I.getOpcode()) { 429 case Instruction::Shl: 430 case Instruction::Add: 431 case Instruction::Sub: 432 return true; 433 case Instruction::Mul: 434 return I.hasNoUnsignedWrap(); 435 default: 436 return false; 437 } 438 } 439 440 // Return true if the op promoted to i32 should have nuw set. 441 static bool promotedOpIsNUW(const Instruction &I) { 442 switch (I.getOpcode()) { 443 case Instruction::Shl: 444 case Instruction::Add: 445 case Instruction::Mul: 446 return true; 447 case Instruction::Sub: 448 return I.hasNoUnsignedWrap(); 449 default: 450 return false; 451 } 452 } 453 454 bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const { 455 Type *Ty = I.getType(); 456 const DataLayout &DL = Mod->getDataLayout(); 457 int TySize = DL.getTypeSizeInBits(Ty); 458 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 459 460 return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I); 461 } 462 463 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const { 464 assert(needsPromotionToI32(I.getType()) && 465 "I does not need promotion to i32"); 466 467 if (I.getOpcode() == Instruction::SDiv || 468 I.getOpcode() == Instruction::UDiv || 469 I.getOpcode() == Instruction::SRem || 470 I.getOpcode() == Instruction::URem) 471 return false; 472 473 IRBuilder<> Builder(&I); 474 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 475 476 Type *I32Ty = getI32Ty(Builder, I.getType()); 477 Value *ExtOp0 = nullptr; 478 Value *ExtOp1 = nullptr; 479 Value *ExtRes = nullptr; 480 Value *TruncRes = nullptr; 481 482 if (isSigned(I)) { 483 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 484 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 485 } else { 486 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 487 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 488 } 489 490 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 491 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 492 if (promotedOpIsNSW(cast<Instruction>(I))) 493 Inst->setHasNoSignedWrap(); 494 495 if (promotedOpIsNUW(cast<Instruction>(I))) 496 Inst->setHasNoUnsignedWrap(); 497 498 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 499 Inst->setIsExact(ExactOp->isExact()); 500 } 501 502 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 503 504 I.replaceAllUsesWith(TruncRes); 505 I.eraseFromParent(); 506 507 return true; 508 } 509 510 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const { 511 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 512 "I does not need promotion to i32"); 513 514 IRBuilder<> Builder(&I); 515 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 516 517 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 518 Value *ExtOp0 = nullptr; 519 Value *ExtOp1 = nullptr; 520 Value *NewICmp = nullptr; 521 522 if (I.isSigned()) { 523 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 524 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 525 } else { 526 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 527 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 528 } 529 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 530 531 I.replaceAllUsesWith(NewICmp); 532 I.eraseFromParent(); 533 534 return true; 535 } 536 537 bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const { 538 assert(needsPromotionToI32(I.getType()) && 539 "I does not need promotion to i32"); 540 541 IRBuilder<> Builder(&I); 542 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 543 544 Type *I32Ty = getI32Ty(Builder, I.getType()); 545 Value *ExtOp1 = nullptr; 546 Value *ExtOp2 = nullptr; 547 Value *ExtRes = nullptr; 548 Value *TruncRes = nullptr; 549 550 if (isSigned(I)) { 551 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 552 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 553 } else { 554 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 555 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 556 } 557 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 558 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 559 560 I.replaceAllUsesWith(TruncRes); 561 I.eraseFromParent(); 562 563 return true; 564 } 565 566 bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32( 567 IntrinsicInst &I) const { 568 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 569 "I must be bitreverse intrinsic"); 570 assert(needsPromotionToI32(I.getType()) && 571 "I does not need promotion to i32"); 572 573 IRBuilder<> Builder(&I); 574 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 575 576 Type *I32Ty = getI32Ty(Builder, I.getType()); 577 Function *I32 = 578 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 579 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 580 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 581 Value *LShrOp = 582 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 583 Value *TruncRes = 584 Builder.CreateTrunc(LShrOp, I.getType()); 585 586 I.replaceAllUsesWith(TruncRes); 587 I.eraseFromParent(); 588 589 return true; 590 } 591 592 unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const { 593 return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits(); 594 } 595 596 unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const { 597 return ComputeMaxSignificantBits(Op, *DL, 0, AC); 598 } 599 600 static void extractValues(IRBuilder<> &Builder, 601 SmallVectorImpl<Value *> &Values, Value *V) { 602 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 603 if (!VT) { 604 Values.push_back(V); 605 return; 606 } 607 608 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 609 Values.push_back(Builder.CreateExtractElement(V, I)); 610 } 611 612 static Value *insertValues(IRBuilder<> &Builder, 613 Type *Ty, 614 SmallVectorImpl<Value *> &Values) { 615 if (!Ty->isVectorTy()) { 616 assert(Values.size() == 1); 617 return Values[0]; 618 } 619 620 Value *NewVal = PoisonValue::get(Ty); 621 for (int I = 0, E = Values.size(); I != E; ++I) 622 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 623 624 return NewVal; 625 } 626 627 bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const { 628 if (I.getOpcode() != Instruction::Mul) 629 return false; 630 631 Type *Ty = I.getType(); 632 unsigned Size = Ty->getScalarSizeInBits(); 633 if (Size <= 16 && ST->has16BitInsts()) 634 return false; 635 636 // Prefer scalar if this could be s_mul_i32 637 if (UA->isUniform(&I)) 638 return false; 639 640 Value *LHS = I.getOperand(0); 641 Value *RHS = I.getOperand(1); 642 IRBuilder<> Builder(&I); 643 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 644 645 unsigned LHSBits = 0, RHSBits = 0; 646 bool IsSigned = false; 647 648 if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && 649 (RHSBits = numBitsUnsigned(RHS)) <= 24) { 650 IsSigned = false; 651 652 } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && 653 (RHSBits = numBitsSigned(RHS)) <= 24) { 654 IsSigned = true; 655 656 } else 657 return false; 658 659 SmallVector<Value *, 4> LHSVals; 660 SmallVector<Value *, 4> RHSVals; 661 SmallVector<Value *, 4> ResultVals; 662 extractValues(Builder, LHSVals, LHS); 663 extractValues(Builder, RHSVals, RHS); 664 665 IntegerType *I32Ty = Builder.getInt32Ty(); 666 IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty; 667 Type *DstTy = LHSVals[0]->getType(); 668 669 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 670 Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty) 671 : Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 672 Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty) 673 : Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 674 Intrinsic::ID ID = 675 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 676 Value *Result = Builder.CreateIntrinsic(ID, {IntrinTy}, {LHS, RHS}); 677 Result = IsSigned ? Builder.CreateSExtOrTrunc(Result, DstTy) 678 : Builder.CreateZExtOrTrunc(Result, DstTy); 679 ResultVals.push_back(Result); 680 } 681 682 Value *NewVal = insertValues(Builder, Ty, ResultVals); 683 NewVal->takeName(&I); 684 I.replaceAllUsesWith(NewVal); 685 I.eraseFromParent(); 686 687 return true; 688 } 689 690 // Find a select instruction, which may have been casted. This is mostly to deal 691 // with cases where i16 selects were promoted here to i32. 692 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 693 Cast = nullptr; 694 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 695 return Sel; 696 697 if ((Cast = dyn_cast<CastInst>(V))) { 698 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 699 return Sel; 700 } 701 702 return nullptr; 703 } 704 705 bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const { 706 // Don't do this unless the old select is going away. We want to eliminate the 707 // binary operator, not replace a binop with a select. 708 int SelOpNo = 0; 709 710 CastInst *CastOp; 711 712 // TODO: Should probably try to handle some cases with multiple 713 // users. Duplicating the select may be profitable for division. 714 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 715 if (!Sel || !Sel->hasOneUse()) { 716 SelOpNo = 1; 717 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 718 } 719 720 if (!Sel || !Sel->hasOneUse()) 721 return false; 722 723 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 724 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 725 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 726 if (!CBO || !CT || !CF) 727 return false; 728 729 if (CastOp) { 730 if (!CastOp->hasOneUse()) 731 return false; 732 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 733 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 734 } 735 736 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 737 // need to handle divisions here. 738 Constant *FoldedT = SelOpNo ? 739 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 740 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 741 if (!FoldedT || isa<ConstantExpr>(FoldedT)) 742 return false; 743 744 Constant *FoldedF = SelOpNo ? 745 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 746 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 747 if (!FoldedF || isa<ConstantExpr>(FoldedF)) 748 return false; 749 750 IRBuilder<> Builder(&BO); 751 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 752 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 753 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 754 755 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 756 FoldedT, FoldedF); 757 NewSelect->takeName(&BO); 758 BO.replaceAllUsesWith(NewSelect); 759 BO.eraseFromParent(); 760 if (CastOp) 761 CastOp->eraseFromParent(); 762 Sel->eraseFromParent(); 763 return true; 764 } 765 766 std::pair<Value *, Value *> 767 AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder, 768 Value *Src) const { 769 Type *Ty = Src->getType(); 770 Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp, 771 {Ty, Builder.getInt32Ty()}, Src); 772 Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0}); 773 774 // Bypass the bug workaround for the exponent result since it doesn't matter. 775 // TODO: Does the bug workaround even really need to consider the exponent 776 // result? It's unspecified by the spec. 777 778 Value *FrexpExp = 779 ST->hasFractBug() 780 ? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp, 781 {Builder.getInt32Ty(), Ty}, Src) 782 : Builder.CreateExtractValue(Frexp, {1}); 783 return {FrexpMant, FrexpExp}; 784 } 785 786 /// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals. 787 Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder, 788 Value *Src, 789 bool IsNegative) const { 790 // Same as for 1.0, but expand the sign out of the constant. 791 // -1.0 / x -> rcp (fneg x) 792 if (IsNegative) 793 Src = Builder.CreateFNeg(Src); 794 795 // The rcp instruction doesn't support denormals, so scale the input 796 // out of the denormal range and convert at the end. 797 // 798 // Expand as 2^-n * (1.0 / (x * 2^n)) 799 800 // TODO: Skip scaling if input is known never denormal and the input 801 // range won't underflow to denormal. The hard part is knowing the 802 // result. We need a range check, the result could be denormal for 803 // 0x1p+126 < den <= 0x1p+127. 804 auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src); 805 Value *ScaleFactor = Builder.CreateNeg(FrexpExp); 806 Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant); 807 return Builder.CreateCall(getLdexpF32(), {Rcp, ScaleFactor}); 808 } 809 810 /// Emit a 2ulp expansion for fdiv by using frexp for input scaling. 811 Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, 812 Value *RHS, 813 FastMathFlags FMF) const { 814 // If we have have to work around the fract/frexp bug, we're worse off than 815 // using the fdiv.fast expansion. The full safe expansion is faster if we have 816 // fast FMA. 817 if (HasFP32DenormalFlush && ST->hasFractBug() && !ST->hasFastFMAF32() && 818 (!FMF.noNaNs() || !FMF.noInfs())) 819 return nullptr; 820 821 // We're scaling the LHS to avoid a denormal input, and scale the denominator 822 // to avoid large values underflowing the result. 823 auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS); 824 825 Value *Rcp = 826 Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS); 827 828 auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS); 829 Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp); 830 831 // We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the 832 // result. 833 Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS); 834 return Builder.CreateCall(getLdexpF32(), {Mul, ExpDiff}); 835 } 836 837 /// Emit a sqrt that handles denormals and is accurate to 2ulp. 838 Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder, 839 Value *Src, 840 FastMathFlags FMF) const { 841 Type *Ty = Src->getType(); 842 APFloat SmallestNormal = 843 APFloat::getSmallestNormalized(Ty->getFltSemantics()); 844 Value *NeedScale = 845 Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); 846 847 ConstantInt *Zero = Builder.getInt32(0); 848 Value *InputScaleFactor = 849 Builder.CreateSelect(NeedScale, Builder.getInt32(32), Zero); 850 851 Value *Scaled = Builder.CreateCall(getLdexpF32(), {Src, InputScaleFactor}); 852 853 Value *Sqrt = Builder.CreateCall(getSqrtF32(), Scaled); 854 855 Value *OutputScaleFactor = 856 Builder.CreateSelect(NeedScale, Builder.getInt32(-16), Zero); 857 return Builder.CreateCall(getLdexpF32(), {Sqrt, OutputScaleFactor}); 858 } 859 860 /// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals. 861 static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src, 862 bool IsNegative) { 863 // bool need_scale = x < 0x1p-126f; 864 // float input_scale = need_scale ? 0x1.0p+24f : 1.0f; 865 // float output_scale = need_scale ? 0x1.0p+12f : 1.0f; 866 // rsq(x * input_scale) * output_scale; 867 868 Type *Ty = Src->getType(); 869 APFloat SmallestNormal = 870 APFloat::getSmallestNormalized(Ty->getFltSemantics()); 871 Value *NeedScale = 872 Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); 873 Constant *One = ConstantFP::get(Ty, 1.0); 874 Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24); 875 Constant *OutputScale = 876 ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12); 877 878 Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One); 879 880 Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor); 881 Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput); 882 Value *OutputScaleFactor = Builder.CreateSelect( 883 NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One); 884 885 return Builder.CreateFMul(Rsq, OutputScaleFactor); 886 } 887 888 bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp, 889 FastMathFlags DivFMF, 890 FastMathFlags SqrtFMF) const { 891 // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. 892 if (!DivFMF.allowContract() || !SqrtFMF.allowContract()) 893 return false; 894 895 // v_rsq_f32 gives 1ulp 896 return SqrtFMF.approxFunc() || HasUnsafeFPMath || 897 SqrtOp->getFPAccuracy() >= 1.0f; 898 } 899 900 Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq( 901 IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF, 902 const FastMathFlags SqrtFMF, const Instruction *CtxI) const { 903 // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. 904 assert(DivFMF.allowContract() && SqrtFMF.allowContract()); 905 906 // rsq_f16 is accurate to 0.51 ulp. 907 // rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 908 // rsq_f64 is never accurate. 909 const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num); 910 if (!CLHS) 911 return nullptr; 912 913 assert(Den->getType()->isFloatTy()); 914 915 bool IsNegative = false; 916 917 // TODO: Handle other numerator values with arcp. 918 if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) { 919 // Add in the sqrt flags. 920 IRBuilder<>::FastMathFlagGuard Guard(Builder); 921 Builder.setFastMathFlags(DivFMF | SqrtFMF); 922 923 if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath || 924 canIgnoreDenormalInput(Den, CtxI)) { 925 Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den); 926 // -1.0 / sqrt(x) -> fneg(rsq(x)) 927 return IsNegative ? Builder.CreateFNeg(Result) : Result; 928 } 929 930 return emitRsqIEEE1ULP(Builder, Den, IsNegative); 931 } 932 933 return nullptr; 934 } 935 936 // Optimize fdiv with rcp: 937 // 938 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 939 // allowed with unsafe-fp-math or afn. 940 // 941 // a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0 942 Value * 943 AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num, 944 Value *Den, FastMathFlags FMF, 945 const Instruction *CtxI) const { 946 // rcp_f16 is accurate to 0.51 ulp. 947 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 948 // rcp_f64 is never accurate. 949 assert(Den->getType()->isFloatTy()); 950 951 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 952 bool IsNegative = false; 953 if (CLHS->isExactlyValue(1.0) || 954 (IsNegative = CLHS->isExactlyValue(-1.0))) { 955 Value *Src = Den; 956 957 if (HasFP32DenormalFlush || FMF.approxFunc()) { 958 // -1.0 / x -> 1.0 / fneg(x) 959 if (IsNegative) 960 Src = Builder.CreateFNeg(Src); 961 962 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 963 // the CI documentation has a worst case error of 1 ulp. 964 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK 965 // to use it as long as we aren't trying to use denormals. 966 // 967 // v_rcp_f16 and v_rsq_f16 DO support denormals. 968 969 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 970 // insert rsq intrinsic here. 971 972 // 1.0 / x -> rcp(x) 973 return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src); 974 } 975 976 // TODO: If the input isn't denormal, and we know the input exponent isn't 977 // big enough to introduce a denormal we can avoid the scaling. 978 return emitRcpIEEE1ULP(Builder, Src, IsNegative); 979 } 980 } 981 982 if (FMF.allowReciprocal()) { 983 // x / y -> x * (1.0 / y) 984 985 // TODO: Could avoid denormal scaling and use raw rcp if we knew the output 986 // will never underflow. 987 if (HasFP32DenormalFlush || FMF.approxFunc()) { 988 Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den); 989 return Builder.CreateFMul(Num, Recip); 990 } 991 992 Value *Recip = emitRcpIEEE1ULP(Builder, Den, false); 993 return Builder.CreateFMul(Num, Recip); 994 } 995 996 return nullptr; 997 } 998 999 // optimize with fdiv.fast: 1000 // 1001 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 1002 // 1003 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 1004 // 1005 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 1006 Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast( 1007 IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const { 1008 // fdiv.fast can achieve 2.5 ULP accuracy. 1009 if (ReqdAccuracy < 2.5f) 1010 return nullptr; 1011 1012 // Only have fdiv.fast for f32. 1013 assert(Den->getType()->isFloatTy()); 1014 1015 bool NumIsOne = false; 1016 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 1017 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 1018 NumIsOne = true; 1019 } 1020 1021 // fdiv does not support denormals. But 1.0/x is always fine to use it. 1022 // 1023 // TODO: This works for any value with a specific known exponent range, don't 1024 // just limit to constant 1. 1025 if (!HasFP32DenormalFlush && !NumIsOne) 1026 return nullptr; 1027 1028 return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den}); 1029 } 1030 1031 Value *AMDGPUCodeGenPrepareImpl::visitFDivElement( 1032 IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF, 1033 FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst, 1034 float ReqdDivAccuracy) const { 1035 if (RsqOp) { 1036 Value *Rsq = 1037 optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst); 1038 if (Rsq) 1039 return Rsq; 1040 } 1041 1042 Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst); 1043 if (Rcp) 1044 return Rcp; 1045 1046 // In the basic case fdiv_fast has the same instruction count as the frexp div 1047 // expansion. Slightly prefer fdiv_fast since it ends in an fmul that can 1048 // potentially be fused into a user. Also, materialization of the constants 1049 // can be reused for multiple instances. 1050 Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy); 1051 if (FDivFast) 1052 return FDivFast; 1053 1054 return emitFrexpDiv(Builder, Num, Den, DivFMF); 1055 } 1056 1057 // Optimizations is performed based on fpmath, fast math flags as well as 1058 // denormals to optimize fdiv with either rcp or fdiv.fast. 1059 // 1060 // With rcp: 1061 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 1062 // allowed with unsafe-fp-math or afn. 1063 // 1064 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 1065 // 1066 // With fdiv.fast: 1067 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 1068 // 1069 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 1070 // 1071 // NOTE: rcp is the preference in cases that both are legal. 1072 bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) { 1073 if (DisableFDivExpand) 1074 return false; 1075 1076 Type *Ty = FDiv.getType()->getScalarType(); 1077 if (!Ty->isFloatTy()) 1078 return false; 1079 1080 // The f64 rcp/rsq approximations are pretty inaccurate. We can do an 1081 // expansion around them in codegen. f16 is good enough to always use. 1082 1083 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 1084 const FastMathFlags DivFMF = FPOp->getFastMathFlags(); 1085 const float ReqdAccuracy = FPOp->getFPAccuracy(); 1086 1087 FastMathFlags SqrtFMF; 1088 1089 Value *Num = FDiv.getOperand(0); 1090 Value *Den = FDiv.getOperand(1); 1091 1092 Value *RsqOp = nullptr; 1093 auto *DenII = dyn_cast<IntrinsicInst>(Den); 1094 if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt && 1095 DenII->hasOneUse()) { 1096 const auto *SqrtOp = cast<FPMathOperator>(DenII); 1097 SqrtFMF = SqrtOp->getFastMathFlags(); 1098 if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF)) 1099 RsqOp = SqrtOp->getOperand(0); 1100 } 1101 1102 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 1103 // 1104 // Defer to codegen to handle this. 1105 // 1106 // TODO: Decide on an interpretation for interactions between afn + arcp + 1107 // !fpmath, and make it consistent between here and codegen. For now, defer 1108 // expansion of afn to codegen. The current interpretation is so aggressive we 1109 // don't need any pre-consideration here when we have better information. A 1110 // more conservative interpretation could use handling here. 1111 const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc(); 1112 if (!RsqOp && AllowInaccurateRcp) 1113 return false; 1114 1115 // Defer the correct implementations to codegen. 1116 if (ReqdAccuracy < 1.0f) 1117 return false; 1118 1119 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 1120 Builder.setFastMathFlags(DivFMF); 1121 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 1122 1123 SmallVector<Value *, 4> NumVals; 1124 SmallVector<Value *, 4> DenVals; 1125 SmallVector<Value *, 4> RsqDenVals; 1126 extractValues(Builder, NumVals, Num); 1127 extractValues(Builder, DenVals, Den); 1128 1129 if (RsqOp) 1130 extractValues(Builder, RsqDenVals, RsqOp); 1131 1132 SmallVector<Value *, 4> ResultVals(NumVals.size()); 1133 for (int I = 0, E = NumVals.size(); I != E; ++I) { 1134 Value *NumElt = NumVals[I]; 1135 Value *DenElt = DenVals[I]; 1136 Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr; 1137 1138 Value *NewElt = 1139 visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt, 1140 cast<Instruction>(FPOp), ReqdAccuracy); 1141 if (!NewElt) { 1142 // Keep the original, but scalarized. 1143 1144 // This has the unfortunate side effect of sometimes scalarizing when 1145 // we're not going to do anything. 1146 NewElt = Builder.CreateFDiv(NumElt, DenElt); 1147 if (auto *NewEltInst = dyn_cast<Instruction>(NewElt)) 1148 NewEltInst->copyMetadata(FDiv); 1149 } 1150 1151 ResultVals[I] = NewElt; 1152 } 1153 1154 Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals); 1155 1156 if (NewVal) { 1157 FDiv.replaceAllUsesWith(NewVal); 1158 NewVal->takeName(&FDiv); 1159 RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLInfo); 1160 } 1161 1162 return true; 1163 } 1164 1165 static bool hasUnsafeFPMath(const Function &F) { 1166 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 1167 return Attr.getValueAsBool(); 1168 } 1169 1170 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 1171 Value *LHS, Value *RHS) { 1172 Type *I32Ty = Builder.getInt32Ty(); 1173 Type *I64Ty = Builder.getInt64Ty(); 1174 1175 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 1176 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 1177 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 1178 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 1179 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 1180 Hi = Builder.CreateTrunc(Hi, I32Ty); 1181 return std::pair(Lo, Hi); 1182 } 1183 1184 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 1185 return getMul64(Builder, LHS, RHS).second; 1186 } 1187 1188 /// Figure out how many bits are really needed for this division. \p AtLeast is 1189 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 1190 /// first one is insufficient. Returns -1 on failure. 1191 int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num, 1192 Value *Den, unsigned AtLeast, 1193 bool IsSigned) const { 1194 const DataLayout &DL = Mod->getDataLayout(); 1195 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 1196 if (LHSSignBits < AtLeast) 1197 return -1; 1198 1199 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 1200 if (RHSSignBits < AtLeast) 1201 return -1; 1202 1203 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 1204 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 1205 if (IsSigned) 1206 ++DivBits; 1207 return DivBits; 1208 } 1209 1210 // The fractional part of a float is enough to accurately represent up to 1211 // a 24-bit signed integer. 1212 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder, 1213 BinaryOperator &I, Value *Num, 1214 Value *Den, bool IsDiv, 1215 bool IsSigned) const { 1216 int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 1217 if (DivBits == -1) 1218 return nullptr; 1219 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 1220 } 1221 1222 Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl( 1223 IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, 1224 unsigned DivBits, bool IsDiv, bool IsSigned) const { 1225 Type *I32Ty = Builder.getInt32Ty(); 1226 Num = Builder.CreateTrunc(Num, I32Ty); 1227 Den = Builder.CreateTrunc(Den, I32Ty); 1228 1229 Type *F32Ty = Builder.getFloatTy(); 1230 ConstantInt *One = Builder.getInt32(1); 1231 Value *JQ = One; 1232 1233 if (IsSigned) { 1234 // char|short jq = ia ^ ib; 1235 JQ = Builder.CreateXor(Num, Den); 1236 1237 // jq = jq >> (bitsize - 2) 1238 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 1239 1240 // jq = jq | 0x1 1241 JQ = Builder.CreateOr(JQ, One); 1242 } 1243 1244 // int ia = (int)LHS; 1245 Value *IA = Num; 1246 1247 // int ib, (int)RHS; 1248 Value *IB = Den; 1249 1250 // float fa = (float)ia; 1251 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 1252 : Builder.CreateUIToFP(IA, F32Ty); 1253 1254 // float fb = (float)ib; 1255 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 1256 : Builder.CreateUIToFP(IB,F32Ty); 1257 1258 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 1259 Builder.getFloatTy()); 1260 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 1261 Value *FQM = Builder.CreateFMul(FA, RCP); 1262 1263 // fq = trunc(fqm); 1264 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 1265 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 1266 1267 // float fqneg = -fq; 1268 Value *FQNeg = Builder.CreateFNeg(FQ); 1269 1270 // float fr = mad(fqneg, fb, fa); 1271 auto FMAD = !ST->hasMadMacF32Insts() 1272 ? Intrinsic::fma 1273 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 1274 Value *FR = Builder.CreateIntrinsic(FMAD, 1275 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 1276 1277 // int iq = (int)fq; 1278 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 1279 : Builder.CreateFPToUI(FQ, I32Ty); 1280 1281 // fr = fabs(fr); 1282 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 1283 1284 // fb = fabs(fb); 1285 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 1286 1287 // int cv = fr >= fb; 1288 Value *CV = Builder.CreateFCmpOGE(FR, FB); 1289 1290 // jq = (cv ? jq : 0); 1291 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 1292 1293 // dst = iq + jq; 1294 Value *Div = Builder.CreateAdd(IQ, JQ); 1295 1296 Value *Res = Div; 1297 if (!IsDiv) { 1298 // Rem needs compensation, it's easier to recompute it 1299 Value *Rem = Builder.CreateMul(Div, Den); 1300 Res = Builder.CreateSub(Num, Rem); 1301 } 1302 1303 if (DivBits != 0 && DivBits < 32) { 1304 // Extend in register from the number of bits this divide really is. 1305 if (IsSigned) { 1306 int InRegBits = 32 - DivBits; 1307 1308 Res = Builder.CreateShl(Res, InRegBits); 1309 Res = Builder.CreateAShr(Res, InRegBits); 1310 } else { 1311 ConstantInt *TruncMask 1312 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 1313 Res = Builder.CreateAnd(Res, TruncMask); 1314 } 1315 } 1316 1317 return Res; 1318 } 1319 1320 // Try to recognize special cases the DAG will emit special, better expansions 1321 // than the general expansion we do here. 1322 1323 // TODO: It would be better to just directly handle those optimizations here. 1324 bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I, 1325 Value *Num, 1326 Value *Den) const { 1327 if (Constant *C = dyn_cast<Constant>(Den)) { 1328 // Arbitrary constants get a better expansion as long as a wider mulhi is 1329 // legal. 1330 if (C->getType()->getScalarSizeInBits() <= 32) 1331 return true; 1332 1333 // TODO: Sdiv check for not exact for some reason. 1334 1335 // If there's no wider mulhi, there's only a better expansion for powers of 1336 // two. 1337 // TODO: Should really know for each vector element. 1338 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 1339 return true; 1340 1341 return false; 1342 } 1343 1344 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1345 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1346 if (BinOpDen->getOpcode() == Instruction::Shl && 1347 isa<Constant>(BinOpDen->getOperand(0)) && 1348 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 1349 0, AC, &I, DT)) { 1350 return true; 1351 } 1352 } 1353 1354 return false; 1355 } 1356 1357 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1358 // Check whether the sign can be determined statically. 1359 KnownBits Known = computeKnownBits(V, *DL); 1360 if (Known.isNegative()) 1361 return Constant::getAllOnesValue(V->getType()); 1362 if (Known.isNonNegative()) 1363 return Constant::getNullValue(V->getType()); 1364 return Builder.CreateAShr(V, Builder.getInt32(31)); 1365 } 1366 1367 Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder, 1368 BinaryOperator &I, Value *X, 1369 Value *Y) const { 1370 Instruction::BinaryOps Opc = I.getOpcode(); 1371 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1372 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1373 1374 FastMathFlags FMF; 1375 FMF.setFast(); 1376 Builder.setFastMathFlags(FMF); 1377 1378 if (divHasSpecialOptimization(I, X, Y)) 1379 return nullptr; // Keep it for later optimization. 1380 1381 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1382 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1383 1384 Type *Ty = X->getType(); 1385 Type *I32Ty = Builder.getInt32Ty(); 1386 Type *F32Ty = Builder.getFloatTy(); 1387 1388 if (Ty->getScalarSizeInBits() < 32) { 1389 if (IsSigned) { 1390 X = Builder.CreateSExt(X, I32Ty); 1391 Y = Builder.CreateSExt(Y, I32Ty); 1392 } else { 1393 X = Builder.CreateZExt(X, I32Ty); 1394 Y = Builder.CreateZExt(Y, I32Ty); 1395 } 1396 } 1397 1398 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1399 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1400 Builder.CreateZExtOrTrunc(Res, Ty); 1401 } 1402 1403 ConstantInt *Zero = Builder.getInt32(0); 1404 ConstantInt *One = Builder.getInt32(1); 1405 1406 Value *Sign = nullptr; 1407 if (IsSigned) { 1408 Value *SignX = getSign32(X, Builder, DL); 1409 Value *SignY = getSign32(Y, Builder, DL); 1410 // Remainder sign is the same as LHS 1411 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1412 1413 X = Builder.CreateAdd(X, SignX); 1414 Y = Builder.CreateAdd(Y, SignY); 1415 1416 X = Builder.CreateXor(X, SignX); 1417 Y = Builder.CreateXor(Y, SignY); 1418 } 1419 1420 // The algorithm here is based on ideas from "Software Integer Division", Tom 1421 // Rodeheffer, August 2008. 1422 // 1423 // unsigned udiv(unsigned x, unsigned y) { 1424 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1425 // // that this is a lower bound on inv(y), even if some of the calculations 1426 // // round up. 1427 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1428 // 1429 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1430 // // Empirically this is guaranteed to give a "two-y" lower bound on 1431 // // inv(y). 1432 // z += umulh(z, -y * z); 1433 // 1434 // // Quotient/remainder estimate. 1435 // unsigned q = umulh(x, z); 1436 // unsigned r = x - q * y; 1437 // 1438 // // Two rounds of quotient/remainder refinement. 1439 // if (r >= y) { 1440 // ++q; 1441 // r -= y; 1442 // } 1443 // if (r >= y) { 1444 // ++q; 1445 // r -= y; 1446 // } 1447 // 1448 // return q; 1449 // } 1450 1451 // Initial estimate of inv(y). 1452 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1453 Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 1454 Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 1455 Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE)); 1456 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1457 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1458 1459 // One round of UNR. 1460 Value *NegY = Builder.CreateSub(Zero, Y); 1461 Value *NegYZ = Builder.CreateMul(NegY, Z); 1462 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1463 1464 // Quotient/remainder estimate. 1465 Value *Q = getMulHu(Builder, X, Z); 1466 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1467 1468 // First quotient/remainder refinement. 1469 Value *Cond = Builder.CreateICmpUGE(R, Y); 1470 if (IsDiv) 1471 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1472 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1473 1474 // Second quotient/remainder refinement. 1475 Cond = Builder.CreateICmpUGE(R, Y); 1476 Value *Res; 1477 if (IsDiv) 1478 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1479 else 1480 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1481 1482 if (IsSigned) { 1483 Res = Builder.CreateXor(Res, Sign); 1484 Res = Builder.CreateSub(Res, Sign); 1485 } 1486 1487 Res = Builder.CreateTrunc(Res, Ty); 1488 1489 return Res; 1490 } 1491 1492 Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder, 1493 BinaryOperator &I, Value *Num, 1494 Value *Den) const { 1495 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1496 return nullptr; // Keep it for later optimization. 1497 1498 Instruction::BinaryOps Opc = I.getOpcode(); 1499 1500 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1501 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1502 1503 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1504 if (NumDivBits == -1) 1505 return nullptr; 1506 1507 Value *Narrowed = nullptr; 1508 if (NumDivBits <= 24) { 1509 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1510 IsDiv, IsSigned); 1511 } else if (NumDivBits <= 32) { 1512 Narrowed = expandDivRem32(Builder, I, Num, Den); 1513 } 1514 1515 if (Narrowed) { 1516 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1517 Builder.CreateZExt(Narrowed, Num->getType()); 1518 } 1519 1520 return nullptr; 1521 } 1522 1523 void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const { 1524 Instruction::BinaryOps Opc = I.getOpcode(); 1525 // Do the general expansion. 1526 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1527 expandDivisionUpTo64Bits(&I); 1528 return; 1529 } 1530 1531 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1532 expandRemainderUpTo64Bits(&I); 1533 return; 1534 } 1535 1536 llvm_unreachable("not a division"); 1537 } 1538 1539 bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) { 1540 if (foldBinOpIntoSelect(I)) 1541 return true; 1542 1543 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1544 UA->isUniform(&I) && promoteUniformOpToI32(I)) 1545 return true; 1546 1547 if (UseMul24Intrin && replaceMulWithMul24(I)) 1548 return true; 1549 1550 bool Changed = false; 1551 Instruction::BinaryOps Opc = I.getOpcode(); 1552 Type *Ty = I.getType(); 1553 Value *NewDiv = nullptr; 1554 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1555 1556 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1557 1558 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1559 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1560 ScalarSize <= 64 && 1561 !DisableIDivExpand) { 1562 Value *Num = I.getOperand(0); 1563 Value *Den = I.getOperand(1); 1564 IRBuilder<> Builder(&I); 1565 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1566 1567 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1568 NewDiv = PoisonValue::get(VT); 1569 1570 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1571 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1572 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1573 1574 Value *NewElt; 1575 if (ScalarSize <= 32) { 1576 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1577 if (!NewElt) 1578 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1579 } else { 1580 // See if this 64-bit division can be shrunk to 32/24-bits before 1581 // producing the general expansion. 1582 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1583 if (!NewElt) { 1584 // The general 64-bit expansion introduces control flow and doesn't 1585 // return the new value. Just insert a scalar copy and defer 1586 // expanding it. 1587 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1588 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1589 } 1590 } 1591 1592 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1593 } 1594 } else { 1595 if (ScalarSize <= 32) 1596 NewDiv = expandDivRem32(Builder, I, Num, Den); 1597 else { 1598 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1599 if (!NewDiv) 1600 Div64ToExpand.push_back(&I); 1601 } 1602 } 1603 1604 if (NewDiv) { 1605 I.replaceAllUsesWith(NewDiv); 1606 I.eraseFromParent(); 1607 Changed = true; 1608 } 1609 } 1610 1611 if (ExpandDiv64InIR) { 1612 // TODO: We get much worse code in specially handled constant cases. 1613 for (BinaryOperator *Div : Div64ToExpand) { 1614 expandDivRem64(*Div); 1615 FlowChanged = true; 1616 Changed = true; 1617 } 1618 } 1619 1620 return Changed; 1621 } 1622 1623 bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) { 1624 if (!WidenLoads) 1625 return false; 1626 1627 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1628 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1629 canWidenScalarExtLoad(I)) { 1630 IRBuilder<> Builder(&I); 1631 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1632 1633 Type *I32Ty = Builder.getInt32Ty(); 1634 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand()); 1635 WidenLoad->copyMetadata(I); 1636 1637 // If we have range metadata, we need to convert the type, and not make 1638 // assumptions about the high bits. 1639 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1640 ConstantInt *Lower = 1641 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1642 1643 if (Lower->isNullValue()) { 1644 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1645 } else { 1646 Metadata *LowAndHigh[] = { 1647 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1648 // Don't make assumptions about the high bits. 1649 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1650 }; 1651 1652 WidenLoad->setMetadata(LLVMContext::MD_range, 1653 MDNode::get(Mod->getContext(), LowAndHigh)); 1654 } 1655 } 1656 1657 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1658 Type *IntNTy = Builder.getIntNTy(TySize); 1659 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1660 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1661 I.replaceAllUsesWith(ValOrig); 1662 I.eraseFromParent(); 1663 return true; 1664 } 1665 1666 return false; 1667 } 1668 1669 bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) { 1670 bool Changed = false; 1671 1672 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1673 UA->isUniform(&I)) 1674 Changed |= promoteUniformOpToI32(I); 1675 1676 return Changed; 1677 } 1678 1679 bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) { 1680 Value *Cond = I.getCondition(); 1681 Value *TrueVal = I.getTrueValue(); 1682 Value *FalseVal = I.getFalseValue(); 1683 Value *CmpVal; 1684 FCmpInst::Predicate Pred; 1685 1686 if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) { 1687 if (UA->isUniform(&I)) 1688 return promoteUniformOpToI32(I); 1689 return false; 1690 } 1691 1692 // Match fract pattern with nan check. 1693 if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN()))) 1694 return false; 1695 1696 FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I); 1697 if (!FPOp) 1698 return false; 1699 1700 IRBuilder<> Builder(&I); 1701 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 1702 1703 auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal); 1704 auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal); 1705 1706 Value *Fract = nullptr; 1707 if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && 1708 CmpVal == matchFractPat(*IIFalse)) { 1709 // isnan(x) ? x : fract(x) 1710 Fract = applyFractPat(Builder, CmpVal); 1711 } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && 1712 CmpVal == matchFractPat(*IITrue)) { 1713 // !isnan(x) ? fract(x) : x 1714 Fract = applyFractPat(Builder, CmpVal); 1715 } else 1716 return false; 1717 1718 Fract->takeName(&I); 1719 I.replaceAllUsesWith(Fract); 1720 RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 1721 return true; 1722 } 1723 1724 static bool areInSameBB(const Value *A, const Value *B) { 1725 const auto *IA = dyn_cast<Instruction>(A); 1726 const auto *IB = dyn_cast<Instruction>(B); 1727 return IA && IB && IA->getParent() == IB->getParent(); 1728 } 1729 1730 // Helper for breaking large PHIs that returns true when an extractelement on V 1731 // is likely to be folded away by the DAG combiner. 1732 static bool isInterestingPHIIncomingValue(const Value *V) { 1733 const auto *FVT = dyn_cast<FixedVectorType>(V->getType()); 1734 if (!FVT) 1735 return false; 1736 1737 const Value *CurVal = V; 1738 1739 // Check for insertelements, keeping track of the elements covered. 1740 BitVector EltsCovered(FVT->getNumElements()); 1741 while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) { 1742 const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2)); 1743 1744 // Non constant index/out of bounds index -> folding is unlikely. 1745 // The latter is more of a sanity check because canonical IR should just 1746 // have replaced those with poison. 1747 if (!Idx || Idx->getSExtValue() >= FVT->getNumElements()) 1748 return false; 1749 1750 const auto *VecSrc = IE->getOperand(0); 1751 1752 // If the vector source is another instruction, it must be in the same basic 1753 // block. Otherwise, the DAGCombiner won't see the whole thing and is 1754 // unlikely to be able to do anything interesting here. 1755 if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE)) 1756 return false; 1757 1758 CurVal = VecSrc; 1759 EltsCovered.set(Idx->getSExtValue()); 1760 1761 // All elements covered. 1762 if (EltsCovered.all()) 1763 return true; 1764 } 1765 1766 // We either didn't find a single insertelement, or the insertelement chain 1767 // ended before all elements were covered. Check for other interesting values. 1768 1769 // Constants are always interesting because we can just constant fold the 1770 // extractelements. 1771 if (isa<Constant>(CurVal)) 1772 return true; 1773 1774 // shufflevector is likely to be profitable if either operand is a constant, 1775 // or if either source is in the same block. 1776 // This is because shufflevector is most often lowered as a series of 1777 // insert/extract elements anyway. 1778 if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) { 1779 return isa<Constant>(SV->getOperand(1)) || 1780 areInSameBB(SV, SV->getOperand(0)) || 1781 areInSameBB(SV, SV->getOperand(1)); 1782 } 1783 1784 return false; 1785 } 1786 1787 static void collectPHINodes(const PHINode &I, 1788 SmallPtrSet<const PHINode *, 8> &SeenPHIs) { 1789 const auto [It, Inserted] = SeenPHIs.insert(&I); 1790 if (!Inserted) 1791 return; 1792 1793 for (const Value *Inc : I.incoming_values()) { 1794 if (const auto *PhiInc = dyn_cast<PHINode>(Inc)) 1795 collectPHINodes(*PhiInc, SeenPHIs); 1796 } 1797 1798 for (const User *U : I.users()) { 1799 if (const auto *PhiU = dyn_cast<PHINode>(U)) 1800 collectPHINodes(*PhiU, SeenPHIs); 1801 } 1802 } 1803 1804 bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) { 1805 // Check in the cache first. 1806 if (const auto It = BreakPhiNodesCache.find(&I); 1807 It != BreakPhiNodesCache.end()) 1808 return It->second; 1809 1810 // We consider PHI nodes as part of "chains", so given a PHI node I, we 1811 // recursively consider all its users and incoming values that are also PHI 1812 // nodes. We then make a decision about all of those PHIs at once. Either they 1813 // all get broken up, or none of them do. That way, we avoid cases where a 1814 // single PHI is/is not broken and we end up reforming/exploding a vector 1815 // multiple times, or even worse, doing it in a loop. 1816 SmallPtrSet<const PHINode *, 8> WorkList; 1817 collectPHINodes(I, WorkList); 1818 1819 #ifndef NDEBUG 1820 // Check that none of the PHI nodes in the worklist are in the map. If some of 1821 // them are, it means we're not good enough at collecting related PHIs. 1822 for (const PHINode *WLP : WorkList) { 1823 assert(BreakPhiNodesCache.count(WLP) == 0); 1824 } 1825 #endif 1826 1827 // To consider a PHI profitable to break, we need to see some interesting 1828 // incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist 1829 // must have one to consider all PHIs breakable. 1830 // 1831 // This threshold has been determined through performance testing. 1832 // 1833 // Note that the computation below is equivalent to 1834 // 1835 // (unsigned)ceil((K / 3.0) * 2) 1836 // 1837 // It's simply written this way to avoid mixing integral/FP arithmetic. 1838 const auto Threshold = (alignTo(WorkList.size() * 2, 3) / 3); 1839 unsigned NumBreakablePHIs = 0; 1840 bool CanBreak = false; 1841 for (const PHINode *Cur : WorkList) { 1842 // Don't break PHIs that have no interesting incoming values. That is, where 1843 // there is no clear opportunity to fold the "extractelement" instructions 1844 // we would add. 1845 // 1846 // Note: IC does not run after this pass, so we're only interested in the 1847 // foldings that the DAG combiner can do. 1848 if (any_of(Cur->incoming_values(), isInterestingPHIIncomingValue)) { 1849 if (++NumBreakablePHIs >= Threshold) { 1850 CanBreak = true; 1851 break; 1852 } 1853 } 1854 } 1855 1856 for (const PHINode *Cur : WorkList) 1857 BreakPhiNodesCache[Cur] = CanBreak; 1858 1859 return CanBreak; 1860 } 1861 1862 /// Helper class for "break large PHIs" (visitPHINode). 1863 /// 1864 /// This represents a slice of a PHI's incoming value, which is made up of: 1865 /// - The type of the slice (Ty) 1866 /// - The index in the incoming value's vector where the slice starts (Idx) 1867 /// - The number of elements in the slice (NumElts). 1868 /// It also keeps track of the NewPHI node inserted for this particular slice. 1869 /// 1870 /// Slice examples: 1871 /// <4 x i64> -> Split into four i64 slices. 1872 /// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1] 1873 /// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail. 1874 /// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1] 1875 class VectorSlice { 1876 public: 1877 VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts) 1878 : Ty(Ty), Idx(Idx), NumElts(NumElts) {} 1879 1880 Type *Ty = nullptr; 1881 unsigned Idx = 0; 1882 unsigned NumElts = 0; 1883 PHINode *NewPHI = nullptr; 1884 1885 /// Slice \p Inc according to the information contained within this slice. 1886 /// This is cached, so if called multiple times for the same \p BB & \p Inc 1887 /// pair, it returns the same Sliced value as well. 1888 /// 1889 /// Note this *intentionally* does not return the same value for, say, 1890 /// [%bb.0, %0] & [%bb.1, %0] as: 1891 /// - It could cause issues with dominance (e.g. if bb.1 is seen first, then 1892 /// the value in bb.1 may not be reachable from bb.0 if it's its 1893 /// predecessor.) 1894 /// - We also want to make our extract instructions as local as possible so 1895 /// the DAG has better chances of folding them out. Duplicating them like 1896 /// that is beneficial in that regard. 1897 /// 1898 /// This is both a minor optimization to avoid creating duplicate 1899 /// instructions, but also a requirement for correctness. It is not forbidden 1900 /// for a PHI node to have the same [BB, Val] pair multiple times. If we 1901 /// returned a new value each time, those previously identical pairs would all 1902 /// have different incoming values (from the same block) and it'd cause a "PHI 1903 /// node has multiple entries for the same basic block with different incoming 1904 /// values!" verifier error. 1905 Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) { 1906 Value *&Res = SlicedVals[{BB, Inc}]; 1907 if (Res) 1908 return Res; 1909 1910 IRBuilder<> B(BB->getTerminator()); 1911 if (Instruction *IncInst = dyn_cast<Instruction>(Inc)) 1912 B.SetCurrentDebugLocation(IncInst->getDebugLoc()); 1913 1914 if (NumElts > 1) { 1915 SmallVector<int, 4> Mask; 1916 for (unsigned K = Idx; K < (Idx + NumElts); ++K) 1917 Mask.push_back(K); 1918 Res = B.CreateShuffleVector(Inc, Mask, NewValName); 1919 } else 1920 Res = B.CreateExtractElement(Inc, Idx, NewValName); 1921 1922 return Res; 1923 } 1924 1925 private: 1926 SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals; 1927 }; 1928 1929 bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) { 1930 // Break-up fixed-vector PHIs into smaller pieces. 1931 // Default threshold is 32, so it breaks up any vector that's >32 bits into 1932 // its elements, or into 32-bit pieces (for 8/16 bit elts). 1933 // 1934 // This is only helpful for DAGISel because it doesn't handle large PHIs as 1935 // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. 1936 // With large, odd-sized PHIs we may end up needing many `build_vector` 1937 // operations with most elements being "undef". This inhibits a lot of 1938 // optimization opportunities and can result in unreasonably high register 1939 // pressure and the inevitable stack spilling. 1940 if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) 1941 return false; 1942 1943 FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType()); 1944 if (!FVT || FVT->getNumElements() == 1 || 1945 DL->getTypeSizeInBits(FVT) <= BreakLargePHIsThreshold) 1946 return false; 1947 1948 if (!ForceBreakLargePHIs && !canBreakPHINode(I)) 1949 return false; 1950 1951 std::vector<VectorSlice> Slices; 1952 1953 Type *EltTy = FVT->getElementType(); 1954 { 1955 unsigned Idx = 0; 1956 // For 8/16 bits type, don't scalarize fully but break it up into as many 1957 // 32-bit slices as we can, and scalarize the tail. 1958 const unsigned EltSize = DL->getTypeSizeInBits(EltTy); 1959 const unsigned NumElts = FVT->getNumElements(); 1960 if (EltSize == 8 || EltSize == 16) { 1961 const unsigned SubVecSize = (32 / EltSize); 1962 Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); 1963 for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; 1964 Idx += SubVecSize) 1965 Slices.emplace_back(SubVecTy, Idx, SubVecSize); 1966 } 1967 1968 // Scalarize all remaining elements. 1969 for (; Idx < NumElts; ++Idx) 1970 Slices.emplace_back(EltTy, Idx, 1); 1971 } 1972 1973 assert(Slices.size() > 1); 1974 1975 // Create one PHI per vector piece. The "VectorSlice" class takes care of 1976 // creating the necessary instruction to extract the relevant slices of each 1977 // incoming value. 1978 IRBuilder<> B(I.getParent()); 1979 B.SetCurrentDebugLocation(I.getDebugLoc()); 1980 1981 unsigned IncNameSuffix = 0; 1982 for (VectorSlice &S : Slices) { 1983 // We need to reset the build on each iteration, because getSlicedVal may 1984 // have inserted something into I's BB. 1985 B.SetInsertPoint(I.getParent()->getFirstNonPHI()); 1986 S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); 1987 1988 for (const auto &[Idx, BB] : enumerate(I.blocks())) { 1989 S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx), 1990 "largephi.extractslice" + 1991 std::to_string(IncNameSuffix++)), 1992 BB); 1993 } 1994 } 1995 1996 // And replace this PHI with a vector of all the previous PHI values. 1997 Value *Vec = PoisonValue::get(FVT); 1998 unsigned NameSuffix = 0; 1999 for (VectorSlice &S : Slices) { 2000 const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); 2001 if (S.NumElts > 1) 2002 Vec = 2003 B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); 2004 else 2005 Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); 2006 } 2007 2008 I.replaceAllUsesWith(Vec); 2009 I.eraseFromParent(); 2010 return true; 2011 } 2012 2013 bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) { 2014 switch (I.getIntrinsicID()) { 2015 case Intrinsic::bitreverse: 2016 return visitBitreverseIntrinsicInst(I); 2017 case Intrinsic::minnum: 2018 return visitMinNum(I); 2019 case Intrinsic::sqrt: 2020 return visitSqrt(I); 2021 default: 2022 return false; 2023 } 2024 } 2025 2026 bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 2027 bool Changed = false; 2028 2029 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 2030 UA->isUniform(&I)) 2031 Changed |= promoteUniformBitreverseToI32(I); 2032 2033 return Changed; 2034 } 2035 2036 /// Match non-nan fract pattern. 2037 /// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0) 2038 /// 2039 /// If fract is a useful instruction for the subtarget. Does not account for the 2040 /// nan handling; the instruction has a nan check on the input value. 2041 Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) { 2042 if (ST->hasFractBug()) 2043 return nullptr; 2044 2045 if (I.getIntrinsicID() != Intrinsic::minnum) 2046 return nullptr; 2047 2048 Type *Ty = I.getType(); 2049 if (!isLegalFloatingTy(Ty->getScalarType())) 2050 return nullptr; 2051 2052 Value *Arg0 = I.getArgOperand(0); 2053 Value *Arg1 = I.getArgOperand(1); 2054 2055 const APFloat *C; 2056 if (!match(Arg1, m_APFloat(C))) 2057 return nullptr; 2058 2059 APFloat One(1.0); 2060 bool LosesInfo; 2061 One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo); 2062 2063 // Match nextafter(1.0, -1) 2064 One.next(true); 2065 if (One != *C) 2066 return nullptr; 2067 2068 Value *FloorSrc; 2069 if (match(Arg0, m_FSub(m_Value(FloorSrc), 2070 m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc))))) 2071 return FloorSrc; 2072 return nullptr; 2073 } 2074 2075 Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder, 2076 Value *FractArg) { 2077 SmallVector<Value *, 4> FractVals; 2078 extractValues(Builder, FractVals, FractArg); 2079 2080 SmallVector<Value *, 4> ResultVals(FractVals.size()); 2081 2082 Type *Ty = FractArg->getType()->getScalarType(); 2083 for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { 2084 ResultVals[I] = 2085 Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]}); 2086 } 2087 2088 return insertValues(Builder, FractArg->getType(), ResultVals); 2089 } 2090 2091 bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) { 2092 Value *FractArg = matchFractPat(I); 2093 if (!FractArg) 2094 return false; 2095 2096 // Match pattern for fract intrinsic in contexts where the nan check has been 2097 // optimized out (and hope the knowledge the source can't be nan wasn't lost). 2098 if (!I.hasNoNaNs() && !isKnownNeverNaN(FractArg, *DL, TLInfo)) 2099 return false; 2100 2101 IRBuilder<> Builder(&I); 2102 FastMathFlags FMF = I.getFastMathFlags(); 2103 FMF.setNoNaNs(); 2104 Builder.setFastMathFlags(FMF); 2105 2106 Value *Fract = applyFractPat(Builder, FractArg); 2107 Fract->takeName(&I); 2108 I.replaceAllUsesWith(Fract); 2109 2110 RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 2111 return true; 2112 } 2113 2114 static bool isOneOrNegOne(const Value *Val) { 2115 const APFloat *C; 2116 return match(Val, m_APFloat(C)) && C->getExactLog2Abs() == 0; 2117 } 2118 2119 // Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way. 2120 bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) { 2121 Type *Ty = Sqrt.getType()->getScalarType(); 2122 if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST->has16BitInsts())) 2123 return false; 2124 2125 const FPMathOperator *FPOp = cast<const FPMathOperator>(&Sqrt); 2126 FastMathFlags SqrtFMF = FPOp->getFastMathFlags(); 2127 2128 // We're trying to handle the fast-but-not-that-fast case only. The lowering 2129 // of fast llvm.sqrt will give the raw instruction anyway. 2130 if (SqrtFMF.approxFunc() || HasUnsafeFPMath) 2131 return false; 2132 2133 const float ReqdAccuracy = FPOp->getFPAccuracy(); 2134 2135 // Defer correctly rounded expansion to codegen. 2136 if (ReqdAccuracy < 1.0f) 2137 return false; 2138 2139 // FIXME: This is an ugly hack for this pass using forward iteration instead 2140 // of reverse. If it worked like a normal combiner, the rsq would form before 2141 // we saw a sqrt call. 2142 auto *FDiv = 2143 dyn_cast_or_null<FPMathOperator>(Sqrt.getUniqueUndroppableUser()); 2144 if (FDiv && FDiv->getOpcode() == Instruction::FDiv && 2145 FDiv->getFPAccuracy() >= 1.0f && 2146 canOptimizeWithRsq(FPOp, FDiv->getFastMathFlags(), SqrtFMF) && 2147 // TODO: We should also handle the arcp case for the fdiv with non-1 value 2148 isOneOrNegOne(FDiv->getOperand(0))) 2149 return false; 2150 2151 Value *SrcVal = Sqrt.getOperand(0); 2152 bool CanTreatAsDAZ = canIgnoreDenormalInput(SrcVal, &Sqrt); 2153 2154 // The raw instruction is 1 ulp, but the correction for denormal handling 2155 // brings it to 2. 2156 if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f) 2157 return false; 2158 2159 IRBuilder<> Builder(&Sqrt); 2160 SmallVector<Value *, 4> SrcVals; 2161 extractValues(Builder, SrcVals, SrcVal); 2162 2163 SmallVector<Value *, 4> ResultVals(SrcVals.size()); 2164 for (int I = 0, E = SrcVals.size(); I != E; ++I) { 2165 if (CanTreatAsDAZ) 2166 ResultVals[I] = Builder.CreateCall(getSqrtF32(), SrcVals[I]); 2167 else 2168 ResultVals[I] = emitSqrtIEEE2ULP(Builder, SrcVals[I], SqrtFMF); 2169 } 2170 2171 Value *NewSqrt = insertValues(Builder, Sqrt.getType(), ResultVals); 2172 NewSqrt->takeName(&Sqrt); 2173 Sqrt.replaceAllUsesWith(NewSqrt); 2174 Sqrt.eraseFromParent(); 2175 return true; 2176 } 2177 2178 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 2179 Impl.Mod = &M; 2180 Impl.DL = &Impl.Mod->getDataLayout(); 2181 Impl.SqrtF32 = nullptr; 2182 Impl.LdexpF32 = nullptr; 2183 return false; 2184 } 2185 2186 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 2187 if (skipFunction(F)) 2188 return false; 2189 2190 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 2191 if (!TPC) 2192 return false; 2193 2194 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 2195 Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 2196 Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); 2197 Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2198 Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 2199 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 2200 Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr; 2201 Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); 2202 SIModeRegisterDefaults Mode(F, *Impl.ST); 2203 Impl.HasFP32DenormalFlush = 2204 Mode.FP32Denormals == DenormalMode::getPreserveSign(); 2205 return Impl.run(F); 2206 } 2207 2208 PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F, 2209 FunctionAnalysisManager &FAM) { 2210 AMDGPUCodeGenPrepareImpl Impl; 2211 Impl.Mod = F.getParent(); 2212 Impl.DL = &Impl.Mod->getDataLayout(); 2213 Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F); 2214 Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); 2215 Impl.AC = &FAM.getResult<AssumptionAnalysis>(F); 2216 Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F); 2217 Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 2218 Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); 2219 SIModeRegisterDefaults Mode(F, *Impl.ST); 2220 Impl.HasFP32DenormalFlush = 2221 Mode.FP32Denormals == DenormalMode::getPreserveSign(); 2222 PreservedAnalyses PA = PreservedAnalyses::none(); 2223 if (!Impl.FlowChanged) 2224 PA.preserveSet<CFGAnalyses>(); 2225 return Impl.run(F) ? PA : PreservedAnalyses::all(); 2226 } 2227 2228 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 2229 "AMDGPU IR optimizations", false, false) 2230 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2231 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2232 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 2233 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 2234 false, false) 2235 2236 char AMDGPUCodeGenPrepare::ID = 0; 2237 2238 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 2239 return new AMDGPUCodeGenPrepare(); 2240 } 2241