1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass does misc. AMDGPU optimizations on IR before instruction 11 /// selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/CodeGen/TargetPassConfig.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/InstVisitor.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/KnownBits.h" 29 #include "llvm/Transforms/Utils/IntegerDivision.h" 30 31 #define DEBUG_TYPE "amdgpu-codegenprepare" 32 33 using namespace llvm; 34 35 namespace { 36 37 static cl::opt<bool> WidenLoads( 38 "amdgpu-codegenprepare-widen-constant-loads", 39 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 40 cl::ReallyHidden, 41 cl::init(false)); 42 43 static cl::opt<bool> Widen16BitOps( 44 "amdgpu-codegenprepare-widen-16-bit-ops", 45 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 46 cl::ReallyHidden, 47 cl::init(true)); 48 49 static cl::opt<bool> UseMul24Intrin( 50 "amdgpu-codegenprepare-mul24", 51 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 52 cl::ReallyHidden, 53 cl::init(true)); 54 55 // Legalize 64-bit division by using the generic IR expansion. 56 static cl::opt<bool> ExpandDiv64InIR( 57 "amdgpu-codegenprepare-expand-div64", 58 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 59 cl::ReallyHidden, 60 cl::init(false)); 61 62 // Leave all division operations as they are. This supersedes ExpandDiv64InIR 63 // and is used for testing the legalizer. 64 static cl::opt<bool> DisableIDivExpand( 65 "amdgpu-codegenprepare-disable-idiv-expansion", 66 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 67 cl::ReallyHidden, 68 cl::init(false)); 69 70 class AMDGPUCodeGenPrepare : public FunctionPass, 71 public InstVisitor<AMDGPUCodeGenPrepare, bool> { 72 const GCNSubtarget *ST = nullptr; 73 AssumptionCache *AC = nullptr; 74 DominatorTree *DT = nullptr; 75 LegacyDivergenceAnalysis *DA = nullptr; 76 Module *Mod = nullptr; 77 const DataLayout *DL = nullptr; 78 bool HasUnsafeFPMath = false; 79 bool HasFP32Denormals = false; 80 81 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 82 /// binary operation \p V. 83 /// 84 /// \returns Binary operation \p V. 85 /// \returns \p T's base element bit width. 86 unsigned getBaseElementBitWidth(const Type *T) const; 87 88 /// \returns Equivalent 32 bit integer type for given type \p T. For example, 89 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 90 /// is returned. 91 Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 92 93 /// \returns True if binary operation \p I is a signed binary operation, false 94 /// otherwise. 95 bool isSigned(const BinaryOperator &I) const; 96 97 /// \returns True if the condition of 'select' operation \p I comes from a 98 /// signed 'icmp' operation, false otherwise. 99 bool isSigned(const SelectInst &I) const; 100 101 /// \returns True if type \p T needs to be promoted to 32 bit integer type, 102 /// false otherwise. 103 bool needsPromotionToI32(const Type *T) const; 104 105 /// Promotes uniform binary operation \p I to equivalent 32 bit binary 106 /// operation. 107 /// 108 /// \details \p I's base element bit width must be greater than 1 and less 109 /// than or equal 16. Promotion is done by sign or zero extending operands to 110 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 111 /// truncating the result of 32 bit binary operation back to \p I's original 112 /// type. Division operation is not promoted. 113 /// 114 /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 115 /// false otherwise. 116 bool promoteUniformOpToI32(BinaryOperator &I) const; 117 118 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 119 /// 120 /// \details \p I's base element bit width must be greater than 1 and less 121 /// than or equal 16. Promotion is done by sign or zero extending operands to 122 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 123 /// 124 /// \returns True. 125 bool promoteUniformOpToI32(ICmpInst &I) const; 126 127 /// Promotes uniform 'select' operation \p I to 32 bit 'select' 128 /// operation. 129 /// 130 /// \details \p I's base element bit width must be greater than 1 and less 131 /// than or equal 16. Promotion is done by sign or zero extending operands to 132 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 133 /// result of 32 bit 'select' operation back to \p I's original type. 134 /// 135 /// \returns True. 136 bool promoteUniformOpToI32(SelectInst &I) const; 137 138 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 139 /// intrinsic. 140 /// 141 /// \details \p I's base element bit width must be greater than 1 and less 142 /// than or equal 16. Promotion is done by zero extending the operand to 32 143 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 144 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 145 /// shift amount is 32 minus \p I's base element bit width), and truncating 146 /// the result of the shift operation back to \p I's original type. 147 /// 148 /// \returns True. 149 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 150 151 /// \returns The minimum number of bits needed to store the value of \Op as an 152 /// unsigned integer. Truncating to this size and then zero-extending to 153 /// the original will not change the value. 154 unsigned numBitsUnsigned(Value *Op) const; 155 156 /// \returns The minimum number of bits needed to store the value of \Op as a 157 /// signed integer. Truncating to this size and then sign-extending to 158 /// the original size will not change the value. 159 unsigned numBitsSigned(Value *Op) const; 160 161 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 162 /// SelectionDAG has an issue where an and asserting the bits are known 163 bool replaceMulWithMul24(BinaryOperator &I) const; 164 165 /// Perform same function as equivalently named function in DAGCombiner. Since 166 /// we expand some divisions here, we need to perform this before obscuring. 167 bool foldBinOpIntoSelect(BinaryOperator &I) const; 168 169 bool divHasSpecialOptimization(BinaryOperator &I, 170 Value *Num, Value *Den) const; 171 int getDivNumBits(BinaryOperator &I, 172 Value *Num, Value *Den, 173 unsigned AtLeast, bool Signed) const; 174 175 /// Expands 24 bit div or rem. 176 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 177 Value *Num, Value *Den, 178 bool IsDiv, bool IsSigned) const; 179 180 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 181 Value *Num, Value *Den, unsigned NumBits, 182 bool IsDiv, bool IsSigned) const; 183 184 /// Expands 32 bit div or rem. 185 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 186 Value *Num, Value *Den) const; 187 188 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 189 Value *Num, Value *Den) const; 190 void expandDivRem64(BinaryOperator &I) const; 191 192 /// Widen a scalar load. 193 /// 194 /// \details \p Widen scalar load for uniform, small type loads from constant 195 // memory / to a full 32-bits and then truncate the input to allow a scalar 196 // load instead of a vector load. 197 // 198 /// \returns True. 199 200 bool canWidenScalarExtLoad(LoadInst &I) const; 201 202 public: 203 static char ID; 204 205 AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 206 207 bool visitFDiv(BinaryOperator &I); 208 bool visitXor(BinaryOperator &I); 209 210 bool visitInstruction(Instruction &I) { return false; } 211 bool visitBinaryOperator(BinaryOperator &I); 212 bool visitLoadInst(LoadInst &I); 213 bool visitICmpInst(ICmpInst &I); 214 bool visitSelectInst(SelectInst &I); 215 216 bool visitIntrinsicInst(IntrinsicInst &I); 217 bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 218 219 bool doInitialization(Module &M) override; 220 bool runOnFunction(Function &F) override; 221 222 StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 223 224 void getAnalysisUsage(AnalysisUsage &AU) const override { 225 AU.addRequired<AssumptionCacheTracker>(); 226 AU.addRequired<LegacyDivergenceAnalysis>(); 227 228 // FIXME: Division expansion needs to preserve the dominator tree. 229 if (!ExpandDiv64InIR) 230 AU.setPreservesAll(); 231 } 232 }; 233 234 } // end anonymous namespace 235 236 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 237 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 238 239 if (T->isIntegerTy()) 240 return T->getIntegerBitWidth(); 241 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 242 } 243 244 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 245 assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 246 247 if (T->isIntegerTy()) 248 return B.getInt32Ty(); 249 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 250 } 251 252 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 253 return I.getOpcode() == Instruction::AShr || 254 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 255 } 256 257 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 258 return isa<ICmpInst>(I.getOperand(0)) ? 259 cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 260 } 261 262 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 263 if (!Widen16BitOps) 264 return false; 265 266 const IntegerType *IntTy = dyn_cast<IntegerType>(T); 267 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 268 return true; 269 270 if (const VectorType *VT = dyn_cast<VectorType>(T)) { 271 // TODO: The set of packed operations is more limited, so may want to 272 // promote some anyway. 273 if (ST->hasVOP3PInsts()) 274 return false; 275 276 return needsPromotionToI32(VT->getElementType()); 277 } 278 279 return false; 280 } 281 282 // Return true if the op promoted to i32 should have nsw set. 283 static bool promotedOpIsNSW(const Instruction &I) { 284 switch (I.getOpcode()) { 285 case Instruction::Shl: 286 case Instruction::Add: 287 case Instruction::Sub: 288 return true; 289 case Instruction::Mul: 290 return I.hasNoUnsignedWrap(); 291 default: 292 return false; 293 } 294 } 295 296 // Return true if the op promoted to i32 should have nuw set. 297 static bool promotedOpIsNUW(const Instruction &I) { 298 switch (I.getOpcode()) { 299 case Instruction::Shl: 300 case Instruction::Add: 301 case Instruction::Mul: 302 return true; 303 case Instruction::Sub: 304 return I.hasNoUnsignedWrap(); 305 default: 306 return false; 307 } 308 } 309 310 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 311 Type *Ty = I.getType(); 312 const DataLayout &DL = Mod->getDataLayout(); 313 int TySize = DL.getTypeSizeInBits(Ty); 314 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 315 316 return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I); 317 } 318 319 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 320 assert(needsPromotionToI32(I.getType()) && 321 "I does not need promotion to i32"); 322 323 if (I.getOpcode() == Instruction::SDiv || 324 I.getOpcode() == Instruction::UDiv || 325 I.getOpcode() == Instruction::SRem || 326 I.getOpcode() == Instruction::URem) 327 return false; 328 329 IRBuilder<> Builder(&I); 330 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 331 332 Type *I32Ty = getI32Ty(Builder, I.getType()); 333 Value *ExtOp0 = nullptr; 334 Value *ExtOp1 = nullptr; 335 Value *ExtRes = nullptr; 336 Value *TruncRes = nullptr; 337 338 if (isSigned(I)) { 339 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 340 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 341 } else { 342 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 343 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 344 } 345 346 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 347 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 348 if (promotedOpIsNSW(cast<Instruction>(I))) 349 Inst->setHasNoSignedWrap(); 350 351 if (promotedOpIsNUW(cast<Instruction>(I))) 352 Inst->setHasNoUnsignedWrap(); 353 354 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 355 Inst->setIsExact(ExactOp->isExact()); 356 } 357 358 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 359 360 I.replaceAllUsesWith(TruncRes); 361 I.eraseFromParent(); 362 363 return true; 364 } 365 366 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 367 assert(needsPromotionToI32(I.getOperand(0)->getType()) && 368 "I does not need promotion to i32"); 369 370 IRBuilder<> Builder(&I); 371 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 372 373 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 374 Value *ExtOp0 = nullptr; 375 Value *ExtOp1 = nullptr; 376 Value *NewICmp = nullptr; 377 378 if (I.isSigned()) { 379 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 380 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 381 } else { 382 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 383 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 384 } 385 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 386 387 I.replaceAllUsesWith(NewICmp); 388 I.eraseFromParent(); 389 390 return true; 391 } 392 393 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 394 assert(needsPromotionToI32(I.getType()) && 395 "I does not need promotion to i32"); 396 397 IRBuilder<> Builder(&I); 398 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 399 400 Type *I32Ty = getI32Ty(Builder, I.getType()); 401 Value *ExtOp1 = nullptr; 402 Value *ExtOp2 = nullptr; 403 Value *ExtRes = nullptr; 404 Value *TruncRes = nullptr; 405 406 if (isSigned(I)) { 407 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 408 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 409 } else { 410 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 411 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 412 } 413 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 414 TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 415 416 I.replaceAllUsesWith(TruncRes); 417 I.eraseFromParent(); 418 419 return true; 420 } 421 422 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 423 IntrinsicInst &I) const { 424 assert(I.getIntrinsicID() == Intrinsic::bitreverse && 425 "I must be bitreverse intrinsic"); 426 assert(needsPromotionToI32(I.getType()) && 427 "I does not need promotion to i32"); 428 429 IRBuilder<> Builder(&I); 430 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 431 432 Type *I32Ty = getI32Ty(Builder, I.getType()); 433 Function *I32 = 434 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 435 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 436 Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 437 Value *LShrOp = 438 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 439 Value *TruncRes = 440 Builder.CreateTrunc(LShrOp, I.getType()); 441 442 I.replaceAllUsesWith(TruncRes); 443 I.eraseFromParent(); 444 445 return true; 446 } 447 448 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op) const { 449 return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits(); 450 } 451 452 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op) const { 453 return ComputeMaxSignificantBits(Op, *DL, 0, AC); 454 } 455 456 static void extractValues(IRBuilder<> &Builder, 457 SmallVectorImpl<Value *> &Values, Value *V) { 458 auto *VT = dyn_cast<FixedVectorType>(V->getType()); 459 if (!VT) { 460 Values.push_back(V); 461 return; 462 } 463 464 for (int I = 0, E = VT->getNumElements(); I != E; ++I) 465 Values.push_back(Builder.CreateExtractElement(V, I)); 466 } 467 468 static Value *insertValues(IRBuilder<> &Builder, 469 Type *Ty, 470 SmallVectorImpl<Value *> &Values) { 471 if (!Ty->isVectorTy()) { 472 assert(Values.size() == 1); 473 return Values[0]; 474 } 475 476 Value *NewVal = PoisonValue::get(Ty); 477 for (int I = 0, E = Values.size(); I != E; ++I) 478 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 479 480 return NewVal; 481 } 482 483 // Returns 24-bit or 48-bit (as per `NumBits` and `Size`) mul of `LHS` and 484 // `RHS`. `NumBits` is the number of KnownBits of the result and `Size` is the 485 // width of the original destination. 486 static Value *getMul24(IRBuilder<> &Builder, Value *LHS, Value *RHS, 487 unsigned Size, unsigned NumBits, bool IsSigned) { 488 if (Size <= 32 || NumBits <= 32) { 489 Intrinsic::ID ID = 490 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 491 return Builder.CreateIntrinsic(ID, {}, {LHS, RHS}); 492 } 493 494 assert(NumBits <= 48); 495 496 Intrinsic::ID LoID = 497 IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 498 Intrinsic::ID HiID = 499 IsSigned ? Intrinsic::amdgcn_mulhi_i24 : Intrinsic::amdgcn_mulhi_u24; 500 501 Value *Lo = Builder.CreateIntrinsic(LoID, {}, {LHS, RHS}); 502 Value *Hi = Builder.CreateIntrinsic(HiID, {}, {LHS, RHS}); 503 504 IntegerType *I64Ty = Builder.getInt64Ty(); 505 Lo = Builder.CreateZExtOrTrunc(Lo, I64Ty); 506 Hi = Builder.CreateZExtOrTrunc(Hi, I64Ty); 507 508 return Builder.CreateOr(Lo, Builder.CreateShl(Hi, 32)); 509 } 510 511 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 512 if (I.getOpcode() != Instruction::Mul) 513 return false; 514 515 Type *Ty = I.getType(); 516 unsigned Size = Ty->getScalarSizeInBits(); 517 if (Size <= 16 && ST->has16BitInsts()) 518 return false; 519 520 // Prefer scalar if this could be s_mul_i32 521 if (DA->isUniform(&I)) 522 return false; 523 524 Value *LHS = I.getOperand(0); 525 Value *RHS = I.getOperand(1); 526 IRBuilder<> Builder(&I); 527 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 528 529 unsigned LHSBits = 0, RHSBits = 0; 530 bool IsSigned = false; 531 532 if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && 533 (RHSBits = numBitsUnsigned(RHS)) <= 24) { 534 IsSigned = false; 535 536 } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && 537 (RHSBits = numBitsSigned(RHS)) <= 24) { 538 IsSigned = true; 539 540 } else 541 return false; 542 543 SmallVector<Value *, 4> LHSVals; 544 SmallVector<Value *, 4> RHSVals; 545 SmallVector<Value *, 4> ResultVals; 546 extractValues(Builder, LHSVals, LHS); 547 extractValues(Builder, RHSVals, RHS); 548 549 IntegerType *I32Ty = Builder.getInt32Ty(); 550 for (int I = 0, E = LHSVals.size(); I != E; ++I) { 551 Value *LHS, *RHS; 552 if (IsSigned) { 553 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 554 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 555 } else { 556 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 557 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 558 } 559 560 Value *Result = 561 getMul24(Builder, LHS, RHS, Size, LHSBits + RHSBits, IsSigned); 562 563 if (IsSigned) { 564 ResultVals.push_back( 565 Builder.CreateSExtOrTrunc(Result, LHSVals[I]->getType())); 566 } else { 567 ResultVals.push_back( 568 Builder.CreateZExtOrTrunc(Result, LHSVals[I]->getType())); 569 } 570 } 571 572 Value *NewVal = insertValues(Builder, Ty, ResultVals); 573 NewVal->takeName(&I); 574 I.replaceAllUsesWith(NewVal); 575 I.eraseFromParent(); 576 577 return true; 578 } 579 580 // Find a select instruction, which may have been casted. This is mostly to deal 581 // with cases where i16 selects were promoted here to i32. 582 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 583 Cast = nullptr; 584 if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 585 return Sel; 586 587 if ((Cast = dyn_cast<CastInst>(V))) { 588 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 589 return Sel; 590 } 591 592 return nullptr; 593 } 594 595 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 596 // Don't do this unless the old select is going away. We want to eliminate the 597 // binary operator, not replace a binop with a select. 598 int SelOpNo = 0; 599 600 CastInst *CastOp; 601 602 // TODO: Should probably try to handle some cases with multiple 603 // users. Duplicating the select may be profitable for division. 604 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 605 if (!Sel || !Sel->hasOneUse()) { 606 SelOpNo = 1; 607 Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 608 } 609 610 if (!Sel || !Sel->hasOneUse()) 611 return false; 612 613 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 614 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 615 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 616 if (!CBO || !CT || !CF) 617 return false; 618 619 if (CastOp) { 620 if (!CastOp->hasOneUse()) 621 return false; 622 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 623 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 624 } 625 626 // TODO: Handle special 0/-1 cases DAG combine does, although we only really 627 // need to handle divisions here. 628 Constant *FoldedT = SelOpNo ? 629 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 630 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 631 if (!FoldedT || isa<ConstantExpr>(FoldedT)) 632 return false; 633 634 Constant *FoldedF = SelOpNo ? 635 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 636 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 637 if (!FoldedF || isa<ConstantExpr>(FoldedF)) 638 return false; 639 640 IRBuilder<> Builder(&BO); 641 Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 642 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 643 Builder.setFastMathFlags(FPOp->getFastMathFlags()); 644 645 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 646 FoldedT, FoldedF); 647 NewSelect->takeName(&BO); 648 BO.replaceAllUsesWith(NewSelect); 649 BO.eraseFromParent(); 650 if (CastOp) 651 CastOp->eraseFromParent(); 652 Sel->eraseFromParent(); 653 return true; 654 } 655 656 // Optimize fdiv with rcp: 657 // 658 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 659 // allowed with unsafe-fp-math or afn. 660 // 661 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 662 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 663 bool RcpIsAccurate, IRBuilder<> &Builder, 664 Module *Mod) { 665 666 if (!AllowInaccurateRcp && !RcpIsAccurate) 667 return nullptr; 668 669 Type *Ty = Den->getType(); 670 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 671 if (AllowInaccurateRcp || RcpIsAccurate) { 672 if (CLHS->isExactlyValue(1.0)) { 673 Function *Decl = Intrinsic::getDeclaration( 674 Mod, Intrinsic::amdgcn_rcp, Ty); 675 676 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 677 // the CI documentation has a worst case error of 1 ulp. 678 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 679 // use it as long as we aren't trying to use denormals. 680 // 681 // v_rcp_f16 and v_rsq_f16 DO support denormals. 682 683 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 684 // insert rsq intrinsic here. 685 686 // 1.0 / x -> rcp(x) 687 return Builder.CreateCall(Decl, { Den }); 688 } 689 690 // Same as for 1.0, but expand the sign out of the constant. 691 if (CLHS->isExactlyValue(-1.0)) { 692 Function *Decl = Intrinsic::getDeclaration( 693 Mod, Intrinsic::amdgcn_rcp, Ty); 694 695 // -1.0 / x -> rcp (fneg x) 696 Value *FNeg = Builder.CreateFNeg(Den); 697 return Builder.CreateCall(Decl, { FNeg }); 698 } 699 } 700 } 701 702 if (AllowInaccurateRcp) { 703 Function *Decl = Intrinsic::getDeclaration( 704 Mod, Intrinsic::amdgcn_rcp, Ty); 705 706 // Turn into multiply by the reciprocal. 707 // x / y -> x * (1.0 / y) 708 Value *Recip = Builder.CreateCall(Decl, { Den }); 709 return Builder.CreateFMul(Num, Recip); 710 } 711 return nullptr; 712 } 713 714 // optimize with fdiv.fast: 715 // 716 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 717 // 718 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 719 // 720 // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 721 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 722 bool HasDenormals, IRBuilder<> &Builder, 723 Module *Mod) { 724 // fdiv.fast can achieve 2.5 ULP accuracy. 725 if (ReqdAccuracy < 2.5f) 726 return nullptr; 727 728 // Only have fdiv.fast for f32. 729 Type *Ty = Den->getType(); 730 if (!Ty->isFloatTy()) 731 return nullptr; 732 733 bool NumIsOne = false; 734 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 735 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 736 NumIsOne = true; 737 } 738 739 // fdiv does not support denormals. But 1.0/x is always fine to use it. 740 if (HasDenormals && !NumIsOne) 741 return nullptr; 742 743 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 744 return Builder.CreateCall(Decl, { Num, Den }); 745 } 746 747 // Optimizations is performed based on fpmath, fast math flags as well as 748 // denormals to optimize fdiv with either rcp or fdiv.fast. 749 // 750 // With rcp: 751 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 752 // allowed with unsafe-fp-math or afn. 753 // 754 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 755 // 756 // With fdiv.fast: 757 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 758 // 759 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 760 // 761 // NOTE: rcp is the preference in cases that both are legal. 762 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 763 764 Type *Ty = FDiv.getType()->getScalarType(); 765 766 // The f64 rcp/rsq approximations are pretty inaccurate. We can do an 767 // expansion around them in codegen. 768 if (Ty->isDoubleTy()) 769 return false; 770 771 // No intrinsic for fdiv16 if target does not support f16. 772 if (Ty->isHalfTy() && !ST->has16BitInsts()) 773 return false; 774 775 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 776 const float ReqdAccuracy = FPOp->getFPAccuracy(); 777 778 // Inaccurate rcp is allowed with unsafe-fp-math or afn. 779 FastMathFlags FMF = FPOp->getFastMathFlags(); 780 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 781 782 // rcp_f16 is accurate for !fpmath >= 1.0ulp. 783 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 784 // rcp_f64 is never accurate. 785 const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) || 786 (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f); 787 788 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 789 Builder.setFastMathFlags(FMF); 790 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 791 792 Value *Num = FDiv.getOperand(0); 793 Value *Den = FDiv.getOperand(1); 794 795 Value *NewFDiv = nullptr; 796 if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) { 797 NewFDiv = PoisonValue::get(VT); 798 799 // FIXME: Doesn't do the right thing for cases where the vector is partially 800 // constant. This works when the scalarizer pass is run first. 801 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 802 Value *NumEltI = Builder.CreateExtractElement(Num, I); 803 Value *DenEltI = Builder.CreateExtractElement(Den, I); 804 // Try rcp first. 805 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 806 RcpIsAccurate, Builder, Mod); 807 if (!NewElt) // Try fdiv.fast. 808 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 809 HasFP32Denormals, Builder, Mod); 810 if (!NewElt) // Keep the original. 811 NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 812 813 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 814 } 815 } else { // Scalar FDiv. 816 // Try rcp first. 817 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 818 Builder, Mod); 819 if (!NewFDiv) { // Try fdiv.fast. 820 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals, 821 Builder, Mod); 822 } 823 } 824 825 if (NewFDiv) { 826 FDiv.replaceAllUsesWith(NewFDiv); 827 NewFDiv->takeName(&FDiv); 828 FDiv.eraseFromParent(); 829 } 830 831 return !!NewFDiv; 832 } 833 834 bool AMDGPUCodeGenPrepare::visitXor(BinaryOperator &I) { 835 // Match the Xor instruction, its type and its operands 836 IntrinsicInst *IntrinsicCall = dyn_cast<IntrinsicInst>(I.getOperand(0)); 837 ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1)); 838 if (!RHS || !IntrinsicCall || RHS->getSExtValue() != -1) 839 return visitBinaryOperator(I); 840 841 // Check if the Call is an intrinsic instruction to amdgcn_class intrinsic 842 // has only one use 843 if (IntrinsicCall->getIntrinsicID() != Intrinsic::amdgcn_class || 844 !IntrinsicCall->hasOneUse()) 845 return visitBinaryOperator(I); 846 847 // "Not" the second argument of the intrinsic call 848 ConstantInt *Arg = dyn_cast<ConstantInt>(IntrinsicCall->getOperand(1)); 849 if (!Arg) 850 return visitBinaryOperator(I); 851 852 IntrinsicCall->setOperand( 853 1, ConstantInt::get(Arg->getType(), Arg->getZExtValue() ^ 0x3ff)); 854 I.replaceAllUsesWith(IntrinsicCall); 855 I.eraseFromParent(); 856 return true; 857 } 858 859 static bool hasUnsafeFPMath(const Function &F) { 860 Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 861 return Attr.getValueAsBool(); 862 } 863 864 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 865 Value *LHS, Value *RHS) { 866 Type *I32Ty = Builder.getInt32Ty(); 867 Type *I64Ty = Builder.getInt64Ty(); 868 869 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 870 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 871 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 872 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 873 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 874 Hi = Builder.CreateTrunc(Hi, I32Ty); 875 return std::pair(Lo, Hi); 876 } 877 878 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 879 return getMul64(Builder, LHS, RHS).second; 880 } 881 882 /// Figure out how many bits are really needed for this division. \p AtLeast is 883 /// an optimization hint to bypass the second ComputeNumSignBits call if we the 884 /// first one is insufficient. Returns -1 on failure. 885 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I, 886 Value *Num, Value *Den, 887 unsigned AtLeast, bool IsSigned) const { 888 const DataLayout &DL = Mod->getDataLayout(); 889 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 890 if (LHSSignBits < AtLeast) 891 return -1; 892 893 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 894 if (RHSSignBits < AtLeast) 895 return -1; 896 897 unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 898 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 899 if (IsSigned) 900 ++DivBits; 901 return DivBits; 902 } 903 904 // The fractional part of a float is enough to accurately represent up to 905 // a 24-bit signed integer. 906 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 907 BinaryOperator &I, 908 Value *Num, Value *Den, 909 bool IsDiv, bool IsSigned) const { 910 int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 911 if (DivBits == -1) 912 return nullptr; 913 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 914 } 915 916 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder, 917 BinaryOperator &I, 918 Value *Num, Value *Den, 919 unsigned DivBits, 920 bool IsDiv, bool IsSigned) const { 921 Type *I32Ty = Builder.getInt32Ty(); 922 Num = Builder.CreateTrunc(Num, I32Ty); 923 Den = Builder.CreateTrunc(Den, I32Ty); 924 925 Type *F32Ty = Builder.getFloatTy(); 926 ConstantInt *One = Builder.getInt32(1); 927 Value *JQ = One; 928 929 if (IsSigned) { 930 // char|short jq = ia ^ ib; 931 JQ = Builder.CreateXor(Num, Den); 932 933 // jq = jq >> (bitsize - 2) 934 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 935 936 // jq = jq | 0x1 937 JQ = Builder.CreateOr(JQ, One); 938 } 939 940 // int ia = (int)LHS; 941 Value *IA = Num; 942 943 // int ib, (int)RHS; 944 Value *IB = Den; 945 946 // float fa = (float)ia; 947 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 948 : Builder.CreateUIToFP(IA, F32Ty); 949 950 // float fb = (float)ib; 951 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 952 : Builder.CreateUIToFP(IB,F32Ty); 953 954 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 955 Builder.getFloatTy()); 956 Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 957 Value *FQM = Builder.CreateFMul(FA, RCP); 958 959 // fq = trunc(fqm); 960 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 961 FQ->copyFastMathFlags(Builder.getFastMathFlags()); 962 963 // float fqneg = -fq; 964 Value *FQNeg = Builder.CreateFNeg(FQ); 965 966 // float fr = mad(fqneg, fb, fa); 967 auto FMAD = !ST->hasMadMacF32Insts() 968 ? Intrinsic::fma 969 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 970 Value *FR = Builder.CreateIntrinsic(FMAD, 971 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 972 973 // int iq = (int)fq; 974 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 975 : Builder.CreateFPToUI(FQ, I32Ty); 976 977 // fr = fabs(fr); 978 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 979 980 // fb = fabs(fb); 981 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 982 983 // int cv = fr >= fb; 984 Value *CV = Builder.CreateFCmpOGE(FR, FB); 985 986 // jq = (cv ? jq : 0); 987 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 988 989 // dst = iq + jq; 990 Value *Div = Builder.CreateAdd(IQ, JQ); 991 992 Value *Res = Div; 993 if (!IsDiv) { 994 // Rem needs compensation, it's easier to recompute it 995 Value *Rem = Builder.CreateMul(Div, Den); 996 Res = Builder.CreateSub(Num, Rem); 997 } 998 999 if (DivBits != 0 && DivBits < 32) { 1000 // Extend in register from the number of bits this divide really is. 1001 if (IsSigned) { 1002 int InRegBits = 32 - DivBits; 1003 1004 Res = Builder.CreateShl(Res, InRegBits); 1005 Res = Builder.CreateAShr(Res, InRegBits); 1006 } else { 1007 ConstantInt *TruncMask 1008 = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 1009 Res = Builder.CreateAnd(Res, TruncMask); 1010 } 1011 } 1012 1013 return Res; 1014 } 1015 1016 // Try to recognize special cases the DAG will emit special, better expansions 1017 // than the general expansion we do here. 1018 1019 // TODO: It would be better to just directly handle those optimizations here. 1020 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization( 1021 BinaryOperator &I, Value *Num, Value *Den) const { 1022 if (Constant *C = dyn_cast<Constant>(Den)) { 1023 // Arbitrary constants get a better expansion as long as a wider mulhi is 1024 // legal. 1025 if (C->getType()->getScalarSizeInBits() <= 32) 1026 return true; 1027 1028 // TODO: Sdiv check for not exact for some reason. 1029 1030 // If there's no wider mulhi, there's only a better expansion for powers of 1031 // two. 1032 // TODO: Should really know for each vector element. 1033 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 1034 return true; 1035 1036 return false; 1037 } 1038 1039 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 1040 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 1041 if (BinOpDen->getOpcode() == Instruction::Shl && 1042 isa<Constant>(BinOpDen->getOperand(0)) && 1043 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 1044 0, AC, &I, DT)) { 1045 return true; 1046 } 1047 } 1048 1049 return false; 1050 } 1051 1052 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1053 // Check whether the sign can be determined statically. 1054 KnownBits Known = computeKnownBits(V, *DL); 1055 if (Known.isNegative()) 1056 return Constant::getAllOnesValue(V->getType()); 1057 if (Known.isNonNegative()) 1058 return Constant::getNullValue(V->getType()); 1059 return Builder.CreateAShr(V, Builder.getInt32(31)); 1060 } 1061 1062 Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 1063 BinaryOperator &I, Value *X, 1064 Value *Y) const { 1065 Instruction::BinaryOps Opc = I.getOpcode(); 1066 assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 1067 Opc == Instruction::SRem || Opc == Instruction::SDiv); 1068 1069 FastMathFlags FMF; 1070 FMF.setFast(); 1071 Builder.setFastMathFlags(FMF); 1072 1073 if (divHasSpecialOptimization(I, X, Y)) 1074 return nullptr; // Keep it for later optimization. 1075 1076 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 1077 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 1078 1079 Type *Ty = X->getType(); 1080 Type *I32Ty = Builder.getInt32Ty(); 1081 Type *F32Ty = Builder.getFloatTy(); 1082 1083 if (Ty->getScalarSizeInBits() < 32) { 1084 if (IsSigned) { 1085 X = Builder.CreateSExt(X, I32Ty); 1086 Y = Builder.CreateSExt(Y, I32Ty); 1087 } else { 1088 X = Builder.CreateZExt(X, I32Ty); 1089 Y = Builder.CreateZExt(Y, I32Ty); 1090 } 1091 } 1092 1093 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1094 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1095 Builder.CreateZExtOrTrunc(Res, Ty); 1096 } 1097 1098 ConstantInt *Zero = Builder.getInt32(0); 1099 ConstantInt *One = Builder.getInt32(1); 1100 1101 Value *Sign = nullptr; 1102 if (IsSigned) { 1103 Value *SignX = getSign32(X, Builder, DL); 1104 Value *SignY = getSign32(Y, Builder, DL); 1105 // Remainder sign is the same as LHS 1106 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 1107 1108 X = Builder.CreateAdd(X, SignX); 1109 Y = Builder.CreateAdd(Y, SignY); 1110 1111 X = Builder.CreateXor(X, SignX); 1112 Y = Builder.CreateXor(Y, SignY); 1113 } 1114 1115 // The algorithm here is based on ideas from "Software Integer Division", Tom 1116 // Rodeheffer, August 2008. 1117 // 1118 // unsigned udiv(unsigned x, unsigned y) { 1119 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1120 // // that this is a lower bound on inv(y), even if some of the calculations 1121 // // round up. 1122 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1123 // 1124 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1125 // // Empirically this is guaranteed to give a "two-y" lower bound on 1126 // // inv(y). 1127 // z += umulh(z, -y * z); 1128 // 1129 // // Quotient/remainder estimate. 1130 // unsigned q = umulh(x, z); 1131 // unsigned r = x - q * y; 1132 // 1133 // // Two rounds of quotient/remainder refinement. 1134 // if (r >= y) { 1135 // ++q; 1136 // r -= y; 1137 // } 1138 // if (r >= y) { 1139 // ++q; 1140 // r -= y; 1141 // } 1142 // 1143 // return q; 1144 // } 1145 1146 // Initial estimate of inv(y). 1147 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1148 Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 1149 Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 1150 Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE)); 1151 Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1152 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 1153 1154 // One round of UNR. 1155 Value *NegY = Builder.CreateSub(Zero, Y); 1156 Value *NegYZ = Builder.CreateMul(NegY, Z); 1157 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 1158 1159 // Quotient/remainder estimate. 1160 Value *Q = getMulHu(Builder, X, Z); 1161 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 1162 1163 // First quotient/remainder refinement. 1164 Value *Cond = Builder.CreateICmpUGE(R, Y); 1165 if (IsDiv) 1166 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1167 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1168 1169 // Second quotient/remainder refinement. 1170 Cond = Builder.CreateICmpUGE(R, Y); 1171 Value *Res; 1172 if (IsDiv) 1173 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1174 else 1175 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 1176 1177 if (IsSigned) { 1178 Res = Builder.CreateXor(Res, Sign); 1179 Res = Builder.CreateSub(Res, Sign); 1180 } 1181 1182 Res = Builder.CreateTrunc(Res, Ty); 1183 1184 return Res; 1185 } 1186 1187 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder, 1188 BinaryOperator &I, 1189 Value *Num, Value *Den) const { 1190 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1191 return nullptr; // Keep it for later optimization. 1192 1193 Instruction::BinaryOps Opc = I.getOpcode(); 1194 1195 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1196 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1197 1198 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1199 if (NumDivBits == -1) 1200 return nullptr; 1201 1202 Value *Narrowed = nullptr; 1203 if (NumDivBits <= 24) { 1204 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1205 IsDiv, IsSigned); 1206 } else if (NumDivBits <= 32) { 1207 Narrowed = expandDivRem32(Builder, I, Num, Den); 1208 } 1209 1210 if (Narrowed) { 1211 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1212 Builder.CreateZExt(Narrowed, Num->getType()); 1213 } 1214 1215 return nullptr; 1216 } 1217 1218 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const { 1219 Instruction::BinaryOps Opc = I.getOpcode(); 1220 // Do the general expansion. 1221 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1222 expandDivisionUpTo64Bits(&I); 1223 return; 1224 } 1225 1226 if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1227 expandRemainderUpTo64Bits(&I); 1228 return; 1229 } 1230 1231 llvm_unreachable("not a division"); 1232 } 1233 1234 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 1235 if (foldBinOpIntoSelect(I)) 1236 return true; 1237 1238 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1239 DA->isUniform(&I) && promoteUniformOpToI32(I)) 1240 return true; 1241 1242 if (UseMul24Intrin && replaceMulWithMul24(I)) 1243 return true; 1244 1245 bool Changed = false; 1246 Instruction::BinaryOps Opc = I.getOpcode(); 1247 Type *Ty = I.getType(); 1248 Value *NewDiv = nullptr; 1249 unsigned ScalarSize = Ty->getScalarSizeInBits(); 1250 1251 SmallVector<BinaryOperator *, 8> Div64ToExpand; 1252 1253 if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 1254 Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1255 ScalarSize <= 64 && 1256 !DisableIDivExpand) { 1257 Value *Num = I.getOperand(0); 1258 Value *Den = I.getOperand(1); 1259 IRBuilder<> Builder(&I); 1260 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1261 1262 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1263 NewDiv = PoisonValue::get(VT); 1264 1265 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 1266 Value *NumEltN = Builder.CreateExtractElement(Num, N); 1267 Value *DenEltN = Builder.CreateExtractElement(Den, N); 1268 1269 Value *NewElt; 1270 if (ScalarSize <= 32) { 1271 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 1272 if (!NewElt) 1273 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1274 } else { 1275 // See if this 64-bit division can be shrunk to 32/24-bits before 1276 // producing the general expansion. 1277 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1278 if (!NewElt) { 1279 // The general 64-bit expansion introduces control flow and doesn't 1280 // return the new value. Just insert a scalar copy and defer 1281 // expanding it. 1282 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1283 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1284 } 1285 } 1286 1287 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 1288 } 1289 } else { 1290 if (ScalarSize <= 32) 1291 NewDiv = expandDivRem32(Builder, I, Num, Den); 1292 else { 1293 NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1294 if (!NewDiv) 1295 Div64ToExpand.push_back(&I); 1296 } 1297 } 1298 1299 if (NewDiv) { 1300 I.replaceAllUsesWith(NewDiv); 1301 I.eraseFromParent(); 1302 Changed = true; 1303 } 1304 } 1305 1306 if (ExpandDiv64InIR) { 1307 // TODO: We get much worse code in specially handled constant cases. 1308 for (BinaryOperator *Div : Div64ToExpand) { 1309 expandDivRem64(*Div); 1310 Changed = true; 1311 } 1312 } 1313 1314 return Changed; 1315 } 1316 1317 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 1318 if (!WidenLoads) 1319 return false; 1320 1321 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 1322 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 1323 canWidenScalarExtLoad(I)) { 1324 IRBuilder<> Builder(&I); 1325 Builder.SetCurrentDebugLocation(I.getDebugLoc()); 1326 1327 Type *I32Ty = Builder.getInt32Ty(); 1328 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 1329 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 1330 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 1331 WidenLoad->copyMetadata(I); 1332 1333 // If we have range metadata, we need to convert the type, and not make 1334 // assumptions about the high bits. 1335 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 1336 ConstantInt *Lower = 1337 mdconst::extract<ConstantInt>(Range->getOperand(0)); 1338 1339 if (Lower->isNullValue()) { 1340 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 1341 } else { 1342 Metadata *LowAndHigh[] = { 1343 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 1344 // Don't make assumptions about the high bits. 1345 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 1346 }; 1347 1348 WidenLoad->setMetadata(LLVMContext::MD_range, 1349 MDNode::get(Mod->getContext(), LowAndHigh)); 1350 } 1351 } 1352 1353 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 1354 Type *IntNTy = Builder.getIntNTy(TySize); 1355 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 1356 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 1357 I.replaceAllUsesWith(ValOrig); 1358 I.eraseFromParent(); 1359 return true; 1360 } 1361 1362 return false; 1363 } 1364 1365 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 1366 bool Changed = false; 1367 1368 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 1369 DA->isUniform(&I)) 1370 Changed |= promoteUniformOpToI32(I); 1371 1372 return Changed; 1373 } 1374 1375 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 1376 bool Changed = false; 1377 1378 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1379 DA->isUniform(&I)) 1380 Changed |= promoteUniformOpToI32(I); 1381 1382 return Changed; 1383 } 1384 1385 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 1386 switch (I.getIntrinsicID()) { 1387 case Intrinsic::bitreverse: 1388 return visitBitreverseIntrinsicInst(I); 1389 default: 1390 return false; 1391 } 1392 } 1393 1394 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 1395 bool Changed = false; 1396 1397 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 1398 DA->isUniform(&I)) 1399 Changed |= promoteUniformBitreverseToI32(I); 1400 1401 return Changed; 1402 } 1403 1404 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 1405 Mod = &M; 1406 DL = &Mod->getDataLayout(); 1407 return false; 1408 } 1409 1410 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 1411 if (skipFunction(F)) 1412 return false; 1413 1414 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 1415 if (!TPC) 1416 return false; 1417 1418 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 1419 ST = &TM.getSubtarget<GCNSubtarget>(F); 1420 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1421 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 1422 1423 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1424 DT = DTWP ? &DTWP->getDomTree() : nullptr; 1425 1426 HasUnsafeFPMath = hasUnsafeFPMath(F); 1427 1428 AMDGPU::SIModeRegisterDefaults Mode(F); 1429 HasFP32Denormals = Mode.allFP32Denormals(); 1430 1431 bool MadeChange = false; 1432 1433 Function::iterator NextBB; 1434 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 1435 BasicBlock *BB = &*FI; 1436 NextBB = std::next(FI); 1437 1438 BasicBlock::iterator Next; 1439 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) { 1440 Next = std::next(I); 1441 1442 MadeChange |= visit(*I); 1443 1444 if (Next != E) { // Control flow changed 1445 BasicBlock *NextInstBB = Next->getParent(); 1446 if (NextInstBB != BB) { 1447 BB = NextInstBB; 1448 E = BB->end(); 1449 FE = F.end(); 1450 } 1451 } 1452 } 1453 } 1454 1455 return MadeChange; 1456 } 1457 1458 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 1459 "AMDGPU IR optimizations", false, false) 1460 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1461 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 1462 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 1463 false, false) 1464 1465 char AMDGPUCodeGenPrepare::ID = 0; 1466 1467 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 1468 return new AMDGPUCodeGenPrepare(); 1469 } 1470