xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp (revision 18054d0220cfc8df9c9568c437bd6fbb59d53c3c)
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass does misc. AMDGPU optimizations on IR before instruction
11 /// selection.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUTargetMachine.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/TargetPassConfig.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/InstVisitor.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/KnownBits.h"
29 #include "llvm/Transforms/Utils/IntegerDivision.h"
30 
31 #define DEBUG_TYPE "amdgpu-codegenprepare"
32 
33 using namespace llvm;
34 
35 namespace {
36 
37 static cl::opt<bool> WidenLoads(
38   "amdgpu-codegenprepare-widen-constant-loads",
39   cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
40   cl::ReallyHidden,
41   cl::init(false));
42 
43 static cl::opt<bool> Widen16BitOps(
44   "amdgpu-codegenprepare-widen-16-bit-ops",
45   cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"),
46   cl::ReallyHidden,
47   cl::init(true));
48 
49 static cl::opt<bool> UseMul24Intrin(
50   "amdgpu-codegenprepare-mul24",
51   cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
52   cl::ReallyHidden,
53   cl::init(true));
54 
55 // Legalize 64-bit division by using the generic IR expansion.
56 static cl::opt<bool> ExpandDiv64InIR(
57   "amdgpu-codegenprepare-expand-div64",
58   cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
59   cl::ReallyHidden,
60   cl::init(false));
61 
62 // Leave all division operations as they are. This supersedes ExpandDiv64InIR
63 // and is used for testing the legalizer.
64 static cl::opt<bool> DisableIDivExpand(
65   "amdgpu-codegenprepare-disable-idiv-expansion",
66   cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
67   cl::ReallyHidden,
68   cl::init(false));
69 
70 class AMDGPUCodeGenPrepare : public FunctionPass,
71                              public InstVisitor<AMDGPUCodeGenPrepare, bool> {
72   const GCNSubtarget *ST = nullptr;
73   AssumptionCache *AC = nullptr;
74   DominatorTree *DT = nullptr;
75   LegacyDivergenceAnalysis *DA = nullptr;
76   Module *Mod = nullptr;
77   const DataLayout *DL = nullptr;
78   bool HasUnsafeFPMath = false;
79   bool HasFP32Denormals = false;
80 
81   /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
82   /// binary operation \p V.
83   ///
84   /// \returns Binary operation \p V.
85   /// \returns \p T's base element bit width.
86   unsigned getBaseElementBitWidth(const Type *T) const;
87 
88   /// \returns Equivalent 32 bit integer type for given type \p T. For example,
89   /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
90   /// is returned.
91   Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
92 
93   /// \returns True if binary operation \p I is a signed binary operation, false
94   /// otherwise.
95   bool isSigned(const BinaryOperator &I) const;
96 
97   /// \returns True if the condition of 'select' operation \p I comes from a
98   /// signed 'icmp' operation, false otherwise.
99   bool isSigned(const SelectInst &I) const;
100 
101   /// \returns True if type \p T needs to be promoted to 32 bit integer type,
102   /// false otherwise.
103   bool needsPromotionToI32(const Type *T) const;
104 
105   /// Promotes uniform binary operation \p I to equivalent 32 bit binary
106   /// operation.
107   ///
108   /// \details \p I's base element bit width must be greater than 1 and less
109   /// than or equal 16. Promotion is done by sign or zero extending operands to
110   /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
111   /// truncating the result of 32 bit binary operation back to \p I's original
112   /// type. Division operation is not promoted.
113   ///
114   /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
115   /// false otherwise.
116   bool promoteUniformOpToI32(BinaryOperator &I) const;
117 
118   /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
119   ///
120   /// \details \p I's base element bit width must be greater than 1 and less
121   /// than or equal 16. Promotion is done by sign or zero extending operands to
122   /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
123   ///
124   /// \returns True.
125   bool promoteUniformOpToI32(ICmpInst &I) const;
126 
127   /// Promotes uniform 'select' operation \p I to 32 bit 'select'
128   /// operation.
129   ///
130   /// \details \p I's base element bit width must be greater than 1 and less
131   /// than or equal 16. Promotion is done by sign or zero extending operands to
132   /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
133   /// result of 32 bit 'select' operation back to \p I's original type.
134   ///
135   /// \returns True.
136   bool promoteUniformOpToI32(SelectInst &I) const;
137 
138   /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
139   /// intrinsic.
140   ///
141   /// \details \p I's base element bit width must be greater than 1 and less
142   /// than or equal 16. Promotion is done by zero extending the operand to 32
143   /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
144   /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
145   /// shift amount is 32 minus \p I's base element bit width), and truncating
146   /// the result of the shift operation back to \p I's original type.
147   ///
148   /// \returns True.
149   bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
150 
151   /// \returns The minimum number of bits needed to store the value of \Op as an
152   /// unsigned integer. Truncating to this size and then zero-extending to
153   /// the original will not change the value.
154   unsigned numBitsUnsigned(Value *Op) const;
155 
156   /// \returns The minimum number of bits needed to store the value of \Op as a
157   /// signed integer. Truncating to this size and then sign-extending to
158   /// the original size will not change the value.
159   unsigned numBitsSigned(Value *Op) const;
160 
161   /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
162   /// SelectionDAG has an issue where an and asserting the bits are known
163   bool replaceMulWithMul24(BinaryOperator &I) const;
164 
165   /// Perform same function as equivalently named function in DAGCombiner. Since
166   /// we expand some divisions here, we need to perform this before obscuring.
167   bool foldBinOpIntoSelect(BinaryOperator &I) const;
168 
169   bool divHasSpecialOptimization(BinaryOperator &I,
170                                  Value *Num, Value *Den) const;
171   int getDivNumBits(BinaryOperator &I,
172                     Value *Num, Value *Den,
173                     unsigned AtLeast, bool Signed) const;
174 
175   /// Expands 24 bit div or rem.
176   Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
177                         Value *Num, Value *Den,
178                         bool IsDiv, bool IsSigned) const;
179 
180   Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
181                             Value *Num, Value *Den, unsigned NumBits,
182                             bool IsDiv, bool IsSigned) const;
183 
184   /// Expands 32 bit div or rem.
185   Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
186                         Value *Num, Value *Den) const;
187 
188   Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
189                         Value *Num, Value *Den) const;
190   void expandDivRem64(BinaryOperator &I) const;
191 
192   /// Widen a scalar load.
193   ///
194   /// \details \p Widen scalar load for uniform, small type loads from constant
195   //  memory / to a full 32-bits and then truncate the input to allow a scalar
196   //  load instead of a vector load.
197   //
198   /// \returns True.
199 
200   bool canWidenScalarExtLoad(LoadInst &I) const;
201 
202 public:
203   static char ID;
204 
205   AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
206 
207   bool visitFDiv(BinaryOperator &I);
208   bool visitXor(BinaryOperator &I);
209 
210   bool visitInstruction(Instruction &I) { return false; }
211   bool visitBinaryOperator(BinaryOperator &I);
212   bool visitLoadInst(LoadInst &I);
213   bool visitICmpInst(ICmpInst &I);
214   bool visitSelectInst(SelectInst &I);
215 
216   bool visitIntrinsicInst(IntrinsicInst &I);
217   bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
218 
219   bool doInitialization(Module &M) override;
220   bool runOnFunction(Function &F) override;
221 
222   StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
223 
224   void getAnalysisUsage(AnalysisUsage &AU) const override {
225     AU.addRequired<AssumptionCacheTracker>();
226     AU.addRequired<LegacyDivergenceAnalysis>();
227 
228     // FIXME: Division expansion needs to preserve the dominator tree.
229     if (!ExpandDiv64InIR)
230       AU.setPreservesAll();
231  }
232 };
233 
234 } // end anonymous namespace
235 
236 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
237   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
238 
239   if (T->isIntegerTy())
240     return T->getIntegerBitWidth();
241   return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
242 }
243 
244 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
245   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
246 
247   if (T->isIntegerTy())
248     return B.getInt32Ty();
249   return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
250 }
251 
252 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
253   return I.getOpcode() == Instruction::AShr ||
254       I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
255 }
256 
257 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
258   return isa<ICmpInst>(I.getOperand(0)) ?
259       cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
260 }
261 
262 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
263   if (!Widen16BitOps)
264     return false;
265 
266   const IntegerType *IntTy = dyn_cast<IntegerType>(T);
267   if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
268     return true;
269 
270   if (const VectorType *VT = dyn_cast<VectorType>(T)) {
271     // TODO: The set of packed operations is more limited, so may want to
272     // promote some anyway.
273     if (ST->hasVOP3PInsts())
274       return false;
275 
276     return needsPromotionToI32(VT->getElementType());
277   }
278 
279   return false;
280 }
281 
282 // Return true if the op promoted to i32 should have nsw set.
283 static bool promotedOpIsNSW(const Instruction &I) {
284   switch (I.getOpcode()) {
285   case Instruction::Shl:
286   case Instruction::Add:
287   case Instruction::Sub:
288     return true;
289   case Instruction::Mul:
290     return I.hasNoUnsignedWrap();
291   default:
292     return false;
293   }
294 }
295 
296 // Return true if the op promoted to i32 should have nuw set.
297 static bool promotedOpIsNUW(const Instruction &I) {
298   switch (I.getOpcode()) {
299   case Instruction::Shl:
300   case Instruction::Add:
301   case Instruction::Mul:
302     return true;
303   case Instruction::Sub:
304     return I.hasNoUnsignedWrap();
305   default:
306     return false;
307   }
308 }
309 
310 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
311   Type *Ty = I.getType();
312   const DataLayout &DL = Mod->getDataLayout();
313   int TySize = DL.getTypeSizeInBits(Ty);
314   Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
315 
316   return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I);
317 }
318 
319 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
320   assert(needsPromotionToI32(I.getType()) &&
321          "I does not need promotion to i32");
322 
323   if (I.getOpcode() == Instruction::SDiv ||
324       I.getOpcode() == Instruction::UDiv ||
325       I.getOpcode() == Instruction::SRem ||
326       I.getOpcode() == Instruction::URem)
327     return false;
328 
329   IRBuilder<> Builder(&I);
330   Builder.SetCurrentDebugLocation(I.getDebugLoc());
331 
332   Type *I32Ty = getI32Ty(Builder, I.getType());
333   Value *ExtOp0 = nullptr;
334   Value *ExtOp1 = nullptr;
335   Value *ExtRes = nullptr;
336   Value *TruncRes = nullptr;
337 
338   if (isSigned(I)) {
339     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
340     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
341   } else {
342     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
343     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
344   }
345 
346   ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
347   if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
348     if (promotedOpIsNSW(cast<Instruction>(I)))
349       Inst->setHasNoSignedWrap();
350 
351     if (promotedOpIsNUW(cast<Instruction>(I)))
352       Inst->setHasNoUnsignedWrap();
353 
354     if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
355       Inst->setIsExact(ExactOp->isExact());
356   }
357 
358   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
359 
360   I.replaceAllUsesWith(TruncRes);
361   I.eraseFromParent();
362 
363   return true;
364 }
365 
366 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
367   assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
368          "I does not need promotion to i32");
369 
370   IRBuilder<> Builder(&I);
371   Builder.SetCurrentDebugLocation(I.getDebugLoc());
372 
373   Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
374   Value *ExtOp0 = nullptr;
375   Value *ExtOp1 = nullptr;
376   Value *NewICmp  = nullptr;
377 
378   if (I.isSigned()) {
379     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
380     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
381   } else {
382     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
383     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
384   }
385   NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
386 
387   I.replaceAllUsesWith(NewICmp);
388   I.eraseFromParent();
389 
390   return true;
391 }
392 
393 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
394   assert(needsPromotionToI32(I.getType()) &&
395          "I does not need promotion to i32");
396 
397   IRBuilder<> Builder(&I);
398   Builder.SetCurrentDebugLocation(I.getDebugLoc());
399 
400   Type *I32Ty = getI32Ty(Builder, I.getType());
401   Value *ExtOp1 = nullptr;
402   Value *ExtOp2 = nullptr;
403   Value *ExtRes = nullptr;
404   Value *TruncRes = nullptr;
405 
406   if (isSigned(I)) {
407     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
408     ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
409   } else {
410     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
411     ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
412   }
413   ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
414   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
415 
416   I.replaceAllUsesWith(TruncRes);
417   I.eraseFromParent();
418 
419   return true;
420 }
421 
422 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
423     IntrinsicInst &I) const {
424   assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
425          "I must be bitreverse intrinsic");
426   assert(needsPromotionToI32(I.getType()) &&
427          "I does not need promotion to i32");
428 
429   IRBuilder<> Builder(&I);
430   Builder.SetCurrentDebugLocation(I.getDebugLoc());
431 
432   Type *I32Ty = getI32Ty(Builder, I.getType());
433   Function *I32 =
434       Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
435   Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
436   Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
437   Value *LShrOp =
438       Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
439   Value *TruncRes =
440       Builder.CreateTrunc(LShrOp, I.getType());
441 
442   I.replaceAllUsesWith(TruncRes);
443   I.eraseFromParent();
444 
445   return true;
446 }
447 
448 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op) const {
449   return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits();
450 }
451 
452 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op) const {
453   return ComputeMaxSignificantBits(Op, *DL, 0, AC);
454 }
455 
456 static void extractValues(IRBuilder<> &Builder,
457                           SmallVectorImpl<Value *> &Values, Value *V) {
458   auto *VT = dyn_cast<FixedVectorType>(V->getType());
459   if (!VT) {
460     Values.push_back(V);
461     return;
462   }
463 
464   for (int I = 0, E = VT->getNumElements(); I != E; ++I)
465     Values.push_back(Builder.CreateExtractElement(V, I));
466 }
467 
468 static Value *insertValues(IRBuilder<> &Builder,
469                            Type *Ty,
470                            SmallVectorImpl<Value *> &Values) {
471   if (Values.size() == 1)
472     return Values[0];
473 
474   Value *NewVal = UndefValue::get(Ty);
475   for (int I = 0, E = Values.size(); I != E; ++I)
476     NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
477 
478   return NewVal;
479 }
480 
481 // Returns 24-bit or 48-bit (as per `NumBits` and `Size`) mul of `LHS` and
482 // `RHS`. `NumBits` is the number of KnownBits of the result and `Size` is the
483 // width of the original destination.
484 static Value *getMul24(IRBuilder<> &Builder, Value *LHS, Value *RHS,
485                        unsigned Size, unsigned NumBits, bool IsSigned) {
486   if (Size <= 32 || NumBits <= 32) {
487     Intrinsic::ID ID =
488         IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24;
489     return Builder.CreateIntrinsic(ID, {}, {LHS, RHS});
490   }
491 
492   assert(NumBits <= 48);
493 
494   Intrinsic::ID LoID =
495       IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24;
496   Intrinsic::ID HiID =
497       IsSigned ? Intrinsic::amdgcn_mulhi_i24 : Intrinsic::amdgcn_mulhi_u24;
498 
499   Value *Lo = Builder.CreateIntrinsic(LoID, {}, {LHS, RHS});
500   Value *Hi = Builder.CreateIntrinsic(HiID, {}, {LHS, RHS});
501 
502   IntegerType *I64Ty = Builder.getInt64Ty();
503   Lo = Builder.CreateZExtOrTrunc(Lo, I64Ty);
504   Hi = Builder.CreateZExtOrTrunc(Hi, I64Ty);
505 
506   return Builder.CreateOr(Lo, Builder.CreateShl(Hi, 32));
507 }
508 
509 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
510   if (I.getOpcode() != Instruction::Mul)
511     return false;
512 
513   Type *Ty = I.getType();
514   unsigned Size = Ty->getScalarSizeInBits();
515   if (Size <= 16 && ST->has16BitInsts())
516     return false;
517 
518   // Prefer scalar if this could be s_mul_i32
519   if (DA->isUniform(&I))
520     return false;
521 
522   Value *LHS = I.getOperand(0);
523   Value *RHS = I.getOperand(1);
524   IRBuilder<> Builder(&I);
525   Builder.SetCurrentDebugLocation(I.getDebugLoc());
526 
527   unsigned LHSBits = 0, RHSBits = 0;
528   bool IsSigned = false;
529 
530   if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 &&
531       (RHSBits = numBitsUnsigned(RHS)) <= 24) {
532     IsSigned = false;
533 
534   } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 &&
535              (RHSBits = numBitsSigned(RHS)) <= 24) {
536     IsSigned = true;
537 
538   } else
539     return false;
540 
541   SmallVector<Value *, 4> LHSVals;
542   SmallVector<Value *, 4> RHSVals;
543   SmallVector<Value *, 4> ResultVals;
544   extractValues(Builder, LHSVals, LHS);
545   extractValues(Builder, RHSVals, RHS);
546 
547   IntegerType *I32Ty = Builder.getInt32Ty();
548   for (int I = 0, E = LHSVals.size(); I != E; ++I) {
549     Value *LHS, *RHS;
550     if (IsSigned) {
551       LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
552       RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
553     } else {
554       LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
555       RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
556     }
557 
558     Value *Result =
559         getMul24(Builder, LHS, RHS, Size, LHSBits + RHSBits, IsSigned);
560 
561     if (IsSigned) {
562       ResultVals.push_back(
563           Builder.CreateSExtOrTrunc(Result, LHSVals[I]->getType()));
564     } else {
565       ResultVals.push_back(
566           Builder.CreateZExtOrTrunc(Result, LHSVals[I]->getType()));
567     }
568   }
569 
570   Value *NewVal = insertValues(Builder, Ty, ResultVals);
571   NewVal->takeName(&I);
572   I.replaceAllUsesWith(NewVal);
573   I.eraseFromParent();
574 
575   return true;
576 }
577 
578 // Find a select instruction, which may have been casted. This is mostly to deal
579 // with cases where i16 selects were promoted here to i32.
580 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
581   Cast = nullptr;
582   if (SelectInst *Sel = dyn_cast<SelectInst>(V))
583     return Sel;
584 
585   if ((Cast = dyn_cast<CastInst>(V))) {
586     if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
587       return Sel;
588   }
589 
590   return nullptr;
591 }
592 
593 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const {
594   // Don't do this unless the old select is going away. We want to eliminate the
595   // binary operator, not replace a binop with a select.
596   int SelOpNo = 0;
597 
598   CastInst *CastOp;
599 
600   // TODO: Should probably try to handle some cases with multiple
601   // users. Duplicating the select may be profitable for division.
602   SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
603   if (!Sel || !Sel->hasOneUse()) {
604     SelOpNo = 1;
605     Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
606   }
607 
608   if (!Sel || !Sel->hasOneUse())
609     return false;
610 
611   Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
612   Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
613   Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
614   if (!CBO || !CT || !CF)
615     return false;
616 
617   if (CastOp) {
618     if (!CastOp->hasOneUse())
619       return false;
620     CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
621     CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
622   }
623 
624   // TODO: Handle special 0/-1 cases DAG combine does, although we only really
625   // need to handle divisions here.
626   Constant *FoldedT = SelOpNo ?
627     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
628     ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
629   if (isa<ConstantExpr>(FoldedT))
630     return false;
631 
632   Constant *FoldedF = SelOpNo ?
633     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
634     ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
635   if (isa<ConstantExpr>(FoldedF))
636     return false;
637 
638   IRBuilder<> Builder(&BO);
639   Builder.SetCurrentDebugLocation(BO.getDebugLoc());
640   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
641     Builder.setFastMathFlags(FPOp->getFastMathFlags());
642 
643   Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
644                                           FoldedT, FoldedF);
645   NewSelect->takeName(&BO);
646   BO.replaceAllUsesWith(NewSelect);
647   BO.eraseFromParent();
648   if (CastOp)
649     CastOp->eraseFromParent();
650   Sel->eraseFromParent();
651   return true;
652 }
653 
654 // Optimize fdiv with rcp:
655 //
656 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
657 //               allowed with unsafe-fp-math or afn.
658 //
659 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
660 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp,
661                               bool RcpIsAccurate, IRBuilder<> &Builder,
662                               Module *Mod) {
663 
664   if (!AllowInaccurateRcp && !RcpIsAccurate)
665     return nullptr;
666 
667   Type *Ty = Den->getType();
668   if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
669     if (AllowInaccurateRcp || RcpIsAccurate) {
670       if (CLHS->isExactlyValue(1.0)) {
671         Function *Decl = Intrinsic::getDeclaration(
672           Mod, Intrinsic::amdgcn_rcp, Ty);
673 
674         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
675         // the CI documentation has a worst case error of 1 ulp.
676         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
677         // use it as long as we aren't trying to use denormals.
678         //
679         // v_rcp_f16 and v_rsq_f16 DO support denormals.
680 
681         // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
682         //       insert rsq intrinsic here.
683 
684         // 1.0 / x -> rcp(x)
685         return Builder.CreateCall(Decl, { Den });
686       }
687 
688        // Same as for 1.0, but expand the sign out of the constant.
689       if (CLHS->isExactlyValue(-1.0)) {
690         Function *Decl = Intrinsic::getDeclaration(
691           Mod, Intrinsic::amdgcn_rcp, Ty);
692 
693          // -1.0 / x -> rcp (fneg x)
694          Value *FNeg = Builder.CreateFNeg(Den);
695          return Builder.CreateCall(Decl, { FNeg });
696        }
697     }
698   }
699 
700   if (AllowInaccurateRcp) {
701     Function *Decl = Intrinsic::getDeclaration(
702       Mod, Intrinsic::amdgcn_rcp, Ty);
703 
704     // Turn into multiply by the reciprocal.
705     // x / y -> x * (1.0 / y)
706     Value *Recip = Builder.CreateCall(Decl, { Den });
707     return Builder.CreateFMul(Num, Recip);
708   }
709   return nullptr;
710 }
711 
712 // optimize with fdiv.fast:
713 //
714 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
715 //
716 // 1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
717 //
718 // NOTE: optimizeWithRcp should be tried first because rcp is the preference.
719 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy,
720                                    bool HasDenormals, IRBuilder<> &Builder,
721                                    Module *Mod) {
722   // fdiv.fast can achieve 2.5 ULP accuracy.
723   if (ReqdAccuracy < 2.5f)
724     return nullptr;
725 
726   // Only have fdiv.fast for f32.
727   Type *Ty = Den->getType();
728   if (!Ty->isFloatTy())
729     return nullptr;
730 
731   bool NumIsOne = false;
732   if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
733     if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
734       NumIsOne = true;
735   }
736 
737   // fdiv does not support denormals. But 1.0/x is always fine to use it.
738   if (HasDenormals && !NumIsOne)
739     return nullptr;
740 
741   Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
742   return Builder.CreateCall(Decl, { Num, Den });
743 }
744 
745 // Optimizations is performed based on fpmath, fast math flags as well as
746 // denormals to optimize fdiv with either rcp or fdiv.fast.
747 //
748 // With rcp:
749 //   1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
750 //                 allowed with unsafe-fp-math or afn.
751 //
752 //   a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
753 //
754 // With fdiv.fast:
755 //   a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
756 //
757 //   1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
758 //
759 // NOTE: rcp is the preference in cases that both are legal.
760 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
761 
762   Type *Ty = FDiv.getType()->getScalarType();
763 
764   // The f64 rcp/rsq approximations are pretty inaccurate. We can do an
765   // expansion around them in codegen.
766   if (Ty->isDoubleTy())
767     return false;
768 
769   // No intrinsic for fdiv16 if target does not support f16.
770   if (Ty->isHalfTy() && !ST->has16BitInsts())
771     return false;
772 
773   const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
774   const float ReqdAccuracy =  FPOp->getFPAccuracy();
775 
776   // Inaccurate rcp is allowed with unsafe-fp-math or afn.
777   FastMathFlags FMF = FPOp->getFastMathFlags();
778   const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc();
779 
780   // rcp_f16 is accurate for !fpmath >= 1.0ulp.
781   // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
782   // rcp_f64 is never accurate.
783   const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) ||
784             (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f);
785 
786   IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
787   Builder.setFastMathFlags(FMF);
788   Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
789 
790   Value *Num = FDiv.getOperand(0);
791   Value *Den = FDiv.getOperand(1);
792 
793   Value *NewFDiv = nullptr;
794   if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) {
795     NewFDiv = UndefValue::get(VT);
796 
797     // FIXME: Doesn't do the right thing for cases where the vector is partially
798     // constant. This works when the scalarizer pass is run first.
799     for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
800       Value *NumEltI = Builder.CreateExtractElement(Num, I);
801       Value *DenEltI = Builder.CreateExtractElement(Den, I);
802       // Try rcp first.
803       Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp,
804                                       RcpIsAccurate, Builder, Mod);
805       if (!NewElt) // Try fdiv.fast.
806         NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy,
807                                       HasFP32Denormals, Builder, Mod);
808       if (!NewElt) // Keep the original.
809         NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
810 
811       NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
812     }
813   } else { // Scalar FDiv.
814     // Try rcp first.
815     NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate,
816                               Builder, Mod);
817     if (!NewFDiv) { // Try fdiv.fast.
818       NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals,
819                                      Builder, Mod);
820     }
821   }
822 
823   if (NewFDiv) {
824     FDiv.replaceAllUsesWith(NewFDiv);
825     NewFDiv->takeName(&FDiv);
826     FDiv.eraseFromParent();
827   }
828 
829   return !!NewFDiv;
830 }
831 
832 bool AMDGPUCodeGenPrepare::visitXor(BinaryOperator &I) {
833   // Match the Xor instruction, its type and its operands
834   IntrinsicInst *IntrinsicCall = dyn_cast<IntrinsicInst>(I.getOperand(0));
835   ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1));
836   if (!RHS || !IntrinsicCall || RHS->getSExtValue() != -1)
837     return visitBinaryOperator(I);
838 
839   // Check if the Call is an intrinsic instruction to amdgcn_class intrinsic
840   // has only one use
841   if (IntrinsicCall->getIntrinsicID() != Intrinsic::amdgcn_class ||
842       !IntrinsicCall->hasOneUse())
843     return visitBinaryOperator(I);
844 
845   // "Not" the second argument of the intrinsic call
846   ConstantInt *Arg = dyn_cast<ConstantInt>(IntrinsicCall->getOperand(1));
847   if (!Arg)
848     return visitBinaryOperator(I);
849 
850   IntrinsicCall->setOperand(
851       1, ConstantInt::get(Arg->getType(), Arg->getZExtValue() ^ 0x3ff));
852   I.replaceAllUsesWith(IntrinsicCall);
853   I.eraseFromParent();
854   return true;
855 }
856 
857 static bool hasUnsafeFPMath(const Function &F) {
858   Attribute Attr = F.getFnAttribute("unsafe-fp-math");
859   return Attr.getValueAsBool();
860 }
861 
862 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
863                                           Value *LHS, Value *RHS) {
864   Type *I32Ty = Builder.getInt32Ty();
865   Type *I64Ty = Builder.getInt64Ty();
866 
867   Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
868   Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
869   Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
870   Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
871   Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
872   Hi = Builder.CreateTrunc(Hi, I32Ty);
873   return std::make_pair(Lo, Hi);
874 }
875 
876 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
877   return getMul64(Builder, LHS, RHS).second;
878 }
879 
880 /// Figure out how many bits are really needed for this ddivision. \p AtLeast is
881 /// an optimization hint to bypass the second ComputeNumSignBits call if we the
882 /// first one is insufficient. Returns -1 on failure.
883 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I,
884                                         Value *Num, Value *Den,
885                                         unsigned AtLeast, bool IsSigned) const {
886   const DataLayout &DL = Mod->getDataLayout();
887   unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
888   if (LHSSignBits < AtLeast)
889     return -1;
890 
891   unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
892   if (RHSSignBits < AtLeast)
893     return -1;
894 
895   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
896   unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
897   if (IsSigned)
898     ++DivBits;
899   return DivBits;
900 }
901 
902 // The fractional part of a float is enough to accurately represent up to
903 // a 24-bit signed integer.
904 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
905                                             BinaryOperator &I,
906                                             Value *Num, Value *Den,
907                                             bool IsDiv, bool IsSigned) const {
908   int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
909   if (DivBits == -1)
910     return nullptr;
911   return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
912 }
913 
914 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder,
915                                                 BinaryOperator &I,
916                                                 Value *Num, Value *Den,
917                                                 unsigned DivBits,
918                                                 bool IsDiv, bool IsSigned) const {
919   Type *I32Ty = Builder.getInt32Ty();
920   Num = Builder.CreateTrunc(Num, I32Ty);
921   Den = Builder.CreateTrunc(Den, I32Ty);
922 
923   Type *F32Ty = Builder.getFloatTy();
924   ConstantInt *One = Builder.getInt32(1);
925   Value *JQ = One;
926 
927   if (IsSigned) {
928     // char|short jq = ia ^ ib;
929     JQ = Builder.CreateXor(Num, Den);
930 
931     // jq = jq >> (bitsize - 2)
932     JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
933 
934     // jq = jq | 0x1
935     JQ = Builder.CreateOr(JQ, One);
936   }
937 
938   // int ia = (int)LHS;
939   Value *IA = Num;
940 
941   // int ib, (int)RHS;
942   Value *IB = Den;
943 
944   // float fa = (float)ia;
945   Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
946                        : Builder.CreateUIToFP(IA, F32Ty);
947 
948   // float fb = (float)ib;
949   Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
950                        : Builder.CreateUIToFP(IB,F32Ty);
951 
952   Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
953                                                 Builder.getFloatTy());
954   Value *RCP = Builder.CreateCall(RcpDecl, { FB });
955   Value *FQM = Builder.CreateFMul(FA, RCP);
956 
957   // fq = trunc(fqm);
958   CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
959   FQ->copyFastMathFlags(Builder.getFastMathFlags());
960 
961   // float fqneg = -fq;
962   Value *FQNeg = Builder.CreateFNeg(FQ);
963 
964   // float fr = mad(fqneg, fb, fa);
965   auto FMAD = !ST->hasMadMacF32Insts()
966                   ? Intrinsic::fma
967                   : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
968   Value *FR = Builder.CreateIntrinsic(FMAD,
969                                       {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
970 
971   // int iq = (int)fq;
972   Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
973                        : Builder.CreateFPToUI(FQ, I32Ty);
974 
975   // fr = fabs(fr);
976   FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
977 
978   // fb = fabs(fb);
979   FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
980 
981   // int cv = fr >= fb;
982   Value *CV = Builder.CreateFCmpOGE(FR, FB);
983 
984   // jq = (cv ? jq : 0);
985   JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
986 
987   // dst = iq + jq;
988   Value *Div = Builder.CreateAdd(IQ, JQ);
989 
990   Value *Res = Div;
991   if (!IsDiv) {
992     // Rem needs compensation, it's easier to recompute it
993     Value *Rem = Builder.CreateMul(Div, Den);
994     Res = Builder.CreateSub(Num, Rem);
995   }
996 
997   if (DivBits != 0 && DivBits < 32) {
998     // Extend in register from the number of bits this divide really is.
999     if (IsSigned) {
1000       int InRegBits = 32 - DivBits;
1001 
1002       Res = Builder.CreateShl(Res, InRegBits);
1003       Res = Builder.CreateAShr(Res, InRegBits);
1004     } else {
1005       ConstantInt *TruncMask
1006         = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
1007       Res = Builder.CreateAnd(Res, TruncMask);
1008     }
1009   }
1010 
1011   return Res;
1012 }
1013 
1014 // Try to recognize special cases the DAG will emit special, better expansions
1015 // than the general expansion we do here.
1016 
1017 // TODO: It would be better to just directly handle those optimizations here.
1018 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization(
1019   BinaryOperator &I, Value *Num, Value *Den) const {
1020   if (Constant *C = dyn_cast<Constant>(Den)) {
1021     // Arbitrary constants get a better expansion as long as a wider mulhi is
1022     // legal.
1023     if (C->getType()->getScalarSizeInBits() <= 32)
1024       return true;
1025 
1026     // TODO: Sdiv check for not exact for some reason.
1027 
1028     // If there's no wider mulhi, there's only a better expansion for powers of
1029     // two.
1030     // TODO: Should really know for each vector element.
1031     if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
1032       return true;
1033 
1034     return false;
1035   }
1036 
1037   if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
1038     // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1039     if (BinOpDen->getOpcode() == Instruction::Shl &&
1040         isa<Constant>(BinOpDen->getOperand(0)) &&
1041         isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
1042                                0, AC, &I, DT)) {
1043       return true;
1044     }
1045   }
1046 
1047   return false;
1048 }
1049 
1050 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
1051   // Check whether the sign can be determined statically.
1052   KnownBits Known = computeKnownBits(V, *DL);
1053   if (Known.isNegative())
1054     return Constant::getAllOnesValue(V->getType());
1055   if (Known.isNonNegative())
1056     return Constant::getNullValue(V->getType());
1057   return Builder.CreateAShr(V, Builder.getInt32(31));
1058 }
1059 
1060 Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
1061                                             BinaryOperator &I, Value *X,
1062                                             Value *Y) const {
1063   Instruction::BinaryOps Opc = I.getOpcode();
1064   assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
1065          Opc == Instruction::SRem || Opc == Instruction::SDiv);
1066 
1067   FastMathFlags FMF;
1068   FMF.setFast();
1069   Builder.setFastMathFlags(FMF);
1070 
1071   if (divHasSpecialOptimization(I, X, Y))
1072     return nullptr;  // Keep it for later optimization.
1073 
1074   bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
1075   bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
1076 
1077   Type *Ty = X->getType();
1078   Type *I32Ty = Builder.getInt32Ty();
1079   Type *F32Ty = Builder.getFloatTy();
1080 
1081   if (Ty->getScalarSizeInBits() < 32) {
1082     if (IsSigned) {
1083       X = Builder.CreateSExt(X, I32Ty);
1084       Y = Builder.CreateSExt(Y, I32Ty);
1085     } else {
1086       X = Builder.CreateZExt(X, I32Ty);
1087       Y = Builder.CreateZExt(Y, I32Ty);
1088     }
1089   }
1090 
1091   if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
1092     return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
1093                       Builder.CreateZExtOrTrunc(Res, Ty);
1094   }
1095 
1096   ConstantInt *Zero = Builder.getInt32(0);
1097   ConstantInt *One = Builder.getInt32(1);
1098 
1099   Value *Sign = nullptr;
1100   if (IsSigned) {
1101     Value *SignX = getSign32(X, Builder, DL);
1102     Value *SignY = getSign32(Y, Builder, DL);
1103     // Remainder sign is the same as LHS
1104     Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
1105 
1106     X = Builder.CreateAdd(X, SignX);
1107     Y = Builder.CreateAdd(Y, SignY);
1108 
1109     X = Builder.CreateXor(X, SignX);
1110     Y = Builder.CreateXor(Y, SignY);
1111   }
1112 
1113   // The algorithm here is based on ideas from "Software Integer Division", Tom
1114   // Rodeheffer, August 2008.
1115   //
1116   // unsigned udiv(unsigned x, unsigned y) {
1117   //   // Initial estimate of inv(y). The constant is less than 2^32 to ensure
1118   //   // that this is a lower bound on inv(y), even if some of the calculations
1119   //   // round up.
1120   //   unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
1121   //
1122   //   // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
1123   //   // Empirically this is guaranteed to give a "two-y" lower bound on
1124   //   // inv(y).
1125   //   z += umulh(z, -y * z);
1126   //
1127   //   // Quotient/remainder estimate.
1128   //   unsigned q = umulh(x, z);
1129   //   unsigned r = x - q * y;
1130   //
1131   //   // Two rounds of quotient/remainder refinement.
1132   //   if (r >= y) {
1133   //     ++q;
1134   //     r -= y;
1135   //   }
1136   //   if (r >= y) {
1137   //     ++q;
1138   //     r -= y;
1139   //   }
1140   //
1141   //   return q;
1142   // }
1143 
1144   // Initial estimate of inv(y).
1145   Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
1146   Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
1147   Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
1148   Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE));
1149   Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
1150   Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
1151 
1152   // One round of UNR.
1153   Value *NegY = Builder.CreateSub(Zero, Y);
1154   Value *NegYZ = Builder.CreateMul(NegY, Z);
1155   Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
1156 
1157   // Quotient/remainder estimate.
1158   Value *Q = getMulHu(Builder, X, Z);
1159   Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
1160 
1161   // First quotient/remainder refinement.
1162   Value *Cond = Builder.CreateICmpUGE(R, Y);
1163   if (IsDiv)
1164     Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1165   R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1166 
1167   // Second quotient/remainder refinement.
1168   Cond = Builder.CreateICmpUGE(R, Y);
1169   Value *Res;
1170   if (IsDiv)
1171     Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1172   else
1173     Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1174 
1175   if (IsSigned) {
1176     Res = Builder.CreateXor(Res, Sign);
1177     Res = Builder.CreateSub(Res, Sign);
1178   }
1179 
1180   Res = Builder.CreateTrunc(Res, Ty);
1181 
1182   return Res;
1183 }
1184 
1185 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder,
1186                                             BinaryOperator &I,
1187                                             Value *Num, Value *Den) const {
1188   if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
1189     return nullptr;  // Keep it for later optimization.
1190 
1191   Instruction::BinaryOps Opc = I.getOpcode();
1192 
1193   bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
1194   bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
1195 
1196   int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
1197   if (NumDivBits == -1)
1198     return nullptr;
1199 
1200   Value *Narrowed = nullptr;
1201   if (NumDivBits <= 24) {
1202     Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
1203                                   IsDiv, IsSigned);
1204   } else if (NumDivBits <= 32) {
1205     Narrowed = expandDivRem32(Builder, I, Num, Den);
1206   }
1207 
1208   if (Narrowed) {
1209     return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
1210                       Builder.CreateZExt(Narrowed, Num->getType());
1211   }
1212 
1213   return nullptr;
1214 }
1215 
1216 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const {
1217   Instruction::BinaryOps Opc = I.getOpcode();
1218   // Do the general expansion.
1219   if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
1220     expandDivisionUpTo64Bits(&I);
1221     return;
1222   }
1223 
1224   if (Opc == Instruction::URem || Opc == Instruction::SRem) {
1225     expandRemainderUpTo64Bits(&I);
1226     return;
1227   }
1228 
1229   llvm_unreachable("not a division");
1230 }
1231 
1232 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
1233   if (foldBinOpIntoSelect(I))
1234     return true;
1235 
1236   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1237       DA->isUniform(&I) && promoteUniformOpToI32(I))
1238     return true;
1239 
1240   if (UseMul24Intrin && replaceMulWithMul24(I))
1241     return true;
1242 
1243   bool Changed = false;
1244   Instruction::BinaryOps Opc = I.getOpcode();
1245   Type *Ty = I.getType();
1246   Value *NewDiv = nullptr;
1247   unsigned ScalarSize = Ty->getScalarSizeInBits();
1248 
1249   SmallVector<BinaryOperator *, 8> Div64ToExpand;
1250 
1251   if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
1252        Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
1253       ScalarSize <= 64 &&
1254       !DisableIDivExpand) {
1255     Value *Num = I.getOperand(0);
1256     Value *Den = I.getOperand(1);
1257     IRBuilder<> Builder(&I);
1258     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1259 
1260     if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1261       NewDiv = UndefValue::get(VT);
1262 
1263       for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
1264         Value *NumEltN = Builder.CreateExtractElement(Num, N);
1265         Value *DenEltN = Builder.CreateExtractElement(Den, N);
1266 
1267         Value *NewElt;
1268         if (ScalarSize <= 32) {
1269           NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
1270           if (!NewElt)
1271             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1272         } else {
1273           // See if this 64-bit division can be shrunk to 32/24-bits before
1274           // producing the general expansion.
1275           NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
1276           if (!NewElt) {
1277             // The general 64-bit expansion introduces control flow and doesn't
1278             // return the new value. Just insert a scalar copy and defer
1279             // expanding it.
1280             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1281             Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
1282           }
1283         }
1284 
1285         NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
1286       }
1287     } else {
1288       if (ScalarSize <= 32)
1289         NewDiv = expandDivRem32(Builder, I, Num, Den);
1290       else {
1291         NewDiv = shrinkDivRem64(Builder, I, Num, Den);
1292         if (!NewDiv)
1293           Div64ToExpand.push_back(&I);
1294       }
1295     }
1296 
1297     if (NewDiv) {
1298       I.replaceAllUsesWith(NewDiv);
1299       I.eraseFromParent();
1300       Changed = true;
1301     }
1302   }
1303 
1304   if (ExpandDiv64InIR) {
1305     // TODO: We get much worse code in specially handled constant cases.
1306     for (BinaryOperator *Div : Div64ToExpand) {
1307       expandDivRem64(*Div);
1308       Changed = true;
1309     }
1310   }
1311 
1312   return Changed;
1313 }
1314 
1315 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
1316   if (!WidenLoads)
1317     return false;
1318 
1319   if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
1320        I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
1321       canWidenScalarExtLoad(I)) {
1322     IRBuilder<> Builder(&I);
1323     Builder.SetCurrentDebugLocation(I.getDebugLoc());
1324 
1325     Type *I32Ty = Builder.getInt32Ty();
1326     Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
1327     Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
1328     LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
1329     WidenLoad->copyMetadata(I);
1330 
1331     // If we have range metadata, we need to convert the type, and not make
1332     // assumptions about the high bits.
1333     if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
1334       ConstantInt *Lower =
1335         mdconst::extract<ConstantInt>(Range->getOperand(0));
1336 
1337       if (Lower->isNullValue()) {
1338         WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
1339       } else {
1340         Metadata *LowAndHigh[] = {
1341           ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
1342           // Don't make assumptions about the high bits.
1343           ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
1344         };
1345 
1346         WidenLoad->setMetadata(LLVMContext::MD_range,
1347                                MDNode::get(Mod->getContext(), LowAndHigh));
1348       }
1349     }
1350 
1351     int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
1352     Type *IntNTy = Builder.getIntNTy(TySize);
1353     Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
1354     Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
1355     I.replaceAllUsesWith(ValOrig);
1356     I.eraseFromParent();
1357     return true;
1358   }
1359 
1360   return false;
1361 }
1362 
1363 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
1364   bool Changed = false;
1365 
1366   if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
1367       DA->isUniform(&I))
1368     Changed |= promoteUniformOpToI32(I);
1369 
1370   return Changed;
1371 }
1372 
1373 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
1374   bool Changed = false;
1375 
1376   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1377       DA->isUniform(&I))
1378     Changed |= promoteUniformOpToI32(I);
1379 
1380   return Changed;
1381 }
1382 
1383 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
1384   switch (I.getIntrinsicID()) {
1385   case Intrinsic::bitreverse:
1386     return visitBitreverseIntrinsicInst(I);
1387   default:
1388     return false;
1389   }
1390 }
1391 
1392 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
1393   bool Changed = false;
1394 
1395   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1396       DA->isUniform(&I))
1397     Changed |= promoteUniformBitreverseToI32(I);
1398 
1399   return Changed;
1400 }
1401 
1402 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
1403   Mod = &M;
1404   DL = &Mod->getDataLayout();
1405   return false;
1406 }
1407 
1408 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
1409   if (skipFunction(F))
1410     return false;
1411 
1412   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1413   if (!TPC)
1414     return false;
1415 
1416   const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
1417   ST = &TM.getSubtarget<GCNSubtarget>(F);
1418   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1419   DA = &getAnalysis<LegacyDivergenceAnalysis>();
1420 
1421   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1422   DT = DTWP ? &DTWP->getDomTree() : nullptr;
1423 
1424   HasUnsafeFPMath = hasUnsafeFPMath(F);
1425 
1426   AMDGPU::SIModeRegisterDefaults Mode(F);
1427   HasFP32Denormals = Mode.allFP32Denormals();
1428 
1429   bool MadeChange = false;
1430 
1431   Function::iterator NextBB;
1432   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
1433     BasicBlock *BB = &*FI;
1434     NextBB = std::next(FI);
1435 
1436     BasicBlock::iterator Next;
1437     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) {
1438       Next = std::next(I);
1439 
1440       MadeChange |= visit(*I);
1441 
1442       if (Next != E) { // Control flow changed
1443         BasicBlock *NextInstBB = Next->getParent();
1444         if (NextInstBB != BB) {
1445           BB = NextInstBB;
1446           E = BB->end();
1447           FE = F.end();
1448         }
1449       }
1450     }
1451   }
1452 
1453   return MadeChange;
1454 }
1455 
1456 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
1457                       "AMDGPU IR optimizations", false, false)
1458 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1459 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
1460 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
1461                     false, false)
1462 
1463 char AMDGPUCodeGenPrepare::ID = 0;
1464 
1465 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
1466   return new AMDGPUCodeGenPrepare();
1467 }
1468