10b57cec5SDimitry Andric //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric /// \file 100b57cec5SDimitry Andric /// This pass does misc. AMDGPU optimizations on IR before instruction 110b57cec5SDimitry Andric /// selection. 120b57cec5SDimitry Andric // 130b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 140b57cec5SDimitry Andric 150b57cec5SDimitry Andric #include "AMDGPU.h" 160b57cec5SDimitry Andric #include "AMDGPUSubtarget.h" 170b57cec5SDimitry Andric #include "AMDGPUTargetMachine.h" 18*5ffd83dbSDimitry Andric #include "llvm/ADT/FloatingPointMode.h" 190b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h" 200b57cec5SDimitry Andric #include "llvm/Analysis/AssumptionCache.h" 21*5ffd83dbSDimitry Andric #include "llvm/Analysis/ConstantFolding.h" 220b57cec5SDimitry Andric #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 230b57cec5SDimitry Andric #include "llvm/Analysis/Loads.h" 240b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 250b57cec5SDimitry Andric #include "llvm/CodeGen/Passes.h" 260b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h" 270b57cec5SDimitry Andric #include "llvm/IR/Attributes.h" 280b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h" 290b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 300b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h" 31*5ffd83dbSDimitry Andric #include "llvm/IR/Dominators.h" 320b57cec5SDimitry Andric #include "llvm/IR/Function.h" 330b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h" 340b57cec5SDimitry Andric #include "llvm/IR/InstVisitor.h" 350b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h" 360b57cec5SDimitry Andric #include "llvm/IR/Instruction.h" 370b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 380b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h" 390b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 400b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h" 410b57cec5SDimitry Andric #include "llvm/IR/Operator.h" 420b57cec5SDimitry Andric #include "llvm/IR/Type.h" 430b57cec5SDimitry Andric #include "llvm/IR/Value.h" 44480093f4SDimitry Andric #include "llvm/InitializePasses.h" 450b57cec5SDimitry Andric #include "llvm/Pass.h" 460b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 47*5ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/IntegerDivision.h" 480b57cec5SDimitry Andric #include <cassert> 490b57cec5SDimitry Andric #include <iterator> 500b57cec5SDimitry Andric 510b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-codegenprepare" 520b57cec5SDimitry Andric 530b57cec5SDimitry Andric using namespace llvm; 540b57cec5SDimitry Andric 550b57cec5SDimitry Andric namespace { 560b57cec5SDimitry Andric 570b57cec5SDimitry Andric static cl::opt<bool> WidenLoads( 580b57cec5SDimitry Andric "amdgpu-codegenprepare-widen-constant-loads", 590b57cec5SDimitry Andric cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 600b57cec5SDimitry Andric cl::ReallyHidden, 61*5ffd83dbSDimitry Andric cl::init(false)); 620b57cec5SDimitry Andric 638bcb0991SDimitry Andric static cl::opt<bool> UseMul24Intrin( 648bcb0991SDimitry Andric "amdgpu-codegenprepare-mul24", 658bcb0991SDimitry Andric cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 668bcb0991SDimitry Andric cl::ReallyHidden, 678bcb0991SDimitry Andric cl::init(true)); 688bcb0991SDimitry Andric 69*5ffd83dbSDimitry Andric // Legalize 64-bit division by using the generic IR expansion. 70*5ffd83dbSDimitry Andric static cl::opt<bool> ExpandDiv64InIR( 71*5ffd83dbSDimitry Andric "amdgpu-codegenprepare-expand-div64", 72*5ffd83dbSDimitry Andric cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 73*5ffd83dbSDimitry Andric cl::ReallyHidden, 74*5ffd83dbSDimitry Andric cl::init(false)); 75*5ffd83dbSDimitry Andric 76*5ffd83dbSDimitry Andric // Leave all division operations as they are. This supersedes ExpandDiv64InIR 77*5ffd83dbSDimitry Andric // and is used for testing the legalizer. 78*5ffd83dbSDimitry Andric static cl::opt<bool> DisableIDivExpand( 79*5ffd83dbSDimitry Andric "amdgpu-codegenprepare-disable-idiv-expansion", 80*5ffd83dbSDimitry Andric cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 81*5ffd83dbSDimitry Andric cl::ReallyHidden, 82*5ffd83dbSDimitry Andric cl::init(false)); 83*5ffd83dbSDimitry Andric 840b57cec5SDimitry Andric class AMDGPUCodeGenPrepare : public FunctionPass, 850b57cec5SDimitry Andric public InstVisitor<AMDGPUCodeGenPrepare, bool> { 860b57cec5SDimitry Andric const GCNSubtarget *ST = nullptr; 870b57cec5SDimitry Andric AssumptionCache *AC = nullptr; 88*5ffd83dbSDimitry Andric DominatorTree *DT = nullptr; 890b57cec5SDimitry Andric LegacyDivergenceAnalysis *DA = nullptr; 900b57cec5SDimitry Andric Module *Mod = nullptr; 910b57cec5SDimitry Andric const DataLayout *DL = nullptr; 920b57cec5SDimitry Andric bool HasUnsafeFPMath = false; 93480093f4SDimitry Andric bool HasFP32Denormals = false; 940b57cec5SDimitry Andric 950b57cec5SDimitry Andric /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 960b57cec5SDimitry Andric /// binary operation \p V. 970b57cec5SDimitry Andric /// 980b57cec5SDimitry Andric /// \returns Binary operation \p V. 990b57cec5SDimitry Andric /// \returns \p T's base element bit width. 1000b57cec5SDimitry Andric unsigned getBaseElementBitWidth(const Type *T) const; 1010b57cec5SDimitry Andric 1020b57cec5SDimitry Andric /// \returns Equivalent 32 bit integer type for given type \p T. For example, 1030b57cec5SDimitry Andric /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 1040b57cec5SDimitry Andric /// is returned. 1050b57cec5SDimitry Andric Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 1060b57cec5SDimitry Andric 1070b57cec5SDimitry Andric /// \returns True if binary operation \p I is a signed binary operation, false 1080b57cec5SDimitry Andric /// otherwise. 1090b57cec5SDimitry Andric bool isSigned(const BinaryOperator &I) const; 1100b57cec5SDimitry Andric 1110b57cec5SDimitry Andric /// \returns True if the condition of 'select' operation \p I comes from a 1120b57cec5SDimitry Andric /// signed 'icmp' operation, false otherwise. 1130b57cec5SDimitry Andric bool isSigned(const SelectInst &I) const; 1140b57cec5SDimitry Andric 1150b57cec5SDimitry Andric /// \returns True if type \p T needs to be promoted to 32 bit integer type, 1160b57cec5SDimitry Andric /// false otherwise. 1170b57cec5SDimitry Andric bool needsPromotionToI32(const Type *T) const; 1180b57cec5SDimitry Andric 1190b57cec5SDimitry Andric /// Promotes uniform binary operation \p I to equivalent 32 bit binary 1200b57cec5SDimitry Andric /// operation. 1210b57cec5SDimitry Andric /// 1220b57cec5SDimitry Andric /// \details \p I's base element bit width must be greater than 1 and less 1230b57cec5SDimitry Andric /// than or equal 16. Promotion is done by sign or zero extending operands to 1240b57cec5SDimitry Andric /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 1250b57cec5SDimitry Andric /// truncating the result of 32 bit binary operation back to \p I's original 1260b57cec5SDimitry Andric /// type. Division operation is not promoted. 1270b57cec5SDimitry Andric /// 1280b57cec5SDimitry Andric /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 1290b57cec5SDimitry Andric /// false otherwise. 1300b57cec5SDimitry Andric bool promoteUniformOpToI32(BinaryOperator &I) const; 1310b57cec5SDimitry Andric 1320b57cec5SDimitry Andric /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 1330b57cec5SDimitry Andric /// 1340b57cec5SDimitry Andric /// \details \p I's base element bit width must be greater than 1 and less 1350b57cec5SDimitry Andric /// than or equal 16. Promotion is done by sign or zero extending operands to 1360b57cec5SDimitry Andric /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 1370b57cec5SDimitry Andric /// 1380b57cec5SDimitry Andric /// \returns True. 1390b57cec5SDimitry Andric bool promoteUniformOpToI32(ICmpInst &I) const; 1400b57cec5SDimitry Andric 1410b57cec5SDimitry Andric /// Promotes uniform 'select' operation \p I to 32 bit 'select' 1420b57cec5SDimitry Andric /// operation. 1430b57cec5SDimitry Andric /// 1440b57cec5SDimitry Andric /// \details \p I's base element bit width must be greater than 1 and less 1450b57cec5SDimitry Andric /// than or equal 16. Promotion is done by sign or zero extending operands to 1460b57cec5SDimitry Andric /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 1470b57cec5SDimitry Andric /// result of 32 bit 'select' operation back to \p I's original type. 1480b57cec5SDimitry Andric /// 1490b57cec5SDimitry Andric /// \returns True. 1500b57cec5SDimitry Andric bool promoteUniformOpToI32(SelectInst &I) const; 1510b57cec5SDimitry Andric 1520b57cec5SDimitry Andric /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 1530b57cec5SDimitry Andric /// intrinsic. 1540b57cec5SDimitry Andric /// 1550b57cec5SDimitry Andric /// \details \p I's base element bit width must be greater than 1 and less 1560b57cec5SDimitry Andric /// than or equal 16. Promotion is done by zero extending the operand to 32 1570b57cec5SDimitry Andric /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 1580b57cec5SDimitry Andric /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 1590b57cec5SDimitry Andric /// shift amount is 32 minus \p I's base element bit width), and truncating 1600b57cec5SDimitry Andric /// the result of the shift operation back to \p I's original type. 1610b57cec5SDimitry Andric /// 1620b57cec5SDimitry Andric /// \returns True. 1630b57cec5SDimitry Andric bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 1640b57cec5SDimitry Andric 1650b57cec5SDimitry Andric 1660b57cec5SDimitry Andric unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const; 1670b57cec5SDimitry Andric unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const; 1680b57cec5SDimitry Andric bool isI24(Value *V, unsigned ScalarSize) const; 1690b57cec5SDimitry Andric bool isU24(Value *V, unsigned ScalarSize) const; 1700b57cec5SDimitry Andric 1710b57cec5SDimitry Andric /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 1720b57cec5SDimitry Andric /// SelectionDAG has an issue where an and asserting the bits are known 1730b57cec5SDimitry Andric bool replaceMulWithMul24(BinaryOperator &I) const; 1740b57cec5SDimitry Andric 175*5ffd83dbSDimitry Andric /// Perform same function as equivalently named function in DAGCombiner. Since 176*5ffd83dbSDimitry Andric /// we expand some divisions here, we need to perform this before obscuring. 177*5ffd83dbSDimitry Andric bool foldBinOpIntoSelect(BinaryOperator &I) const; 178*5ffd83dbSDimitry Andric 179*5ffd83dbSDimitry Andric bool divHasSpecialOptimization(BinaryOperator &I, 180*5ffd83dbSDimitry Andric Value *Num, Value *Den) const; 181*5ffd83dbSDimitry Andric int getDivNumBits(BinaryOperator &I, 182*5ffd83dbSDimitry Andric Value *Num, Value *Den, 183*5ffd83dbSDimitry Andric unsigned AtLeast, bool Signed) const; 184*5ffd83dbSDimitry Andric 1850b57cec5SDimitry Andric /// Expands 24 bit div or rem. 1860b57cec5SDimitry Andric Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 1870b57cec5SDimitry Andric Value *Num, Value *Den, 1880b57cec5SDimitry Andric bool IsDiv, bool IsSigned) const; 1890b57cec5SDimitry Andric 190*5ffd83dbSDimitry Andric Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 191*5ffd83dbSDimitry Andric Value *Num, Value *Den, unsigned NumBits, 192*5ffd83dbSDimitry Andric bool IsDiv, bool IsSigned) const; 193*5ffd83dbSDimitry Andric 1940b57cec5SDimitry Andric /// Expands 32 bit div or rem. 1950b57cec5SDimitry Andric Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 1960b57cec5SDimitry Andric Value *Num, Value *Den) const; 1970b57cec5SDimitry Andric 198*5ffd83dbSDimitry Andric Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 199*5ffd83dbSDimitry Andric Value *Num, Value *Den) const; 200*5ffd83dbSDimitry Andric void expandDivRem64(BinaryOperator &I) const; 201*5ffd83dbSDimitry Andric 2020b57cec5SDimitry Andric /// Widen a scalar load. 2030b57cec5SDimitry Andric /// 2040b57cec5SDimitry Andric /// \details \p Widen scalar load for uniform, small type loads from constant 2050b57cec5SDimitry Andric // memory / to a full 32-bits and then truncate the input to allow a scalar 2060b57cec5SDimitry Andric // load instead of a vector load. 2070b57cec5SDimitry Andric // 2080b57cec5SDimitry Andric /// \returns True. 2090b57cec5SDimitry Andric 2100b57cec5SDimitry Andric bool canWidenScalarExtLoad(LoadInst &I) const; 2110b57cec5SDimitry Andric 2120b57cec5SDimitry Andric public: 2130b57cec5SDimitry Andric static char ID; 2140b57cec5SDimitry Andric 2150b57cec5SDimitry Andric AMDGPUCodeGenPrepare() : FunctionPass(ID) {} 2160b57cec5SDimitry Andric 2170b57cec5SDimitry Andric bool visitFDiv(BinaryOperator &I); 2180b57cec5SDimitry Andric 2190b57cec5SDimitry Andric bool visitInstruction(Instruction &I) { return false; } 2200b57cec5SDimitry Andric bool visitBinaryOperator(BinaryOperator &I); 2210b57cec5SDimitry Andric bool visitLoadInst(LoadInst &I); 2220b57cec5SDimitry Andric bool visitICmpInst(ICmpInst &I); 2230b57cec5SDimitry Andric bool visitSelectInst(SelectInst &I); 2240b57cec5SDimitry Andric 2250b57cec5SDimitry Andric bool visitIntrinsicInst(IntrinsicInst &I); 2260b57cec5SDimitry Andric bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 2270b57cec5SDimitry Andric 2280b57cec5SDimitry Andric bool doInitialization(Module &M) override; 2290b57cec5SDimitry Andric bool runOnFunction(Function &F) override; 2300b57cec5SDimitry Andric 2310b57cec5SDimitry Andric StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 2320b57cec5SDimitry Andric 2330b57cec5SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 2340b57cec5SDimitry Andric AU.addRequired<AssumptionCacheTracker>(); 2350b57cec5SDimitry Andric AU.addRequired<LegacyDivergenceAnalysis>(); 236*5ffd83dbSDimitry Andric 237*5ffd83dbSDimitry Andric // FIXME: Division expansion needs to preserve the dominator tree. 238*5ffd83dbSDimitry Andric if (!ExpandDiv64InIR) 2390b57cec5SDimitry Andric AU.setPreservesAll(); 2400b57cec5SDimitry Andric } 2410b57cec5SDimitry Andric }; 2420b57cec5SDimitry Andric 2430b57cec5SDimitry Andric } // end anonymous namespace 2440b57cec5SDimitry Andric 2450b57cec5SDimitry Andric unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const { 2460b57cec5SDimitry Andric assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 2470b57cec5SDimitry Andric 2480b57cec5SDimitry Andric if (T->isIntegerTy()) 2490b57cec5SDimitry Andric return T->getIntegerBitWidth(); 2500b57cec5SDimitry Andric return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 2510b57cec5SDimitry Andric } 2520b57cec5SDimitry Andric 2530b57cec5SDimitry Andric Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const { 2540b57cec5SDimitry Andric assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 2550b57cec5SDimitry Andric 2560b57cec5SDimitry Andric if (T->isIntegerTy()) 2570b57cec5SDimitry Andric return B.getInt32Ty(); 258*5ffd83dbSDimitry Andric return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 2590b57cec5SDimitry Andric } 2600b57cec5SDimitry Andric 2610b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const { 2620b57cec5SDimitry Andric return I.getOpcode() == Instruction::AShr || 2630b57cec5SDimitry Andric I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 2640b57cec5SDimitry Andric } 2650b57cec5SDimitry Andric 2660b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const { 2670b57cec5SDimitry Andric return isa<ICmpInst>(I.getOperand(0)) ? 2680b57cec5SDimitry Andric cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 2690b57cec5SDimitry Andric } 2700b57cec5SDimitry Andric 2710b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const { 2720b57cec5SDimitry Andric const IntegerType *IntTy = dyn_cast<IntegerType>(T); 2730b57cec5SDimitry Andric if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 2740b57cec5SDimitry Andric return true; 2750b57cec5SDimitry Andric 2760b57cec5SDimitry Andric if (const VectorType *VT = dyn_cast<VectorType>(T)) { 2770b57cec5SDimitry Andric // TODO: The set of packed operations is more limited, so may want to 2780b57cec5SDimitry Andric // promote some anyway. 2790b57cec5SDimitry Andric if (ST->hasVOP3PInsts()) 2800b57cec5SDimitry Andric return false; 2810b57cec5SDimitry Andric 2820b57cec5SDimitry Andric return needsPromotionToI32(VT->getElementType()); 2830b57cec5SDimitry Andric } 2840b57cec5SDimitry Andric 2850b57cec5SDimitry Andric return false; 2860b57cec5SDimitry Andric } 2870b57cec5SDimitry Andric 2880b57cec5SDimitry Andric // Return true if the op promoted to i32 should have nsw set. 2890b57cec5SDimitry Andric static bool promotedOpIsNSW(const Instruction &I) { 2900b57cec5SDimitry Andric switch (I.getOpcode()) { 2910b57cec5SDimitry Andric case Instruction::Shl: 2920b57cec5SDimitry Andric case Instruction::Add: 2930b57cec5SDimitry Andric case Instruction::Sub: 2940b57cec5SDimitry Andric return true; 2950b57cec5SDimitry Andric case Instruction::Mul: 2960b57cec5SDimitry Andric return I.hasNoUnsignedWrap(); 2970b57cec5SDimitry Andric default: 2980b57cec5SDimitry Andric return false; 2990b57cec5SDimitry Andric } 3000b57cec5SDimitry Andric } 3010b57cec5SDimitry Andric 3020b57cec5SDimitry Andric // Return true if the op promoted to i32 should have nuw set. 3030b57cec5SDimitry Andric static bool promotedOpIsNUW(const Instruction &I) { 3040b57cec5SDimitry Andric switch (I.getOpcode()) { 3050b57cec5SDimitry Andric case Instruction::Shl: 3060b57cec5SDimitry Andric case Instruction::Add: 3070b57cec5SDimitry Andric case Instruction::Mul: 3080b57cec5SDimitry Andric return true; 3090b57cec5SDimitry Andric case Instruction::Sub: 3100b57cec5SDimitry Andric return I.hasNoUnsignedWrap(); 3110b57cec5SDimitry Andric default: 3120b57cec5SDimitry Andric return false; 3130b57cec5SDimitry Andric } 3140b57cec5SDimitry Andric } 3150b57cec5SDimitry Andric 3160b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const { 3170b57cec5SDimitry Andric Type *Ty = I.getType(); 3180b57cec5SDimitry Andric const DataLayout &DL = Mod->getDataLayout(); 3190b57cec5SDimitry Andric int TySize = DL.getTypeSizeInBits(Ty); 320*5ffd83dbSDimitry Andric Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 3210b57cec5SDimitry Andric 322*5ffd83dbSDimitry Andric return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I); 3230b57cec5SDimitry Andric } 3240b57cec5SDimitry Andric 3250b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const { 3260b57cec5SDimitry Andric assert(needsPromotionToI32(I.getType()) && 3270b57cec5SDimitry Andric "I does not need promotion to i32"); 3280b57cec5SDimitry Andric 3290b57cec5SDimitry Andric if (I.getOpcode() == Instruction::SDiv || 3300b57cec5SDimitry Andric I.getOpcode() == Instruction::UDiv || 3310b57cec5SDimitry Andric I.getOpcode() == Instruction::SRem || 3320b57cec5SDimitry Andric I.getOpcode() == Instruction::URem) 3330b57cec5SDimitry Andric return false; 3340b57cec5SDimitry Andric 3350b57cec5SDimitry Andric IRBuilder<> Builder(&I); 3360b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(I.getDebugLoc()); 3370b57cec5SDimitry Andric 3380b57cec5SDimitry Andric Type *I32Ty = getI32Ty(Builder, I.getType()); 3390b57cec5SDimitry Andric Value *ExtOp0 = nullptr; 3400b57cec5SDimitry Andric Value *ExtOp1 = nullptr; 3410b57cec5SDimitry Andric Value *ExtRes = nullptr; 3420b57cec5SDimitry Andric Value *TruncRes = nullptr; 3430b57cec5SDimitry Andric 3440b57cec5SDimitry Andric if (isSigned(I)) { 3450b57cec5SDimitry Andric ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 3460b57cec5SDimitry Andric ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 3470b57cec5SDimitry Andric } else { 3480b57cec5SDimitry Andric ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 3490b57cec5SDimitry Andric ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 3500b57cec5SDimitry Andric } 3510b57cec5SDimitry Andric 3520b57cec5SDimitry Andric ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 3530b57cec5SDimitry Andric if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 3540b57cec5SDimitry Andric if (promotedOpIsNSW(cast<Instruction>(I))) 3550b57cec5SDimitry Andric Inst->setHasNoSignedWrap(); 3560b57cec5SDimitry Andric 3570b57cec5SDimitry Andric if (promotedOpIsNUW(cast<Instruction>(I))) 3580b57cec5SDimitry Andric Inst->setHasNoUnsignedWrap(); 3590b57cec5SDimitry Andric 3600b57cec5SDimitry Andric if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3610b57cec5SDimitry Andric Inst->setIsExact(ExactOp->isExact()); 3620b57cec5SDimitry Andric } 3630b57cec5SDimitry Andric 3640b57cec5SDimitry Andric TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 3650b57cec5SDimitry Andric 3660b57cec5SDimitry Andric I.replaceAllUsesWith(TruncRes); 3670b57cec5SDimitry Andric I.eraseFromParent(); 3680b57cec5SDimitry Andric 3690b57cec5SDimitry Andric return true; 3700b57cec5SDimitry Andric } 3710b57cec5SDimitry Andric 3720b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const { 3730b57cec5SDimitry Andric assert(needsPromotionToI32(I.getOperand(0)->getType()) && 3740b57cec5SDimitry Andric "I does not need promotion to i32"); 3750b57cec5SDimitry Andric 3760b57cec5SDimitry Andric IRBuilder<> Builder(&I); 3770b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(I.getDebugLoc()); 3780b57cec5SDimitry Andric 3790b57cec5SDimitry Andric Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 3800b57cec5SDimitry Andric Value *ExtOp0 = nullptr; 3810b57cec5SDimitry Andric Value *ExtOp1 = nullptr; 3820b57cec5SDimitry Andric Value *NewICmp = nullptr; 3830b57cec5SDimitry Andric 3840b57cec5SDimitry Andric if (I.isSigned()) { 3850b57cec5SDimitry Andric ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 3860b57cec5SDimitry Andric ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 3870b57cec5SDimitry Andric } else { 3880b57cec5SDimitry Andric ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 3890b57cec5SDimitry Andric ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 3900b57cec5SDimitry Andric } 3910b57cec5SDimitry Andric NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 3920b57cec5SDimitry Andric 3930b57cec5SDimitry Andric I.replaceAllUsesWith(NewICmp); 3940b57cec5SDimitry Andric I.eraseFromParent(); 3950b57cec5SDimitry Andric 3960b57cec5SDimitry Andric return true; 3970b57cec5SDimitry Andric } 3980b57cec5SDimitry Andric 3990b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const { 4000b57cec5SDimitry Andric assert(needsPromotionToI32(I.getType()) && 4010b57cec5SDimitry Andric "I does not need promotion to i32"); 4020b57cec5SDimitry Andric 4030b57cec5SDimitry Andric IRBuilder<> Builder(&I); 4040b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(I.getDebugLoc()); 4050b57cec5SDimitry Andric 4060b57cec5SDimitry Andric Type *I32Ty = getI32Ty(Builder, I.getType()); 4070b57cec5SDimitry Andric Value *ExtOp1 = nullptr; 4080b57cec5SDimitry Andric Value *ExtOp2 = nullptr; 4090b57cec5SDimitry Andric Value *ExtRes = nullptr; 4100b57cec5SDimitry Andric Value *TruncRes = nullptr; 4110b57cec5SDimitry Andric 4120b57cec5SDimitry Andric if (isSigned(I)) { 4130b57cec5SDimitry Andric ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 4140b57cec5SDimitry Andric ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 4150b57cec5SDimitry Andric } else { 4160b57cec5SDimitry Andric ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 4170b57cec5SDimitry Andric ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 4180b57cec5SDimitry Andric } 4190b57cec5SDimitry Andric ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 4200b57cec5SDimitry Andric TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 4210b57cec5SDimitry Andric 4220b57cec5SDimitry Andric I.replaceAllUsesWith(TruncRes); 4230b57cec5SDimitry Andric I.eraseFromParent(); 4240b57cec5SDimitry Andric 4250b57cec5SDimitry Andric return true; 4260b57cec5SDimitry Andric } 4270b57cec5SDimitry Andric 4280b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32( 4290b57cec5SDimitry Andric IntrinsicInst &I) const { 4300b57cec5SDimitry Andric assert(I.getIntrinsicID() == Intrinsic::bitreverse && 4310b57cec5SDimitry Andric "I must be bitreverse intrinsic"); 4320b57cec5SDimitry Andric assert(needsPromotionToI32(I.getType()) && 4330b57cec5SDimitry Andric "I does not need promotion to i32"); 4340b57cec5SDimitry Andric 4350b57cec5SDimitry Andric IRBuilder<> Builder(&I); 4360b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(I.getDebugLoc()); 4370b57cec5SDimitry Andric 4380b57cec5SDimitry Andric Type *I32Ty = getI32Ty(Builder, I.getType()); 4390b57cec5SDimitry Andric Function *I32 = 4400b57cec5SDimitry Andric Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 4410b57cec5SDimitry Andric Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 4420b57cec5SDimitry Andric Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 4430b57cec5SDimitry Andric Value *LShrOp = 4440b57cec5SDimitry Andric Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 4450b57cec5SDimitry Andric Value *TruncRes = 4460b57cec5SDimitry Andric Builder.CreateTrunc(LShrOp, I.getType()); 4470b57cec5SDimitry Andric 4480b57cec5SDimitry Andric I.replaceAllUsesWith(TruncRes); 4490b57cec5SDimitry Andric I.eraseFromParent(); 4500b57cec5SDimitry Andric 4510b57cec5SDimitry Andric return true; 4520b57cec5SDimitry Andric } 4530b57cec5SDimitry Andric 4540b57cec5SDimitry Andric unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op, 4550b57cec5SDimitry Andric unsigned ScalarSize) const { 4560b57cec5SDimitry Andric KnownBits Known = computeKnownBits(Op, *DL, 0, AC); 4570b57cec5SDimitry Andric return ScalarSize - Known.countMinLeadingZeros(); 4580b57cec5SDimitry Andric } 4590b57cec5SDimitry Andric 4600b57cec5SDimitry Andric unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op, 4610b57cec5SDimitry Andric unsigned ScalarSize) const { 4620b57cec5SDimitry Andric // In order for this to be a signed 24-bit value, bit 23, must 4630b57cec5SDimitry Andric // be a sign bit. 4640b57cec5SDimitry Andric return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC); 4650b57cec5SDimitry Andric } 4660b57cec5SDimitry Andric 4670b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const { 4680b57cec5SDimitry Andric return ScalarSize >= 24 && // Types less than 24-bit should be treated 4690b57cec5SDimitry Andric // as unsigned 24-bit values. 4700b57cec5SDimitry Andric numBitsSigned(V, ScalarSize) < 24; 4710b57cec5SDimitry Andric } 4720b57cec5SDimitry Andric 4730b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const { 4740b57cec5SDimitry Andric return numBitsUnsigned(V, ScalarSize) <= 24; 4750b57cec5SDimitry Andric } 4760b57cec5SDimitry Andric 4770b57cec5SDimitry Andric static void extractValues(IRBuilder<> &Builder, 4780b57cec5SDimitry Andric SmallVectorImpl<Value *> &Values, Value *V) { 479*5ffd83dbSDimitry Andric auto *VT = dyn_cast<FixedVectorType>(V->getType()); 4800b57cec5SDimitry Andric if (!VT) { 4810b57cec5SDimitry Andric Values.push_back(V); 4820b57cec5SDimitry Andric return; 4830b57cec5SDimitry Andric } 4840b57cec5SDimitry Andric 4850b57cec5SDimitry Andric for (int I = 0, E = VT->getNumElements(); I != E; ++I) 4860b57cec5SDimitry Andric Values.push_back(Builder.CreateExtractElement(V, I)); 4870b57cec5SDimitry Andric } 4880b57cec5SDimitry Andric 4890b57cec5SDimitry Andric static Value *insertValues(IRBuilder<> &Builder, 4900b57cec5SDimitry Andric Type *Ty, 4910b57cec5SDimitry Andric SmallVectorImpl<Value *> &Values) { 4920b57cec5SDimitry Andric if (Values.size() == 1) 4930b57cec5SDimitry Andric return Values[0]; 4940b57cec5SDimitry Andric 4950b57cec5SDimitry Andric Value *NewVal = UndefValue::get(Ty); 4960b57cec5SDimitry Andric for (int I = 0, E = Values.size(); I != E; ++I) 4970b57cec5SDimitry Andric NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 4980b57cec5SDimitry Andric 4990b57cec5SDimitry Andric return NewVal; 5000b57cec5SDimitry Andric } 5010b57cec5SDimitry Andric 5020b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const { 5030b57cec5SDimitry Andric if (I.getOpcode() != Instruction::Mul) 5040b57cec5SDimitry Andric return false; 5050b57cec5SDimitry Andric 5060b57cec5SDimitry Andric Type *Ty = I.getType(); 5070b57cec5SDimitry Andric unsigned Size = Ty->getScalarSizeInBits(); 5080b57cec5SDimitry Andric if (Size <= 16 && ST->has16BitInsts()) 5090b57cec5SDimitry Andric return false; 5100b57cec5SDimitry Andric 5110b57cec5SDimitry Andric // Prefer scalar if this could be s_mul_i32 5120b57cec5SDimitry Andric if (DA->isUniform(&I)) 5130b57cec5SDimitry Andric return false; 5140b57cec5SDimitry Andric 5150b57cec5SDimitry Andric Value *LHS = I.getOperand(0); 5160b57cec5SDimitry Andric Value *RHS = I.getOperand(1); 5170b57cec5SDimitry Andric IRBuilder<> Builder(&I); 5180b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(I.getDebugLoc()); 5190b57cec5SDimitry Andric 5200b57cec5SDimitry Andric Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 5210b57cec5SDimitry Andric 5220b57cec5SDimitry Andric // TODO: Should this try to match mulhi24? 5230b57cec5SDimitry Andric if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) { 5240b57cec5SDimitry Andric IntrID = Intrinsic::amdgcn_mul_u24; 5250b57cec5SDimitry Andric } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) { 5260b57cec5SDimitry Andric IntrID = Intrinsic::amdgcn_mul_i24; 5270b57cec5SDimitry Andric } else 5280b57cec5SDimitry Andric return false; 5290b57cec5SDimitry Andric 5300b57cec5SDimitry Andric SmallVector<Value *, 4> LHSVals; 5310b57cec5SDimitry Andric SmallVector<Value *, 4> RHSVals; 5320b57cec5SDimitry Andric SmallVector<Value *, 4> ResultVals; 5330b57cec5SDimitry Andric extractValues(Builder, LHSVals, LHS); 5340b57cec5SDimitry Andric extractValues(Builder, RHSVals, RHS); 5350b57cec5SDimitry Andric 5360b57cec5SDimitry Andric 5370b57cec5SDimitry Andric IntegerType *I32Ty = Builder.getInt32Ty(); 5380b57cec5SDimitry Andric FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID); 5390b57cec5SDimitry Andric for (int I = 0, E = LHSVals.size(); I != E; ++I) { 5400b57cec5SDimitry Andric Value *LHS, *RHS; 5410b57cec5SDimitry Andric if (IntrID == Intrinsic::amdgcn_mul_u24) { 5420b57cec5SDimitry Andric LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 5430b57cec5SDimitry Andric RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 5440b57cec5SDimitry Andric } else { 5450b57cec5SDimitry Andric LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty); 5460b57cec5SDimitry Andric RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty); 5470b57cec5SDimitry Andric } 5480b57cec5SDimitry Andric 5490b57cec5SDimitry Andric Value *Result = Builder.CreateCall(Intrin, {LHS, RHS}); 5500b57cec5SDimitry Andric 5510b57cec5SDimitry Andric if (IntrID == Intrinsic::amdgcn_mul_u24) { 5520b57cec5SDimitry Andric ResultVals.push_back(Builder.CreateZExtOrTrunc(Result, 5530b57cec5SDimitry Andric LHSVals[I]->getType())); 5540b57cec5SDimitry Andric } else { 5550b57cec5SDimitry Andric ResultVals.push_back(Builder.CreateSExtOrTrunc(Result, 5560b57cec5SDimitry Andric LHSVals[I]->getType())); 5570b57cec5SDimitry Andric } 5580b57cec5SDimitry Andric } 5590b57cec5SDimitry Andric 5608bcb0991SDimitry Andric Value *NewVal = insertValues(Builder, Ty, ResultVals); 5618bcb0991SDimitry Andric NewVal->takeName(&I); 5628bcb0991SDimitry Andric I.replaceAllUsesWith(NewVal); 5630b57cec5SDimitry Andric I.eraseFromParent(); 5640b57cec5SDimitry Andric 5650b57cec5SDimitry Andric return true; 5660b57cec5SDimitry Andric } 5670b57cec5SDimitry Andric 568*5ffd83dbSDimitry Andric // Find a select instruction, which may have been casted. This is mostly to deal 569*5ffd83dbSDimitry Andric // with cases where i16 selects were promoted here to i32. 570*5ffd83dbSDimitry Andric static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 571*5ffd83dbSDimitry Andric Cast = nullptr; 572*5ffd83dbSDimitry Andric if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 573*5ffd83dbSDimitry Andric return Sel; 5740b57cec5SDimitry Andric 575*5ffd83dbSDimitry Andric if ((Cast = dyn_cast<CastInst>(V))) { 576*5ffd83dbSDimitry Andric if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 577*5ffd83dbSDimitry Andric return Sel; 5780b57cec5SDimitry Andric } 5790b57cec5SDimitry Andric 580*5ffd83dbSDimitry Andric return nullptr; 581*5ffd83dbSDimitry Andric } 5820b57cec5SDimitry Andric 583*5ffd83dbSDimitry Andric bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const { 584*5ffd83dbSDimitry Andric // Don't do this unless the old select is going away. We want to eliminate the 585*5ffd83dbSDimitry Andric // binary operator, not replace a binop with a select. 586*5ffd83dbSDimitry Andric int SelOpNo = 0; 587*5ffd83dbSDimitry Andric 588*5ffd83dbSDimitry Andric CastInst *CastOp; 589*5ffd83dbSDimitry Andric 590*5ffd83dbSDimitry Andric // TODO: Should probably try to handle some cases with multiple 591*5ffd83dbSDimitry Andric // users. Duplicating the select may be profitable for division. 592*5ffd83dbSDimitry Andric SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 593*5ffd83dbSDimitry Andric if (!Sel || !Sel->hasOneUse()) { 594*5ffd83dbSDimitry Andric SelOpNo = 1; 595*5ffd83dbSDimitry Andric Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 596*5ffd83dbSDimitry Andric } 597*5ffd83dbSDimitry Andric 598*5ffd83dbSDimitry Andric if (!Sel || !Sel->hasOneUse()) 5990b57cec5SDimitry Andric return false; 6000b57cec5SDimitry Andric 601*5ffd83dbSDimitry Andric Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 602*5ffd83dbSDimitry Andric Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 603*5ffd83dbSDimitry Andric Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 604*5ffd83dbSDimitry Andric if (!CBO || !CT || !CF) 605*5ffd83dbSDimitry Andric return false; 606*5ffd83dbSDimitry Andric 607*5ffd83dbSDimitry Andric if (CastOp) { 608*5ffd83dbSDimitry Andric if (!CastOp->hasOneUse()) 609*5ffd83dbSDimitry Andric return false; 610*5ffd83dbSDimitry Andric CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 611*5ffd83dbSDimitry Andric CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 612*5ffd83dbSDimitry Andric } 613*5ffd83dbSDimitry Andric 614*5ffd83dbSDimitry Andric // TODO: Handle special 0/-1 cases DAG combine does, although we only really 615*5ffd83dbSDimitry Andric // need to handle divisions here. 616*5ffd83dbSDimitry Andric Constant *FoldedT = SelOpNo ? 617*5ffd83dbSDimitry Andric ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 618*5ffd83dbSDimitry Andric ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 619*5ffd83dbSDimitry Andric if (isa<ConstantExpr>(FoldedT)) 620*5ffd83dbSDimitry Andric return false; 621*5ffd83dbSDimitry Andric 622*5ffd83dbSDimitry Andric Constant *FoldedF = SelOpNo ? 623*5ffd83dbSDimitry Andric ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 624*5ffd83dbSDimitry Andric ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 625*5ffd83dbSDimitry Andric if (isa<ConstantExpr>(FoldedF)) 626*5ffd83dbSDimitry Andric return false; 627*5ffd83dbSDimitry Andric 628*5ffd83dbSDimitry Andric IRBuilder<> Builder(&BO); 629*5ffd83dbSDimitry Andric Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 630*5ffd83dbSDimitry Andric if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 631*5ffd83dbSDimitry Andric Builder.setFastMathFlags(FPOp->getFastMathFlags()); 632*5ffd83dbSDimitry Andric 633*5ffd83dbSDimitry Andric Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 634*5ffd83dbSDimitry Andric FoldedT, FoldedF); 635*5ffd83dbSDimitry Andric NewSelect->takeName(&BO); 636*5ffd83dbSDimitry Andric BO.replaceAllUsesWith(NewSelect); 637*5ffd83dbSDimitry Andric BO.eraseFromParent(); 638*5ffd83dbSDimitry Andric if (CastOp) 639*5ffd83dbSDimitry Andric CastOp->eraseFromParent(); 640*5ffd83dbSDimitry Andric Sel->eraseFromParent(); 641*5ffd83dbSDimitry Andric return true; 642*5ffd83dbSDimitry Andric } 643*5ffd83dbSDimitry Andric 644*5ffd83dbSDimitry Andric // Optimize fdiv with rcp: 645*5ffd83dbSDimitry Andric // 646*5ffd83dbSDimitry Andric // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 647*5ffd83dbSDimitry Andric // allowed with unsafe-fp-math or afn. 648*5ffd83dbSDimitry Andric // 649*5ffd83dbSDimitry Andric // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 650*5ffd83dbSDimitry Andric static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp, 651*5ffd83dbSDimitry Andric bool RcpIsAccurate, IRBuilder<> &Builder, 652*5ffd83dbSDimitry Andric Module *Mod) { 653*5ffd83dbSDimitry Andric 654*5ffd83dbSDimitry Andric if (!AllowInaccurateRcp && !RcpIsAccurate) 655*5ffd83dbSDimitry Andric return nullptr; 656*5ffd83dbSDimitry Andric 657*5ffd83dbSDimitry Andric Type *Ty = Den->getType(); 658*5ffd83dbSDimitry Andric if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 659*5ffd83dbSDimitry Andric if (AllowInaccurateRcp || RcpIsAccurate) { 660*5ffd83dbSDimitry Andric if (CLHS->isExactlyValue(1.0)) { 661*5ffd83dbSDimitry Andric Function *Decl = Intrinsic::getDeclaration( 662*5ffd83dbSDimitry Andric Mod, Intrinsic::amdgcn_rcp, Ty); 663*5ffd83dbSDimitry Andric 664*5ffd83dbSDimitry Andric // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 665*5ffd83dbSDimitry Andric // the CI documentation has a worst case error of 1 ulp. 666*5ffd83dbSDimitry Andric // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to 667*5ffd83dbSDimitry Andric // use it as long as we aren't trying to use denormals. 668*5ffd83dbSDimitry Andric // 669*5ffd83dbSDimitry Andric // v_rcp_f16 and v_rsq_f16 DO support denormals. 670*5ffd83dbSDimitry Andric 671*5ffd83dbSDimitry Andric // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 672*5ffd83dbSDimitry Andric // insert rsq intrinsic here. 673*5ffd83dbSDimitry Andric 674*5ffd83dbSDimitry Andric // 1.0 / x -> rcp(x) 675*5ffd83dbSDimitry Andric return Builder.CreateCall(Decl, { Den }); 676*5ffd83dbSDimitry Andric } 677*5ffd83dbSDimitry Andric 678*5ffd83dbSDimitry Andric // Same as for 1.0, but expand the sign out of the constant. 679*5ffd83dbSDimitry Andric if (CLHS->isExactlyValue(-1.0)) { 680*5ffd83dbSDimitry Andric Function *Decl = Intrinsic::getDeclaration( 681*5ffd83dbSDimitry Andric Mod, Intrinsic::amdgcn_rcp, Ty); 682*5ffd83dbSDimitry Andric 683*5ffd83dbSDimitry Andric // -1.0 / x -> rcp (fneg x) 684*5ffd83dbSDimitry Andric Value *FNeg = Builder.CreateFNeg(Den); 685*5ffd83dbSDimitry Andric return Builder.CreateCall(Decl, { FNeg }); 686*5ffd83dbSDimitry Andric } 687*5ffd83dbSDimitry Andric } 688*5ffd83dbSDimitry Andric } 689*5ffd83dbSDimitry Andric 690*5ffd83dbSDimitry Andric if (AllowInaccurateRcp) { 691*5ffd83dbSDimitry Andric Function *Decl = Intrinsic::getDeclaration( 692*5ffd83dbSDimitry Andric Mod, Intrinsic::amdgcn_rcp, Ty); 693*5ffd83dbSDimitry Andric 694*5ffd83dbSDimitry Andric // Turn into multiply by the reciprocal. 695*5ffd83dbSDimitry Andric // x / y -> x * (1.0 / y) 696*5ffd83dbSDimitry Andric Value *Recip = Builder.CreateCall(Decl, { Den }); 697*5ffd83dbSDimitry Andric return Builder.CreateFMul(Num, Recip); 698*5ffd83dbSDimitry Andric } 699*5ffd83dbSDimitry Andric return nullptr; 700*5ffd83dbSDimitry Andric } 701*5ffd83dbSDimitry Andric 702*5ffd83dbSDimitry Andric // optimize with fdiv.fast: 703*5ffd83dbSDimitry Andric // 704*5ffd83dbSDimitry Andric // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 705*5ffd83dbSDimitry Andric // 706*5ffd83dbSDimitry Andric // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 707*5ffd83dbSDimitry Andric // 708*5ffd83dbSDimitry Andric // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 709*5ffd83dbSDimitry Andric static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy, 710*5ffd83dbSDimitry Andric bool HasDenormals, IRBuilder<> &Builder, 711*5ffd83dbSDimitry Andric Module *Mod) { 712*5ffd83dbSDimitry Andric // fdiv.fast can achieve 2.5 ULP accuracy. 713*5ffd83dbSDimitry Andric if (ReqdAccuracy < 2.5f) 714*5ffd83dbSDimitry Andric return nullptr; 715*5ffd83dbSDimitry Andric 716*5ffd83dbSDimitry Andric // Only have fdiv.fast for f32. 717*5ffd83dbSDimitry Andric Type *Ty = Den->getType(); 718*5ffd83dbSDimitry Andric if (!Ty->isFloatTy()) 719*5ffd83dbSDimitry Andric return nullptr; 720*5ffd83dbSDimitry Andric 721*5ffd83dbSDimitry Andric bool NumIsOne = false; 722*5ffd83dbSDimitry Andric if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 723*5ffd83dbSDimitry Andric if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 724*5ffd83dbSDimitry Andric NumIsOne = true; 725*5ffd83dbSDimitry Andric } 726*5ffd83dbSDimitry Andric 727*5ffd83dbSDimitry Andric // fdiv does not support denormals. But 1.0/x is always fine to use it. 728*5ffd83dbSDimitry Andric if (HasDenormals && !NumIsOne) 729*5ffd83dbSDimitry Andric return nullptr; 730*5ffd83dbSDimitry Andric 731*5ffd83dbSDimitry Andric Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast); 732*5ffd83dbSDimitry Andric return Builder.CreateCall(Decl, { Num, Den }); 733*5ffd83dbSDimitry Andric } 734*5ffd83dbSDimitry Andric 735*5ffd83dbSDimitry Andric // Optimizations is performed based on fpmath, fast math flags as well as 736*5ffd83dbSDimitry Andric // denormals to optimize fdiv with either rcp or fdiv.fast. 737*5ffd83dbSDimitry Andric // 738*5ffd83dbSDimitry Andric // With rcp: 739*5ffd83dbSDimitry Andric // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 740*5ffd83dbSDimitry Andric // allowed with unsafe-fp-math or afn. 741*5ffd83dbSDimitry Andric // 742*5ffd83dbSDimitry Andric // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 743*5ffd83dbSDimitry Andric // 744*5ffd83dbSDimitry Andric // With fdiv.fast: 745*5ffd83dbSDimitry Andric // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 746*5ffd83dbSDimitry Andric // 747*5ffd83dbSDimitry Andric // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 748*5ffd83dbSDimitry Andric // 749*5ffd83dbSDimitry Andric // NOTE: rcp is the preference in cases that both are legal. 750*5ffd83dbSDimitry Andric bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) { 751*5ffd83dbSDimitry Andric 752*5ffd83dbSDimitry Andric Type *Ty = FDiv.getType()->getScalarType(); 753*5ffd83dbSDimitry Andric 754*5ffd83dbSDimitry Andric // No intrinsic for fdiv16 if target does not support f16. 755*5ffd83dbSDimitry Andric if (Ty->isHalfTy() && !ST->has16BitInsts()) 7560b57cec5SDimitry Andric return false; 7570b57cec5SDimitry Andric 7580b57cec5SDimitry Andric const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 759*5ffd83dbSDimitry Andric const float ReqdAccuracy = FPOp->getFPAccuracy(); 7600b57cec5SDimitry Andric 761*5ffd83dbSDimitry Andric // Inaccurate rcp is allowed with unsafe-fp-math or afn. 7620b57cec5SDimitry Andric FastMathFlags FMF = FPOp->getFastMathFlags(); 763*5ffd83dbSDimitry Andric const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc(); 7640b57cec5SDimitry Andric 765*5ffd83dbSDimitry Andric // rcp_f16 is accurate for !fpmath >= 1.0ulp. 766*5ffd83dbSDimitry Andric // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 767*5ffd83dbSDimitry Andric // rcp_f64 is never accurate. 768*5ffd83dbSDimitry Andric const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) || 769*5ffd83dbSDimitry Andric (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f); 7700b57cec5SDimitry Andric 771*5ffd83dbSDimitry Andric IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 7720b57cec5SDimitry Andric Builder.setFastMathFlags(FMF); 7730b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 7740b57cec5SDimitry Andric 7750b57cec5SDimitry Andric Value *Num = FDiv.getOperand(0); 7760b57cec5SDimitry Andric Value *Den = FDiv.getOperand(1); 7770b57cec5SDimitry Andric 7780b57cec5SDimitry Andric Value *NewFDiv = nullptr; 779*5ffd83dbSDimitry Andric if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) { 7800b57cec5SDimitry Andric NewFDiv = UndefValue::get(VT); 7810b57cec5SDimitry Andric 7820b57cec5SDimitry Andric // FIXME: Doesn't do the right thing for cases where the vector is partially 7830b57cec5SDimitry Andric // constant. This works when the scalarizer pass is run first. 7840b57cec5SDimitry Andric for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) { 7850b57cec5SDimitry Andric Value *NumEltI = Builder.CreateExtractElement(Num, I); 7860b57cec5SDimitry Andric Value *DenEltI = Builder.CreateExtractElement(Den, I); 787*5ffd83dbSDimitry Andric // Try rcp first. 788*5ffd83dbSDimitry Andric Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp, 789*5ffd83dbSDimitry Andric RcpIsAccurate, Builder, Mod); 790*5ffd83dbSDimitry Andric if (!NewElt) // Try fdiv.fast. 791*5ffd83dbSDimitry Andric NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy, 792*5ffd83dbSDimitry Andric HasFP32Denormals, Builder, Mod); 793*5ffd83dbSDimitry Andric if (!NewElt) // Keep the original. 7940b57cec5SDimitry Andric NewElt = Builder.CreateFDiv(NumEltI, DenEltI); 7950b57cec5SDimitry Andric 7960b57cec5SDimitry Andric NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I); 7970b57cec5SDimitry Andric } 798*5ffd83dbSDimitry Andric } else { // Scalar FDiv. 799*5ffd83dbSDimitry Andric // Try rcp first. 800*5ffd83dbSDimitry Andric NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate, 801*5ffd83dbSDimitry Andric Builder, Mod); 802*5ffd83dbSDimitry Andric if (!NewFDiv) { // Try fdiv.fast. 803*5ffd83dbSDimitry Andric NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals, 804*5ffd83dbSDimitry Andric Builder, Mod); 805*5ffd83dbSDimitry Andric } 8060b57cec5SDimitry Andric } 8070b57cec5SDimitry Andric 8080b57cec5SDimitry Andric if (NewFDiv) { 8090b57cec5SDimitry Andric FDiv.replaceAllUsesWith(NewFDiv); 8100b57cec5SDimitry Andric NewFDiv->takeName(&FDiv); 8110b57cec5SDimitry Andric FDiv.eraseFromParent(); 8120b57cec5SDimitry Andric } 8130b57cec5SDimitry Andric 8140b57cec5SDimitry Andric return !!NewFDiv; 8150b57cec5SDimitry Andric } 8160b57cec5SDimitry Andric 8170b57cec5SDimitry Andric static bool hasUnsafeFPMath(const Function &F) { 8180b57cec5SDimitry Andric Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 8190b57cec5SDimitry Andric return Attr.getValueAsString() == "true"; 8200b57cec5SDimitry Andric } 8210b57cec5SDimitry Andric 8220b57cec5SDimitry Andric static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 8230b57cec5SDimitry Andric Value *LHS, Value *RHS) { 8240b57cec5SDimitry Andric Type *I32Ty = Builder.getInt32Ty(); 8250b57cec5SDimitry Andric Type *I64Ty = Builder.getInt64Ty(); 8260b57cec5SDimitry Andric 8270b57cec5SDimitry Andric Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 8280b57cec5SDimitry Andric Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 8290b57cec5SDimitry Andric Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 8300b57cec5SDimitry Andric Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 8310b57cec5SDimitry Andric Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 8320b57cec5SDimitry Andric Hi = Builder.CreateTrunc(Hi, I32Ty); 8330b57cec5SDimitry Andric return std::make_pair(Lo, Hi); 8340b57cec5SDimitry Andric } 8350b57cec5SDimitry Andric 8360b57cec5SDimitry Andric static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 8370b57cec5SDimitry Andric return getMul64(Builder, LHS, RHS).second; 8380b57cec5SDimitry Andric } 8390b57cec5SDimitry Andric 840*5ffd83dbSDimitry Andric /// Figure out how many bits are really needed for this ddivision. \p AtLeast is 841*5ffd83dbSDimitry Andric /// an optimization hint to bypass the second ComputeNumSignBits call if we the 842*5ffd83dbSDimitry Andric /// first one is insufficient. Returns -1 on failure. 843*5ffd83dbSDimitry Andric int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I, 844*5ffd83dbSDimitry Andric Value *Num, Value *Den, 845*5ffd83dbSDimitry Andric unsigned AtLeast, bool IsSigned) const { 846*5ffd83dbSDimitry Andric const DataLayout &DL = Mod->getDataLayout(); 847*5ffd83dbSDimitry Andric unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 848*5ffd83dbSDimitry Andric if (LHSSignBits < AtLeast) 849*5ffd83dbSDimitry Andric return -1; 850*5ffd83dbSDimitry Andric 851*5ffd83dbSDimitry Andric unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 852*5ffd83dbSDimitry Andric if (RHSSignBits < AtLeast) 853*5ffd83dbSDimitry Andric return -1; 854*5ffd83dbSDimitry Andric 855*5ffd83dbSDimitry Andric unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 856*5ffd83dbSDimitry Andric unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 857*5ffd83dbSDimitry Andric if (IsSigned) 858*5ffd83dbSDimitry Andric ++DivBits; 859*5ffd83dbSDimitry Andric return DivBits; 860*5ffd83dbSDimitry Andric } 861*5ffd83dbSDimitry Andric 8620b57cec5SDimitry Andric // The fractional part of a float is enough to accurately represent up to 8630b57cec5SDimitry Andric // a 24-bit signed integer. 8640b57cec5SDimitry Andric Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder, 8650b57cec5SDimitry Andric BinaryOperator &I, 8660b57cec5SDimitry Andric Value *Num, Value *Den, 8670b57cec5SDimitry Andric bool IsDiv, bool IsSigned) const { 868*5ffd83dbSDimitry Andric int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 869*5ffd83dbSDimitry Andric if (DivBits == -1) 8700b57cec5SDimitry Andric return nullptr; 871*5ffd83dbSDimitry Andric return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 872*5ffd83dbSDimitry Andric } 8730b57cec5SDimitry Andric 874*5ffd83dbSDimitry Andric Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder, 875*5ffd83dbSDimitry Andric BinaryOperator &I, 876*5ffd83dbSDimitry Andric Value *Num, Value *Den, 877*5ffd83dbSDimitry Andric unsigned DivBits, 878*5ffd83dbSDimitry Andric bool IsDiv, bool IsSigned) const { 8790b57cec5SDimitry Andric Type *I32Ty = Builder.getInt32Ty(); 880*5ffd83dbSDimitry Andric Num = Builder.CreateTrunc(Num, I32Ty); 881*5ffd83dbSDimitry Andric Den = Builder.CreateTrunc(Den, I32Ty); 882*5ffd83dbSDimitry Andric 8830b57cec5SDimitry Andric Type *F32Ty = Builder.getFloatTy(); 8840b57cec5SDimitry Andric ConstantInt *One = Builder.getInt32(1); 8850b57cec5SDimitry Andric Value *JQ = One; 8860b57cec5SDimitry Andric 8870b57cec5SDimitry Andric if (IsSigned) { 8880b57cec5SDimitry Andric // char|short jq = ia ^ ib; 8890b57cec5SDimitry Andric JQ = Builder.CreateXor(Num, Den); 8900b57cec5SDimitry Andric 8910b57cec5SDimitry Andric // jq = jq >> (bitsize - 2) 8920b57cec5SDimitry Andric JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 8930b57cec5SDimitry Andric 8940b57cec5SDimitry Andric // jq = jq | 0x1 8950b57cec5SDimitry Andric JQ = Builder.CreateOr(JQ, One); 8960b57cec5SDimitry Andric } 8970b57cec5SDimitry Andric 8980b57cec5SDimitry Andric // int ia = (int)LHS; 8990b57cec5SDimitry Andric Value *IA = Num; 9000b57cec5SDimitry Andric 9010b57cec5SDimitry Andric // int ib, (int)RHS; 9020b57cec5SDimitry Andric Value *IB = Den; 9030b57cec5SDimitry Andric 9040b57cec5SDimitry Andric // float fa = (float)ia; 9050b57cec5SDimitry Andric Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 9060b57cec5SDimitry Andric : Builder.CreateUIToFP(IA, F32Ty); 9070b57cec5SDimitry Andric 9080b57cec5SDimitry Andric // float fb = (float)ib; 9090b57cec5SDimitry Andric Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 9100b57cec5SDimitry Andric : Builder.CreateUIToFP(IB,F32Ty); 9110b57cec5SDimitry Andric 912*5ffd83dbSDimitry Andric Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 913*5ffd83dbSDimitry Andric Builder.getFloatTy()); 914*5ffd83dbSDimitry Andric Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 9150b57cec5SDimitry Andric Value *FQM = Builder.CreateFMul(FA, RCP); 9160b57cec5SDimitry Andric 9170b57cec5SDimitry Andric // fq = trunc(fqm); 9180b57cec5SDimitry Andric CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 9190b57cec5SDimitry Andric FQ->copyFastMathFlags(Builder.getFastMathFlags()); 9200b57cec5SDimitry Andric 9210b57cec5SDimitry Andric // float fqneg = -fq; 9220b57cec5SDimitry Andric Value *FQNeg = Builder.CreateFNeg(FQ); 9230b57cec5SDimitry Andric 9240b57cec5SDimitry Andric // float fr = mad(fqneg, fb, fa); 925*5ffd83dbSDimitry Andric auto FMAD = !ST->hasMadMacF32Insts() 926*5ffd83dbSDimitry Andric ? Intrinsic::fma 927*5ffd83dbSDimitry Andric : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 928*5ffd83dbSDimitry Andric Value *FR = Builder.CreateIntrinsic(FMAD, 9290b57cec5SDimitry Andric {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 9300b57cec5SDimitry Andric 9310b57cec5SDimitry Andric // int iq = (int)fq; 9320b57cec5SDimitry Andric Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 9330b57cec5SDimitry Andric : Builder.CreateFPToUI(FQ, I32Ty); 9340b57cec5SDimitry Andric 9350b57cec5SDimitry Andric // fr = fabs(fr); 9360b57cec5SDimitry Andric FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 9370b57cec5SDimitry Andric 9380b57cec5SDimitry Andric // fb = fabs(fb); 9390b57cec5SDimitry Andric FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 9400b57cec5SDimitry Andric 9410b57cec5SDimitry Andric // int cv = fr >= fb; 9420b57cec5SDimitry Andric Value *CV = Builder.CreateFCmpOGE(FR, FB); 9430b57cec5SDimitry Andric 9440b57cec5SDimitry Andric // jq = (cv ? jq : 0); 9450b57cec5SDimitry Andric JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 9460b57cec5SDimitry Andric 9470b57cec5SDimitry Andric // dst = iq + jq; 9480b57cec5SDimitry Andric Value *Div = Builder.CreateAdd(IQ, JQ); 9490b57cec5SDimitry Andric 9500b57cec5SDimitry Andric Value *Res = Div; 9510b57cec5SDimitry Andric if (!IsDiv) { 9520b57cec5SDimitry Andric // Rem needs compensation, it's easier to recompute it 9530b57cec5SDimitry Andric Value *Rem = Builder.CreateMul(Div, Den); 9540b57cec5SDimitry Andric Res = Builder.CreateSub(Num, Rem); 9550b57cec5SDimitry Andric } 9560b57cec5SDimitry Andric 957*5ffd83dbSDimitry Andric if (DivBits != 0 && DivBits < 32) { 958*5ffd83dbSDimitry Andric // Extend in register from the number of bits this divide really is. 9590b57cec5SDimitry Andric if (IsSigned) { 960*5ffd83dbSDimitry Andric int InRegBits = 32 - DivBits; 961*5ffd83dbSDimitry Andric 962*5ffd83dbSDimitry Andric Res = Builder.CreateShl(Res, InRegBits); 963*5ffd83dbSDimitry Andric Res = Builder.CreateAShr(Res, InRegBits); 9640b57cec5SDimitry Andric } else { 965*5ffd83dbSDimitry Andric ConstantInt *TruncMask 966*5ffd83dbSDimitry Andric = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 9670b57cec5SDimitry Andric Res = Builder.CreateAnd(Res, TruncMask); 9680b57cec5SDimitry Andric } 969*5ffd83dbSDimitry Andric } 9700b57cec5SDimitry Andric 9710b57cec5SDimitry Andric return Res; 9720b57cec5SDimitry Andric } 9730b57cec5SDimitry Andric 974*5ffd83dbSDimitry Andric // Try to recognize special cases the DAG will emit special, better expansions 975*5ffd83dbSDimitry Andric // than the general expansion we do here. 976*5ffd83dbSDimitry Andric 977*5ffd83dbSDimitry Andric // TODO: It would be better to just directly handle those optimizations here. 978*5ffd83dbSDimitry Andric bool AMDGPUCodeGenPrepare::divHasSpecialOptimization( 979*5ffd83dbSDimitry Andric BinaryOperator &I, Value *Num, Value *Den) const { 980*5ffd83dbSDimitry Andric if (Constant *C = dyn_cast<Constant>(Den)) { 981*5ffd83dbSDimitry Andric // Arbitrary constants get a better expansion as long as a wider mulhi is 982*5ffd83dbSDimitry Andric // legal. 983*5ffd83dbSDimitry Andric if (C->getType()->getScalarSizeInBits() <= 32) 984*5ffd83dbSDimitry Andric return true; 985*5ffd83dbSDimitry Andric 986*5ffd83dbSDimitry Andric // TODO: Sdiv check for not exact for some reason. 987*5ffd83dbSDimitry Andric 988*5ffd83dbSDimitry Andric // If there's no wider mulhi, there's only a better expansion for powers of 989*5ffd83dbSDimitry Andric // two. 990*5ffd83dbSDimitry Andric // TODO: Should really know for each vector element. 991*5ffd83dbSDimitry Andric if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 992*5ffd83dbSDimitry Andric return true; 993*5ffd83dbSDimitry Andric 994*5ffd83dbSDimitry Andric return false; 995*5ffd83dbSDimitry Andric } 996*5ffd83dbSDimitry Andric 997*5ffd83dbSDimitry Andric if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 998*5ffd83dbSDimitry Andric // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 999*5ffd83dbSDimitry Andric if (BinOpDen->getOpcode() == Instruction::Shl && 1000*5ffd83dbSDimitry Andric isa<Constant>(BinOpDen->getOperand(0)) && 1001*5ffd83dbSDimitry Andric isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 1002*5ffd83dbSDimitry Andric 0, AC, &I, DT)) { 1003*5ffd83dbSDimitry Andric return true; 1004*5ffd83dbSDimitry Andric } 1005*5ffd83dbSDimitry Andric } 1006*5ffd83dbSDimitry Andric 1007*5ffd83dbSDimitry Andric return false; 1008*5ffd83dbSDimitry Andric } 1009*5ffd83dbSDimitry Andric 1010*5ffd83dbSDimitry Andric static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 1011*5ffd83dbSDimitry Andric // Check whether the sign can be determined statically. 1012*5ffd83dbSDimitry Andric KnownBits Known = computeKnownBits(V, *DL); 1013*5ffd83dbSDimitry Andric if (Known.isNegative()) 1014*5ffd83dbSDimitry Andric return Constant::getAllOnesValue(V->getType()); 1015*5ffd83dbSDimitry Andric if (Known.isNonNegative()) 1016*5ffd83dbSDimitry Andric return Constant::getNullValue(V->getType()); 1017*5ffd83dbSDimitry Andric return Builder.CreateAShr(V, Builder.getInt32(31)); 1018*5ffd83dbSDimitry Andric } 1019*5ffd83dbSDimitry Andric 10200b57cec5SDimitry Andric Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder, 1021*5ffd83dbSDimitry Andric BinaryOperator &I, Value *X, 1022*5ffd83dbSDimitry Andric Value *Y) const { 10230b57cec5SDimitry Andric Instruction::BinaryOps Opc = I.getOpcode(); 10240b57cec5SDimitry Andric assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 10250b57cec5SDimitry Andric Opc == Instruction::SRem || Opc == Instruction::SDiv); 10260b57cec5SDimitry Andric 10270b57cec5SDimitry Andric FastMathFlags FMF; 10280b57cec5SDimitry Andric FMF.setFast(); 10290b57cec5SDimitry Andric Builder.setFastMathFlags(FMF); 10300b57cec5SDimitry Andric 1031*5ffd83dbSDimitry Andric if (divHasSpecialOptimization(I, X, Y)) 1032*5ffd83dbSDimitry Andric return nullptr; // Keep it for later optimization. 10330b57cec5SDimitry Andric 10340b57cec5SDimitry Andric bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 10350b57cec5SDimitry Andric bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 10360b57cec5SDimitry Andric 1037*5ffd83dbSDimitry Andric Type *Ty = X->getType(); 10380b57cec5SDimitry Andric Type *I32Ty = Builder.getInt32Ty(); 10390b57cec5SDimitry Andric Type *F32Ty = Builder.getFloatTy(); 10400b57cec5SDimitry Andric 10410b57cec5SDimitry Andric if (Ty->getScalarSizeInBits() < 32) { 10420b57cec5SDimitry Andric if (IsSigned) { 1043*5ffd83dbSDimitry Andric X = Builder.CreateSExt(X, I32Ty); 1044*5ffd83dbSDimitry Andric Y = Builder.CreateSExt(Y, I32Ty); 10450b57cec5SDimitry Andric } else { 1046*5ffd83dbSDimitry Andric X = Builder.CreateZExt(X, I32Ty); 1047*5ffd83dbSDimitry Andric Y = Builder.CreateZExt(Y, I32Ty); 10480b57cec5SDimitry Andric } 10490b57cec5SDimitry Andric } 10500b57cec5SDimitry Andric 1051*5ffd83dbSDimitry Andric if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 1052*5ffd83dbSDimitry Andric return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 1053*5ffd83dbSDimitry Andric Builder.CreateZExtOrTrunc(Res, Ty); 10540b57cec5SDimitry Andric } 10550b57cec5SDimitry Andric 10560b57cec5SDimitry Andric ConstantInt *Zero = Builder.getInt32(0); 10570b57cec5SDimitry Andric ConstantInt *One = Builder.getInt32(1); 10580b57cec5SDimitry Andric 10590b57cec5SDimitry Andric Value *Sign = nullptr; 10600b57cec5SDimitry Andric if (IsSigned) { 1061*5ffd83dbSDimitry Andric Value *SignX = getSign32(X, Builder, DL); 1062*5ffd83dbSDimitry Andric Value *SignY = getSign32(Y, Builder, DL); 10630b57cec5SDimitry Andric // Remainder sign is the same as LHS 1064*5ffd83dbSDimitry Andric Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 10650b57cec5SDimitry Andric 1066*5ffd83dbSDimitry Andric X = Builder.CreateAdd(X, SignX); 1067*5ffd83dbSDimitry Andric Y = Builder.CreateAdd(Y, SignY); 10680b57cec5SDimitry Andric 1069*5ffd83dbSDimitry Andric X = Builder.CreateXor(X, SignX); 1070*5ffd83dbSDimitry Andric Y = Builder.CreateXor(Y, SignY); 10710b57cec5SDimitry Andric } 10720b57cec5SDimitry Andric 1073*5ffd83dbSDimitry Andric // The algorithm here is based on ideas from "Software Integer Division", Tom 1074*5ffd83dbSDimitry Andric // Rodeheffer, August 2008. 1075*5ffd83dbSDimitry Andric // 1076*5ffd83dbSDimitry Andric // unsigned udiv(unsigned x, unsigned y) { 1077*5ffd83dbSDimitry Andric // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 1078*5ffd83dbSDimitry Andric // // that this is a lower bound on inv(y), even if some of the calculations 1079*5ffd83dbSDimitry Andric // // round up. 1080*5ffd83dbSDimitry Andric // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 1081*5ffd83dbSDimitry Andric // 1082*5ffd83dbSDimitry Andric // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 1083*5ffd83dbSDimitry Andric // // Empirically this is guaranteed to give a "two-y" lower bound on 1084*5ffd83dbSDimitry Andric // // inv(y). 1085*5ffd83dbSDimitry Andric // z += umulh(z, -y * z); 1086*5ffd83dbSDimitry Andric // 1087*5ffd83dbSDimitry Andric // // Quotient/remainder estimate. 1088*5ffd83dbSDimitry Andric // unsigned q = umulh(x, z); 1089*5ffd83dbSDimitry Andric // unsigned r = x - q * y; 1090*5ffd83dbSDimitry Andric // 1091*5ffd83dbSDimitry Andric // // Two rounds of quotient/remainder refinement. 1092*5ffd83dbSDimitry Andric // if (r >= y) { 1093*5ffd83dbSDimitry Andric // ++q; 1094*5ffd83dbSDimitry Andric // r -= y; 1095*5ffd83dbSDimitry Andric // } 1096*5ffd83dbSDimitry Andric // if (r >= y) { 1097*5ffd83dbSDimitry Andric // ++q; 1098*5ffd83dbSDimitry Andric // r -= y; 1099*5ffd83dbSDimitry Andric // } 1100*5ffd83dbSDimitry Andric // 1101*5ffd83dbSDimitry Andric // return q; 1102*5ffd83dbSDimitry Andric // } 11030b57cec5SDimitry Andric 1104*5ffd83dbSDimitry Andric // Initial estimate of inv(y). 1105*5ffd83dbSDimitry Andric Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 1106*5ffd83dbSDimitry Andric Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 1107*5ffd83dbSDimitry Andric Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 1108*5ffd83dbSDimitry Andric Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE)); 1109*5ffd83dbSDimitry Andric Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 1110*5ffd83dbSDimitry Andric Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 11110b57cec5SDimitry Andric 1112*5ffd83dbSDimitry Andric // One round of UNR. 1113*5ffd83dbSDimitry Andric Value *NegY = Builder.CreateSub(Zero, Y); 1114*5ffd83dbSDimitry Andric Value *NegYZ = Builder.CreateMul(NegY, Z); 1115*5ffd83dbSDimitry Andric Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 11160b57cec5SDimitry Andric 1117*5ffd83dbSDimitry Andric // Quotient/remainder estimate. 1118*5ffd83dbSDimitry Andric Value *Q = getMulHu(Builder, X, Z); 1119*5ffd83dbSDimitry Andric Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 11200b57cec5SDimitry Andric 1121*5ffd83dbSDimitry Andric // First quotient/remainder refinement. 1122*5ffd83dbSDimitry Andric Value *Cond = Builder.CreateICmpUGE(R, Y); 1123*5ffd83dbSDimitry Andric if (IsDiv) 1124*5ffd83dbSDimitry Andric Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1125*5ffd83dbSDimitry Andric R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 11260b57cec5SDimitry Andric 1127*5ffd83dbSDimitry Andric // Second quotient/remainder refinement. 1128*5ffd83dbSDimitry Andric Cond = Builder.CreateICmpUGE(R, Y); 11290b57cec5SDimitry Andric Value *Res; 1130*5ffd83dbSDimitry Andric if (IsDiv) 1131*5ffd83dbSDimitry Andric Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 1132*5ffd83dbSDimitry Andric else 1133*5ffd83dbSDimitry Andric Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 11340b57cec5SDimitry Andric 11350b57cec5SDimitry Andric if (IsSigned) { 11360b57cec5SDimitry Andric Res = Builder.CreateXor(Res, Sign); 11370b57cec5SDimitry Andric Res = Builder.CreateSub(Res, Sign); 11380b57cec5SDimitry Andric } 11390b57cec5SDimitry Andric 11400b57cec5SDimitry Andric Res = Builder.CreateTrunc(Res, Ty); 11410b57cec5SDimitry Andric 11420b57cec5SDimitry Andric return Res; 11430b57cec5SDimitry Andric } 11440b57cec5SDimitry Andric 1145*5ffd83dbSDimitry Andric Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder, 1146*5ffd83dbSDimitry Andric BinaryOperator &I, 1147*5ffd83dbSDimitry Andric Value *Num, Value *Den) const { 1148*5ffd83dbSDimitry Andric if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 1149*5ffd83dbSDimitry Andric return nullptr; // Keep it for later optimization. 1150*5ffd83dbSDimitry Andric 1151*5ffd83dbSDimitry Andric Instruction::BinaryOps Opc = I.getOpcode(); 1152*5ffd83dbSDimitry Andric 1153*5ffd83dbSDimitry Andric bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 1154*5ffd83dbSDimitry Andric bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 1155*5ffd83dbSDimitry Andric 1156*5ffd83dbSDimitry Andric int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 1157*5ffd83dbSDimitry Andric if (NumDivBits == -1) 1158*5ffd83dbSDimitry Andric return nullptr; 1159*5ffd83dbSDimitry Andric 1160*5ffd83dbSDimitry Andric Value *Narrowed = nullptr; 1161*5ffd83dbSDimitry Andric if (NumDivBits <= 24) { 1162*5ffd83dbSDimitry Andric Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 1163*5ffd83dbSDimitry Andric IsDiv, IsSigned); 1164*5ffd83dbSDimitry Andric } else if (NumDivBits <= 32) { 1165*5ffd83dbSDimitry Andric Narrowed = expandDivRem32(Builder, I, Num, Den); 1166*5ffd83dbSDimitry Andric } 1167*5ffd83dbSDimitry Andric 1168*5ffd83dbSDimitry Andric if (Narrowed) { 1169*5ffd83dbSDimitry Andric return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 1170*5ffd83dbSDimitry Andric Builder.CreateZExt(Narrowed, Num->getType()); 1171*5ffd83dbSDimitry Andric } 1172*5ffd83dbSDimitry Andric 1173*5ffd83dbSDimitry Andric return nullptr; 1174*5ffd83dbSDimitry Andric } 1175*5ffd83dbSDimitry Andric 1176*5ffd83dbSDimitry Andric void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const { 1177*5ffd83dbSDimitry Andric Instruction::BinaryOps Opc = I.getOpcode(); 1178*5ffd83dbSDimitry Andric // Do the general expansion. 1179*5ffd83dbSDimitry Andric if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 1180*5ffd83dbSDimitry Andric expandDivisionUpTo64Bits(&I); 1181*5ffd83dbSDimitry Andric return; 1182*5ffd83dbSDimitry Andric } 1183*5ffd83dbSDimitry Andric 1184*5ffd83dbSDimitry Andric if (Opc == Instruction::URem || Opc == Instruction::SRem) { 1185*5ffd83dbSDimitry Andric expandRemainderUpTo64Bits(&I); 1186*5ffd83dbSDimitry Andric return; 1187*5ffd83dbSDimitry Andric } 1188*5ffd83dbSDimitry Andric 1189*5ffd83dbSDimitry Andric llvm_unreachable("not a division"); 1190*5ffd83dbSDimitry Andric } 1191*5ffd83dbSDimitry Andric 11920b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) { 1193*5ffd83dbSDimitry Andric if (foldBinOpIntoSelect(I)) 1194*5ffd83dbSDimitry Andric return true; 1195*5ffd83dbSDimitry Andric 11960b57cec5SDimitry Andric if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 11970b57cec5SDimitry Andric DA->isUniform(&I) && promoteUniformOpToI32(I)) 11980b57cec5SDimitry Andric return true; 11990b57cec5SDimitry Andric 12008bcb0991SDimitry Andric if (UseMul24Intrin && replaceMulWithMul24(I)) 12010b57cec5SDimitry Andric return true; 12020b57cec5SDimitry Andric 12030b57cec5SDimitry Andric bool Changed = false; 12040b57cec5SDimitry Andric Instruction::BinaryOps Opc = I.getOpcode(); 12050b57cec5SDimitry Andric Type *Ty = I.getType(); 12060b57cec5SDimitry Andric Value *NewDiv = nullptr; 1207*5ffd83dbSDimitry Andric unsigned ScalarSize = Ty->getScalarSizeInBits(); 1208*5ffd83dbSDimitry Andric 1209*5ffd83dbSDimitry Andric SmallVector<BinaryOperator *, 8> Div64ToExpand; 1210*5ffd83dbSDimitry Andric 12110b57cec5SDimitry Andric if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 12120b57cec5SDimitry Andric Opc == Instruction::SRem || Opc == Instruction::SDiv) && 1213*5ffd83dbSDimitry Andric ScalarSize <= 64 && 1214*5ffd83dbSDimitry Andric !DisableIDivExpand) { 12150b57cec5SDimitry Andric Value *Num = I.getOperand(0); 12160b57cec5SDimitry Andric Value *Den = I.getOperand(1); 12170b57cec5SDimitry Andric IRBuilder<> Builder(&I); 12180b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(I.getDebugLoc()); 12190b57cec5SDimitry Andric 1220*5ffd83dbSDimitry Andric if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 12210b57cec5SDimitry Andric NewDiv = UndefValue::get(VT); 12220b57cec5SDimitry Andric 12230b57cec5SDimitry Andric for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 12240b57cec5SDimitry Andric Value *NumEltN = Builder.CreateExtractElement(Num, N); 12250b57cec5SDimitry Andric Value *DenEltN = Builder.CreateExtractElement(Den, N); 1226*5ffd83dbSDimitry Andric 1227*5ffd83dbSDimitry Andric Value *NewElt; 1228*5ffd83dbSDimitry Andric if (ScalarSize <= 32) { 1229*5ffd83dbSDimitry Andric NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 12300b57cec5SDimitry Andric if (!NewElt) 12310b57cec5SDimitry Andric NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1232*5ffd83dbSDimitry Andric } else { 1233*5ffd83dbSDimitry Andric // See if this 64-bit division can be shrunk to 32/24-bits before 1234*5ffd83dbSDimitry Andric // producing the general expansion. 1235*5ffd83dbSDimitry Andric NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 1236*5ffd83dbSDimitry Andric if (!NewElt) { 1237*5ffd83dbSDimitry Andric // The general 64-bit expansion introduces control flow and doesn't 1238*5ffd83dbSDimitry Andric // return the new value. Just insert a scalar copy and defer 1239*5ffd83dbSDimitry Andric // expanding it. 1240*5ffd83dbSDimitry Andric NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 1241*5ffd83dbSDimitry Andric Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 1242*5ffd83dbSDimitry Andric } 1243*5ffd83dbSDimitry Andric } 1244*5ffd83dbSDimitry Andric 12450b57cec5SDimitry Andric NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 12460b57cec5SDimitry Andric } 12470b57cec5SDimitry Andric } else { 1248*5ffd83dbSDimitry Andric if (ScalarSize <= 32) 12490b57cec5SDimitry Andric NewDiv = expandDivRem32(Builder, I, Num, Den); 1250*5ffd83dbSDimitry Andric else { 1251*5ffd83dbSDimitry Andric NewDiv = shrinkDivRem64(Builder, I, Num, Den); 1252*5ffd83dbSDimitry Andric if (!NewDiv) 1253*5ffd83dbSDimitry Andric Div64ToExpand.push_back(&I); 1254*5ffd83dbSDimitry Andric } 12550b57cec5SDimitry Andric } 12560b57cec5SDimitry Andric 12570b57cec5SDimitry Andric if (NewDiv) { 12580b57cec5SDimitry Andric I.replaceAllUsesWith(NewDiv); 12590b57cec5SDimitry Andric I.eraseFromParent(); 12600b57cec5SDimitry Andric Changed = true; 12610b57cec5SDimitry Andric } 12620b57cec5SDimitry Andric } 12630b57cec5SDimitry Andric 1264*5ffd83dbSDimitry Andric if (ExpandDiv64InIR) { 1265*5ffd83dbSDimitry Andric // TODO: We get much worse code in specially handled constant cases. 1266*5ffd83dbSDimitry Andric for (BinaryOperator *Div : Div64ToExpand) { 1267*5ffd83dbSDimitry Andric expandDivRem64(*Div); 1268*5ffd83dbSDimitry Andric Changed = true; 1269*5ffd83dbSDimitry Andric } 1270*5ffd83dbSDimitry Andric } 1271*5ffd83dbSDimitry Andric 12720b57cec5SDimitry Andric return Changed; 12730b57cec5SDimitry Andric } 12740b57cec5SDimitry Andric 12750b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) { 12760b57cec5SDimitry Andric if (!WidenLoads) 12770b57cec5SDimitry Andric return false; 12780b57cec5SDimitry Andric 12790b57cec5SDimitry Andric if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 12800b57cec5SDimitry Andric I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 12810b57cec5SDimitry Andric canWidenScalarExtLoad(I)) { 12820b57cec5SDimitry Andric IRBuilder<> Builder(&I); 12830b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(I.getDebugLoc()); 12840b57cec5SDimitry Andric 12850b57cec5SDimitry Andric Type *I32Ty = Builder.getInt32Ty(); 12860b57cec5SDimitry Andric Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace()); 12870b57cec5SDimitry Andric Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT); 12880b57cec5SDimitry Andric LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast); 12890b57cec5SDimitry Andric WidenLoad->copyMetadata(I); 12900b57cec5SDimitry Andric 12910b57cec5SDimitry Andric // If we have range metadata, we need to convert the type, and not make 12920b57cec5SDimitry Andric // assumptions about the high bits. 12930b57cec5SDimitry Andric if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 12940b57cec5SDimitry Andric ConstantInt *Lower = 12950b57cec5SDimitry Andric mdconst::extract<ConstantInt>(Range->getOperand(0)); 12960b57cec5SDimitry Andric 12970b57cec5SDimitry Andric if (Lower->getValue().isNullValue()) { 12980b57cec5SDimitry Andric WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 12990b57cec5SDimitry Andric } else { 13000b57cec5SDimitry Andric Metadata *LowAndHigh[] = { 13010b57cec5SDimitry Andric ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 13020b57cec5SDimitry Andric // Don't make assumptions about the high bits. 13030b57cec5SDimitry Andric ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 13040b57cec5SDimitry Andric }; 13050b57cec5SDimitry Andric 13060b57cec5SDimitry Andric WidenLoad->setMetadata(LLVMContext::MD_range, 13070b57cec5SDimitry Andric MDNode::get(Mod->getContext(), LowAndHigh)); 13080b57cec5SDimitry Andric } 13090b57cec5SDimitry Andric } 13100b57cec5SDimitry Andric 13110b57cec5SDimitry Andric int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 13120b57cec5SDimitry Andric Type *IntNTy = Builder.getIntNTy(TySize); 13130b57cec5SDimitry Andric Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 13140b57cec5SDimitry Andric Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 13150b57cec5SDimitry Andric I.replaceAllUsesWith(ValOrig); 13160b57cec5SDimitry Andric I.eraseFromParent(); 13170b57cec5SDimitry Andric return true; 13180b57cec5SDimitry Andric } 13190b57cec5SDimitry Andric 13200b57cec5SDimitry Andric return false; 13210b57cec5SDimitry Andric } 13220b57cec5SDimitry Andric 13230b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) { 13240b57cec5SDimitry Andric bool Changed = false; 13250b57cec5SDimitry Andric 13260b57cec5SDimitry Andric if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 13270b57cec5SDimitry Andric DA->isUniform(&I)) 13280b57cec5SDimitry Andric Changed |= promoteUniformOpToI32(I); 13290b57cec5SDimitry Andric 13300b57cec5SDimitry Andric return Changed; 13310b57cec5SDimitry Andric } 13320b57cec5SDimitry Andric 13330b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) { 13340b57cec5SDimitry Andric bool Changed = false; 13350b57cec5SDimitry Andric 13360b57cec5SDimitry Andric if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 13370b57cec5SDimitry Andric DA->isUniform(&I)) 13380b57cec5SDimitry Andric Changed |= promoteUniformOpToI32(I); 13390b57cec5SDimitry Andric 13400b57cec5SDimitry Andric return Changed; 13410b57cec5SDimitry Andric } 13420b57cec5SDimitry Andric 13430b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { 13440b57cec5SDimitry Andric switch (I.getIntrinsicID()) { 13450b57cec5SDimitry Andric case Intrinsic::bitreverse: 13460b57cec5SDimitry Andric return visitBitreverseIntrinsicInst(I); 13470b57cec5SDimitry Andric default: 13480b57cec5SDimitry Andric return false; 13490b57cec5SDimitry Andric } 13500b57cec5SDimitry Andric } 13510b57cec5SDimitry Andric 13520b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 13530b57cec5SDimitry Andric bool Changed = false; 13540b57cec5SDimitry Andric 13550b57cec5SDimitry Andric if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 13560b57cec5SDimitry Andric DA->isUniform(&I)) 13570b57cec5SDimitry Andric Changed |= promoteUniformBitreverseToI32(I); 13580b57cec5SDimitry Andric 13590b57cec5SDimitry Andric return Changed; 13600b57cec5SDimitry Andric } 13610b57cec5SDimitry Andric 13620b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 13630b57cec5SDimitry Andric Mod = &M; 13640b57cec5SDimitry Andric DL = &Mod->getDataLayout(); 13650b57cec5SDimitry Andric return false; 13660b57cec5SDimitry Andric } 13670b57cec5SDimitry Andric 13680b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 13690b57cec5SDimitry Andric if (skipFunction(F)) 13700b57cec5SDimitry Andric return false; 13710b57cec5SDimitry Andric 13720b57cec5SDimitry Andric auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 13730b57cec5SDimitry Andric if (!TPC) 13740b57cec5SDimitry Andric return false; 13750b57cec5SDimitry Andric 13760b57cec5SDimitry Andric const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 13770b57cec5SDimitry Andric ST = &TM.getSubtarget<GCNSubtarget>(F); 13780b57cec5SDimitry Andric AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 13790b57cec5SDimitry Andric DA = &getAnalysis<LegacyDivergenceAnalysis>(); 1380*5ffd83dbSDimitry Andric 1381*5ffd83dbSDimitry Andric auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1382*5ffd83dbSDimitry Andric DT = DTWP ? &DTWP->getDomTree() : nullptr; 1383*5ffd83dbSDimitry Andric 13840b57cec5SDimitry Andric HasUnsafeFPMath = hasUnsafeFPMath(F); 1385*5ffd83dbSDimitry Andric 1386*5ffd83dbSDimitry Andric AMDGPU::SIModeRegisterDefaults Mode(F); 1387*5ffd83dbSDimitry Andric HasFP32Denormals = Mode.allFP32Denormals(); 13880b57cec5SDimitry Andric 13890b57cec5SDimitry Andric bool MadeChange = false; 13900b57cec5SDimitry Andric 1391*5ffd83dbSDimitry Andric Function::iterator NextBB; 1392*5ffd83dbSDimitry Andric for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 1393*5ffd83dbSDimitry Andric BasicBlock *BB = &*FI; 1394*5ffd83dbSDimitry Andric NextBB = std::next(FI); 1395*5ffd83dbSDimitry Andric 13960b57cec5SDimitry Andric BasicBlock::iterator Next; 1397*5ffd83dbSDimitry Andric for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) { 13980b57cec5SDimitry Andric Next = std::next(I); 1399*5ffd83dbSDimitry Andric 14000b57cec5SDimitry Andric MadeChange |= visit(*I); 1401*5ffd83dbSDimitry Andric 1402*5ffd83dbSDimitry Andric if (Next != E) { // Control flow changed 1403*5ffd83dbSDimitry Andric BasicBlock *NextInstBB = Next->getParent(); 1404*5ffd83dbSDimitry Andric if (NextInstBB != BB) { 1405*5ffd83dbSDimitry Andric BB = NextInstBB; 1406*5ffd83dbSDimitry Andric E = BB->end(); 1407*5ffd83dbSDimitry Andric FE = F.end(); 1408*5ffd83dbSDimitry Andric } 1409*5ffd83dbSDimitry Andric } 14100b57cec5SDimitry Andric } 14110b57cec5SDimitry Andric } 14120b57cec5SDimitry Andric 14130b57cec5SDimitry Andric return MadeChange; 14140b57cec5SDimitry Andric } 14150b57cec5SDimitry Andric 14160b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 14170b57cec5SDimitry Andric "AMDGPU IR optimizations", false, false) 14180b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 14190b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 14200b57cec5SDimitry Andric INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 14210b57cec5SDimitry Andric false, false) 14220b57cec5SDimitry Andric 14230b57cec5SDimitry Andric char AMDGPUCodeGenPrepare::ID = 0; 14240b57cec5SDimitry Andric 14250b57cec5SDimitry Andric FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 14260b57cec5SDimitry Andric return new AMDGPUCodeGenPrepare(); 14270b57cec5SDimitry Andric } 1428