10b57cec5SDimitry Andric //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric /// \file 100b57cec5SDimitry Andric /// This pass does misc. AMDGPU optimizations on IR before instruction 110b57cec5SDimitry Andric /// selection. 120b57cec5SDimitry Andric // 130b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 140b57cec5SDimitry Andric 150b57cec5SDimitry Andric #include "AMDGPU.h" 160b57cec5SDimitry Andric #include "AMDGPUTargetMachine.h" 1706c3fb27SDimitry Andric #include "SIModeRegisterDefaults.h" 180b57cec5SDimitry Andric #include "llvm/Analysis/AssumptionCache.h" 195ffd83dbSDimitry Andric #include "llvm/Analysis/ConstantFolding.h" 2006c3fb27SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h" 2106c3fb27SDimitry Andric #include "llvm/Analysis/UniformityAnalysis.h" 220b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 230b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h" 245ffd83dbSDimitry Andric #include "llvm/IR/Dominators.h" 2506c3fb27SDimitry Andric #include "llvm/IR/IRBuilder.h" 260b57cec5SDimitry Andric #include "llvm/IR/InstVisitor.h" 27e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h" 2806c3fb27SDimitry Andric #include "llvm/IR/PatternMatch.h" 29480093f4SDimitry Andric #include "llvm/InitializePasses.h" 300b57cec5SDimitry Andric #include "llvm/Pass.h" 31e8d8bef9SDimitry Andric #include "llvm/Support/KnownBits.h" 325ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/IntegerDivision.h" 3306c3fb27SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 340b57cec5SDimitry Andric 350b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-codegenprepare" 360b57cec5SDimitry Andric 370b57cec5SDimitry Andric using namespace llvm; 3806c3fb27SDimitry Andric using namespace llvm::PatternMatch; 390b57cec5SDimitry Andric 400b57cec5SDimitry Andric namespace { 410b57cec5SDimitry Andric 420b57cec5SDimitry Andric static cl::opt<bool> WidenLoads( 430b57cec5SDimitry Andric "amdgpu-codegenprepare-widen-constant-loads", 440b57cec5SDimitry Andric cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"), 450b57cec5SDimitry Andric cl::ReallyHidden, 465ffd83dbSDimitry Andric cl::init(false)); 470b57cec5SDimitry Andric 48e8d8bef9SDimitry Andric static cl::opt<bool> Widen16BitOps( 49e8d8bef9SDimitry Andric "amdgpu-codegenprepare-widen-16-bit-ops", 50e8d8bef9SDimitry Andric cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"), 51e8d8bef9SDimitry Andric cl::ReallyHidden, 52e8d8bef9SDimitry Andric cl::init(true)); 53e8d8bef9SDimitry Andric 5406c3fb27SDimitry Andric static cl::opt<bool> 55*5f757f3fSDimitry Andric BreakLargePHIs("amdgpu-codegenprepare-break-large-phis", 5606c3fb27SDimitry Andric cl::desc("Break large PHI nodes for DAGISel"), 5706c3fb27SDimitry Andric cl::ReallyHidden, cl::init(true)); 5806c3fb27SDimitry Andric 5906c3fb27SDimitry Andric static cl::opt<bool> 60*5f757f3fSDimitry Andric ForceBreakLargePHIs("amdgpu-codegenprepare-force-break-large-phis", 6106c3fb27SDimitry Andric cl::desc("For testing purposes, always break large " 6206c3fb27SDimitry Andric "PHIs even if it isn't profitable."), 6306c3fb27SDimitry Andric cl::ReallyHidden, cl::init(false)); 6406c3fb27SDimitry Andric 65*5f757f3fSDimitry Andric static cl::opt<unsigned> BreakLargePHIsThreshold( 6606c3fb27SDimitry Andric "amdgpu-codegenprepare-break-large-phis-threshold", 6706c3fb27SDimitry Andric cl::desc("Minimum type size in bits for breaking large PHI nodes"), 6806c3fb27SDimitry Andric cl::ReallyHidden, cl::init(32)); 6906c3fb27SDimitry Andric 708bcb0991SDimitry Andric static cl::opt<bool> UseMul24Intrin( 718bcb0991SDimitry Andric "amdgpu-codegenprepare-mul24", 728bcb0991SDimitry Andric cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"), 738bcb0991SDimitry Andric cl::ReallyHidden, 748bcb0991SDimitry Andric cl::init(true)); 758bcb0991SDimitry Andric 765ffd83dbSDimitry Andric // Legalize 64-bit division by using the generic IR expansion. 775ffd83dbSDimitry Andric static cl::opt<bool> ExpandDiv64InIR( 785ffd83dbSDimitry Andric "amdgpu-codegenprepare-expand-div64", 795ffd83dbSDimitry Andric cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"), 805ffd83dbSDimitry Andric cl::ReallyHidden, 815ffd83dbSDimitry Andric cl::init(false)); 825ffd83dbSDimitry Andric 835ffd83dbSDimitry Andric // Leave all division operations as they are. This supersedes ExpandDiv64InIR 845ffd83dbSDimitry Andric // and is used for testing the legalizer. 855ffd83dbSDimitry Andric static cl::opt<bool> DisableIDivExpand( 865ffd83dbSDimitry Andric "amdgpu-codegenprepare-disable-idiv-expansion", 875ffd83dbSDimitry Andric cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"), 885ffd83dbSDimitry Andric cl::ReallyHidden, 895ffd83dbSDimitry Andric cl::init(false)); 905ffd83dbSDimitry Andric 9106c3fb27SDimitry Andric // Disable processing of fdiv so we can better test the backend implementations. 9206c3fb27SDimitry Andric static cl::opt<bool> DisableFDivExpand( 9306c3fb27SDimitry Andric "amdgpu-codegenprepare-disable-fdiv-expansion", 9406c3fb27SDimitry Andric cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"), 9506c3fb27SDimitry Andric cl::ReallyHidden, 9606c3fb27SDimitry Andric cl::init(false)); 9706c3fb27SDimitry Andric 9806c3fb27SDimitry Andric class AMDGPUCodeGenPrepareImpl 9906c3fb27SDimitry Andric : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> { 10006c3fb27SDimitry Andric public: 1010b57cec5SDimitry Andric const GCNSubtarget *ST = nullptr; 10206c3fb27SDimitry Andric const TargetLibraryInfo *TLInfo = nullptr; 1030b57cec5SDimitry Andric AssumptionCache *AC = nullptr; 1045ffd83dbSDimitry Andric DominatorTree *DT = nullptr; 10506c3fb27SDimitry Andric UniformityInfo *UA = nullptr; 1060b57cec5SDimitry Andric Module *Mod = nullptr; 1070b57cec5SDimitry Andric const DataLayout *DL = nullptr; 1080b57cec5SDimitry Andric bool HasUnsafeFPMath = false; 10906c3fb27SDimitry Andric bool HasFP32DenormalFlush = false; 11006c3fb27SDimitry Andric bool FlowChanged = false; 111*5f757f3fSDimitry Andric mutable Function *SqrtF32 = nullptr; 112*5f757f3fSDimitry Andric mutable Function *LdexpF32 = nullptr; 11306c3fb27SDimitry Andric 11406c3fb27SDimitry Andric DenseMap<const PHINode *, bool> BreakPhiNodesCache; 11506c3fb27SDimitry Andric 116*5f757f3fSDimitry Andric Function *getSqrtF32() const { 117*5f757f3fSDimitry Andric if (SqrtF32) 118*5f757f3fSDimitry Andric return SqrtF32; 119*5f757f3fSDimitry Andric 120*5f757f3fSDimitry Andric LLVMContext &Ctx = Mod->getContext(); 121*5f757f3fSDimitry Andric SqrtF32 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_sqrt, 122*5f757f3fSDimitry Andric {Type::getFloatTy(Ctx)}); 123*5f757f3fSDimitry Andric return SqrtF32; 124*5f757f3fSDimitry Andric } 125*5f757f3fSDimitry Andric 126*5f757f3fSDimitry Andric Function *getLdexpF32() const { 127*5f757f3fSDimitry Andric if (LdexpF32) 128*5f757f3fSDimitry Andric return LdexpF32; 129*5f757f3fSDimitry Andric 130*5f757f3fSDimitry Andric LLVMContext &Ctx = Mod->getContext(); 131*5f757f3fSDimitry Andric LdexpF32 = Intrinsic::getDeclaration( 132*5f757f3fSDimitry Andric Mod, Intrinsic::ldexp, {Type::getFloatTy(Ctx), Type::getInt32Ty(Ctx)}); 133*5f757f3fSDimitry Andric return LdexpF32; 134*5f757f3fSDimitry Andric } 135*5f757f3fSDimitry Andric 13606c3fb27SDimitry Andric bool canBreakPHINode(const PHINode &I); 1370b57cec5SDimitry Andric 1380b57cec5SDimitry Andric /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to 1390b57cec5SDimitry Andric /// binary operation \p V. 1400b57cec5SDimitry Andric /// 1410b57cec5SDimitry Andric /// \returns Binary operation \p V. 1420b57cec5SDimitry Andric /// \returns \p T's base element bit width. 1430b57cec5SDimitry Andric unsigned getBaseElementBitWidth(const Type *T) const; 1440b57cec5SDimitry Andric 1450b57cec5SDimitry Andric /// \returns Equivalent 32 bit integer type for given type \p T. For example, 1460b57cec5SDimitry Andric /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32> 1470b57cec5SDimitry Andric /// is returned. 1480b57cec5SDimitry Andric Type *getI32Ty(IRBuilder<> &B, const Type *T) const; 1490b57cec5SDimitry Andric 1500b57cec5SDimitry Andric /// \returns True if binary operation \p I is a signed binary operation, false 1510b57cec5SDimitry Andric /// otherwise. 1520b57cec5SDimitry Andric bool isSigned(const BinaryOperator &I) const; 1530b57cec5SDimitry Andric 1540b57cec5SDimitry Andric /// \returns True if the condition of 'select' operation \p I comes from a 1550b57cec5SDimitry Andric /// signed 'icmp' operation, false otherwise. 1560b57cec5SDimitry Andric bool isSigned(const SelectInst &I) const; 1570b57cec5SDimitry Andric 1580b57cec5SDimitry Andric /// \returns True if type \p T needs to be promoted to 32 bit integer type, 1590b57cec5SDimitry Andric /// false otherwise. 1600b57cec5SDimitry Andric bool needsPromotionToI32(const Type *T) const; 1610b57cec5SDimitry Andric 16206c3fb27SDimitry Andric /// Return true if \p T is a legal scalar floating point type. 16306c3fb27SDimitry Andric bool isLegalFloatingTy(const Type *T) const; 16406c3fb27SDimitry Andric 16506c3fb27SDimitry Andric /// Wrapper to pass all the arguments to computeKnownFPClass 16606c3fb27SDimitry Andric KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested, 16706c3fb27SDimitry Andric const Instruction *CtxI) const { 16806c3fb27SDimitry Andric return llvm::computeKnownFPClass(V, *DL, Interested, 0, TLInfo, AC, CtxI, 16906c3fb27SDimitry Andric DT); 17006c3fb27SDimitry Andric } 17106c3fb27SDimitry Andric 17206c3fb27SDimitry Andric bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const { 17306c3fb27SDimitry Andric return HasFP32DenormalFlush || 17406c3fb27SDimitry Andric computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal(); 17506c3fb27SDimitry Andric } 17606c3fb27SDimitry Andric 1770b57cec5SDimitry Andric /// Promotes uniform binary operation \p I to equivalent 32 bit binary 1780b57cec5SDimitry Andric /// operation. 1790b57cec5SDimitry Andric /// 1800b57cec5SDimitry Andric /// \details \p I's base element bit width must be greater than 1 and less 1810b57cec5SDimitry Andric /// than or equal 16. Promotion is done by sign or zero extending operands to 1820b57cec5SDimitry Andric /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and 1830b57cec5SDimitry Andric /// truncating the result of 32 bit binary operation back to \p I's original 1840b57cec5SDimitry Andric /// type. Division operation is not promoted. 1850b57cec5SDimitry Andric /// 1860b57cec5SDimitry Andric /// \returns True if \p I is promoted to equivalent 32 bit binary operation, 1870b57cec5SDimitry Andric /// false otherwise. 1880b57cec5SDimitry Andric bool promoteUniformOpToI32(BinaryOperator &I) const; 1890b57cec5SDimitry Andric 1900b57cec5SDimitry Andric /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation. 1910b57cec5SDimitry Andric /// 1920b57cec5SDimitry Andric /// \details \p I's base element bit width must be greater than 1 and less 1930b57cec5SDimitry Andric /// than or equal 16. Promotion is done by sign or zero extending operands to 1940b57cec5SDimitry Andric /// 32 bits, and replacing \p I with 32 bit 'icmp' operation. 1950b57cec5SDimitry Andric /// 1960b57cec5SDimitry Andric /// \returns True. 1970b57cec5SDimitry Andric bool promoteUniformOpToI32(ICmpInst &I) const; 1980b57cec5SDimitry Andric 1990b57cec5SDimitry Andric /// Promotes uniform 'select' operation \p I to 32 bit 'select' 2000b57cec5SDimitry Andric /// operation. 2010b57cec5SDimitry Andric /// 2020b57cec5SDimitry Andric /// \details \p I's base element bit width must be greater than 1 and less 2030b57cec5SDimitry Andric /// than or equal 16. Promotion is done by sign or zero extending operands to 2040b57cec5SDimitry Andric /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the 2050b57cec5SDimitry Andric /// result of 32 bit 'select' operation back to \p I's original type. 2060b57cec5SDimitry Andric /// 2070b57cec5SDimitry Andric /// \returns True. 2080b57cec5SDimitry Andric bool promoteUniformOpToI32(SelectInst &I) const; 2090b57cec5SDimitry Andric 2100b57cec5SDimitry Andric /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse' 2110b57cec5SDimitry Andric /// intrinsic. 2120b57cec5SDimitry Andric /// 2130b57cec5SDimitry Andric /// \details \p I's base element bit width must be greater than 1 and less 2140b57cec5SDimitry Andric /// than or equal 16. Promotion is done by zero extending the operand to 32 2150b57cec5SDimitry Andric /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the 2160b57cec5SDimitry Andric /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the 2170b57cec5SDimitry Andric /// shift amount is 32 minus \p I's base element bit width), and truncating 2180b57cec5SDimitry Andric /// the result of the shift operation back to \p I's original type. 2190b57cec5SDimitry Andric /// 2200b57cec5SDimitry Andric /// \returns True. 2210b57cec5SDimitry Andric bool promoteUniformBitreverseToI32(IntrinsicInst &I) const; 2220b57cec5SDimitry Andric 223349cc55cSDimitry Andric /// \returns The minimum number of bits needed to store the value of \Op as an 224349cc55cSDimitry Andric /// unsigned integer. Truncating to this size and then zero-extending to 22504eeddc0SDimitry Andric /// the original will not change the value. 22604eeddc0SDimitry Andric unsigned numBitsUnsigned(Value *Op) const; 227349cc55cSDimitry Andric 228349cc55cSDimitry Andric /// \returns The minimum number of bits needed to store the value of \Op as a 229349cc55cSDimitry Andric /// signed integer. Truncating to this size and then sign-extending to 23004eeddc0SDimitry Andric /// the original size will not change the value. 23104eeddc0SDimitry Andric unsigned numBitsSigned(Value *Op) const; 2320b57cec5SDimitry Andric 2330b57cec5SDimitry Andric /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24. 2340b57cec5SDimitry Andric /// SelectionDAG has an issue where an and asserting the bits are known 2350b57cec5SDimitry Andric bool replaceMulWithMul24(BinaryOperator &I) const; 2360b57cec5SDimitry Andric 2375ffd83dbSDimitry Andric /// Perform same function as equivalently named function in DAGCombiner. Since 2385ffd83dbSDimitry Andric /// we expand some divisions here, we need to perform this before obscuring. 2395ffd83dbSDimitry Andric bool foldBinOpIntoSelect(BinaryOperator &I) const; 2405ffd83dbSDimitry Andric 2415ffd83dbSDimitry Andric bool divHasSpecialOptimization(BinaryOperator &I, 2425ffd83dbSDimitry Andric Value *Num, Value *Den) const; 2435ffd83dbSDimitry Andric int getDivNumBits(BinaryOperator &I, 2445ffd83dbSDimitry Andric Value *Num, Value *Den, 2455ffd83dbSDimitry Andric unsigned AtLeast, bool Signed) const; 2465ffd83dbSDimitry Andric 2470b57cec5SDimitry Andric /// Expands 24 bit div or rem. 2480b57cec5SDimitry Andric Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I, 2490b57cec5SDimitry Andric Value *Num, Value *Den, 2500b57cec5SDimitry Andric bool IsDiv, bool IsSigned) const; 2510b57cec5SDimitry Andric 2525ffd83dbSDimitry Andric Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I, 2535ffd83dbSDimitry Andric Value *Num, Value *Den, unsigned NumBits, 2545ffd83dbSDimitry Andric bool IsDiv, bool IsSigned) const; 2555ffd83dbSDimitry Andric 2560b57cec5SDimitry Andric /// Expands 32 bit div or rem. 2570b57cec5SDimitry Andric Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I, 2580b57cec5SDimitry Andric Value *Num, Value *Den) const; 2590b57cec5SDimitry Andric 2605ffd83dbSDimitry Andric Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I, 2615ffd83dbSDimitry Andric Value *Num, Value *Den) const; 2625ffd83dbSDimitry Andric void expandDivRem64(BinaryOperator &I) const; 2635ffd83dbSDimitry Andric 2640b57cec5SDimitry Andric /// Widen a scalar load. 2650b57cec5SDimitry Andric /// 2660b57cec5SDimitry Andric /// \details \p Widen scalar load for uniform, small type loads from constant 2670b57cec5SDimitry Andric // memory / to a full 32-bits and then truncate the input to allow a scalar 2680b57cec5SDimitry Andric // load instead of a vector load. 2690b57cec5SDimitry Andric // 2700b57cec5SDimitry Andric /// \returns True. 2710b57cec5SDimitry Andric 2720b57cec5SDimitry Andric bool canWidenScalarExtLoad(LoadInst &I) const; 2730b57cec5SDimitry Andric 27406c3fb27SDimitry Andric Value *matchFractPat(IntrinsicInst &I); 27506c3fb27SDimitry Andric Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg); 27606c3fb27SDimitry Andric 27706c3fb27SDimitry Andric bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF, 27806c3fb27SDimitry Andric FastMathFlags SqrtFMF) const; 27906c3fb27SDimitry Andric 28006c3fb27SDimitry Andric Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den, 28106c3fb27SDimitry Andric FastMathFlags DivFMF, FastMathFlags SqrtFMF, 28206c3fb27SDimitry Andric const Instruction *CtxI) const; 28306c3fb27SDimitry Andric 28406c3fb27SDimitry Andric Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den, 28506c3fb27SDimitry Andric FastMathFlags FMF, const Instruction *CtxI) const; 28606c3fb27SDimitry Andric Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den, 28706c3fb27SDimitry Andric float ReqdAccuracy) const; 28806c3fb27SDimitry Andric 28906c3fb27SDimitry Andric Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den, 29006c3fb27SDimitry Andric FastMathFlags DivFMF, FastMathFlags SqrtFMF, 29106c3fb27SDimitry Andric Value *RsqOp, const Instruction *FDiv, 29206c3fb27SDimitry Andric float ReqdAccuracy) const; 29306c3fb27SDimitry Andric 29406c3fb27SDimitry Andric std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder, 29506c3fb27SDimitry Andric Value *Src) const; 29606c3fb27SDimitry Andric 29706c3fb27SDimitry Andric Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src, 29806c3fb27SDimitry Andric bool IsNegative) const; 29906c3fb27SDimitry Andric Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS, 30006c3fb27SDimitry Andric FastMathFlags FMF) const; 301*5f757f3fSDimitry Andric Value *emitSqrtIEEE2ULP(IRBuilder<> &Builder, Value *Src, 302*5f757f3fSDimitry Andric FastMathFlags FMF) const; 30306c3fb27SDimitry Andric 3040b57cec5SDimitry Andric public: 3050b57cec5SDimitry Andric bool visitFDiv(BinaryOperator &I); 3060b57cec5SDimitry Andric 3070b57cec5SDimitry Andric bool visitInstruction(Instruction &I) { return false; } 3080b57cec5SDimitry Andric bool visitBinaryOperator(BinaryOperator &I); 3090b57cec5SDimitry Andric bool visitLoadInst(LoadInst &I); 3100b57cec5SDimitry Andric bool visitICmpInst(ICmpInst &I); 3110b57cec5SDimitry Andric bool visitSelectInst(SelectInst &I); 31206c3fb27SDimitry Andric bool visitPHINode(PHINode &I); 3130b57cec5SDimitry Andric 3140b57cec5SDimitry Andric bool visitIntrinsicInst(IntrinsicInst &I); 3150b57cec5SDimitry Andric bool visitBitreverseIntrinsicInst(IntrinsicInst &I); 31606c3fb27SDimitry Andric bool visitMinNum(IntrinsicInst &I); 317*5f757f3fSDimitry Andric bool visitSqrt(IntrinsicInst &I); 31806c3fb27SDimitry Andric bool run(Function &F); 31906c3fb27SDimitry Andric }; 3200b57cec5SDimitry Andric 32106c3fb27SDimitry Andric class AMDGPUCodeGenPrepare : public FunctionPass { 32206c3fb27SDimitry Andric private: 32306c3fb27SDimitry Andric AMDGPUCodeGenPrepareImpl Impl; 3240b57cec5SDimitry Andric 32506c3fb27SDimitry Andric public: 32606c3fb27SDimitry Andric static char ID; 32706c3fb27SDimitry Andric AMDGPUCodeGenPrepare() : FunctionPass(ID) { 32806c3fb27SDimitry Andric initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry()); 32906c3fb27SDimitry Andric } 3300b57cec5SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 3310b57cec5SDimitry Andric AU.addRequired<AssumptionCacheTracker>(); 33206c3fb27SDimitry Andric AU.addRequired<UniformityInfoWrapperPass>(); 33306c3fb27SDimitry Andric AU.addRequired<TargetLibraryInfoWrapperPass>(); 3345ffd83dbSDimitry Andric 3355ffd83dbSDimitry Andric // FIXME: Division expansion needs to preserve the dominator tree. 3365ffd83dbSDimitry Andric if (!ExpandDiv64InIR) 3370b57cec5SDimitry Andric AU.setPreservesAll(); 3380b57cec5SDimitry Andric } 33906c3fb27SDimitry Andric bool runOnFunction(Function &F) override; 34006c3fb27SDimitry Andric bool doInitialization(Module &M) override; 34106c3fb27SDimitry Andric StringRef getPassName() const override { return "AMDGPU IR optimizations"; } 3420b57cec5SDimitry Andric }; 3430b57cec5SDimitry Andric 3440b57cec5SDimitry Andric } // end anonymous namespace 3450b57cec5SDimitry Andric 34606c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::run(Function &F) { 347*5f757f3fSDimitry Andric BreakPhiNodesCache.clear(); 34806c3fb27SDimitry Andric bool MadeChange = false; 34906c3fb27SDimitry Andric 35006c3fb27SDimitry Andric Function::iterator NextBB; 35106c3fb27SDimitry Andric for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) { 35206c3fb27SDimitry Andric BasicBlock *BB = &*FI; 35306c3fb27SDimitry Andric NextBB = std::next(FI); 35406c3fb27SDimitry Andric 35506c3fb27SDimitry Andric BasicBlock::iterator Next; 35606c3fb27SDimitry Andric for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 35706c3fb27SDimitry Andric I = Next) { 35806c3fb27SDimitry Andric Next = std::next(I); 35906c3fb27SDimitry Andric 36006c3fb27SDimitry Andric MadeChange |= visit(*I); 36106c3fb27SDimitry Andric 36206c3fb27SDimitry Andric if (Next != E) { // Control flow changed 36306c3fb27SDimitry Andric BasicBlock *NextInstBB = Next->getParent(); 36406c3fb27SDimitry Andric if (NextInstBB != BB) { 36506c3fb27SDimitry Andric BB = NextInstBB; 36606c3fb27SDimitry Andric E = BB->end(); 36706c3fb27SDimitry Andric FE = F.end(); 36806c3fb27SDimitry Andric } 36906c3fb27SDimitry Andric } 37006c3fb27SDimitry Andric } 37106c3fb27SDimitry Andric } 37206c3fb27SDimitry Andric return MadeChange; 37306c3fb27SDimitry Andric } 37406c3fb27SDimitry Andric 37506c3fb27SDimitry Andric unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const { 3760b57cec5SDimitry Andric assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 3770b57cec5SDimitry Andric 3780b57cec5SDimitry Andric if (T->isIntegerTy()) 3790b57cec5SDimitry Andric return T->getIntegerBitWidth(); 3800b57cec5SDimitry Andric return cast<VectorType>(T)->getElementType()->getIntegerBitWidth(); 3810b57cec5SDimitry Andric } 3820b57cec5SDimitry Andric 38306c3fb27SDimitry Andric Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const { 3840b57cec5SDimitry Andric assert(needsPromotionToI32(T) && "T does not need promotion to i32"); 3850b57cec5SDimitry Andric 3860b57cec5SDimitry Andric if (T->isIntegerTy()) 3870b57cec5SDimitry Andric return B.getInt32Ty(); 3885ffd83dbSDimitry Andric return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T)); 3890b57cec5SDimitry Andric } 3900b57cec5SDimitry Andric 39106c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const { 3920b57cec5SDimitry Andric return I.getOpcode() == Instruction::AShr || 3930b57cec5SDimitry Andric I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem; 3940b57cec5SDimitry Andric } 3950b57cec5SDimitry Andric 39606c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const { 3970b57cec5SDimitry Andric return isa<ICmpInst>(I.getOperand(0)) ? 3980b57cec5SDimitry Andric cast<ICmpInst>(I.getOperand(0))->isSigned() : false; 3990b57cec5SDimitry Andric } 4000b57cec5SDimitry Andric 40106c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const { 402e8d8bef9SDimitry Andric if (!Widen16BitOps) 403e8d8bef9SDimitry Andric return false; 404e8d8bef9SDimitry Andric 4050b57cec5SDimitry Andric const IntegerType *IntTy = dyn_cast<IntegerType>(T); 4060b57cec5SDimitry Andric if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16) 4070b57cec5SDimitry Andric return true; 4080b57cec5SDimitry Andric 4090b57cec5SDimitry Andric if (const VectorType *VT = dyn_cast<VectorType>(T)) { 4100b57cec5SDimitry Andric // TODO: The set of packed operations is more limited, so may want to 4110b57cec5SDimitry Andric // promote some anyway. 4120b57cec5SDimitry Andric if (ST->hasVOP3PInsts()) 4130b57cec5SDimitry Andric return false; 4140b57cec5SDimitry Andric 4150b57cec5SDimitry Andric return needsPromotionToI32(VT->getElementType()); 4160b57cec5SDimitry Andric } 4170b57cec5SDimitry Andric 4180b57cec5SDimitry Andric return false; 4190b57cec5SDimitry Andric } 4200b57cec5SDimitry Andric 42106c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const { 42206c3fb27SDimitry Andric return Ty->isFloatTy() || Ty->isDoubleTy() || 42306c3fb27SDimitry Andric (Ty->isHalfTy() && ST->has16BitInsts()); 42406c3fb27SDimitry Andric } 42506c3fb27SDimitry Andric 4260b57cec5SDimitry Andric // Return true if the op promoted to i32 should have nsw set. 4270b57cec5SDimitry Andric static bool promotedOpIsNSW(const Instruction &I) { 4280b57cec5SDimitry Andric switch (I.getOpcode()) { 4290b57cec5SDimitry Andric case Instruction::Shl: 4300b57cec5SDimitry Andric case Instruction::Add: 4310b57cec5SDimitry Andric case Instruction::Sub: 4320b57cec5SDimitry Andric return true; 4330b57cec5SDimitry Andric case Instruction::Mul: 4340b57cec5SDimitry Andric return I.hasNoUnsignedWrap(); 4350b57cec5SDimitry Andric default: 4360b57cec5SDimitry Andric return false; 4370b57cec5SDimitry Andric } 4380b57cec5SDimitry Andric } 4390b57cec5SDimitry Andric 4400b57cec5SDimitry Andric // Return true if the op promoted to i32 should have nuw set. 4410b57cec5SDimitry Andric static bool promotedOpIsNUW(const Instruction &I) { 4420b57cec5SDimitry Andric switch (I.getOpcode()) { 4430b57cec5SDimitry Andric case Instruction::Shl: 4440b57cec5SDimitry Andric case Instruction::Add: 4450b57cec5SDimitry Andric case Instruction::Mul: 4460b57cec5SDimitry Andric return true; 4470b57cec5SDimitry Andric case Instruction::Sub: 4480b57cec5SDimitry Andric return I.hasNoUnsignedWrap(); 4490b57cec5SDimitry Andric default: 4500b57cec5SDimitry Andric return false; 4510b57cec5SDimitry Andric } 4520b57cec5SDimitry Andric } 4530b57cec5SDimitry Andric 45406c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const { 4550b57cec5SDimitry Andric Type *Ty = I.getType(); 4560b57cec5SDimitry Andric const DataLayout &DL = Mod->getDataLayout(); 4570b57cec5SDimitry Andric int TySize = DL.getTypeSizeInBits(Ty); 4585ffd83dbSDimitry Andric Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty); 4590b57cec5SDimitry Andric 46006c3fb27SDimitry Andric return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I); 4610b57cec5SDimitry Andric } 4620b57cec5SDimitry Andric 46306c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const { 4640b57cec5SDimitry Andric assert(needsPromotionToI32(I.getType()) && 4650b57cec5SDimitry Andric "I does not need promotion to i32"); 4660b57cec5SDimitry Andric 4670b57cec5SDimitry Andric if (I.getOpcode() == Instruction::SDiv || 4680b57cec5SDimitry Andric I.getOpcode() == Instruction::UDiv || 4690b57cec5SDimitry Andric I.getOpcode() == Instruction::SRem || 4700b57cec5SDimitry Andric I.getOpcode() == Instruction::URem) 4710b57cec5SDimitry Andric return false; 4720b57cec5SDimitry Andric 4730b57cec5SDimitry Andric IRBuilder<> Builder(&I); 4740b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(I.getDebugLoc()); 4750b57cec5SDimitry Andric 4760b57cec5SDimitry Andric Type *I32Ty = getI32Ty(Builder, I.getType()); 4770b57cec5SDimitry Andric Value *ExtOp0 = nullptr; 4780b57cec5SDimitry Andric Value *ExtOp1 = nullptr; 4790b57cec5SDimitry Andric Value *ExtRes = nullptr; 4800b57cec5SDimitry Andric Value *TruncRes = nullptr; 4810b57cec5SDimitry Andric 4820b57cec5SDimitry Andric if (isSigned(I)) { 4830b57cec5SDimitry Andric ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 4840b57cec5SDimitry Andric ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 4850b57cec5SDimitry Andric } else { 4860b57cec5SDimitry Andric ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 4870b57cec5SDimitry Andric ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 4880b57cec5SDimitry Andric } 4890b57cec5SDimitry Andric 4900b57cec5SDimitry Andric ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1); 4910b57cec5SDimitry Andric if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) { 4920b57cec5SDimitry Andric if (promotedOpIsNSW(cast<Instruction>(I))) 4930b57cec5SDimitry Andric Inst->setHasNoSignedWrap(); 4940b57cec5SDimitry Andric 4950b57cec5SDimitry Andric if (promotedOpIsNUW(cast<Instruction>(I))) 4960b57cec5SDimitry Andric Inst->setHasNoUnsignedWrap(); 4970b57cec5SDimitry Andric 4980b57cec5SDimitry Andric if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 4990b57cec5SDimitry Andric Inst->setIsExact(ExactOp->isExact()); 5000b57cec5SDimitry Andric } 5010b57cec5SDimitry Andric 5020b57cec5SDimitry Andric TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 5030b57cec5SDimitry Andric 5040b57cec5SDimitry Andric I.replaceAllUsesWith(TruncRes); 5050b57cec5SDimitry Andric I.eraseFromParent(); 5060b57cec5SDimitry Andric 5070b57cec5SDimitry Andric return true; 5080b57cec5SDimitry Andric } 5090b57cec5SDimitry Andric 51006c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const { 5110b57cec5SDimitry Andric assert(needsPromotionToI32(I.getOperand(0)->getType()) && 5120b57cec5SDimitry Andric "I does not need promotion to i32"); 5130b57cec5SDimitry Andric 5140b57cec5SDimitry Andric IRBuilder<> Builder(&I); 5150b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(I.getDebugLoc()); 5160b57cec5SDimitry Andric 5170b57cec5SDimitry Andric Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType()); 5180b57cec5SDimitry Andric Value *ExtOp0 = nullptr; 5190b57cec5SDimitry Andric Value *ExtOp1 = nullptr; 5200b57cec5SDimitry Andric Value *NewICmp = nullptr; 5210b57cec5SDimitry Andric 5220b57cec5SDimitry Andric if (I.isSigned()) { 5230b57cec5SDimitry Andric ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty); 5240b57cec5SDimitry Andric ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 5250b57cec5SDimitry Andric } else { 5260b57cec5SDimitry Andric ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty); 5270b57cec5SDimitry Andric ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 5280b57cec5SDimitry Andric } 5290b57cec5SDimitry Andric NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1); 5300b57cec5SDimitry Andric 5310b57cec5SDimitry Andric I.replaceAllUsesWith(NewICmp); 5320b57cec5SDimitry Andric I.eraseFromParent(); 5330b57cec5SDimitry Andric 5340b57cec5SDimitry Andric return true; 5350b57cec5SDimitry Andric } 5360b57cec5SDimitry Andric 53706c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const { 5380b57cec5SDimitry Andric assert(needsPromotionToI32(I.getType()) && 5390b57cec5SDimitry Andric "I does not need promotion to i32"); 5400b57cec5SDimitry Andric 5410b57cec5SDimitry Andric IRBuilder<> Builder(&I); 5420b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(I.getDebugLoc()); 5430b57cec5SDimitry Andric 5440b57cec5SDimitry Andric Type *I32Ty = getI32Ty(Builder, I.getType()); 5450b57cec5SDimitry Andric Value *ExtOp1 = nullptr; 5460b57cec5SDimitry Andric Value *ExtOp2 = nullptr; 5470b57cec5SDimitry Andric Value *ExtRes = nullptr; 5480b57cec5SDimitry Andric Value *TruncRes = nullptr; 5490b57cec5SDimitry Andric 5500b57cec5SDimitry Andric if (isSigned(I)) { 5510b57cec5SDimitry Andric ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty); 5520b57cec5SDimitry Andric ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty); 5530b57cec5SDimitry Andric } else { 5540b57cec5SDimitry Andric ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty); 5550b57cec5SDimitry Andric ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty); 5560b57cec5SDimitry Andric } 5570b57cec5SDimitry Andric ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2); 5580b57cec5SDimitry Andric TruncRes = Builder.CreateTrunc(ExtRes, I.getType()); 5590b57cec5SDimitry Andric 5600b57cec5SDimitry Andric I.replaceAllUsesWith(TruncRes); 5610b57cec5SDimitry Andric I.eraseFromParent(); 5620b57cec5SDimitry Andric 5630b57cec5SDimitry Andric return true; 5640b57cec5SDimitry Andric } 5650b57cec5SDimitry Andric 56606c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32( 5670b57cec5SDimitry Andric IntrinsicInst &I) const { 5680b57cec5SDimitry Andric assert(I.getIntrinsicID() == Intrinsic::bitreverse && 5690b57cec5SDimitry Andric "I must be bitreverse intrinsic"); 5700b57cec5SDimitry Andric assert(needsPromotionToI32(I.getType()) && 5710b57cec5SDimitry Andric "I does not need promotion to i32"); 5720b57cec5SDimitry Andric 5730b57cec5SDimitry Andric IRBuilder<> Builder(&I); 5740b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(I.getDebugLoc()); 5750b57cec5SDimitry Andric 5760b57cec5SDimitry Andric Type *I32Ty = getI32Ty(Builder, I.getType()); 5770b57cec5SDimitry Andric Function *I32 = 5780b57cec5SDimitry Andric Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty }); 5790b57cec5SDimitry Andric Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty); 5800b57cec5SDimitry Andric Value *ExtRes = Builder.CreateCall(I32, { ExtOp }); 5810b57cec5SDimitry Andric Value *LShrOp = 5820b57cec5SDimitry Andric Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType())); 5830b57cec5SDimitry Andric Value *TruncRes = 5840b57cec5SDimitry Andric Builder.CreateTrunc(LShrOp, I.getType()); 5850b57cec5SDimitry Andric 5860b57cec5SDimitry Andric I.replaceAllUsesWith(TruncRes); 5870b57cec5SDimitry Andric I.eraseFromParent(); 5880b57cec5SDimitry Andric 5890b57cec5SDimitry Andric return true; 5900b57cec5SDimitry Andric } 5910b57cec5SDimitry Andric 59206c3fb27SDimitry Andric unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const { 59304eeddc0SDimitry Andric return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits(); 5940b57cec5SDimitry Andric } 5950b57cec5SDimitry Andric 59606c3fb27SDimitry Andric unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const { 59704eeddc0SDimitry Andric return ComputeMaxSignificantBits(Op, *DL, 0, AC); 5980b57cec5SDimitry Andric } 5990b57cec5SDimitry Andric 6000b57cec5SDimitry Andric static void extractValues(IRBuilder<> &Builder, 6010b57cec5SDimitry Andric SmallVectorImpl<Value *> &Values, Value *V) { 6025ffd83dbSDimitry Andric auto *VT = dyn_cast<FixedVectorType>(V->getType()); 6030b57cec5SDimitry Andric if (!VT) { 6040b57cec5SDimitry Andric Values.push_back(V); 6050b57cec5SDimitry Andric return; 6060b57cec5SDimitry Andric } 6070b57cec5SDimitry Andric 6080b57cec5SDimitry Andric for (int I = 0, E = VT->getNumElements(); I != E; ++I) 6090b57cec5SDimitry Andric Values.push_back(Builder.CreateExtractElement(V, I)); 6100b57cec5SDimitry Andric } 6110b57cec5SDimitry Andric 6120b57cec5SDimitry Andric static Value *insertValues(IRBuilder<> &Builder, 6130b57cec5SDimitry Andric Type *Ty, 6140b57cec5SDimitry Andric SmallVectorImpl<Value *> &Values) { 615bdd1243dSDimitry Andric if (!Ty->isVectorTy()) { 616bdd1243dSDimitry Andric assert(Values.size() == 1); 6170b57cec5SDimitry Andric return Values[0]; 618bdd1243dSDimitry Andric } 6190b57cec5SDimitry Andric 620bdd1243dSDimitry Andric Value *NewVal = PoisonValue::get(Ty); 6210b57cec5SDimitry Andric for (int I = 0, E = Values.size(); I != E; ++I) 6220b57cec5SDimitry Andric NewVal = Builder.CreateInsertElement(NewVal, Values[I], I); 6230b57cec5SDimitry Andric 6240b57cec5SDimitry Andric return NewVal; 6250b57cec5SDimitry Andric } 6260b57cec5SDimitry Andric 62706c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const { 6280b57cec5SDimitry Andric if (I.getOpcode() != Instruction::Mul) 6290b57cec5SDimitry Andric return false; 6300b57cec5SDimitry Andric 6310b57cec5SDimitry Andric Type *Ty = I.getType(); 6320b57cec5SDimitry Andric unsigned Size = Ty->getScalarSizeInBits(); 6330b57cec5SDimitry Andric if (Size <= 16 && ST->has16BitInsts()) 6340b57cec5SDimitry Andric return false; 6350b57cec5SDimitry Andric 6360b57cec5SDimitry Andric // Prefer scalar if this could be s_mul_i32 63706c3fb27SDimitry Andric if (UA->isUniform(&I)) 6380b57cec5SDimitry Andric return false; 6390b57cec5SDimitry Andric 6400b57cec5SDimitry Andric Value *LHS = I.getOperand(0); 6410b57cec5SDimitry Andric Value *RHS = I.getOperand(1); 6420b57cec5SDimitry Andric IRBuilder<> Builder(&I); 6430b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(I.getDebugLoc()); 6440b57cec5SDimitry Andric 645349cc55cSDimitry Andric unsigned LHSBits = 0, RHSBits = 0; 646349cc55cSDimitry Andric bool IsSigned = false; 6470b57cec5SDimitry Andric 64804eeddc0SDimitry Andric if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 && 64904eeddc0SDimitry Andric (RHSBits = numBitsUnsigned(RHS)) <= 24) { 650349cc55cSDimitry Andric IsSigned = false; 651349cc55cSDimitry Andric 65204eeddc0SDimitry Andric } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 && 65304eeddc0SDimitry Andric (RHSBits = numBitsSigned(RHS)) <= 24) { 654349cc55cSDimitry Andric IsSigned = true; 655349cc55cSDimitry Andric 6560b57cec5SDimitry Andric } else 6570b57cec5SDimitry Andric return false; 6580b57cec5SDimitry Andric 6590b57cec5SDimitry Andric SmallVector<Value *, 4> LHSVals; 6600b57cec5SDimitry Andric SmallVector<Value *, 4> RHSVals; 6610b57cec5SDimitry Andric SmallVector<Value *, 4> ResultVals; 6620b57cec5SDimitry Andric extractValues(Builder, LHSVals, LHS); 6630b57cec5SDimitry Andric extractValues(Builder, RHSVals, RHS); 6640b57cec5SDimitry Andric 6650b57cec5SDimitry Andric IntegerType *I32Ty = Builder.getInt32Ty(); 666*5f757f3fSDimitry Andric IntegerType *IntrinTy = Size > 32 ? Builder.getInt64Ty() : I32Ty; 667*5f757f3fSDimitry Andric Type *DstTy = LHSVals[0]->getType(); 668*5f757f3fSDimitry Andric 6690b57cec5SDimitry Andric for (int I = 0, E = LHSVals.size(); I != E; ++I) { 670*5f757f3fSDimitry Andric Value *LHS = IsSigned ? Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty) 671*5f757f3fSDimitry Andric : Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty); 672*5f757f3fSDimitry Andric Value *RHS = IsSigned ? Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty) 673*5f757f3fSDimitry Andric : Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty); 674*5f757f3fSDimitry Andric Intrinsic::ID ID = 675*5f757f3fSDimitry Andric IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24; 676*5f757f3fSDimitry Andric Value *Result = Builder.CreateIntrinsic(ID, {IntrinTy}, {LHS, RHS}); 677*5f757f3fSDimitry Andric Result = IsSigned ? Builder.CreateSExtOrTrunc(Result, DstTy) 678*5f757f3fSDimitry Andric : Builder.CreateZExtOrTrunc(Result, DstTy); 679*5f757f3fSDimitry Andric ResultVals.push_back(Result); 6800b57cec5SDimitry Andric } 6810b57cec5SDimitry Andric 6828bcb0991SDimitry Andric Value *NewVal = insertValues(Builder, Ty, ResultVals); 6838bcb0991SDimitry Andric NewVal->takeName(&I); 6848bcb0991SDimitry Andric I.replaceAllUsesWith(NewVal); 6850b57cec5SDimitry Andric I.eraseFromParent(); 6860b57cec5SDimitry Andric 6870b57cec5SDimitry Andric return true; 6880b57cec5SDimitry Andric } 6890b57cec5SDimitry Andric 6905ffd83dbSDimitry Andric // Find a select instruction, which may have been casted. This is mostly to deal 6915ffd83dbSDimitry Andric // with cases where i16 selects were promoted here to i32. 6925ffd83dbSDimitry Andric static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) { 6935ffd83dbSDimitry Andric Cast = nullptr; 6945ffd83dbSDimitry Andric if (SelectInst *Sel = dyn_cast<SelectInst>(V)) 6955ffd83dbSDimitry Andric return Sel; 6960b57cec5SDimitry Andric 6975ffd83dbSDimitry Andric if ((Cast = dyn_cast<CastInst>(V))) { 6985ffd83dbSDimitry Andric if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0))) 6995ffd83dbSDimitry Andric return Sel; 7000b57cec5SDimitry Andric } 7010b57cec5SDimitry Andric 7025ffd83dbSDimitry Andric return nullptr; 7035ffd83dbSDimitry Andric } 7040b57cec5SDimitry Andric 70506c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const { 7065ffd83dbSDimitry Andric // Don't do this unless the old select is going away. We want to eliminate the 7075ffd83dbSDimitry Andric // binary operator, not replace a binop with a select. 7085ffd83dbSDimitry Andric int SelOpNo = 0; 7095ffd83dbSDimitry Andric 7105ffd83dbSDimitry Andric CastInst *CastOp; 7115ffd83dbSDimitry Andric 7125ffd83dbSDimitry Andric // TODO: Should probably try to handle some cases with multiple 7135ffd83dbSDimitry Andric // users. Duplicating the select may be profitable for division. 7145ffd83dbSDimitry Andric SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp); 7155ffd83dbSDimitry Andric if (!Sel || !Sel->hasOneUse()) { 7165ffd83dbSDimitry Andric SelOpNo = 1; 7175ffd83dbSDimitry Andric Sel = findSelectThroughCast(BO.getOperand(1), CastOp); 7185ffd83dbSDimitry Andric } 7195ffd83dbSDimitry Andric 7205ffd83dbSDimitry Andric if (!Sel || !Sel->hasOneUse()) 7210b57cec5SDimitry Andric return false; 7220b57cec5SDimitry Andric 7235ffd83dbSDimitry Andric Constant *CT = dyn_cast<Constant>(Sel->getTrueValue()); 7245ffd83dbSDimitry Andric Constant *CF = dyn_cast<Constant>(Sel->getFalseValue()); 7255ffd83dbSDimitry Andric Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1)); 7265ffd83dbSDimitry Andric if (!CBO || !CT || !CF) 7275ffd83dbSDimitry Andric return false; 7285ffd83dbSDimitry Andric 7295ffd83dbSDimitry Andric if (CastOp) { 7305ffd83dbSDimitry Andric if (!CastOp->hasOneUse()) 7315ffd83dbSDimitry Andric return false; 7325ffd83dbSDimitry Andric CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL); 7335ffd83dbSDimitry Andric CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL); 7345ffd83dbSDimitry Andric } 7355ffd83dbSDimitry Andric 7365ffd83dbSDimitry Andric // TODO: Handle special 0/-1 cases DAG combine does, although we only really 7375ffd83dbSDimitry Andric // need to handle divisions here. 7385ffd83dbSDimitry Andric Constant *FoldedT = SelOpNo ? 7395ffd83dbSDimitry Andric ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) : 7405ffd83dbSDimitry Andric ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL); 741753f127fSDimitry Andric if (!FoldedT || isa<ConstantExpr>(FoldedT)) 7425ffd83dbSDimitry Andric return false; 7435ffd83dbSDimitry Andric 7445ffd83dbSDimitry Andric Constant *FoldedF = SelOpNo ? 7455ffd83dbSDimitry Andric ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) : 7465ffd83dbSDimitry Andric ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL); 747753f127fSDimitry Andric if (!FoldedF || isa<ConstantExpr>(FoldedF)) 7485ffd83dbSDimitry Andric return false; 7495ffd83dbSDimitry Andric 7505ffd83dbSDimitry Andric IRBuilder<> Builder(&BO); 7515ffd83dbSDimitry Andric Builder.SetCurrentDebugLocation(BO.getDebugLoc()); 7525ffd83dbSDimitry Andric if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO)) 7535ffd83dbSDimitry Andric Builder.setFastMathFlags(FPOp->getFastMathFlags()); 7545ffd83dbSDimitry Andric 7555ffd83dbSDimitry Andric Value *NewSelect = Builder.CreateSelect(Sel->getCondition(), 7565ffd83dbSDimitry Andric FoldedT, FoldedF); 7575ffd83dbSDimitry Andric NewSelect->takeName(&BO); 7585ffd83dbSDimitry Andric BO.replaceAllUsesWith(NewSelect); 7595ffd83dbSDimitry Andric BO.eraseFromParent(); 7605ffd83dbSDimitry Andric if (CastOp) 7615ffd83dbSDimitry Andric CastOp->eraseFromParent(); 7625ffd83dbSDimitry Andric Sel->eraseFromParent(); 7635ffd83dbSDimitry Andric return true; 7645ffd83dbSDimitry Andric } 7655ffd83dbSDimitry Andric 76606c3fb27SDimitry Andric std::pair<Value *, Value *> 76706c3fb27SDimitry Andric AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder, 76806c3fb27SDimitry Andric Value *Src) const { 76906c3fb27SDimitry Andric Type *Ty = Src->getType(); 77006c3fb27SDimitry Andric Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp, 77106c3fb27SDimitry Andric {Ty, Builder.getInt32Ty()}, Src); 77206c3fb27SDimitry Andric Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0}); 77306c3fb27SDimitry Andric 77406c3fb27SDimitry Andric // Bypass the bug workaround for the exponent result since it doesn't matter. 77506c3fb27SDimitry Andric // TODO: Does the bug workaround even really need to consider the exponent 77606c3fb27SDimitry Andric // result? It's unspecified by the spec. 77706c3fb27SDimitry Andric 77806c3fb27SDimitry Andric Value *FrexpExp = 77906c3fb27SDimitry Andric ST->hasFractBug() 78006c3fb27SDimitry Andric ? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp, 78106c3fb27SDimitry Andric {Builder.getInt32Ty(), Ty}, Src) 78206c3fb27SDimitry Andric : Builder.CreateExtractValue(Frexp, {1}); 78306c3fb27SDimitry Andric return {FrexpMant, FrexpExp}; 78406c3fb27SDimitry Andric } 78506c3fb27SDimitry Andric 78606c3fb27SDimitry Andric /// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals. 78706c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder, 78806c3fb27SDimitry Andric Value *Src, 78906c3fb27SDimitry Andric bool IsNegative) const { 79006c3fb27SDimitry Andric // Same as for 1.0, but expand the sign out of the constant. 79106c3fb27SDimitry Andric // -1.0 / x -> rcp (fneg x) 79206c3fb27SDimitry Andric if (IsNegative) 79306c3fb27SDimitry Andric Src = Builder.CreateFNeg(Src); 79406c3fb27SDimitry Andric 79506c3fb27SDimitry Andric // The rcp instruction doesn't support denormals, so scale the input 79606c3fb27SDimitry Andric // out of the denormal range and convert at the end. 79706c3fb27SDimitry Andric // 79806c3fb27SDimitry Andric // Expand as 2^-n * (1.0 / (x * 2^n)) 79906c3fb27SDimitry Andric 80006c3fb27SDimitry Andric // TODO: Skip scaling if input is known never denormal and the input 80106c3fb27SDimitry Andric // range won't underflow to denormal. The hard part is knowing the 80206c3fb27SDimitry Andric // result. We need a range check, the result could be denormal for 80306c3fb27SDimitry Andric // 0x1p+126 < den <= 0x1p+127. 80406c3fb27SDimitry Andric auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src); 80506c3fb27SDimitry Andric Value *ScaleFactor = Builder.CreateNeg(FrexpExp); 80606c3fb27SDimitry Andric Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant); 807*5f757f3fSDimitry Andric return Builder.CreateCall(getLdexpF32(), {Rcp, ScaleFactor}); 80806c3fb27SDimitry Andric } 80906c3fb27SDimitry Andric 81006c3fb27SDimitry Andric /// Emit a 2ulp expansion for fdiv by using frexp for input scaling. 81106c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, 81206c3fb27SDimitry Andric Value *RHS, 81306c3fb27SDimitry Andric FastMathFlags FMF) const { 81406c3fb27SDimitry Andric // If we have have to work around the fract/frexp bug, we're worse off than 81506c3fb27SDimitry Andric // using the fdiv.fast expansion. The full safe expansion is faster if we have 81606c3fb27SDimitry Andric // fast FMA. 81706c3fb27SDimitry Andric if (HasFP32DenormalFlush && ST->hasFractBug() && !ST->hasFastFMAF32() && 81806c3fb27SDimitry Andric (!FMF.noNaNs() || !FMF.noInfs())) 81906c3fb27SDimitry Andric return nullptr; 82006c3fb27SDimitry Andric 82106c3fb27SDimitry Andric // We're scaling the LHS to avoid a denormal input, and scale the denominator 82206c3fb27SDimitry Andric // to avoid large values underflowing the result. 82306c3fb27SDimitry Andric auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS); 82406c3fb27SDimitry Andric 82506c3fb27SDimitry Andric Value *Rcp = 82606c3fb27SDimitry Andric Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS); 82706c3fb27SDimitry Andric 82806c3fb27SDimitry Andric auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS); 82906c3fb27SDimitry Andric Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp); 83006c3fb27SDimitry Andric 83106c3fb27SDimitry Andric // We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the 83206c3fb27SDimitry Andric // result. 83306c3fb27SDimitry Andric Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS); 834*5f757f3fSDimitry Andric return Builder.CreateCall(getLdexpF32(), {Mul, ExpDiff}); 835*5f757f3fSDimitry Andric } 836*5f757f3fSDimitry Andric 837*5f757f3fSDimitry Andric /// Emit a sqrt that handles denormals and is accurate to 2ulp. 838*5f757f3fSDimitry Andric Value *AMDGPUCodeGenPrepareImpl::emitSqrtIEEE2ULP(IRBuilder<> &Builder, 839*5f757f3fSDimitry Andric Value *Src, 840*5f757f3fSDimitry Andric FastMathFlags FMF) const { 841*5f757f3fSDimitry Andric Type *Ty = Src->getType(); 842*5f757f3fSDimitry Andric APFloat SmallestNormal = 843*5f757f3fSDimitry Andric APFloat::getSmallestNormalized(Ty->getFltSemantics()); 844*5f757f3fSDimitry Andric Value *NeedScale = 845*5f757f3fSDimitry Andric Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); 846*5f757f3fSDimitry Andric 847*5f757f3fSDimitry Andric ConstantInt *Zero = Builder.getInt32(0); 848*5f757f3fSDimitry Andric Value *InputScaleFactor = 849*5f757f3fSDimitry Andric Builder.CreateSelect(NeedScale, Builder.getInt32(32), Zero); 850*5f757f3fSDimitry Andric 851*5f757f3fSDimitry Andric Value *Scaled = Builder.CreateCall(getLdexpF32(), {Src, InputScaleFactor}); 852*5f757f3fSDimitry Andric 853*5f757f3fSDimitry Andric Value *Sqrt = Builder.CreateCall(getSqrtF32(), Scaled); 854*5f757f3fSDimitry Andric 855*5f757f3fSDimitry Andric Value *OutputScaleFactor = 856*5f757f3fSDimitry Andric Builder.CreateSelect(NeedScale, Builder.getInt32(-16), Zero); 857*5f757f3fSDimitry Andric return Builder.CreateCall(getLdexpF32(), {Sqrt, OutputScaleFactor}); 85806c3fb27SDimitry Andric } 85906c3fb27SDimitry Andric 86006c3fb27SDimitry Andric /// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals. 86106c3fb27SDimitry Andric static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src, 86206c3fb27SDimitry Andric bool IsNegative) { 86306c3fb27SDimitry Andric // bool need_scale = x < 0x1p-126f; 86406c3fb27SDimitry Andric // float input_scale = need_scale ? 0x1.0p+24f : 1.0f; 86506c3fb27SDimitry Andric // float output_scale = need_scale ? 0x1.0p+12f : 1.0f; 86606c3fb27SDimitry Andric // rsq(x * input_scale) * output_scale; 86706c3fb27SDimitry Andric 86806c3fb27SDimitry Andric Type *Ty = Src->getType(); 86906c3fb27SDimitry Andric APFloat SmallestNormal = 87006c3fb27SDimitry Andric APFloat::getSmallestNormalized(Ty->getFltSemantics()); 87106c3fb27SDimitry Andric Value *NeedScale = 87206c3fb27SDimitry Andric Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal)); 87306c3fb27SDimitry Andric Constant *One = ConstantFP::get(Ty, 1.0); 87406c3fb27SDimitry Andric Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24); 87506c3fb27SDimitry Andric Constant *OutputScale = 87606c3fb27SDimitry Andric ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12); 87706c3fb27SDimitry Andric 87806c3fb27SDimitry Andric Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One); 87906c3fb27SDimitry Andric 88006c3fb27SDimitry Andric Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor); 88106c3fb27SDimitry Andric Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput); 88206c3fb27SDimitry Andric Value *OutputScaleFactor = Builder.CreateSelect( 88306c3fb27SDimitry Andric NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One); 88406c3fb27SDimitry Andric 88506c3fb27SDimitry Andric return Builder.CreateFMul(Rsq, OutputScaleFactor); 88606c3fb27SDimitry Andric } 88706c3fb27SDimitry Andric 88806c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp, 88906c3fb27SDimitry Andric FastMathFlags DivFMF, 89006c3fb27SDimitry Andric FastMathFlags SqrtFMF) const { 89106c3fb27SDimitry Andric // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. 89206c3fb27SDimitry Andric if (!DivFMF.allowContract() || !SqrtFMF.allowContract()) 89306c3fb27SDimitry Andric return false; 89406c3fb27SDimitry Andric 89506c3fb27SDimitry Andric // v_rsq_f32 gives 1ulp 89606c3fb27SDimitry Andric return SqrtFMF.approxFunc() || HasUnsafeFPMath || 89706c3fb27SDimitry Andric SqrtOp->getFPAccuracy() >= 1.0f; 89806c3fb27SDimitry Andric } 89906c3fb27SDimitry Andric 90006c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq( 901*5f757f3fSDimitry Andric IRBuilder<> &Builder, Value *Num, Value *Den, const FastMathFlags DivFMF, 902*5f757f3fSDimitry Andric const FastMathFlags SqrtFMF, const Instruction *CtxI) const { 90306c3fb27SDimitry Andric // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp. 90406c3fb27SDimitry Andric assert(DivFMF.allowContract() && SqrtFMF.allowContract()); 90506c3fb27SDimitry Andric 90606c3fb27SDimitry Andric // rsq_f16 is accurate to 0.51 ulp. 90706c3fb27SDimitry Andric // rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 90806c3fb27SDimitry Andric // rsq_f64 is never accurate. 90906c3fb27SDimitry Andric const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num); 91006c3fb27SDimitry Andric if (!CLHS) 91106c3fb27SDimitry Andric return nullptr; 91206c3fb27SDimitry Andric 91306c3fb27SDimitry Andric assert(Den->getType()->isFloatTy()); 91406c3fb27SDimitry Andric 91506c3fb27SDimitry Andric bool IsNegative = false; 91606c3fb27SDimitry Andric 91706c3fb27SDimitry Andric // TODO: Handle other numerator values with arcp. 91806c3fb27SDimitry Andric if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) { 91906c3fb27SDimitry Andric // Add in the sqrt flags. 92006c3fb27SDimitry Andric IRBuilder<>::FastMathFlagGuard Guard(Builder); 921*5f757f3fSDimitry Andric Builder.setFastMathFlags(DivFMF | SqrtFMF); 92206c3fb27SDimitry Andric 923*5f757f3fSDimitry Andric if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) || HasUnsafeFPMath || 92406c3fb27SDimitry Andric canIgnoreDenormalInput(Den, CtxI)) { 92506c3fb27SDimitry Andric Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den); 92606c3fb27SDimitry Andric // -1.0 / sqrt(x) -> fneg(rsq(x)) 92706c3fb27SDimitry Andric return IsNegative ? Builder.CreateFNeg(Result) : Result; 92806c3fb27SDimitry Andric } 92906c3fb27SDimitry Andric 93006c3fb27SDimitry Andric return emitRsqIEEE1ULP(Builder, Den, IsNegative); 93106c3fb27SDimitry Andric } 93206c3fb27SDimitry Andric 93306c3fb27SDimitry Andric return nullptr; 93406c3fb27SDimitry Andric } 93506c3fb27SDimitry Andric 9365ffd83dbSDimitry Andric // Optimize fdiv with rcp: 9375ffd83dbSDimitry Andric // 9385ffd83dbSDimitry Andric // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 9395ffd83dbSDimitry Andric // allowed with unsafe-fp-math or afn. 9405ffd83dbSDimitry Andric // 94106c3fb27SDimitry Andric // a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0 94206c3fb27SDimitry Andric Value * 94306c3fb27SDimitry Andric AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num, 94406c3fb27SDimitry Andric Value *Den, FastMathFlags FMF, 94506c3fb27SDimitry Andric const Instruction *CtxI) const { 94606c3fb27SDimitry Andric // rcp_f16 is accurate to 0.51 ulp. 94706c3fb27SDimitry Andric // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed. 94806c3fb27SDimitry Andric // rcp_f64 is never accurate. 94906c3fb27SDimitry Andric assert(Den->getType()->isFloatTy()); 9505ffd83dbSDimitry Andric 9515ffd83dbSDimitry Andric if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) { 95206c3fb27SDimitry Andric bool IsNegative = false; 95306c3fb27SDimitry Andric if (CLHS->isExactlyValue(1.0) || 95406c3fb27SDimitry Andric (IsNegative = CLHS->isExactlyValue(-1.0))) { 95506c3fb27SDimitry Andric Value *Src = Den; 95606c3fb27SDimitry Andric 95706c3fb27SDimitry Andric if (HasFP32DenormalFlush || FMF.approxFunc()) { 95806c3fb27SDimitry Andric // -1.0 / x -> 1.0 / fneg(x) 95906c3fb27SDimitry Andric if (IsNegative) 96006c3fb27SDimitry Andric Src = Builder.CreateFNeg(Src); 9615ffd83dbSDimitry Andric 9625ffd83dbSDimitry Andric // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to 9635ffd83dbSDimitry Andric // the CI documentation has a worst case error of 1 ulp. 96406c3fb27SDimitry Andric // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK 96506c3fb27SDimitry Andric // to use it as long as we aren't trying to use denormals. 9665ffd83dbSDimitry Andric // 9675ffd83dbSDimitry Andric // v_rcp_f16 and v_rsq_f16 DO support denormals. 9685ffd83dbSDimitry Andric 9695ffd83dbSDimitry Andric // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't 9705ffd83dbSDimitry Andric // insert rsq intrinsic here. 9715ffd83dbSDimitry Andric 9725ffd83dbSDimitry Andric // 1.0 / x -> rcp(x) 97306c3fb27SDimitry Andric return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src); 9745ffd83dbSDimitry Andric } 9755ffd83dbSDimitry Andric 97606c3fb27SDimitry Andric // TODO: If the input isn't denormal, and we know the input exponent isn't 97706c3fb27SDimitry Andric // big enough to introduce a denormal we can avoid the scaling. 97806c3fb27SDimitry Andric return emitRcpIEEE1ULP(Builder, Src, IsNegative); 9795ffd83dbSDimitry Andric } 9805ffd83dbSDimitry Andric } 9815ffd83dbSDimitry Andric 98206c3fb27SDimitry Andric if (FMF.allowReciprocal()) { 9835ffd83dbSDimitry Andric // x / y -> x * (1.0 / y) 98406c3fb27SDimitry Andric 98506c3fb27SDimitry Andric // TODO: Could avoid denormal scaling and use raw rcp if we knew the output 98606c3fb27SDimitry Andric // will never underflow. 98706c3fb27SDimitry Andric if (HasFP32DenormalFlush || FMF.approxFunc()) { 98806c3fb27SDimitry Andric Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den); 9895ffd83dbSDimitry Andric return Builder.CreateFMul(Num, Recip); 9905ffd83dbSDimitry Andric } 99106c3fb27SDimitry Andric 99206c3fb27SDimitry Andric Value *Recip = emitRcpIEEE1ULP(Builder, Den, false); 99306c3fb27SDimitry Andric return Builder.CreateFMul(Num, Recip); 99406c3fb27SDimitry Andric } 99506c3fb27SDimitry Andric 9965ffd83dbSDimitry Andric return nullptr; 9975ffd83dbSDimitry Andric } 9985ffd83dbSDimitry Andric 9995ffd83dbSDimitry Andric // optimize with fdiv.fast: 10005ffd83dbSDimitry Andric // 10015ffd83dbSDimitry Andric // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 10025ffd83dbSDimitry Andric // 10035ffd83dbSDimitry Andric // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 10045ffd83dbSDimitry Andric // 10055ffd83dbSDimitry Andric // NOTE: optimizeWithRcp should be tried first because rcp is the preference. 100606c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast( 100706c3fb27SDimitry Andric IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const { 10085ffd83dbSDimitry Andric // fdiv.fast can achieve 2.5 ULP accuracy. 10095ffd83dbSDimitry Andric if (ReqdAccuracy < 2.5f) 10105ffd83dbSDimitry Andric return nullptr; 10115ffd83dbSDimitry Andric 10125ffd83dbSDimitry Andric // Only have fdiv.fast for f32. 101306c3fb27SDimitry Andric assert(Den->getType()->isFloatTy()); 10145ffd83dbSDimitry Andric 10155ffd83dbSDimitry Andric bool NumIsOne = false; 10165ffd83dbSDimitry Andric if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) { 10175ffd83dbSDimitry Andric if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0)) 10185ffd83dbSDimitry Andric NumIsOne = true; 10195ffd83dbSDimitry Andric } 10205ffd83dbSDimitry Andric 10215ffd83dbSDimitry Andric // fdiv does not support denormals. But 1.0/x is always fine to use it. 102206c3fb27SDimitry Andric // 102306c3fb27SDimitry Andric // TODO: This works for any value with a specific known exponent range, don't 102406c3fb27SDimitry Andric // just limit to constant 1. 102506c3fb27SDimitry Andric if (!HasFP32DenormalFlush && !NumIsOne) 10265ffd83dbSDimitry Andric return nullptr; 10275ffd83dbSDimitry Andric 102806c3fb27SDimitry Andric return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den}); 102906c3fb27SDimitry Andric } 103006c3fb27SDimitry Andric 103106c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::visitFDivElement( 103206c3fb27SDimitry Andric IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF, 103306c3fb27SDimitry Andric FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst, 103406c3fb27SDimitry Andric float ReqdDivAccuracy) const { 103506c3fb27SDimitry Andric if (RsqOp) { 103606c3fb27SDimitry Andric Value *Rsq = 103706c3fb27SDimitry Andric optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst); 103806c3fb27SDimitry Andric if (Rsq) 103906c3fb27SDimitry Andric return Rsq; 104006c3fb27SDimitry Andric } 104106c3fb27SDimitry Andric 104206c3fb27SDimitry Andric Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst); 104306c3fb27SDimitry Andric if (Rcp) 104406c3fb27SDimitry Andric return Rcp; 104506c3fb27SDimitry Andric 104606c3fb27SDimitry Andric // In the basic case fdiv_fast has the same instruction count as the frexp div 104706c3fb27SDimitry Andric // expansion. Slightly prefer fdiv_fast since it ends in an fmul that can 104806c3fb27SDimitry Andric // potentially be fused into a user. Also, materialization of the constants 104906c3fb27SDimitry Andric // can be reused for multiple instances. 105006c3fb27SDimitry Andric Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy); 105106c3fb27SDimitry Andric if (FDivFast) 105206c3fb27SDimitry Andric return FDivFast; 105306c3fb27SDimitry Andric 105406c3fb27SDimitry Andric return emitFrexpDiv(Builder, Num, Den, DivFMF); 10555ffd83dbSDimitry Andric } 10565ffd83dbSDimitry Andric 10575ffd83dbSDimitry Andric // Optimizations is performed based on fpmath, fast math flags as well as 10585ffd83dbSDimitry Andric // denormals to optimize fdiv with either rcp or fdiv.fast. 10595ffd83dbSDimitry Andric // 10605ffd83dbSDimitry Andric // With rcp: 10615ffd83dbSDimitry Andric // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is 10625ffd83dbSDimitry Andric // allowed with unsafe-fp-math or afn. 10635ffd83dbSDimitry Andric // 10645ffd83dbSDimitry Andric // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn. 10655ffd83dbSDimitry Andric // 10665ffd83dbSDimitry Andric // With fdiv.fast: 10675ffd83dbSDimitry Andric // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed. 10685ffd83dbSDimitry Andric // 10695ffd83dbSDimitry Andric // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp. 10705ffd83dbSDimitry Andric // 10715ffd83dbSDimitry Andric // NOTE: rcp is the preference in cases that both are legal. 107206c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) { 107306c3fb27SDimitry Andric if (DisableFDivExpand) 107406c3fb27SDimitry Andric return false; 10755ffd83dbSDimitry Andric 10765ffd83dbSDimitry Andric Type *Ty = FDiv.getType()->getScalarType(); 107706c3fb27SDimitry Andric if (!Ty->isFloatTy()) 107806c3fb27SDimitry Andric return false; 10795ffd83dbSDimitry Andric 1080e8d8bef9SDimitry Andric // The f64 rcp/rsq approximations are pretty inaccurate. We can do an 108106c3fb27SDimitry Andric // expansion around them in codegen. f16 is good enough to always use. 10820b57cec5SDimitry Andric 10830b57cec5SDimitry Andric const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv); 108406c3fb27SDimitry Andric const FastMathFlags DivFMF = FPOp->getFastMathFlags(); 10855ffd83dbSDimitry Andric const float ReqdAccuracy = FPOp->getFPAccuracy(); 10860b57cec5SDimitry Andric 108706c3fb27SDimitry Andric FastMathFlags SqrtFMF; 10880b57cec5SDimitry Andric 10890b57cec5SDimitry Andric Value *Num = FDiv.getOperand(0); 10900b57cec5SDimitry Andric Value *Den = FDiv.getOperand(1); 10910b57cec5SDimitry Andric 109206c3fb27SDimitry Andric Value *RsqOp = nullptr; 109306c3fb27SDimitry Andric auto *DenII = dyn_cast<IntrinsicInst>(Den); 109406c3fb27SDimitry Andric if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt && 109506c3fb27SDimitry Andric DenII->hasOneUse()) { 109606c3fb27SDimitry Andric const auto *SqrtOp = cast<FPMathOperator>(DenII); 109706c3fb27SDimitry Andric SqrtFMF = SqrtOp->getFastMathFlags(); 109806c3fb27SDimitry Andric if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF)) 109906c3fb27SDimitry Andric RsqOp = SqrtOp->getOperand(0); 11000b57cec5SDimitry Andric } 11010b57cec5SDimitry Andric 1102*5f757f3fSDimitry Andric // Inaccurate rcp is allowed with unsafe-fp-math or afn. 1103*5f757f3fSDimitry Andric // 1104*5f757f3fSDimitry Andric // Defer to codegen to handle this. 1105*5f757f3fSDimitry Andric // 1106*5f757f3fSDimitry Andric // TODO: Decide on an interpretation for interactions between afn + arcp + 1107*5f757f3fSDimitry Andric // !fpmath, and make it consistent between here and codegen. For now, defer 1108*5f757f3fSDimitry Andric // expansion of afn to codegen. The current interpretation is so aggressive we 1109*5f757f3fSDimitry Andric // don't need any pre-consideration here when we have better information. A 1110*5f757f3fSDimitry Andric // more conservative interpretation could use handling here. 1111*5f757f3fSDimitry Andric const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc(); 1112*5f757f3fSDimitry Andric if (!RsqOp && AllowInaccurateRcp) 1113*5f757f3fSDimitry Andric return false; 1114*5f757f3fSDimitry Andric 1115*5f757f3fSDimitry Andric // Defer the correct implementations to codegen. 1116*5f757f3fSDimitry Andric if (ReqdAccuracy < 1.0f) 1117*5f757f3fSDimitry Andric return false; 1118*5f757f3fSDimitry Andric 111906c3fb27SDimitry Andric IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator())); 112006c3fb27SDimitry Andric Builder.setFastMathFlags(DivFMF); 112106c3fb27SDimitry Andric Builder.SetCurrentDebugLocation(FDiv.getDebugLoc()); 112206c3fb27SDimitry Andric 112306c3fb27SDimitry Andric SmallVector<Value *, 4> NumVals; 112406c3fb27SDimitry Andric SmallVector<Value *, 4> DenVals; 112506c3fb27SDimitry Andric SmallVector<Value *, 4> RsqDenVals; 112606c3fb27SDimitry Andric extractValues(Builder, NumVals, Num); 112706c3fb27SDimitry Andric extractValues(Builder, DenVals, Den); 112806c3fb27SDimitry Andric 112906c3fb27SDimitry Andric if (RsqOp) 113006c3fb27SDimitry Andric extractValues(Builder, RsqDenVals, RsqOp); 113106c3fb27SDimitry Andric 113206c3fb27SDimitry Andric SmallVector<Value *, 4> ResultVals(NumVals.size()); 113306c3fb27SDimitry Andric for (int I = 0, E = NumVals.size(); I != E; ++I) { 113406c3fb27SDimitry Andric Value *NumElt = NumVals[I]; 113506c3fb27SDimitry Andric Value *DenElt = DenVals[I]; 113606c3fb27SDimitry Andric Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr; 113706c3fb27SDimitry Andric 113806c3fb27SDimitry Andric Value *NewElt = 113906c3fb27SDimitry Andric visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt, 114006c3fb27SDimitry Andric cast<Instruction>(FPOp), ReqdAccuracy); 114106c3fb27SDimitry Andric if (!NewElt) { 114206c3fb27SDimitry Andric // Keep the original, but scalarized. 114306c3fb27SDimitry Andric 114406c3fb27SDimitry Andric // This has the unfortunate side effect of sometimes scalarizing when 114506c3fb27SDimitry Andric // we're not going to do anything. 114606c3fb27SDimitry Andric NewElt = Builder.CreateFDiv(NumElt, DenElt); 114706c3fb27SDimitry Andric if (auto *NewEltInst = dyn_cast<Instruction>(NewElt)) 114806c3fb27SDimitry Andric NewEltInst->copyMetadata(FDiv); 11490b57cec5SDimitry Andric } 11500b57cec5SDimitry Andric 115106c3fb27SDimitry Andric ResultVals[I] = NewElt; 11520b57cec5SDimitry Andric } 11530b57cec5SDimitry Andric 115406c3fb27SDimitry Andric Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals); 1155fe6060f1SDimitry Andric 115606c3fb27SDimitry Andric if (NewVal) { 115706c3fb27SDimitry Andric FDiv.replaceAllUsesWith(NewVal); 115806c3fb27SDimitry Andric NewVal->takeName(&FDiv); 115906c3fb27SDimitry Andric RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLInfo); 116006c3fb27SDimitry Andric } 1161fe6060f1SDimitry Andric 1162fe6060f1SDimitry Andric return true; 1163fe6060f1SDimitry Andric } 1164fe6060f1SDimitry Andric 11650b57cec5SDimitry Andric static bool hasUnsafeFPMath(const Function &F) { 11660b57cec5SDimitry Andric Attribute Attr = F.getFnAttribute("unsafe-fp-math"); 1167fe6060f1SDimitry Andric return Attr.getValueAsBool(); 11680b57cec5SDimitry Andric } 11690b57cec5SDimitry Andric 11700b57cec5SDimitry Andric static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder, 11710b57cec5SDimitry Andric Value *LHS, Value *RHS) { 11720b57cec5SDimitry Andric Type *I32Ty = Builder.getInt32Ty(); 11730b57cec5SDimitry Andric Type *I64Ty = Builder.getInt64Ty(); 11740b57cec5SDimitry Andric 11750b57cec5SDimitry Andric Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty); 11760b57cec5SDimitry Andric Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty); 11770b57cec5SDimitry Andric Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64); 11780b57cec5SDimitry Andric Value *Lo = Builder.CreateTrunc(MUL64, I32Ty); 11790b57cec5SDimitry Andric Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32)); 11800b57cec5SDimitry Andric Hi = Builder.CreateTrunc(Hi, I32Ty); 1181bdd1243dSDimitry Andric return std::pair(Lo, Hi); 11820b57cec5SDimitry Andric } 11830b57cec5SDimitry Andric 11840b57cec5SDimitry Andric static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) { 11850b57cec5SDimitry Andric return getMul64(Builder, LHS, RHS).second; 11860b57cec5SDimitry Andric } 11870b57cec5SDimitry Andric 118881ad6265SDimitry Andric /// Figure out how many bits are really needed for this division. \p AtLeast is 11895ffd83dbSDimitry Andric /// an optimization hint to bypass the second ComputeNumSignBits call if we the 11905ffd83dbSDimitry Andric /// first one is insufficient. Returns -1 on failure. 119106c3fb27SDimitry Andric int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num, 119206c3fb27SDimitry Andric Value *Den, unsigned AtLeast, 119306c3fb27SDimitry Andric bool IsSigned) const { 11945ffd83dbSDimitry Andric const DataLayout &DL = Mod->getDataLayout(); 11955ffd83dbSDimitry Andric unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I); 11965ffd83dbSDimitry Andric if (LHSSignBits < AtLeast) 11975ffd83dbSDimitry Andric return -1; 11985ffd83dbSDimitry Andric 11995ffd83dbSDimitry Andric unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I); 12005ffd83dbSDimitry Andric if (RHSSignBits < AtLeast) 12015ffd83dbSDimitry Andric return -1; 12025ffd83dbSDimitry Andric 12035ffd83dbSDimitry Andric unsigned SignBits = std::min(LHSSignBits, RHSSignBits); 12045ffd83dbSDimitry Andric unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits; 12055ffd83dbSDimitry Andric if (IsSigned) 12065ffd83dbSDimitry Andric ++DivBits; 12075ffd83dbSDimitry Andric return DivBits; 12085ffd83dbSDimitry Andric } 12095ffd83dbSDimitry Andric 12100b57cec5SDimitry Andric // The fractional part of a float is enough to accurately represent up to 12110b57cec5SDimitry Andric // a 24-bit signed integer. 121206c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder, 121306c3fb27SDimitry Andric BinaryOperator &I, Value *Num, 121406c3fb27SDimitry Andric Value *Den, bool IsDiv, 121506c3fb27SDimitry Andric bool IsSigned) const { 12165ffd83dbSDimitry Andric int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned); 12175ffd83dbSDimitry Andric if (DivBits == -1) 12180b57cec5SDimitry Andric return nullptr; 12195ffd83dbSDimitry Andric return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned); 12205ffd83dbSDimitry Andric } 12210b57cec5SDimitry Andric 122206c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl( 122306c3fb27SDimitry Andric IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den, 122406c3fb27SDimitry Andric unsigned DivBits, bool IsDiv, bool IsSigned) const { 12250b57cec5SDimitry Andric Type *I32Ty = Builder.getInt32Ty(); 12265ffd83dbSDimitry Andric Num = Builder.CreateTrunc(Num, I32Ty); 12275ffd83dbSDimitry Andric Den = Builder.CreateTrunc(Den, I32Ty); 12285ffd83dbSDimitry Andric 12290b57cec5SDimitry Andric Type *F32Ty = Builder.getFloatTy(); 12300b57cec5SDimitry Andric ConstantInt *One = Builder.getInt32(1); 12310b57cec5SDimitry Andric Value *JQ = One; 12320b57cec5SDimitry Andric 12330b57cec5SDimitry Andric if (IsSigned) { 12340b57cec5SDimitry Andric // char|short jq = ia ^ ib; 12350b57cec5SDimitry Andric JQ = Builder.CreateXor(Num, Den); 12360b57cec5SDimitry Andric 12370b57cec5SDimitry Andric // jq = jq >> (bitsize - 2) 12380b57cec5SDimitry Andric JQ = Builder.CreateAShr(JQ, Builder.getInt32(30)); 12390b57cec5SDimitry Andric 12400b57cec5SDimitry Andric // jq = jq | 0x1 12410b57cec5SDimitry Andric JQ = Builder.CreateOr(JQ, One); 12420b57cec5SDimitry Andric } 12430b57cec5SDimitry Andric 12440b57cec5SDimitry Andric // int ia = (int)LHS; 12450b57cec5SDimitry Andric Value *IA = Num; 12460b57cec5SDimitry Andric 12470b57cec5SDimitry Andric // int ib, (int)RHS; 12480b57cec5SDimitry Andric Value *IB = Den; 12490b57cec5SDimitry Andric 12500b57cec5SDimitry Andric // float fa = (float)ia; 12510b57cec5SDimitry Andric Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty) 12520b57cec5SDimitry Andric : Builder.CreateUIToFP(IA, F32Ty); 12530b57cec5SDimitry Andric 12540b57cec5SDimitry Andric // float fb = (float)ib; 12550b57cec5SDimitry Andric Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty) 12560b57cec5SDimitry Andric : Builder.CreateUIToFP(IB,F32Ty); 12570b57cec5SDimitry Andric 12585ffd83dbSDimitry Andric Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, 12595ffd83dbSDimitry Andric Builder.getFloatTy()); 12605ffd83dbSDimitry Andric Value *RCP = Builder.CreateCall(RcpDecl, { FB }); 12610b57cec5SDimitry Andric Value *FQM = Builder.CreateFMul(FA, RCP); 12620b57cec5SDimitry Andric 12630b57cec5SDimitry Andric // fq = trunc(fqm); 12640b57cec5SDimitry Andric CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM); 12650b57cec5SDimitry Andric FQ->copyFastMathFlags(Builder.getFastMathFlags()); 12660b57cec5SDimitry Andric 12670b57cec5SDimitry Andric // float fqneg = -fq; 12680b57cec5SDimitry Andric Value *FQNeg = Builder.CreateFNeg(FQ); 12690b57cec5SDimitry Andric 12700b57cec5SDimitry Andric // float fr = mad(fqneg, fb, fa); 12715ffd83dbSDimitry Andric auto FMAD = !ST->hasMadMacF32Insts() 12725ffd83dbSDimitry Andric ? Intrinsic::fma 12735ffd83dbSDimitry Andric : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz; 12745ffd83dbSDimitry Andric Value *FR = Builder.CreateIntrinsic(FMAD, 12750b57cec5SDimitry Andric {FQNeg->getType()}, {FQNeg, FB, FA}, FQ); 12760b57cec5SDimitry Andric 12770b57cec5SDimitry Andric // int iq = (int)fq; 12780b57cec5SDimitry Andric Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty) 12790b57cec5SDimitry Andric : Builder.CreateFPToUI(FQ, I32Ty); 12800b57cec5SDimitry Andric 12810b57cec5SDimitry Andric // fr = fabs(fr); 12820b57cec5SDimitry Andric FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ); 12830b57cec5SDimitry Andric 12840b57cec5SDimitry Andric // fb = fabs(fb); 12850b57cec5SDimitry Andric FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ); 12860b57cec5SDimitry Andric 12870b57cec5SDimitry Andric // int cv = fr >= fb; 12880b57cec5SDimitry Andric Value *CV = Builder.CreateFCmpOGE(FR, FB); 12890b57cec5SDimitry Andric 12900b57cec5SDimitry Andric // jq = (cv ? jq : 0); 12910b57cec5SDimitry Andric JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0)); 12920b57cec5SDimitry Andric 12930b57cec5SDimitry Andric // dst = iq + jq; 12940b57cec5SDimitry Andric Value *Div = Builder.CreateAdd(IQ, JQ); 12950b57cec5SDimitry Andric 12960b57cec5SDimitry Andric Value *Res = Div; 12970b57cec5SDimitry Andric if (!IsDiv) { 12980b57cec5SDimitry Andric // Rem needs compensation, it's easier to recompute it 12990b57cec5SDimitry Andric Value *Rem = Builder.CreateMul(Div, Den); 13000b57cec5SDimitry Andric Res = Builder.CreateSub(Num, Rem); 13010b57cec5SDimitry Andric } 13020b57cec5SDimitry Andric 13035ffd83dbSDimitry Andric if (DivBits != 0 && DivBits < 32) { 13045ffd83dbSDimitry Andric // Extend in register from the number of bits this divide really is. 13050b57cec5SDimitry Andric if (IsSigned) { 13065ffd83dbSDimitry Andric int InRegBits = 32 - DivBits; 13075ffd83dbSDimitry Andric 13085ffd83dbSDimitry Andric Res = Builder.CreateShl(Res, InRegBits); 13095ffd83dbSDimitry Andric Res = Builder.CreateAShr(Res, InRegBits); 13100b57cec5SDimitry Andric } else { 13115ffd83dbSDimitry Andric ConstantInt *TruncMask 13125ffd83dbSDimitry Andric = Builder.getInt32((UINT64_C(1) << DivBits) - 1); 13130b57cec5SDimitry Andric Res = Builder.CreateAnd(Res, TruncMask); 13140b57cec5SDimitry Andric } 13155ffd83dbSDimitry Andric } 13160b57cec5SDimitry Andric 13170b57cec5SDimitry Andric return Res; 13180b57cec5SDimitry Andric } 13190b57cec5SDimitry Andric 13205ffd83dbSDimitry Andric // Try to recognize special cases the DAG will emit special, better expansions 13215ffd83dbSDimitry Andric // than the general expansion we do here. 13225ffd83dbSDimitry Andric 13235ffd83dbSDimitry Andric // TODO: It would be better to just directly handle those optimizations here. 132406c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I, 132506c3fb27SDimitry Andric Value *Num, 132606c3fb27SDimitry Andric Value *Den) const { 13275ffd83dbSDimitry Andric if (Constant *C = dyn_cast<Constant>(Den)) { 13285ffd83dbSDimitry Andric // Arbitrary constants get a better expansion as long as a wider mulhi is 13295ffd83dbSDimitry Andric // legal. 13305ffd83dbSDimitry Andric if (C->getType()->getScalarSizeInBits() <= 32) 13315ffd83dbSDimitry Andric return true; 13325ffd83dbSDimitry Andric 13335ffd83dbSDimitry Andric // TODO: Sdiv check for not exact for some reason. 13345ffd83dbSDimitry Andric 13355ffd83dbSDimitry Andric // If there's no wider mulhi, there's only a better expansion for powers of 13365ffd83dbSDimitry Andric // two. 13375ffd83dbSDimitry Andric // TODO: Should really know for each vector element. 13385ffd83dbSDimitry Andric if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT)) 13395ffd83dbSDimitry Andric return true; 13405ffd83dbSDimitry Andric 13415ffd83dbSDimitry Andric return false; 13425ffd83dbSDimitry Andric } 13435ffd83dbSDimitry Andric 13445ffd83dbSDimitry Andric if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) { 13455ffd83dbSDimitry Andric // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 13465ffd83dbSDimitry Andric if (BinOpDen->getOpcode() == Instruction::Shl && 13475ffd83dbSDimitry Andric isa<Constant>(BinOpDen->getOperand(0)) && 13485ffd83dbSDimitry Andric isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true, 13495ffd83dbSDimitry Andric 0, AC, &I, DT)) { 13505ffd83dbSDimitry Andric return true; 13515ffd83dbSDimitry Andric } 13525ffd83dbSDimitry Andric } 13535ffd83dbSDimitry Andric 13545ffd83dbSDimitry Andric return false; 13555ffd83dbSDimitry Andric } 13565ffd83dbSDimitry Andric 13575ffd83dbSDimitry Andric static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) { 13585ffd83dbSDimitry Andric // Check whether the sign can be determined statically. 13595ffd83dbSDimitry Andric KnownBits Known = computeKnownBits(V, *DL); 13605ffd83dbSDimitry Andric if (Known.isNegative()) 13615ffd83dbSDimitry Andric return Constant::getAllOnesValue(V->getType()); 13625ffd83dbSDimitry Andric if (Known.isNonNegative()) 13635ffd83dbSDimitry Andric return Constant::getNullValue(V->getType()); 13645ffd83dbSDimitry Andric return Builder.CreateAShr(V, Builder.getInt32(31)); 13655ffd83dbSDimitry Andric } 13665ffd83dbSDimitry Andric 136706c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder, 13685ffd83dbSDimitry Andric BinaryOperator &I, Value *X, 13695ffd83dbSDimitry Andric Value *Y) const { 13700b57cec5SDimitry Andric Instruction::BinaryOps Opc = I.getOpcode(); 13710b57cec5SDimitry Andric assert(Opc == Instruction::URem || Opc == Instruction::UDiv || 13720b57cec5SDimitry Andric Opc == Instruction::SRem || Opc == Instruction::SDiv); 13730b57cec5SDimitry Andric 13740b57cec5SDimitry Andric FastMathFlags FMF; 13750b57cec5SDimitry Andric FMF.setFast(); 13760b57cec5SDimitry Andric Builder.setFastMathFlags(FMF); 13770b57cec5SDimitry Andric 13785ffd83dbSDimitry Andric if (divHasSpecialOptimization(I, X, Y)) 13795ffd83dbSDimitry Andric return nullptr; // Keep it for later optimization. 13800b57cec5SDimitry Andric 13810b57cec5SDimitry Andric bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv; 13820b57cec5SDimitry Andric bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv; 13830b57cec5SDimitry Andric 13845ffd83dbSDimitry Andric Type *Ty = X->getType(); 13850b57cec5SDimitry Andric Type *I32Ty = Builder.getInt32Ty(); 13860b57cec5SDimitry Andric Type *F32Ty = Builder.getFloatTy(); 13870b57cec5SDimitry Andric 13880b57cec5SDimitry Andric if (Ty->getScalarSizeInBits() < 32) { 13890b57cec5SDimitry Andric if (IsSigned) { 13905ffd83dbSDimitry Andric X = Builder.CreateSExt(X, I32Ty); 13915ffd83dbSDimitry Andric Y = Builder.CreateSExt(Y, I32Ty); 13920b57cec5SDimitry Andric } else { 13935ffd83dbSDimitry Andric X = Builder.CreateZExt(X, I32Ty); 13945ffd83dbSDimitry Andric Y = Builder.CreateZExt(Y, I32Ty); 13950b57cec5SDimitry Andric } 13960b57cec5SDimitry Andric } 13970b57cec5SDimitry Andric 13985ffd83dbSDimitry Andric if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) { 13995ffd83dbSDimitry Andric return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) : 14005ffd83dbSDimitry Andric Builder.CreateZExtOrTrunc(Res, Ty); 14010b57cec5SDimitry Andric } 14020b57cec5SDimitry Andric 14030b57cec5SDimitry Andric ConstantInt *Zero = Builder.getInt32(0); 14040b57cec5SDimitry Andric ConstantInt *One = Builder.getInt32(1); 14050b57cec5SDimitry Andric 14060b57cec5SDimitry Andric Value *Sign = nullptr; 14070b57cec5SDimitry Andric if (IsSigned) { 14085ffd83dbSDimitry Andric Value *SignX = getSign32(X, Builder, DL); 14095ffd83dbSDimitry Andric Value *SignY = getSign32(Y, Builder, DL); 14100b57cec5SDimitry Andric // Remainder sign is the same as LHS 14115ffd83dbSDimitry Andric Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX; 14120b57cec5SDimitry Andric 14135ffd83dbSDimitry Andric X = Builder.CreateAdd(X, SignX); 14145ffd83dbSDimitry Andric Y = Builder.CreateAdd(Y, SignY); 14150b57cec5SDimitry Andric 14165ffd83dbSDimitry Andric X = Builder.CreateXor(X, SignX); 14175ffd83dbSDimitry Andric Y = Builder.CreateXor(Y, SignY); 14180b57cec5SDimitry Andric } 14190b57cec5SDimitry Andric 14205ffd83dbSDimitry Andric // The algorithm here is based on ideas from "Software Integer Division", Tom 14215ffd83dbSDimitry Andric // Rodeheffer, August 2008. 14225ffd83dbSDimitry Andric // 14235ffd83dbSDimitry Andric // unsigned udiv(unsigned x, unsigned y) { 14245ffd83dbSDimitry Andric // // Initial estimate of inv(y). The constant is less than 2^32 to ensure 14255ffd83dbSDimitry Andric // // that this is a lower bound on inv(y), even if some of the calculations 14265ffd83dbSDimitry Andric // // round up. 14275ffd83dbSDimitry Andric // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y)); 14285ffd83dbSDimitry Andric // 14295ffd83dbSDimitry Andric // // One round of UNR (Unsigned integer Newton-Raphson) to improve z. 14305ffd83dbSDimitry Andric // // Empirically this is guaranteed to give a "two-y" lower bound on 14315ffd83dbSDimitry Andric // // inv(y). 14325ffd83dbSDimitry Andric // z += umulh(z, -y * z); 14335ffd83dbSDimitry Andric // 14345ffd83dbSDimitry Andric // // Quotient/remainder estimate. 14355ffd83dbSDimitry Andric // unsigned q = umulh(x, z); 14365ffd83dbSDimitry Andric // unsigned r = x - q * y; 14375ffd83dbSDimitry Andric // 14385ffd83dbSDimitry Andric // // Two rounds of quotient/remainder refinement. 14395ffd83dbSDimitry Andric // if (r >= y) { 14405ffd83dbSDimitry Andric // ++q; 14415ffd83dbSDimitry Andric // r -= y; 14425ffd83dbSDimitry Andric // } 14435ffd83dbSDimitry Andric // if (r >= y) { 14445ffd83dbSDimitry Andric // ++q; 14455ffd83dbSDimitry Andric // r -= y; 14465ffd83dbSDimitry Andric // } 14475ffd83dbSDimitry Andric // 14485ffd83dbSDimitry Andric // return q; 14495ffd83dbSDimitry Andric // } 14500b57cec5SDimitry Andric 14515ffd83dbSDimitry Andric // Initial estimate of inv(y). 14525ffd83dbSDimitry Andric Value *FloatY = Builder.CreateUIToFP(Y, F32Ty); 14535ffd83dbSDimitry Andric Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty); 14545ffd83dbSDimitry Andric Value *RcpY = Builder.CreateCall(Rcp, {FloatY}); 145506c3fb27SDimitry Andric Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE)); 14565ffd83dbSDimitry Andric Value *ScaledY = Builder.CreateFMul(RcpY, Scale); 14575ffd83dbSDimitry Andric Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty); 14580b57cec5SDimitry Andric 14595ffd83dbSDimitry Andric // One round of UNR. 14605ffd83dbSDimitry Andric Value *NegY = Builder.CreateSub(Zero, Y); 14615ffd83dbSDimitry Andric Value *NegYZ = Builder.CreateMul(NegY, Z); 14625ffd83dbSDimitry Andric Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ)); 14630b57cec5SDimitry Andric 14645ffd83dbSDimitry Andric // Quotient/remainder estimate. 14655ffd83dbSDimitry Andric Value *Q = getMulHu(Builder, X, Z); 14665ffd83dbSDimitry Andric Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y)); 14670b57cec5SDimitry Andric 14685ffd83dbSDimitry Andric // First quotient/remainder refinement. 14695ffd83dbSDimitry Andric Value *Cond = Builder.CreateICmpUGE(R, Y); 14705ffd83dbSDimitry Andric if (IsDiv) 14715ffd83dbSDimitry Andric Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 14725ffd83dbSDimitry Andric R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 14730b57cec5SDimitry Andric 14745ffd83dbSDimitry Andric // Second quotient/remainder refinement. 14755ffd83dbSDimitry Andric Cond = Builder.CreateICmpUGE(R, Y); 14760b57cec5SDimitry Andric Value *Res; 14775ffd83dbSDimitry Andric if (IsDiv) 14785ffd83dbSDimitry Andric Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q); 14795ffd83dbSDimitry Andric else 14805ffd83dbSDimitry Andric Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R); 14810b57cec5SDimitry Andric 14820b57cec5SDimitry Andric if (IsSigned) { 14830b57cec5SDimitry Andric Res = Builder.CreateXor(Res, Sign); 14840b57cec5SDimitry Andric Res = Builder.CreateSub(Res, Sign); 14850b57cec5SDimitry Andric } 14860b57cec5SDimitry Andric 14870b57cec5SDimitry Andric Res = Builder.CreateTrunc(Res, Ty); 14880b57cec5SDimitry Andric 14890b57cec5SDimitry Andric return Res; 14900b57cec5SDimitry Andric } 14910b57cec5SDimitry Andric 149206c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder, 149306c3fb27SDimitry Andric BinaryOperator &I, Value *Num, 149406c3fb27SDimitry Andric Value *Den) const { 14955ffd83dbSDimitry Andric if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den)) 14965ffd83dbSDimitry Andric return nullptr; // Keep it for later optimization. 14975ffd83dbSDimitry Andric 14985ffd83dbSDimitry Andric Instruction::BinaryOps Opc = I.getOpcode(); 14995ffd83dbSDimitry Andric 15005ffd83dbSDimitry Andric bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv; 15015ffd83dbSDimitry Andric bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem; 15025ffd83dbSDimitry Andric 15035ffd83dbSDimitry Andric int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned); 15045ffd83dbSDimitry Andric if (NumDivBits == -1) 15055ffd83dbSDimitry Andric return nullptr; 15065ffd83dbSDimitry Andric 15075ffd83dbSDimitry Andric Value *Narrowed = nullptr; 15085ffd83dbSDimitry Andric if (NumDivBits <= 24) { 15095ffd83dbSDimitry Andric Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits, 15105ffd83dbSDimitry Andric IsDiv, IsSigned); 15115ffd83dbSDimitry Andric } else if (NumDivBits <= 32) { 15125ffd83dbSDimitry Andric Narrowed = expandDivRem32(Builder, I, Num, Den); 15135ffd83dbSDimitry Andric } 15145ffd83dbSDimitry Andric 15155ffd83dbSDimitry Andric if (Narrowed) { 15165ffd83dbSDimitry Andric return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) : 15175ffd83dbSDimitry Andric Builder.CreateZExt(Narrowed, Num->getType()); 15185ffd83dbSDimitry Andric } 15195ffd83dbSDimitry Andric 15205ffd83dbSDimitry Andric return nullptr; 15215ffd83dbSDimitry Andric } 15225ffd83dbSDimitry Andric 152306c3fb27SDimitry Andric void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const { 15245ffd83dbSDimitry Andric Instruction::BinaryOps Opc = I.getOpcode(); 15255ffd83dbSDimitry Andric // Do the general expansion. 15265ffd83dbSDimitry Andric if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) { 15275ffd83dbSDimitry Andric expandDivisionUpTo64Bits(&I); 15285ffd83dbSDimitry Andric return; 15295ffd83dbSDimitry Andric } 15305ffd83dbSDimitry Andric 15315ffd83dbSDimitry Andric if (Opc == Instruction::URem || Opc == Instruction::SRem) { 15325ffd83dbSDimitry Andric expandRemainderUpTo64Bits(&I); 15335ffd83dbSDimitry Andric return; 15345ffd83dbSDimitry Andric } 15355ffd83dbSDimitry Andric 15365ffd83dbSDimitry Andric llvm_unreachable("not a division"); 15375ffd83dbSDimitry Andric } 15385ffd83dbSDimitry Andric 153906c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) { 15405ffd83dbSDimitry Andric if (foldBinOpIntoSelect(I)) 15415ffd83dbSDimitry Andric return true; 15425ffd83dbSDimitry Andric 15430b57cec5SDimitry Andric if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 154406c3fb27SDimitry Andric UA->isUniform(&I) && promoteUniformOpToI32(I)) 15450b57cec5SDimitry Andric return true; 15460b57cec5SDimitry Andric 15478bcb0991SDimitry Andric if (UseMul24Intrin && replaceMulWithMul24(I)) 15480b57cec5SDimitry Andric return true; 15490b57cec5SDimitry Andric 15500b57cec5SDimitry Andric bool Changed = false; 15510b57cec5SDimitry Andric Instruction::BinaryOps Opc = I.getOpcode(); 15520b57cec5SDimitry Andric Type *Ty = I.getType(); 15530b57cec5SDimitry Andric Value *NewDiv = nullptr; 15545ffd83dbSDimitry Andric unsigned ScalarSize = Ty->getScalarSizeInBits(); 15555ffd83dbSDimitry Andric 15565ffd83dbSDimitry Andric SmallVector<BinaryOperator *, 8> Div64ToExpand; 15575ffd83dbSDimitry Andric 15580b57cec5SDimitry Andric if ((Opc == Instruction::URem || Opc == Instruction::UDiv || 15590b57cec5SDimitry Andric Opc == Instruction::SRem || Opc == Instruction::SDiv) && 15605ffd83dbSDimitry Andric ScalarSize <= 64 && 15615ffd83dbSDimitry Andric !DisableIDivExpand) { 15620b57cec5SDimitry Andric Value *Num = I.getOperand(0); 15630b57cec5SDimitry Andric Value *Den = I.getOperand(1); 15640b57cec5SDimitry Andric IRBuilder<> Builder(&I); 15650b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(I.getDebugLoc()); 15660b57cec5SDimitry Andric 15675ffd83dbSDimitry Andric if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 1568bdd1243dSDimitry Andric NewDiv = PoisonValue::get(VT); 15690b57cec5SDimitry Andric 15700b57cec5SDimitry Andric for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) { 15710b57cec5SDimitry Andric Value *NumEltN = Builder.CreateExtractElement(Num, N); 15720b57cec5SDimitry Andric Value *DenEltN = Builder.CreateExtractElement(Den, N); 15735ffd83dbSDimitry Andric 15745ffd83dbSDimitry Andric Value *NewElt; 15755ffd83dbSDimitry Andric if (ScalarSize <= 32) { 15765ffd83dbSDimitry Andric NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN); 15770b57cec5SDimitry Andric if (!NewElt) 15780b57cec5SDimitry Andric NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 15795ffd83dbSDimitry Andric } else { 15805ffd83dbSDimitry Andric // See if this 64-bit division can be shrunk to 32/24-bits before 15815ffd83dbSDimitry Andric // producing the general expansion. 15825ffd83dbSDimitry Andric NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN); 15835ffd83dbSDimitry Andric if (!NewElt) { 15845ffd83dbSDimitry Andric // The general 64-bit expansion introduces control flow and doesn't 15855ffd83dbSDimitry Andric // return the new value. Just insert a scalar copy and defer 15865ffd83dbSDimitry Andric // expanding it. 15875ffd83dbSDimitry Andric NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN); 15885ffd83dbSDimitry Andric Div64ToExpand.push_back(cast<BinaryOperator>(NewElt)); 15895ffd83dbSDimitry Andric } 15905ffd83dbSDimitry Andric } 15915ffd83dbSDimitry Andric 15920b57cec5SDimitry Andric NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N); 15930b57cec5SDimitry Andric } 15940b57cec5SDimitry Andric } else { 15955ffd83dbSDimitry Andric if (ScalarSize <= 32) 15960b57cec5SDimitry Andric NewDiv = expandDivRem32(Builder, I, Num, Den); 15975ffd83dbSDimitry Andric else { 15985ffd83dbSDimitry Andric NewDiv = shrinkDivRem64(Builder, I, Num, Den); 15995ffd83dbSDimitry Andric if (!NewDiv) 16005ffd83dbSDimitry Andric Div64ToExpand.push_back(&I); 16015ffd83dbSDimitry Andric } 16020b57cec5SDimitry Andric } 16030b57cec5SDimitry Andric 16040b57cec5SDimitry Andric if (NewDiv) { 16050b57cec5SDimitry Andric I.replaceAllUsesWith(NewDiv); 16060b57cec5SDimitry Andric I.eraseFromParent(); 16070b57cec5SDimitry Andric Changed = true; 16080b57cec5SDimitry Andric } 16090b57cec5SDimitry Andric } 16100b57cec5SDimitry Andric 16115ffd83dbSDimitry Andric if (ExpandDiv64InIR) { 16125ffd83dbSDimitry Andric // TODO: We get much worse code in specially handled constant cases. 16135ffd83dbSDimitry Andric for (BinaryOperator *Div : Div64ToExpand) { 16145ffd83dbSDimitry Andric expandDivRem64(*Div); 161506c3fb27SDimitry Andric FlowChanged = true; 16165ffd83dbSDimitry Andric Changed = true; 16175ffd83dbSDimitry Andric } 16185ffd83dbSDimitry Andric } 16195ffd83dbSDimitry Andric 16200b57cec5SDimitry Andric return Changed; 16210b57cec5SDimitry Andric } 16220b57cec5SDimitry Andric 162306c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) { 16240b57cec5SDimitry Andric if (!WidenLoads) 16250b57cec5SDimitry Andric return false; 16260b57cec5SDimitry Andric 16270b57cec5SDimitry Andric if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 16280b57cec5SDimitry Andric I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 16290b57cec5SDimitry Andric canWidenScalarExtLoad(I)) { 16300b57cec5SDimitry Andric IRBuilder<> Builder(&I); 16310b57cec5SDimitry Andric Builder.SetCurrentDebugLocation(I.getDebugLoc()); 16320b57cec5SDimitry Andric 16330b57cec5SDimitry Andric Type *I32Ty = Builder.getInt32Ty(); 163406c3fb27SDimitry Andric LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand()); 16350b57cec5SDimitry Andric WidenLoad->copyMetadata(I); 16360b57cec5SDimitry Andric 16370b57cec5SDimitry Andric // If we have range metadata, we need to convert the type, and not make 16380b57cec5SDimitry Andric // assumptions about the high bits. 16390b57cec5SDimitry Andric if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) { 16400b57cec5SDimitry Andric ConstantInt *Lower = 16410b57cec5SDimitry Andric mdconst::extract<ConstantInt>(Range->getOperand(0)); 16420b57cec5SDimitry Andric 1643349cc55cSDimitry Andric if (Lower->isNullValue()) { 16440b57cec5SDimitry Andric WidenLoad->setMetadata(LLVMContext::MD_range, nullptr); 16450b57cec5SDimitry Andric } else { 16460b57cec5SDimitry Andric Metadata *LowAndHigh[] = { 16470b57cec5SDimitry Andric ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))), 16480b57cec5SDimitry Andric // Don't make assumptions about the high bits. 16490b57cec5SDimitry Andric ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0)) 16500b57cec5SDimitry Andric }; 16510b57cec5SDimitry Andric 16520b57cec5SDimitry Andric WidenLoad->setMetadata(LLVMContext::MD_range, 16530b57cec5SDimitry Andric MDNode::get(Mod->getContext(), LowAndHigh)); 16540b57cec5SDimitry Andric } 16550b57cec5SDimitry Andric } 16560b57cec5SDimitry Andric 16570b57cec5SDimitry Andric int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType()); 16580b57cec5SDimitry Andric Type *IntNTy = Builder.getIntNTy(TySize); 16590b57cec5SDimitry Andric Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy); 16600b57cec5SDimitry Andric Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType()); 16610b57cec5SDimitry Andric I.replaceAllUsesWith(ValOrig); 16620b57cec5SDimitry Andric I.eraseFromParent(); 16630b57cec5SDimitry Andric return true; 16640b57cec5SDimitry Andric } 16650b57cec5SDimitry Andric 16660b57cec5SDimitry Andric return false; 16670b57cec5SDimitry Andric } 16680b57cec5SDimitry Andric 166906c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) { 16700b57cec5SDimitry Andric bool Changed = false; 16710b57cec5SDimitry Andric 16720b57cec5SDimitry Andric if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) && 167306c3fb27SDimitry Andric UA->isUniform(&I)) 16740b57cec5SDimitry Andric Changed |= promoteUniformOpToI32(I); 16750b57cec5SDimitry Andric 16760b57cec5SDimitry Andric return Changed; 16770b57cec5SDimitry Andric } 16780b57cec5SDimitry Andric 167906c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) { 168006c3fb27SDimitry Andric Value *Cond = I.getCondition(); 168106c3fb27SDimitry Andric Value *TrueVal = I.getTrueValue(); 168206c3fb27SDimitry Andric Value *FalseVal = I.getFalseValue(); 168306c3fb27SDimitry Andric Value *CmpVal; 168406c3fb27SDimitry Andric FCmpInst::Predicate Pred; 16850b57cec5SDimitry Andric 168606c3fb27SDimitry Andric if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) { 168706c3fb27SDimitry Andric if (UA->isUniform(&I)) 168806c3fb27SDimitry Andric return promoteUniformOpToI32(I); 168906c3fb27SDimitry Andric return false; 16900b57cec5SDimitry Andric } 16910b57cec5SDimitry Andric 169206c3fb27SDimitry Andric // Match fract pattern with nan check. 169306c3fb27SDimitry Andric if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN()))) 169406c3fb27SDimitry Andric return false; 169506c3fb27SDimitry Andric 169606c3fb27SDimitry Andric FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I); 169706c3fb27SDimitry Andric if (!FPOp) 169806c3fb27SDimitry Andric return false; 169906c3fb27SDimitry Andric 170006c3fb27SDimitry Andric IRBuilder<> Builder(&I); 170106c3fb27SDimitry Andric Builder.setFastMathFlags(FPOp->getFastMathFlags()); 170206c3fb27SDimitry Andric 170306c3fb27SDimitry Andric auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal); 170406c3fb27SDimitry Andric auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal); 170506c3fb27SDimitry Andric 170606c3fb27SDimitry Andric Value *Fract = nullptr; 170706c3fb27SDimitry Andric if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse && 170806c3fb27SDimitry Andric CmpVal == matchFractPat(*IIFalse)) { 170906c3fb27SDimitry Andric // isnan(x) ? x : fract(x) 171006c3fb27SDimitry Andric Fract = applyFractPat(Builder, CmpVal); 171106c3fb27SDimitry Andric } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue && 171206c3fb27SDimitry Andric CmpVal == matchFractPat(*IITrue)) { 171306c3fb27SDimitry Andric // !isnan(x) ? fract(x) : x 171406c3fb27SDimitry Andric Fract = applyFractPat(Builder, CmpVal); 171506c3fb27SDimitry Andric } else 171606c3fb27SDimitry Andric return false; 171706c3fb27SDimitry Andric 171806c3fb27SDimitry Andric Fract->takeName(&I); 171906c3fb27SDimitry Andric I.replaceAllUsesWith(Fract); 172006c3fb27SDimitry Andric RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 172106c3fb27SDimitry Andric return true; 172206c3fb27SDimitry Andric } 172306c3fb27SDimitry Andric 172406c3fb27SDimitry Andric static bool areInSameBB(const Value *A, const Value *B) { 172506c3fb27SDimitry Andric const auto *IA = dyn_cast<Instruction>(A); 172606c3fb27SDimitry Andric const auto *IB = dyn_cast<Instruction>(B); 172706c3fb27SDimitry Andric return IA && IB && IA->getParent() == IB->getParent(); 172806c3fb27SDimitry Andric } 172906c3fb27SDimitry Andric 173006c3fb27SDimitry Andric // Helper for breaking large PHIs that returns true when an extractelement on V 173106c3fb27SDimitry Andric // is likely to be folded away by the DAG combiner. 173206c3fb27SDimitry Andric static bool isInterestingPHIIncomingValue(const Value *V) { 173306c3fb27SDimitry Andric const auto *FVT = dyn_cast<FixedVectorType>(V->getType()); 173406c3fb27SDimitry Andric if (!FVT) 173506c3fb27SDimitry Andric return false; 173606c3fb27SDimitry Andric 173706c3fb27SDimitry Andric const Value *CurVal = V; 173806c3fb27SDimitry Andric 173906c3fb27SDimitry Andric // Check for insertelements, keeping track of the elements covered. 174006c3fb27SDimitry Andric BitVector EltsCovered(FVT->getNumElements()); 174106c3fb27SDimitry Andric while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) { 174206c3fb27SDimitry Andric const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2)); 174306c3fb27SDimitry Andric 174406c3fb27SDimitry Andric // Non constant index/out of bounds index -> folding is unlikely. 174506c3fb27SDimitry Andric // The latter is more of a sanity check because canonical IR should just 174606c3fb27SDimitry Andric // have replaced those with poison. 174706c3fb27SDimitry Andric if (!Idx || Idx->getSExtValue() >= FVT->getNumElements()) 174806c3fb27SDimitry Andric return false; 174906c3fb27SDimitry Andric 175006c3fb27SDimitry Andric const auto *VecSrc = IE->getOperand(0); 175106c3fb27SDimitry Andric 175206c3fb27SDimitry Andric // If the vector source is another instruction, it must be in the same basic 175306c3fb27SDimitry Andric // block. Otherwise, the DAGCombiner won't see the whole thing and is 175406c3fb27SDimitry Andric // unlikely to be able to do anything interesting here. 175506c3fb27SDimitry Andric if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE)) 175606c3fb27SDimitry Andric return false; 175706c3fb27SDimitry Andric 175806c3fb27SDimitry Andric CurVal = VecSrc; 175906c3fb27SDimitry Andric EltsCovered.set(Idx->getSExtValue()); 176006c3fb27SDimitry Andric 176106c3fb27SDimitry Andric // All elements covered. 176206c3fb27SDimitry Andric if (EltsCovered.all()) 176306c3fb27SDimitry Andric return true; 176406c3fb27SDimitry Andric } 176506c3fb27SDimitry Andric 176606c3fb27SDimitry Andric // We either didn't find a single insertelement, or the insertelement chain 176706c3fb27SDimitry Andric // ended before all elements were covered. Check for other interesting values. 176806c3fb27SDimitry Andric 176906c3fb27SDimitry Andric // Constants are always interesting because we can just constant fold the 177006c3fb27SDimitry Andric // extractelements. 177106c3fb27SDimitry Andric if (isa<Constant>(CurVal)) 177206c3fb27SDimitry Andric return true; 177306c3fb27SDimitry Andric 177406c3fb27SDimitry Andric // shufflevector is likely to be profitable if either operand is a constant, 177506c3fb27SDimitry Andric // or if either source is in the same block. 177606c3fb27SDimitry Andric // This is because shufflevector is most often lowered as a series of 177706c3fb27SDimitry Andric // insert/extract elements anyway. 177806c3fb27SDimitry Andric if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) { 177906c3fb27SDimitry Andric return isa<Constant>(SV->getOperand(1)) || 178006c3fb27SDimitry Andric areInSameBB(SV, SV->getOperand(0)) || 178106c3fb27SDimitry Andric areInSameBB(SV, SV->getOperand(1)); 178206c3fb27SDimitry Andric } 178306c3fb27SDimitry Andric 178406c3fb27SDimitry Andric return false; 178506c3fb27SDimitry Andric } 178606c3fb27SDimitry Andric 1787*5f757f3fSDimitry Andric static void collectPHINodes(const PHINode &I, 1788*5f757f3fSDimitry Andric SmallPtrSet<const PHINode *, 8> &SeenPHIs) { 1789*5f757f3fSDimitry Andric const auto [It, Inserted] = SeenPHIs.insert(&I); 1790*5f757f3fSDimitry Andric if (!Inserted) 1791*5f757f3fSDimitry Andric return; 1792*5f757f3fSDimitry Andric 1793*5f757f3fSDimitry Andric for (const Value *Inc : I.incoming_values()) { 1794*5f757f3fSDimitry Andric if (const auto *PhiInc = dyn_cast<PHINode>(Inc)) 1795*5f757f3fSDimitry Andric collectPHINodes(*PhiInc, SeenPHIs); 1796*5f757f3fSDimitry Andric } 1797*5f757f3fSDimitry Andric 1798*5f757f3fSDimitry Andric for (const User *U : I.users()) { 1799*5f757f3fSDimitry Andric if (const auto *PhiU = dyn_cast<PHINode>(U)) 1800*5f757f3fSDimitry Andric collectPHINodes(*PhiU, SeenPHIs); 1801*5f757f3fSDimitry Andric } 1802*5f757f3fSDimitry Andric } 1803*5f757f3fSDimitry Andric 180406c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) { 1805*5f757f3fSDimitry Andric // Check in the cache first. 1806*5f757f3fSDimitry Andric if (const auto It = BreakPhiNodesCache.find(&I); 1807*5f757f3fSDimitry Andric It != BreakPhiNodesCache.end()) 180806c3fb27SDimitry Andric return It->second; 180906c3fb27SDimitry Andric 1810*5f757f3fSDimitry Andric // We consider PHI nodes as part of "chains", so given a PHI node I, we 1811*5f757f3fSDimitry Andric // recursively consider all its users and incoming values that are also PHI 1812*5f757f3fSDimitry Andric // nodes. We then make a decision about all of those PHIs at once. Either they 1813*5f757f3fSDimitry Andric // all get broken up, or none of them do. That way, we avoid cases where a 1814*5f757f3fSDimitry Andric // single PHI is/is not broken and we end up reforming/exploding a vector 1815*5f757f3fSDimitry Andric // multiple times, or even worse, doing it in a loop. 1816*5f757f3fSDimitry Andric SmallPtrSet<const PHINode *, 8> WorkList; 1817*5f757f3fSDimitry Andric collectPHINodes(I, WorkList); 181806c3fb27SDimitry Andric 1819*5f757f3fSDimitry Andric #ifndef NDEBUG 1820*5f757f3fSDimitry Andric // Check that none of the PHI nodes in the worklist are in the map. If some of 1821*5f757f3fSDimitry Andric // them are, it means we're not good enough at collecting related PHIs. 1822*5f757f3fSDimitry Andric for (const PHINode *WLP : WorkList) { 1823*5f757f3fSDimitry Andric assert(BreakPhiNodesCache.count(WLP) == 0); 1824*5f757f3fSDimitry Andric } 1825*5f757f3fSDimitry Andric #endif 1826*5f757f3fSDimitry Andric 1827*5f757f3fSDimitry Andric // To consider a PHI profitable to break, we need to see some interesting 1828*5f757f3fSDimitry Andric // incoming values. At least 2/3rd (rounded up) of all PHIs in the worklist 1829*5f757f3fSDimitry Andric // must have one to consider all PHIs breakable. 1830*5f757f3fSDimitry Andric // 1831*5f757f3fSDimitry Andric // This threshold has been determined through performance testing. 1832*5f757f3fSDimitry Andric // 1833*5f757f3fSDimitry Andric // Note that the computation below is equivalent to 1834*5f757f3fSDimitry Andric // 1835*5f757f3fSDimitry Andric // (unsigned)ceil((K / 3.0) * 2) 1836*5f757f3fSDimitry Andric // 1837*5f757f3fSDimitry Andric // It's simply written this way to avoid mixing integral/FP arithmetic. 1838*5f757f3fSDimitry Andric const auto Threshold = (alignTo(WorkList.size() * 2, 3) / 3); 1839*5f757f3fSDimitry Andric unsigned NumBreakablePHIs = 0; 1840*5f757f3fSDimitry Andric bool CanBreak = false; 1841*5f757f3fSDimitry Andric for (const PHINode *Cur : WorkList) { 184206c3fb27SDimitry Andric // Don't break PHIs that have no interesting incoming values. That is, where 1843*5f757f3fSDimitry Andric // there is no clear opportunity to fold the "extractelement" instructions 1844*5f757f3fSDimitry Andric // we would add. 184506c3fb27SDimitry Andric // 184606c3fb27SDimitry Andric // Note: IC does not run after this pass, so we're only interested in the 184706c3fb27SDimitry Andric // foldings that the DAG combiner can do. 1848*5f757f3fSDimitry Andric if (any_of(Cur->incoming_values(), isInterestingPHIIncomingValue)) { 1849*5f757f3fSDimitry Andric if (++NumBreakablePHIs >= Threshold) { 1850*5f757f3fSDimitry Andric CanBreak = true; 1851*5f757f3fSDimitry Andric break; 1852*5f757f3fSDimitry Andric } 1853*5f757f3fSDimitry Andric } 185406c3fb27SDimitry Andric } 185506c3fb27SDimitry Andric 1856*5f757f3fSDimitry Andric for (const PHINode *Cur : WorkList) 1857*5f757f3fSDimitry Andric BreakPhiNodesCache[Cur] = CanBreak; 185806c3fb27SDimitry Andric 1859*5f757f3fSDimitry Andric return CanBreak; 186006c3fb27SDimitry Andric } 186106c3fb27SDimitry Andric 186206c3fb27SDimitry Andric /// Helper class for "break large PHIs" (visitPHINode). 186306c3fb27SDimitry Andric /// 186406c3fb27SDimitry Andric /// This represents a slice of a PHI's incoming value, which is made up of: 186506c3fb27SDimitry Andric /// - The type of the slice (Ty) 186606c3fb27SDimitry Andric /// - The index in the incoming value's vector where the slice starts (Idx) 186706c3fb27SDimitry Andric /// - The number of elements in the slice (NumElts). 186806c3fb27SDimitry Andric /// It also keeps track of the NewPHI node inserted for this particular slice. 186906c3fb27SDimitry Andric /// 187006c3fb27SDimitry Andric /// Slice examples: 187106c3fb27SDimitry Andric /// <4 x i64> -> Split into four i64 slices. 187206c3fb27SDimitry Andric /// -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1] 187306c3fb27SDimitry Andric /// <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail. 187406c3fb27SDimitry Andric /// -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1] 187506c3fb27SDimitry Andric class VectorSlice { 187606c3fb27SDimitry Andric public: 187706c3fb27SDimitry Andric VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts) 187806c3fb27SDimitry Andric : Ty(Ty), Idx(Idx), NumElts(NumElts) {} 187906c3fb27SDimitry Andric 188006c3fb27SDimitry Andric Type *Ty = nullptr; 188106c3fb27SDimitry Andric unsigned Idx = 0; 188206c3fb27SDimitry Andric unsigned NumElts = 0; 188306c3fb27SDimitry Andric PHINode *NewPHI = nullptr; 188406c3fb27SDimitry Andric 188506c3fb27SDimitry Andric /// Slice \p Inc according to the information contained within this slice. 188606c3fb27SDimitry Andric /// This is cached, so if called multiple times for the same \p BB & \p Inc 188706c3fb27SDimitry Andric /// pair, it returns the same Sliced value as well. 188806c3fb27SDimitry Andric /// 188906c3fb27SDimitry Andric /// Note this *intentionally* does not return the same value for, say, 189006c3fb27SDimitry Andric /// [%bb.0, %0] & [%bb.1, %0] as: 189106c3fb27SDimitry Andric /// - It could cause issues with dominance (e.g. if bb.1 is seen first, then 189206c3fb27SDimitry Andric /// the value in bb.1 may not be reachable from bb.0 if it's its 189306c3fb27SDimitry Andric /// predecessor.) 189406c3fb27SDimitry Andric /// - We also want to make our extract instructions as local as possible so 189506c3fb27SDimitry Andric /// the DAG has better chances of folding them out. Duplicating them like 189606c3fb27SDimitry Andric /// that is beneficial in that regard. 189706c3fb27SDimitry Andric /// 189806c3fb27SDimitry Andric /// This is both a minor optimization to avoid creating duplicate 189906c3fb27SDimitry Andric /// instructions, but also a requirement for correctness. It is not forbidden 190006c3fb27SDimitry Andric /// for a PHI node to have the same [BB, Val] pair multiple times. If we 190106c3fb27SDimitry Andric /// returned a new value each time, those previously identical pairs would all 190206c3fb27SDimitry Andric /// have different incoming values (from the same block) and it'd cause a "PHI 190306c3fb27SDimitry Andric /// node has multiple entries for the same basic block with different incoming 190406c3fb27SDimitry Andric /// values!" verifier error. 190506c3fb27SDimitry Andric Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) { 190606c3fb27SDimitry Andric Value *&Res = SlicedVals[{BB, Inc}]; 190706c3fb27SDimitry Andric if (Res) 190806c3fb27SDimitry Andric return Res; 190906c3fb27SDimitry Andric 191006c3fb27SDimitry Andric IRBuilder<> B(BB->getTerminator()); 191106c3fb27SDimitry Andric if (Instruction *IncInst = dyn_cast<Instruction>(Inc)) 191206c3fb27SDimitry Andric B.SetCurrentDebugLocation(IncInst->getDebugLoc()); 191306c3fb27SDimitry Andric 191406c3fb27SDimitry Andric if (NumElts > 1) { 191506c3fb27SDimitry Andric SmallVector<int, 4> Mask; 191606c3fb27SDimitry Andric for (unsigned K = Idx; K < (Idx + NumElts); ++K) 191706c3fb27SDimitry Andric Mask.push_back(K); 191806c3fb27SDimitry Andric Res = B.CreateShuffleVector(Inc, Mask, NewValName); 191906c3fb27SDimitry Andric } else 192006c3fb27SDimitry Andric Res = B.CreateExtractElement(Inc, Idx, NewValName); 192106c3fb27SDimitry Andric 192206c3fb27SDimitry Andric return Res; 192306c3fb27SDimitry Andric } 192406c3fb27SDimitry Andric 192506c3fb27SDimitry Andric private: 192606c3fb27SDimitry Andric SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals; 192706c3fb27SDimitry Andric }; 192806c3fb27SDimitry Andric 192906c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) { 193006c3fb27SDimitry Andric // Break-up fixed-vector PHIs into smaller pieces. 193106c3fb27SDimitry Andric // Default threshold is 32, so it breaks up any vector that's >32 bits into 193206c3fb27SDimitry Andric // its elements, or into 32-bit pieces (for 8/16 bit elts). 193306c3fb27SDimitry Andric // 193406c3fb27SDimitry Andric // This is only helpful for DAGISel because it doesn't handle large PHIs as 193506c3fb27SDimitry Andric // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg. 193606c3fb27SDimitry Andric // With large, odd-sized PHIs we may end up needing many `build_vector` 193706c3fb27SDimitry Andric // operations with most elements being "undef". This inhibits a lot of 193806c3fb27SDimitry Andric // optimization opportunities and can result in unreasonably high register 193906c3fb27SDimitry Andric // pressure and the inevitable stack spilling. 1940*5f757f3fSDimitry Andric if (!BreakLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption) 194106c3fb27SDimitry Andric return false; 194206c3fb27SDimitry Andric 194306c3fb27SDimitry Andric FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType()); 1944*5f757f3fSDimitry Andric if (!FVT || FVT->getNumElements() == 1 || 1945*5f757f3fSDimitry Andric DL->getTypeSizeInBits(FVT) <= BreakLargePHIsThreshold) 194606c3fb27SDimitry Andric return false; 194706c3fb27SDimitry Andric 1948*5f757f3fSDimitry Andric if (!ForceBreakLargePHIs && !canBreakPHINode(I)) 194906c3fb27SDimitry Andric return false; 195006c3fb27SDimitry Andric 195106c3fb27SDimitry Andric std::vector<VectorSlice> Slices; 195206c3fb27SDimitry Andric 195306c3fb27SDimitry Andric Type *EltTy = FVT->getElementType(); 195406c3fb27SDimitry Andric { 195506c3fb27SDimitry Andric unsigned Idx = 0; 195606c3fb27SDimitry Andric // For 8/16 bits type, don't scalarize fully but break it up into as many 195706c3fb27SDimitry Andric // 32-bit slices as we can, and scalarize the tail. 195806c3fb27SDimitry Andric const unsigned EltSize = DL->getTypeSizeInBits(EltTy); 195906c3fb27SDimitry Andric const unsigned NumElts = FVT->getNumElements(); 196006c3fb27SDimitry Andric if (EltSize == 8 || EltSize == 16) { 196106c3fb27SDimitry Andric const unsigned SubVecSize = (32 / EltSize); 196206c3fb27SDimitry Andric Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize); 196306c3fb27SDimitry Andric for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End; 196406c3fb27SDimitry Andric Idx += SubVecSize) 196506c3fb27SDimitry Andric Slices.emplace_back(SubVecTy, Idx, SubVecSize); 196606c3fb27SDimitry Andric } 196706c3fb27SDimitry Andric 196806c3fb27SDimitry Andric // Scalarize all remaining elements. 196906c3fb27SDimitry Andric for (; Idx < NumElts; ++Idx) 197006c3fb27SDimitry Andric Slices.emplace_back(EltTy, Idx, 1); 197106c3fb27SDimitry Andric } 197206c3fb27SDimitry Andric 1973*5f757f3fSDimitry Andric assert(Slices.size() > 1); 197406c3fb27SDimitry Andric 197506c3fb27SDimitry Andric // Create one PHI per vector piece. The "VectorSlice" class takes care of 197606c3fb27SDimitry Andric // creating the necessary instruction to extract the relevant slices of each 197706c3fb27SDimitry Andric // incoming value. 197806c3fb27SDimitry Andric IRBuilder<> B(I.getParent()); 197906c3fb27SDimitry Andric B.SetCurrentDebugLocation(I.getDebugLoc()); 198006c3fb27SDimitry Andric 198106c3fb27SDimitry Andric unsigned IncNameSuffix = 0; 198206c3fb27SDimitry Andric for (VectorSlice &S : Slices) { 198306c3fb27SDimitry Andric // We need to reset the build on each iteration, because getSlicedVal may 198406c3fb27SDimitry Andric // have inserted something into I's BB. 198506c3fb27SDimitry Andric B.SetInsertPoint(I.getParent()->getFirstNonPHI()); 198606c3fb27SDimitry Andric S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues()); 198706c3fb27SDimitry Andric 198806c3fb27SDimitry Andric for (const auto &[Idx, BB] : enumerate(I.blocks())) { 198906c3fb27SDimitry Andric S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx), 199006c3fb27SDimitry Andric "largephi.extractslice" + 199106c3fb27SDimitry Andric std::to_string(IncNameSuffix++)), 199206c3fb27SDimitry Andric BB); 199306c3fb27SDimitry Andric } 199406c3fb27SDimitry Andric } 199506c3fb27SDimitry Andric 199606c3fb27SDimitry Andric // And replace this PHI with a vector of all the previous PHI values. 199706c3fb27SDimitry Andric Value *Vec = PoisonValue::get(FVT); 199806c3fb27SDimitry Andric unsigned NameSuffix = 0; 199906c3fb27SDimitry Andric for (VectorSlice &S : Slices) { 200006c3fb27SDimitry Andric const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++); 200106c3fb27SDimitry Andric if (S.NumElts > 1) 200206c3fb27SDimitry Andric Vec = 200306c3fb27SDimitry Andric B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName); 200406c3fb27SDimitry Andric else 200506c3fb27SDimitry Andric Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName); 200606c3fb27SDimitry Andric } 200706c3fb27SDimitry Andric 200806c3fb27SDimitry Andric I.replaceAllUsesWith(Vec); 200906c3fb27SDimitry Andric I.eraseFromParent(); 201006c3fb27SDimitry Andric return true; 201106c3fb27SDimitry Andric } 201206c3fb27SDimitry Andric 201306c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) { 20140b57cec5SDimitry Andric switch (I.getIntrinsicID()) { 20150b57cec5SDimitry Andric case Intrinsic::bitreverse: 20160b57cec5SDimitry Andric return visitBitreverseIntrinsicInst(I); 201706c3fb27SDimitry Andric case Intrinsic::minnum: 201806c3fb27SDimitry Andric return visitMinNum(I); 2019*5f757f3fSDimitry Andric case Intrinsic::sqrt: 2020*5f757f3fSDimitry Andric return visitSqrt(I); 20210b57cec5SDimitry Andric default: 20220b57cec5SDimitry Andric return false; 20230b57cec5SDimitry Andric } 20240b57cec5SDimitry Andric } 20250b57cec5SDimitry Andric 202606c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) { 20270b57cec5SDimitry Andric bool Changed = false; 20280b57cec5SDimitry Andric 20290b57cec5SDimitry Andric if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) && 203006c3fb27SDimitry Andric UA->isUniform(&I)) 20310b57cec5SDimitry Andric Changed |= promoteUniformBitreverseToI32(I); 20320b57cec5SDimitry Andric 20330b57cec5SDimitry Andric return Changed; 20340b57cec5SDimitry Andric } 20350b57cec5SDimitry Andric 203606c3fb27SDimitry Andric /// Match non-nan fract pattern. 203706c3fb27SDimitry Andric /// minnum(fsub(x, floor(x)), nextafter(1.0, -1.0) 203806c3fb27SDimitry Andric /// 203906c3fb27SDimitry Andric /// If fract is a useful instruction for the subtarget. Does not account for the 204006c3fb27SDimitry Andric /// nan handling; the instruction has a nan check on the input value. 204106c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) { 204206c3fb27SDimitry Andric if (ST->hasFractBug()) 204306c3fb27SDimitry Andric return nullptr; 204406c3fb27SDimitry Andric 204506c3fb27SDimitry Andric if (I.getIntrinsicID() != Intrinsic::minnum) 204606c3fb27SDimitry Andric return nullptr; 204706c3fb27SDimitry Andric 204806c3fb27SDimitry Andric Type *Ty = I.getType(); 204906c3fb27SDimitry Andric if (!isLegalFloatingTy(Ty->getScalarType())) 205006c3fb27SDimitry Andric return nullptr; 205106c3fb27SDimitry Andric 205206c3fb27SDimitry Andric Value *Arg0 = I.getArgOperand(0); 205306c3fb27SDimitry Andric Value *Arg1 = I.getArgOperand(1); 205406c3fb27SDimitry Andric 205506c3fb27SDimitry Andric const APFloat *C; 205606c3fb27SDimitry Andric if (!match(Arg1, m_APFloat(C))) 205706c3fb27SDimitry Andric return nullptr; 205806c3fb27SDimitry Andric 205906c3fb27SDimitry Andric APFloat One(1.0); 206006c3fb27SDimitry Andric bool LosesInfo; 206106c3fb27SDimitry Andric One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo); 206206c3fb27SDimitry Andric 206306c3fb27SDimitry Andric // Match nextafter(1.0, -1) 206406c3fb27SDimitry Andric One.next(true); 206506c3fb27SDimitry Andric if (One != *C) 206606c3fb27SDimitry Andric return nullptr; 206706c3fb27SDimitry Andric 206806c3fb27SDimitry Andric Value *FloorSrc; 206906c3fb27SDimitry Andric if (match(Arg0, m_FSub(m_Value(FloorSrc), 207006c3fb27SDimitry Andric m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc))))) 207106c3fb27SDimitry Andric return FloorSrc; 207206c3fb27SDimitry Andric return nullptr; 207306c3fb27SDimitry Andric } 207406c3fb27SDimitry Andric 207506c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder, 207606c3fb27SDimitry Andric Value *FractArg) { 207706c3fb27SDimitry Andric SmallVector<Value *, 4> FractVals; 207806c3fb27SDimitry Andric extractValues(Builder, FractVals, FractArg); 207906c3fb27SDimitry Andric 208006c3fb27SDimitry Andric SmallVector<Value *, 4> ResultVals(FractVals.size()); 208106c3fb27SDimitry Andric 208206c3fb27SDimitry Andric Type *Ty = FractArg->getType()->getScalarType(); 208306c3fb27SDimitry Andric for (unsigned I = 0, E = FractVals.size(); I != E; ++I) { 208406c3fb27SDimitry Andric ResultVals[I] = 208506c3fb27SDimitry Andric Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]}); 208606c3fb27SDimitry Andric } 208706c3fb27SDimitry Andric 208806c3fb27SDimitry Andric return insertValues(Builder, FractArg->getType(), ResultVals); 208906c3fb27SDimitry Andric } 209006c3fb27SDimitry Andric 209106c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) { 209206c3fb27SDimitry Andric Value *FractArg = matchFractPat(I); 209306c3fb27SDimitry Andric if (!FractArg) 209406c3fb27SDimitry Andric return false; 209506c3fb27SDimitry Andric 209606c3fb27SDimitry Andric // Match pattern for fract intrinsic in contexts where the nan check has been 209706c3fb27SDimitry Andric // optimized out (and hope the knowledge the source can't be nan wasn't lost). 209806c3fb27SDimitry Andric if (!I.hasNoNaNs() && !isKnownNeverNaN(FractArg, *DL, TLInfo)) 209906c3fb27SDimitry Andric return false; 210006c3fb27SDimitry Andric 210106c3fb27SDimitry Andric IRBuilder<> Builder(&I); 210206c3fb27SDimitry Andric FastMathFlags FMF = I.getFastMathFlags(); 210306c3fb27SDimitry Andric FMF.setNoNaNs(); 210406c3fb27SDimitry Andric Builder.setFastMathFlags(FMF); 210506c3fb27SDimitry Andric 210606c3fb27SDimitry Andric Value *Fract = applyFractPat(Builder, FractArg); 210706c3fb27SDimitry Andric Fract->takeName(&I); 210806c3fb27SDimitry Andric I.replaceAllUsesWith(Fract); 210906c3fb27SDimitry Andric 211006c3fb27SDimitry Andric RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo); 211106c3fb27SDimitry Andric return true; 211206c3fb27SDimitry Andric } 211306c3fb27SDimitry Andric 2114*5f757f3fSDimitry Andric static bool isOneOrNegOne(const Value *Val) { 2115*5f757f3fSDimitry Andric const APFloat *C; 2116*5f757f3fSDimitry Andric return match(Val, m_APFloat(C)) && C->getExactLog2Abs() == 0; 2117*5f757f3fSDimitry Andric } 2118*5f757f3fSDimitry Andric 2119*5f757f3fSDimitry Andric // Expand llvm.sqrt.f32 calls with !fpmath metadata in a semi-fast way. 2120*5f757f3fSDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitSqrt(IntrinsicInst &Sqrt) { 2121*5f757f3fSDimitry Andric Type *Ty = Sqrt.getType()->getScalarType(); 2122*5f757f3fSDimitry Andric if (!Ty->isFloatTy() && (!Ty->isHalfTy() || ST->has16BitInsts())) 2123*5f757f3fSDimitry Andric return false; 2124*5f757f3fSDimitry Andric 2125*5f757f3fSDimitry Andric const FPMathOperator *FPOp = cast<const FPMathOperator>(&Sqrt); 2126*5f757f3fSDimitry Andric FastMathFlags SqrtFMF = FPOp->getFastMathFlags(); 2127*5f757f3fSDimitry Andric 2128*5f757f3fSDimitry Andric // We're trying to handle the fast-but-not-that-fast case only. The lowering 2129*5f757f3fSDimitry Andric // of fast llvm.sqrt will give the raw instruction anyway. 2130*5f757f3fSDimitry Andric if (SqrtFMF.approxFunc() || HasUnsafeFPMath) 2131*5f757f3fSDimitry Andric return false; 2132*5f757f3fSDimitry Andric 2133*5f757f3fSDimitry Andric const float ReqdAccuracy = FPOp->getFPAccuracy(); 2134*5f757f3fSDimitry Andric 2135*5f757f3fSDimitry Andric // Defer correctly rounded expansion to codegen. 2136*5f757f3fSDimitry Andric if (ReqdAccuracy < 1.0f) 2137*5f757f3fSDimitry Andric return false; 2138*5f757f3fSDimitry Andric 2139*5f757f3fSDimitry Andric // FIXME: This is an ugly hack for this pass using forward iteration instead 2140*5f757f3fSDimitry Andric // of reverse. If it worked like a normal combiner, the rsq would form before 2141*5f757f3fSDimitry Andric // we saw a sqrt call. 2142*5f757f3fSDimitry Andric auto *FDiv = 2143*5f757f3fSDimitry Andric dyn_cast_or_null<FPMathOperator>(Sqrt.getUniqueUndroppableUser()); 2144*5f757f3fSDimitry Andric if (FDiv && FDiv->getOpcode() == Instruction::FDiv && 2145*5f757f3fSDimitry Andric FDiv->getFPAccuracy() >= 1.0f && 2146*5f757f3fSDimitry Andric canOptimizeWithRsq(FPOp, FDiv->getFastMathFlags(), SqrtFMF) && 2147*5f757f3fSDimitry Andric // TODO: We should also handle the arcp case for the fdiv with non-1 value 2148*5f757f3fSDimitry Andric isOneOrNegOne(FDiv->getOperand(0))) 2149*5f757f3fSDimitry Andric return false; 2150*5f757f3fSDimitry Andric 2151*5f757f3fSDimitry Andric Value *SrcVal = Sqrt.getOperand(0); 2152*5f757f3fSDimitry Andric bool CanTreatAsDAZ = canIgnoreDenormalInput(SrcVal, &Sqrt); 2153*5f757f3fSDimitry Andric 2154*5f757f3fSDimitry Andric // The raw instruction is 1 ulp, but the correction for denormal handling 2155*5f757f3fSDimitry Andric // brings it to 2. 2156*5f757f3fSDimitry Andric if (!CanTreatAsDAZ && ReqdAccuracy < 2.0f) 2157*5f757f3fSDimitry Andric return false; 2158*5f757f3fSDimitry Andric 2159*5f757f3fSDimitry Andric IRBuilder<> Builder(&Sqrt); 2160*5f757f3fSDimitry Andric SmallVector<Value *, 4> SrcVals; 2161*5f757f3fSDimitry Andric extractValues(Builder, SrcVals, SrcVal); 2162*5f757f3fSDimitry Andric 2163*5f757f3fSDimitry Andric SmallVector<Value *, 4> ResultVals(SrcVals.size()); 2164*5f757f3fSDimitry Andric for (int I = 0, E = SrcVals.size(); I != E; ++I) { 2165*5f757f3fSDimitry Andric if (CanTreatAsDAZ) 2166*5f757f3fSDimitry Andric ResultVals[I] = Builder.CreateCall(getSqrtF32(), SrcVals[I]); 2167*5f757f3fSDimitry Andric else 2168*5f757f3fSDimitry Andric ResultVals[I] = emitSqrtIEEE2ULP(Builder, SrcVals[I], SqrtFMF); 2169*5f757f3fSDimitry Andric } 2170*5f757f3fSDimitry Andric 2171*5f757f3fSDimitry Andric Value *NewSqrt = insertValues(Builder, Sqrt.getType(), ResultVals); 2172*5f757f3fSDimitry Andric NewSqrt->takeName(&Sqrt); 2173*5f757f3fSDimitry Andric Sqrt.replaceAllUsesWith(NewSqrt); 2174*5f757f3fSDimitry Andric Sqrt.eraseFromParent(); 2175*5f757f3fSDimitry Andric return true; 2176*5f757f3fSDimitry Andric } 2177*5f757f3fSDimitry Andric 21780b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::doInitialization(Module &M) { 217906c3fb27SDimitry Andric Impl.Mod = &M; 218006c3fb27SDimitry Andric Impl.DL = &Impl.Mod->getDataLayout(); 2181*5f757f3fSDimitry Andric Impl.SqrtF32 = nullptr; 2182*5f757f3fSDimitry Andric Impl.LdexpF32 = nullptr; 21830b57cec5SDimitry Andric return false; 21840b57cec5SDimitry Andric } 21850b57cec5SDimitry Andric 21860b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) { 21870b57cec5SDimitry Andric if (skipFunction(F)) 21880b57cec5SDimitry Andric return false; 21890b57cec5SDimitry Andric 21900b57cec5SDimitry Andric auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 21910b57cec5SDimitry Andric if (!TPC) 21920b57cec5SDimitry Andric return false; 21930b57cec5SDimitry Andric 21940b57cec5SDimitry Andric const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>(); 219506c3fb27SDimitry Andric Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 219606c3fb27SDimitry Andric Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); 219706c3fb27SDimitry Andric Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 219806c3fb27SDimitry Andric Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 21995ffd83dbSDimitry Andric auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 220006c3fb27SDimitry Andric Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr; 220106c3fb27SDimitry Andric Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); 2202*5f757f3fSDimitry Andric SIModeRegisterDefaults Mode(F, *Impl.ST); 220306c3fb27SDimitry Andric Impl.HasFP32DenormalFlush = 220406c3fb27SDimitry Andric Mode.FP32Denormals == DenormalMode::getPreserveSign(); 220506c3fb27SDimitry Andric return Impl.run(F); 22060b57cec5SDimitry Andric } 22070b57cec5SDimitry Andric 220806c3fb27SDimitry Andric PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F, 220906c3fb27SDimitry Andric FunctionAnalysisManager &FAM) { 221006c3fb27SDimitry Andric AMDGPUCodeGenPrepareImpl Impl; 221106c3fb27SDimitry Andric Impl.Mod = F.getParent(); 221206c3fb27SDimitry Andric Impl.DL = &Impl.Mod->getDataLayout(); 221306c3fb27SDimitry Andric Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F); 221406c3fb27SDimitry Andric Impl.ST = &TM.getSubtarget<GCNSubtarget>(F); 221506c3fb27SDimitry Andric Impl.AC = &FAM.getResult<AssumptionAnalysis>(F); 221606c3fb27SDimitry Andric Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F); 221706c3fb27SDimitry Andric Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); 221806c3fb27SDimitry Andric Impl.HasUnsafeFPMath = hasUnsafeFPMath(F); 2219*5f757f3fSDimitry Andric SIModeRegisterDefaults Mode(F, *Impl.ST); 222006c3fb27SDimitry Andric Impl.HasFP32DenormalFlush = 222106c3fb27SDimitry Andric Mode.FP32Denormals == DenormalMode::getPreserveSign(); 222206c3fb27SDimitry Andric PreservedAnalyses PA = PreservedAnalyses::none(); 222306c3fb27SDimitry Andric if (!Impl.FlowChanged) 222406c3fb27SDimitry Andric PA.preserveSet<CFGAnalyses>(); 222506c3fb27SDimitry Andric return Impl.run(F) ? PA : PreservedAnalyses::all(); 22260b57cec5SDimitry Andric } 22270b57cec5SDimitry Andric 22280b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE, 22290b57cec5SDimitry Andric "AMDGPU IR optimizations", false, false) 22300b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 223106c3fb27SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 223206c3fb27SDimitry Andric INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 22330b57cec5SDimitry Andric INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations", 22340b57cec5SDimitry Andric false, false) 22350b57cec5SDimitry Andric 22360b57cec5SDimitry Andric char AMDGPUCodeGenPrepare::ID = 0; 22370b57cec5SDimitry Andric 22380b57cec5SDimitry Andric FunctionPass *llvm::createAMDGPUCodeGenPreparePass() { 22390b57cec5SDimitry Andric return new AMDGPUCodeGenPrepare(); 22400b57cec5SDimitry Andric } 2241