xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
10b57cec5SDimitry Andric //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric /// \file
100b57cec5SDimitry Andric /// This pass does misc. AMDGPU optimizations on IR before instruction
110b57cec5SDimitry Andric /// selection.
120b57cec5SDimitry Andric //
130b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
140b57cec5SDimitry Andric 
150b57cec5SDimitry Andric #include "AMDGPU.h"
160b57cec5SDimitry Andric #include "AMDGPUTargetMachine.h"
17*06c3fb27SDimitry Andric #include "SIModeRegisterDefaults.h"
180b57cec5SDimitry Andric #include "llvm/Analysis/AssumptionCache.h"
195ffd83dbSDimitry Andric #include "llvm/Analysis/ConstantFolding.h"
20*06c3fb27SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h"
21*06c3fb27SDimitry Andric #include "llvm/Analysis/UniformityAnalysis.h"
220b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
230b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h"
245ffd83dbSDimitry Andric #include "llvm/IR/Dominators.h"
25*06c3fb27SDimitry Andric #include "llvm/IR/IRBuilder.h"
260b57cec5SDimitry Andric #include "llvm/IR/InstVisitor.h"
27e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h"
28*06c3fb27SDimitry Andric #include "llvm/IR/PatternMatch.h"
29480093f4SDimitry Andric #include "llvm/InitializePasses.h"
300b57cec5SDimitry Andric #include "llvm/Pass.h"
31e8d8bef9SDimitry Andric #include "llvm/Support/KnownBits.h"
325ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/IntegerDivision.h"
33*06c3fb27SDimitry Andric #include "llvm/Transforms/Utils/Local.h"
340b57cec5SDimitry Andric 
350b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-codegenprepare"
360b57cec5SDimitry Andric 
370b57cec5SDimitry Andric using namespace llvm;
38*06c3fb27SDimitry Andric using namespace llvm::PatternMatch;
390b57cec5SDimitry Andric 
400b57cec5SDimitry Andric namespace {
410b57cec5SDimitry Andric 
420b57cec5SDimitry Andric static cl::opt<bool> WidenLoads(
430b57cec5SDimitry Andric   "amdgpu-codegenprepare-widen-constant-loads",
440b57cec5SDimitry Andric   cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
450b57cec5SDimitry Andric   cl::ReallyHidden,
465ffd83dbSDimitry Andric   cl::init(false));
470b57cec5SDimitry Andric 
48e8d8bef9SDimitry Andric static cl::opt<bool> Widen16BitOps(
49e8d8bef9SDimitry Andric   "amdgpu-codegenprepare-widen-16-bit-ops",
50e8d8bef9SDimitry Andric   cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"),
51e8d8bef9SDimitry Andric   cl::ReallyHidden,
52e8d8bef9SDimitry Andric   cl::init(true));
53e8d8bef9SDimitry Andric 
54*06c3fb27SDimitry Andric static cl::opt<bool>
55*06c3fb27SDimitry Andric     ScalarizeLargePHIs("amdgpu-codegenprepare-break-large-phis",
56*06c3fb27SDimitry Andric                        cl::desc("Break large PHI nodes for DAGISel"),
57*06c3fb27SDimitry Andric                        cl::ReallyHidden, cl::init(true));
58*06c3fb27SDimitry Andric 
59*06c3fb27SDimitry Andric static cl::opt<bool>
60*06c3fb27SDimitry Andric     ForceScalarizeLargePHIs("amdgpu-codegenprepare-force-break-large-phis",
61*06c3fb27SDimitry Andric                             cl::desc("For testing purposes, always break large "
62*06c3fb27SDimitry Andric                                      "PHIs even if it isn't profitable."),
63*06c3fb27SDimitry Andric                             cl::ReallyHidden, cl::init(false));
64*06c3fb27SDimitry Andric 
65*06c3fb27SDimitry Andric static cl::opt<unsigned> ScalarizeLargePHIsThreshold(
66*06c3fb27SDimitry Andric     "amdgpu-codegenprepare-break-large-phis-threshold",
67*06c3fb27SDimitry Andric     cl::desc("Minimum type size in bits for breaking large PHI nodes"),
68*06c3fb27SDimitry Andric     cl::ReallyHidden, cl::init(32));
69*06c3fb27SDimitry Andric 
708bcb0991SDimitry Andric static cl::opt<bool> UseMul24Intrin(
718bcb0991SDimitry Andric   "amdgpu-codegenprepare-mul24",
728bcb0991SDimitry Andric   cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
738bcb0991SDimitry Andric   cl::ReallyHidden,
748bcb0991SDimitry Andric   cl::init(true));
758bcb0991SDimitry Andric 
765ffd83dbSDimitry Andric // Legalize 64-bit division by using the generic IR expansion.
775ffd83dbSDimitry Andric static cl::opt<bool> ExpandDiv64InIR(
785ffd83dbSDimitry Andric   "amdgpu-codegenprepare-expand-div64",
795ffd83dbSDimitry Andric   cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
805ffd83dbSDimitry Andric   cl::ReallyHidden,
815ffd83dbSDimitry Andric   cl::init(false));
825ffd83dbSDimitry Andric 
835ffd83dbSDimitry Andric // Leave all division operations as they are. This supersedes ExpandDiv64InIR
845ffd83dbSDimitry Andric // and is used for testing the legalizer.
855ffd83dbSDimitry Andric static cl::opt<bool> DisableIDivExpand(
865ffd83dbSDimitry Andric   "amdgpu-codegenprepare-disable-idiv-expansion",
875ffd83dbSDimitry Andric   cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
885ffd83dbSDimitry Andric   cl::ReallyHidden,
895ffd83dbSDimitry Andric   cl::init(false));
905ffd83dbSDimitry Andric 
91*06c3fb27SDimitry Andric // Disable processing of fdiv so we can better test the backend implementations.
92*06c3fb27SDimitry Andric static cl::opt<bool> DisableFDivExpand(
93*06c3fb27SDimitry Andric   "amdgpu-codegenprepare-disable-fdiv-expansion",
94*06c3fb27SDimitry Andric   cl::desc("Prevent expanding floating point division in AMDGPUCodeGenPrepare"),
95*06c3fb27SDimitry Andric   cl::ReallyHidden,
96*06c3fb27SDimitry Andric   cl::init(false));
97*06c3fb27SDimitry Andric 
98*06c3fb27SDimitry Andric class AMDGPUCodeGenPrepareImpl
99*06c3fb27SDimitry Andric     : public InstVisitor<AMDGPUCodeGenPrepareImpl, bool> {
100*06c3fb27SDimitry Andric public:
1010b57cec5SDimitry Andric   const GCNSubtarget *ST = nullptr;
102*06c3fb27SDimitry Andric   const TargetLibraryInfo *TLInfo = nullptr;
1030b57cec5SDimitry Andric   AssumptionCache *AC = nullptr;
1045ffd83dbSDimitry Andric   DominatorTree *DT = nullptr;
105*06c3fb27SDimitry Andric   UniformityInfo *UA = nullptr;
1060b57cec5SDimitry Andric   Module *Mod = nullptr;
1070b57cec5SDimitry Andric   const DataLayout *DL = nullptr;
1080b57cec5SDimitry Andric   bool HasUnsafeFPMath = false;
109*06c3fb27SDimitry Andric   bool HasFP32DenormalFlush = false;
110*06c3fb27SDimitry Andric   bool FlowChanged = false;
111*06c3fb27SDimitry Andric 
112*06c3fb27SDimitry Andric   DenseMap<const PHINode *, bool> BreakPhiNodesCache;
113*06c3fb27SDimitry Andric 
114*06c3fb27SDimitry Andric   bool canBreakPHINode(const PHINode &I);
1150b57cec5SDimitry Andric 
1160b57cec5SDimitry Andric   /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
1170b57cec5SDimitry Andric   /// binary operation \p V.
1180b57cec5SDimitry Andric   ///
1190b57cec5SDimitry Andric   /// \returns Binary operation \p V.
1200b57cec5SDimitry Andric   /// \returns \p T's base element bit width.
1210b57cec5SDimitry Andric   unsigned getBaseElementBitWidth(const Type *T) const;
1220b57cec5SDimitry Andric 
1230b57cec5SDimitry Andric   /// \returns Equivalent 32 bit integer type for given type \p T. For example,
1240b57cec5SDimitry Andric   /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
1250b57cec5SDimitry Andric   /// is returned.
1260b57cec5SDimitry Andric   Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
1270b57cec5SDimitry Andric 
1280b57cec5SDimitry Andric   /// \returns True if binary operation \p I is a signed binary operation, false
1290b57cec5SDimitry Andric   /// otherwise.
1300b57cec5SDimitry Andric   bool isSigned(const BinaryOperator &I) const;
1310b57cec5SDimitry Andric 
1320b57cec5SDimitry Andric   /// \returns True if the condition of 'select' operation \p I comes from a
1330b57cec5SDimitry Andric   /// signed 'icmp' operation, false otherwise.
1340b57cec5SDimitry Andric   bool isSigned(const SelectInst &I) const;
1350b57cec5SDimitry Andric 
1360b57cec5SDimitry Andric   /// \returns True if type \p T needs to be promoted to 32 bit integer type,
1370b57cec5SDimitry Andric   /// false otherwise.
1380b57cec5SDimitry Andric   bool needsPromotionToI32(const Type *T) const;
1390b57cec5SDimitry Andric 
140*06c3fb27SDimitry Andric   /// Return true if \p T is a legal scalar floating point type.
141*06c3fb27SDimitry Andric   bool isLegalFloatingTy(const Type *T) const;
142*06c3fb27SDimitry Andric 
143*06c3fb27SDimitry Andric   /// Wrapper to pass all the arguments to computeKnownFPClass
144*06c3fb27SDimitry Andric   KnownFPClass computeKnownFPClass(const Value *V, FPClassTest Interested,
145*06c3fb27SDimitry Andric                                    const Instruction *CtxI) const {
146*06c3fb27SDimitry Andric     return llvm::computeKnownFPClass(V, *DL, Interested, 0, TLInfo, AC, CtxI,
147*06c3fb27SDimitry Andric                                      DT);
148*06c3fb27SDimitry Andric   }
149*06c3fb27SDimitry Andric 
150*06c3fb27SDimitry Andric   bool canIgnoreDenormalInput(const Value *V, const Instruction *CtxI) const {
151*06c3fb27SDimitry Andric     return HasFP32DenormalFlush ||
152*06c3fb27SDimitry Andric            computeKnownFPClass(V, fcSubnormal, CtxI).isKnownNeverSubnormal();
153*06c3fb27SDimitry Andric   }
154*06c3fb27SDimitry Andric 
1550b57cec5SDimitry Andric   /// Promotes uniform binary operation \p I to equivalent 32 bit binary
1560b57cec5SDimitry Andric   /// operation.
1570b57cec5SDimitry Andric   ///
1580b57cec5SDimitry Andric   /// \details \p I's base element bit width must be greater than 1 and less
1590b57cec5SDimitry Andric   /// than or equal 16. Promotion is done by sign or zero extending operands to
1600b57cec5SDimitry Andric   /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
1610b57cec5SDimitry Andric   /// truncating the result of 32 bit binary operation back to \p I's original
1620b57cec5SDimitry Andric   /// type. Division operation is not promoted.
1630b57cec5SDimitry Andric   ///
1640b57cec5SDimitry Andric   /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
1650b57cec5SDimitry Andric   /// false otherwise.
1660b57cec5SDimitry Andric   bool promoteUniformOpToI32(BinaryOperator &I) const;
1670b57cec5SDimitry Andric 
1680b57cec5SDimitry Andric   /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
1690b57cec5SDimitry Andric   ///
1700b57cec5SDimitry Andric   /// \details \p I's base element bit width must be greater than 1 and less
1710b57cec5SDimitry Andric   /// than or equal 16. Promotion is done by sign or zero extending operands to
1720b57cec5SDimitry Andric   /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
1730b57cec5SDimitry Andric   ///
1740b57cec5SDimitry Andric   /// \returns True.
1750b57cec5SDimitry Andric   bool promoteUniformOpToI32(ICmpInst &I) const;
1760b57cec5SDimitry Andric 
1770b57cec5SDimitry Andric   /// Promotes uniform 'select' operation \p I to 32 bit 'select'
1780b57cec5SDimitry Andric   /// operation.
1790b57cec5SDimitry Andric   ///
1800b57cec5SDimitry Andric   /// \details \p I's base element bit width must be greater than 1 and less
1810b57cec5SDimitry Andric   /// than or equal 16. Promotion is done by sign or zero extending operands to
1820b57cec5SDimitry Andric   /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
1830b57cec5SDimitry Andric   /// result of 32 bit 'select' operation back to \p I's original type.
1840b57cec5SDimitry Andric   ///
1850b57cec5SDimitry Andric   /// \returns True.
1860b57cec5SDimitry Andric   bool promoteUniformOpToI32(SelectInst &I) const;
1870b57cec5SDimitry Andric 
1880b57cec5SDimitry Andric   /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
1890b57cec5SDimitry Andric   /// intrinsic.
1900b57cec5SDimitry Andric   ///
1910b57cec5SDimitry Andric   /// \details \p I's base element bit width must be greater than 1 and less
1920b57cec5SDimitry Andric   /// than or equal 16. Promotion is done by zero extending the operand to 32
1930b57cec5SDimitry Andric   /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
1940b57cec5SDimitry Andric   /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
1950b57cec5SDimitry Andric   /// shift amount is 32 minus \p I's base element bit width), and truncating
1960b57cec5SDimitry Andric   /// the result of the shift operation back to \p I's original type.
1970b57cec5SDimitry Andric   ///
1980b57cec5SDimitry Andric   /// \returns True.
1990b57cec5SDimitry Andric   bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
2000b57cec5SDimitry Andric 
201349cc55cSDimitry Andric   /// \returns The minimum number of bits needed to store the value of \Op as an
202349cc55cSDimitry Andric   /// unsigned integer. Truncating to this size and then zero-extending to
20304eeddc0SDimitry Andric   /// the original will not change the value.
20404eeddc0SDimitry Andric   unsigned numBitsUnsigned(Value *Op) const;
205349cc55cSDimitry Andric 
206349cc55cSDimitry Andric   /// \returns The minimum number of bits needed to store the value of \Op as a
207349cc55cSDimitry Andric   /// signed integer. Truncating to this size and then sign-extending to
20804eeddc0SDimitry Andric   /// the original size will not change the value.
20904eeddc0SDimitry Andric   unsigned numBitsSigned(Value *Op) const;
2100b57cec5SDimitry Andric 
2110b57cec5SDimitry Andric   /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
2120b57cec5SDimitry Andric   /// SelectionDAG has an issue where an and asserting the bits are known
2130b57cec5SDimitry Andric   bool replaceMulWithMul24(BinaryOperator &I) const;
2140b57cec5SDimitry Andric 
2155ffd83dbSDimitry Andric   /// Perform same function as equivalently named function in DAGCombiner. Since
2165ffd83dbSDimitry Andric   /// we expand some divisions here, we need to perform this before obscuring.
2175ffd83dbSDimitry Andric   bool foldBinOpIntoSelect(BinaryOperator &I) const;
2185ffd83dbSDimitry Andric 
2195ffd83dbSDimitry Andric   bool divHasSpecialOptimization(BinaryOperator &I,
2205ffd83dbSDimitry Andric                                  Value *Num, Value *Den) const;
2215ffd83dbSDimitry Andric   int getDivNumBits(BinaryOperator &I,
2225ffd83dbSDimitry Andric                     Value *Num, Value *Den,
2235ffd83dbSDimitry Andric                     unsigned AtLeast, bool Signed) const;
2245ffd83dbSDimitry Andric 
2250b57cec5SDimitry Andric   /// Expands 24 bit div or rem.
2260b57cec5SDimitry Andric   Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
2270b57cec5SDimitry Andric                         Value *Num, Value *Den,
2280b57cec5SDimitry Andric                         bool IsDiv, bool IsSigned) const;
2290b57cec5SDimitry Andric 
2305ffd83dbSDimitry Andric   Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
2315ffd83dbSDimitry Andric                             Value *Num, Value *Den, unsigned NumBits,
2325ffd83dbSDimitry Andric                             bool IsDiv, bool IsSigned) const;
2335ffd83dbSDimitry Andric 
2340b57cec5SDimitry Andric   /// Expands 32 bit div or rem.
2350b57cec5SDimitry Andric   Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
2360b57cec5SDimitry Andric                         Value *Num, Value *Den) const;
2370b57cec5SDimitry Andric 
2385ffd83dbSDimitry Andric   Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
2395ffd83dbSDimitry Andric                         Value *Num, Value *Den) const;
2405ffd83dbSDimitry Andric   void expandDivRem64(BinaryOperator &I) const;
2415ffd83dbSDimitry Andric 
2420b57cec5SDimitry Andric   /// Widen a scalar load.
2430b57cec5SDimitry Andric   ///
2440b57cec5SDimitry Andric   /// \details \p Widen scalar load for uniform, small type loads from constant
2450b57cec5SDimitry Andric   //  memory / to a full 32-bits and then truncate the input to allow a scalar
2460b57cec5SDimitry Andric   //  load instead of a vector load.
2470b57cec5SDimitry Andric   //
2480b57cec5SDimitry Andric   /// \returns True.
2490b57cec5SDimitry Andric 
2500b57cec5SDimitry Andric   bool canWidenScalarExtLoad(LoadInst &I) const;
2510b57cec5SDimitry Andric 
252*06c3fb27SDimitry Andric   Value *matchFractPat(IntrinsicInst &I);
253*06c3fb27SDimitry Andric   Value *applyFractPat(IRBuilder<> &Builder, Value *FractArg);
254*06c3fb27SDimitry Andric 
255*06c3fb27SDimitry Andric   bool canOptimizeWithRsq(const FPMathOperator *SqrtOp, FastMathFlags DivFMF,
256*06c3fb27SDimitry Andric                           FastMathFlags SqrtFMF) const;
257*06c3fb27SDimitry Andric 
258*06c3fb27SDimitry Andric   Value *optimizeWithRsq(IRBuilder<> &Builder, Value *Num, Value *Den,
259*06c3fb27SDimitry Andric                          FastMathFlags DivFMF, FastMathFlags SqrtFMF,
260*06c3fb27SDimitry Andric                          const Instruction *CtxI) const;
261*06c3fb27SDimitry Andric 
262*06c3fb27SDimitry Andric   Value *optimizeWithRcp(IRBuilder<> &Builder, Value *Num, Value *Den,
263*06c3fb27SDimitry Andric                          FastMathFlags FMF, const Instruction *CtxI) const;
264*06c3fb27SDimitry Andric   Value *optimizeWithFDivFast(IRBuilder<> &Builder, Value *Num, Value *Den,
265*06c3fb27SDimitry Andric                               float ReqdAccuracy) const;
266*06c3fb27SDimitry Andric 
267*06c3fb27SDimitry Andric   Value *visitFDivElement(IRBuilder<> &Builder, Value *Num, Value *Den,
268*06c3fb27SDimitry Andric                           FastMathFlags DivFMF, FastMathFlags SqrtFMF,
269*06c3fb27SDimitry Andric                           Value *RsqOp, const Instruction *FDiv,
270*06c3fb27SDimitry Andric                           float ReqdAccuracy) const;
271*06c3fb27SDimitry Andric 
272*06c3fb27SDimitry Andric   std::pair<Value *, Value *> getFrexpResults(IRBuilder<> &Builder,
273*06c3fb27SDimitry Andric                                               Value *Src) const;
274*06c3fb27SDimitry Andric 
275*06c3fb27SDimitry Andric   Value *emitRcpIEEE1ULP(IRBuilder<> &Builder, Value *Src,
276*06c3fb27SDimitry Andric                          bool IsNegative) const;
277*06c3fb27SDimitry Andric   Value *emitFrexpDiv(IRBuilder<> &Builder, Value *LHS, Value *RHS,
278*06c3fb27SDimitry Andric                       FastMathFlags FMF) const;
279*06c3fb27SDimitry Andric 
2800b57cec5SDimitry Andric public:
2810b57cec5SDimitry Andric   bool visitFDiv(BinaryOperator &I);
2820b57cec5SDimitry Andric 
2830b57cec5SDimitry Andric   bool visitInstruction(Instruction &I) { return false; }
2840b57cec5SDimitry Andric   bool visitBinaryOperator(BinaryOperator &I);
2850b57cec5SDimitry Andric   bool visitLoadInst(LoadInst &I);
2860b57cec5SDimitry Andric   bool visitICmpInst(ICmpInst &I);
2870b57cec5SDimitry Andric   bool visitSelectInst(SelectInst &I);
288*06c3fb27SDimitry Andric   bool visitPHINode(PHINode &I);
2890b57cec5SDimitry Andric 
2900b57cec5SDimitry Andric   bool visitIntrinsicInst(IntrinsicInst &I);
2910b57cec5SDimitry Andric   bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
292*06c3fb27SDimitry Andric   bool visitMinNum(IntrinsicInst &I);
293*06c3fb27SDimitry Andric   bool run(Function &F);
294*06c3fb27SDimitry Andric };
2950b57cec5SDimitry Andric 
296*06c3fb27SDimitry Andric class AMDGPUCodeGenPrepare : public FunctionPass {
297*06c3fb27SDimitry Andric private:
298*06c3fb27SDimitry Andric   AMDGPUCodeGenPrepareImpl Impl;
2990b57cec5SDimitry Andric 
300*06c3fb27SDimitry Andric public:
301*06c3fb27SDimitry Andric   static char ID;
302*06c3fb27SDimitry Andric   AMDGPUCodeGenPrepare() : FunctionPass(ID) {
303*06c3fb27SDimitry Andric     initializeAMDGPUCodeGenPreparePass(*PassRegistry::getPassRegistry());
304*06c3fb27SDimitry Andric   }
3050b57cec5SDimitry Andric   void getAnalysisUsage(AnalysisUsage &AU) const override {
3060b57cec5SDimitry Andric     AU.addRequired<AssumptionCacheTracker>();
307*06c3fb27SDimitry Andric     AU.addRequired<UniformityInfoWrapperPass>();
308*06c3fb27SDimitry Andric     AU.addRequired<TargetLibraryInfoWrapperPass>();
3095ffd83dbSDimitry Andric 
3105ffd83dbSDimitry Andric     // FIXME: Division expansion needs to preserve the dominator tree.
3115ffd83dbSDimitry Andric     if (!ExpandDiv64InIR)
3120b57cec5SDimitry Andric       AU.setPreservesAll();
3130b57cec5SDimitry Andric   }
314*06c3fb27SDimitry Andric   bool runOnFunction(Function &F) override;
315*06c3fb27SDimitry Andric   bool doInitialization(Module &M) override;
316*06c3fb27SDimitry Andric   StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
3170b57cec5SDimitry Andric };
3180b57cec5SDimitry Andric 
3190b57cec5SDimitry Andric } // end anonymous namespace
3200b57cec5SDimitry Andric 
321*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::run(Function &F) {
322*06c3fb27SDimitry Andric   bool MadeChange = false;
323*06c3fb27SDimitry Andric 
324*06c3fb27SDimitry Andric   Function::iterator NextBB;
325*06c3fb27SDimitry Andric   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
326*06c3fb27SDimitry Andric     BasicBlock *BB = &*FI;
327*06c3fb27SDimitry Andric     NextBB = std::next(FI);
328*06c3fb27SDimitry Andric 
329*06c3fb27SDimitry Andric     BasicBlock::iterator Next;
330*06c3fb27SDimitry Andric     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
331*06c3fb27SDimitry Andric          I = Next) {
332*06c3fb27SDimitry Andric       Next = std::next(I);
333*06c3fb27SDimitry Andric 
334*06c3fb27SDimitry Andric       MadeChange |= visit(*I);
335*06c3fb27SDimitry Andric 
336*06c3fb27SDimitry Andric       if (Next != E) { // Control flow changed
337*06c3fb27SDimitry Andric         BasicBlock *NextInstBB = Next->getParent();
338*06c3fb27SDimitry Andric         if (NextInstBB != BB) {
339*06c3fb27SDimitry Andric           BB = NextInstBB;
340*06c3fb27SDimitry Andric           E = BB->end();
341*06c3fb27SDimitry Andric           FE = F.end();
342*06c3fb27SDimitry Andric         }
343*06c3fb27SDimitry Andric       }
344*06c3fb27SDimitry Andric     }
345*06c3fb27SDimitry Andric   }
346*06c3fb27SDimitry Andric   return MadeChange;
347*06c3fb27SDimitry Andric }
348*06c3fb27SDimitry Andric 
349*06c3fb27SDimitry Andric unsigned AMDGPUCodeGenPrepareImpl::getBaseElementBitWidth(const Type *T) const {
3500b57cec5SDimitry Andric   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
3510b57cec5SDimitry Andric 
3520b57cec5SDimitry Andric   if (T->isIntegerTy())
3530b57cec5SDimitry Andric     return T->getIntegerBitWidth();
3540b57cec5SDimitry Andric   return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
3550b57cec5SDimitry Andric }
3560b57cec5SDimitry Andric 
357*06c3fb27SDimitry Andric Type *AMDGPUCodeGenPrepareImpl::getI32Ty(IRBuilder<> &B, const Type *T) const {
3580b57cec5SDimitry Andric   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
3590b57cec5SDimitry Andric 
3600b57cec5SDimitry Andric   if (T->isIntegerTy())
3610b57cec5SDimitry Andric     return B.getInt32Ty();
3625ffd83dbSDimitry Andric   return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
3630b57cec5SDimitry Andric }
3640b57cec5SDimitry Andric 
365*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::isSigned(const BinaryOperator &I) const {
3660b57cec5SDimitry Andric   return I.getOpcode() == Instruction::AShr ||
3670b57cec5SDimitry Andric       I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
3680b57cec5SDimitry Andric }
3690b57cec5SDimitry Andric 
370*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::isSigned(const SelectInst &I) const {
3710b57cec5SDimitry Andric   return isa<ICmpInst>(I.getOperand(0)) ?
3720b57cec5SDimitry Andric       cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
3730b57cec5SDimitry Andric }
3740b57cec5SDimitry Andric 
375*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::needsPromotionToI32(const Type *T) const {
376e8d8bef9SDimitry Andric   if (!Widen16BitOps)
377e8d8bef9SDimitry Andric     return false;
378e8d8bef9SDimitry Andric 
3790b57cec5SDimitry Andric   const IntegerType *IntTy = dyn_cast<IntegerType>(T);
3800b57cec5SDimitry Andric   if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
3810b57cec5SDimitry Andric     return true;
3820b57cec5SDimitry Andric 
3830b57cec5SDimitry Andric   if (const VectorType *VT = dyn_cast<VectorType>(T)) {
3840b57cec5SDimitry Andric     // TODO: The set of packed operations is more limited, so may want to
3850b57cec5SDimitry Andric     // promote some anyway.
3860b57cec5SDimitry Andric     if (ST->hasVOP3PInsts())
3870b57cec5SDimitry Andric       return false;
3880b57cec5SDimitry Andric 
3890b57cec5SDimitry Andric     return needsPromotionToI32(VT->getElementType());
3900b57cec5SDimitry Andric   }
3910b57cec5SDimitry Andric 
3920b57cec5SDimitry Andric   return false;
3930b57cec5SDimitry Andric }
3940b57cec5SDimitry Andric 
395*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::isLegalFloatingTy(const Type *Ty) const {
396*06c3fb27SDimitry Andric   return Ty->isFloatTy() || Ty->isDoubleTy() ||
397*06c3fb27SDimitry Andric          (Ty->isHalfTy() && ST->has16BitInsts());
398*06c3fb27SDimitry Andric }
399*06c3fb27SDimitry Andric 
4000b57cec5SDimitry Andric // Return true if the op promoted to i32 should have nsw set.
4010b57cec5SDimitry Andric static bool promotedOpIsNSW(const Instruction &I) {
4020b57cec5SDimitry Andric   switch (I.getOpcode()) {
4030b57cec5SDimitry Andric   case Instruction::Shl:
4040b57cec5SDimitry Andric   case Instruction::Add:
4050b57cec5SDimitry Andric   case Instruction::Sub:
4060b57cec5SDimitry Andric     return true;
4070b57cec5SDimitry Andric   case Instruction::Mul:
4080b57cec5SDimitry Andric     return I.hasNoUnsignedWrap();
4090b57cec5SDimitry Andric   default:
4100b57cec5SDimitry Andric     return false;
4110b57cec5SDimitry Andric   }
4120b57cec5SDimitry Andric }
4130b57cec5SDimitry Andric 
4140b57cec5SDimitry Andric // Return true if the op promoted to i32 should have nuw set.
4150b57cec5SDimitry Andric static bool promotedOpIsNUW(const Instruction &I) {
4160b57cec5SDimitry Andric   switch (I.getOpcode()) {
4170b57cec5SDimitry Andric   case Instruction::Shl:
4180b57cec5SDimitry Andric   case Instruction::Add:
4190b57cec5SDimitry Andric   case Instruction::Mul:
4200b57cec5SDimitry Andric     return true;
4210b57cec5SDimitry Andric   case Instruction::Sub:
4220b57cec5SDimitry Andric     return I.hasNoUnsignedWrap();
4230b57cec5SDimitry Andric   default:
4240b57cec5SDimitry Andric     return false;
4250b57cec5SDimitry Andric   }
4260b57cec5SDimitry Andric }
4270b57cec5SDimitry Andric 
428*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::canWidenScalarExtLoad(LoadInst &I) const {
4290b57cec5SDimitry Andric   Type *Ty = I.getType();
4300b57cec5SDimitry Andric   const DataLayout &DL = Mod->getDataLayout();
4310b57cec5SDimitry Andric   int TySize = DL.getTypeSizeInBits(Ty);
4325ffd83dbSDimitry Andric   Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
4330b57cec5SDimitry Andric 
434*06c3fb27SDimitry Andric   return I.isSimple() && TySize < 32 && Alignment >= 4 && UA->isUniform(&I);
4350b57cec5SDimitry Andric }
4360b57cec5SDimitry Andric 
437*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(BinaryOperator &I) const {
4380b57cec5SDimitry Andric   assert(needsPromotionToI32(I.getType()) &&
4390b57cec5SDimitry Andric          "I does not need promotion to i32");
4400b57cec5SDimitry Andric 
4410b57cec5SDimitry Andric   if (I.getOpcode() == Instruction::SDiv ||
4420b57cec5SDimitry Andric       I.getOpcode() == Instruction::UDiv ||
4430b57cec5SDimitry Andric       I.getOpcode() == Instruction::SRem ||
4440b57cec5SDimitry Andric       I.getOpcode() == Instruction::URem)
4450b57cec5SDimitry Andric     return false;
4460b57cec5SDimitry Andric 
4470b57cec5SDimitry Andric   IRBuilder<> Builder(&I);
4480b57cec5SDimitry Andric   Builder.SetCurrentDebugLocation(I.getDebugLoc());
4490b57cec5SDimitry Andric 
4500b57cec5SDimitry Andric   Type *I32Ty = getI32Ty(Builder, I.getType());
4510b57cec5SDimitry Andric   Value *ExtOp0 = nullptr;
4520b57cec5SDimitry Andric   Value *ExtOp1 = nullptr;
4530b57cec5SDimitry Andric   Value *ExtRes = nullptr;
4540b57cec5SDimitry Andric   Value *TruncRes = nullptr;
4550b57cec5SDimitry Andric 
4560b57cec5SDimitry Andric   if (isSigned(I)) {
4570b57cec5SDimitry Andric     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
4580b57cec5SDimitry Andric     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
4590b57cec5SDimitry Andric   } else {
4600b57cec5SDimitry Andric     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
4610b57cec5SDimitry Andric     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
4620b57cec5SDimitry Andric   }
4630b57cec5SDimitry Andric 
4640b57cec5SDimitry Andric   ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
4650b57cec5SDimitry Andric   if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
4660b57cec5SDimitry Andric     if (promotedOpIsNSW(cast<Instruction>(I)))
4670b57cec5SDimitry Andric       Inst->setHasNoSignedWrap();
4680b57cec5SDimitry Andric 
4690b57cec5SDimitry Andric     if (promotedOpIsNUW(cast<Instruction>(I)))
4700b57cec5SDimitry Andric       Inst->setHasNoUnsignedWrap();
4710b57cec5SDimitry Andric 
4720b57cec5SDimitry Andric     if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
4730b57cec5SDimitry Andric       Inst->setIsExact(ExactOp->isExact());
4740b57cec5SDimitry Andric   }
4750b57cec5SDimitry Andric 
4760b57cec5SDimitry Andric   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
4770b57cec5SDimitry Andric 
4780b57cec5SDimitry Andric   I.replaceAllUsesWith(TruncRes);
4790b57cec5SDimitry Andric   I.eraseFromParent();
4800b57cec5SDimitry Andric 
4810b57cec5SDimitry Andric   return true;
4820b57cec5SDimitry Andric }
4830b57cec5SDimitry Andric 
484*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(ICmpInst &I) const {
4850b57cec5SDimitry Andric   assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
4860b57cec5SDimitry Andric          "I does not need promotion to i32");
4870b57cec5SDimitry Andric 
4880b57cec5SDimitry Andric   IRBuilder<> Builder(&I);
4890b57cec5SDimitry Andric   Builder.SetCurrentDebugLocation(I.getDebugLoc());
4900b57cec5SDimitry Andric 
4910b57cec5SDimitry Andric   Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
4920b57cec5SDimitry Andric   Value *ExtOp0 = nullptr;
4930b57cec5SDimitry Andric   Value *ExtOp1 = nullptr;
4940b57cec5SDimitry Andric   Value *NewICmp  = nullptr;
4950b57cec5SDimitry Andric 
4960b57cec5SDimitry Andric   if (I.isSigned()) {
4970b57cec5SDimitry Andric     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
4980b57cec5SDimitry Andric     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
4990b57cec5SDimitry Andric   } else {
5000b57cec5SDimitry Andric     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
5010b57cec5SDimitry Andric     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
5020b57cec5SDimitry Andric   }
5030b57cec5SDimitry Andric   NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
5040b57cec5SDimitry Andric 
5050b57cec5SDimitry Andric   I.replaceAllUsesWith(NewICmp);
5060b57cec5SDimitry Andric   I.eraseFromParent();
5070b57cec5SDimitry Andric 
5080b57cec5SDimitry Andric   return true;
5090b57cec5SDimitry Andric }
5100b57cec5SDimitry Andric 
511*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::promoteUniformOpToI32(SelectInst &I) const {
5120b57cec5SDimitry Andric   assert(needsPromotionToI32(I.getType()) &&
5130b57cec5SDimitry Andric          "I does not need promotion to i32");
5140b57cec5SDimitry Andric 
5150b57cec5SDimitry Andric   IRBuilder<> Builder(&I);
5160b57cec5SDimitry Andric   Builder.SetCurrentDebugLocation(I.getDebugLoc());
5170b57cec5SDimitry Andric 
5180b57cec5SDimitry Andric   Type *I32Ty = getI32Ty(Builder, I.getType());
5190b57cec5SDimitry Andric   Value *ExtOp1 = nullptr;
5200b57cec5SDimitry Andric   Value *ExtOp2 = nullptr;
5210b57cec5SDimitry Andric   Value *ExtRes = nullptr;
5220b57cec5SDimitry Andric   Value *TruncRes = nullptr;
5230b57cec5SDimitry Andric 
5240b57cec5SDimitry Andric   if (isSigned(I)) {
5250b57cec5SDimitry Andric     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
5260b57cec5SDimitry Andric     ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
5270b57cec5SDimitry Andric   } else {
5280b57cec5SDimitry Andric     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
5290b57cec5SDimitry Andric     ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
5300b57cec5SDimitry Andric   }
5310b57cec5SDimitry Andric   ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
5320b57cec5SDimitry Andric   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
5330b57cec5SDimitry Andric 
5340b57cec5SDimitry Andric   I.replaceAllUsesWith(TruncRes);
5350b57cec5SDimitry Andric   I.eraseFromParent();
5360b57cec5SDimitry Andric 
5370b57cec5SDimitry Andric   return true;
5380b57cec5SDimitry Andric }
5390b57cec5SDimitry Andric 
540*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::promoteUniformBitreverseToI32(
5410b57cec5SDimitry Andric     IntrinsicInst &I) const {
5420b57cec5SDimitry Andric   assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
5430b57cec5SDimitry Andric          "I must be bitreverse intrinsic");
5440b57cec5SDimitry Andric   assert(needsPromotionToI32(I.getType()) &&
5450b57cec5SDimitry Andric          "I does not need promotion to i32");
5460b57cec5SDimitry Andric 
5470b57cec5SDimitry Andric   IRBuilder<> Builder(&I);
5480b57cec5SDimitry Andric   Builder.SetCurrentDebugLocation(I.getDebugLoc());
5490b57cec5SDimitry Andric 
5500b57cec5SDimitry Andric   Type *I32Ty = getI32Ty(Builder, I.getType());
5510b57cec5SDimitry Andric   Function *I32 =
5520b57cec5SDimitry Andric       Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
5530b57cec5SDimitry Andric   Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
5540b57cec5SDimitry Andric   Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
5550b57cec5SDimitry Andric   Value *LShrOp =
5560b57cec5SDimitry Andric       Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
5570b57cec5SDimitry Andric   Value *TruncRes =
5580b57cec5SDimitry Andric       Builder.CreateTrunc(LShrOp, I.getType());
5590b57cec5SDimitry Andric 
5600b57cec5SDimitry Andric   I.replaceAllUsesWith(TruncRes);
5610b57cec5SDimitry Andric   I.eraseFromParent();
5620b57cec5SDimitry Andric 
5630b57cec5SDimitry Andric   return true;
5640b57cec5SDimitry Andric }
5650b57cec5SDimitry Andric 
566*06c3fb27SDimitry Andric unsigned AMDGPUCodeGenPrepareImpl::numBitsUnsigned(Value *Op) const {
56704eeddc0SDimitry Andric   return computeKnownBits(Op, *DL, 0, AC).countMaxActiveBits();
5680b57cec5SDimitry Andric }
5690b57cec5SDimitry Andric 
570*06c3fb27SDimitry Andric unsigned AMDGPUCodeGenPrepareImpl::numBitsSigned(Value *Op) const {
57104eeddc0SDimitry Andric   return ComputeMaxSignificantBits(Op, *DL, 0, AC);
5720b57cec5SDimitry Andric }
5730b57cec5SDimitry Andric 
5740b57cec5SDimitry Andric static void extractValues(IRBuilder<> &Builder,
5750b57cec5SDimitry Andric                           SmallVectorImpl<Value *> &Values, Value *V) {
5765ffd83dbSDimitry Andric   auto *VT = dyn_cast<FixedVectorType>(V->getType());
5770b57cec5SDimitry Andric   if (!VT) {
5780b57cec5SDimitry Andric     Values.push_back(V);
5790b57cec5SDimitry Andric     return;
5800b57cec5SDimitry Andric   }
5810b57cec5SDimitry Andric 
5820b57cec5SDimitry Andric   for (int I = 0, E = VT->getNumElements(); I != E; ++I)
5830b57cec5SDimitry Andric     Values.push_back(Builder.CreateExtractElement(V, I));
5840b57cec5SDimitry Andric }
5850b57cec5SDimitry Andric 
5860b57cec5SDimitry Andric static Value *insertValues(IRBuilder<> &Builder,
5870b57cec5SDimitry Andric                            Type *Ty,
5880b57cec5SDimitry Andric                            SmallVectorImpl<Value *> &Values) {
589bdd1243dSDimitry Andric   if (!Ty->isVectorTy()) {
590bdd1243dSDimitry Andric     assert(Values.size() == 1);
5910b57cec5SDimitry Andric     return Values[0];
592bdd1243dSDimitry Andric   }
5930b57cec5SDimitry Andric 
594bdd1243dSDimitry Andric   Value *NewVal = PoisonValue::get(Ty);
5950b57cec5SDimitry Andric   for (int I = 0, E = Values.size(); I != E; ++I)
5960b57cec5SDimitry Andric     NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
5970b57cec5SDimitry Andric 
5980b57cec5SDimitry Andric   return NewVal;
5990b57cec5SDimitry Andric }
6000b57cec5SDimitry Andric 
601349cc55cSDimitry Andric // Returns 24-bit or 48-bit (as per `NumBits` and `Size`) mul of `LHS` and
602349cc55cSDimitry Andric // `RHS`. `NumBits` is the number of KnownBits of the result and `Size` is the
603349cc55cSDimitry Andric // width of the original destination.
604349cc55cSDimitry Andric static Value *getMul24(IRBuilder<> &Builder, Value *LHS, Value *RHS,
605349cc55cSDimitry Andric                        unsigned Size, unsigned NumBits, bool IsSigned) {
606349cc55cSDimitry Andric   if (Size <= 32 || NumBits <= 32) {
607349cc55cSDimitry Andric     Intrinsic::ID ID =
608349cc55cSDimitry Andric         IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24;
609349cc55cSDimitry Andric     return Builder.CreateIntrinsic(ID, {}, {LHS, RHS});
610349cc55cSDimitry Andric   }
611349cc55cSDimitry Andric 
612349cc55cSDimitry Andric   assert(NumBits <= 48);
613349cc55cSDimitry Andric 
614349cc55cSDimitry Andric   Intrinsic::ID LoID =
615349cc55cSDimitry Andric       IsSigned ? Intrinsic::amdgcn_mul_i24 : Intrinsic::amdgcn_mul_u24;
616349cc55cSDimitry Andric   Intrinsic::ID HiID =
617349cc55cSDimitry Andric       IsSigned ? Intrinsic::amdgcn_mulhi_i24 : Intrinsic::amdgcn_mulhi_u24;
618349cc55cSDimitry Andric 
619349cc55cSDimitry Andric   Value *Lo = Builder.CreateIntrinsic(LoID, {}, {LHS, RHS});
620349cc55cSDimitry Andric   Value *Hi = Builder.CreateIntrinsic(HiID, {}, {LHS, RHS});
621349cc55cSDimitry Andric 
622349cc55cSDimitry Andric   IntegerType *I64Ty = Builder.getInt64Ty();
623349cc55cSDimitry Andric   Lo = Builder.CreateZExtOrTrunc(Lo, I64Ty);
624349cc55cSDimitry Andric   Hi = Builder.CreateZExtOrTrunc(Hi, I64Ty);
625349cc55cSDimitry Andric 
626349cc55cSDimitry Andric   return Builder.CreateOr(Lo, Builder.CreateShl(Hi, 32));
627349cc55cSDimitry Andric }
628349cc55cSDimitry Andric 
629*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::replaceMulWithMul24(BinaryOperator &I) const {
6300b57cec5SDimitry Andric   if (I.getOpcode() != Instruction::Mul)
6310b57cec5SDimitry Andric     return false;
6320b57cec5SDimitry Andric 
6330b57cec5SDimitry Andric   Type *Ty = I.getType();
6340b57cec5SDimitry Andric   unsigned Size = Ty->getScalarSizeInBits();
6350b57cec5SDimitry Andric   if (Size <= 16 && ST->has16BitInsts())
6360b57cec5SDimitry Andric     return false;
6370b57cec5SDimitry Andric 
6380b57cec5SDimitry Andric   // Prefer scalar if this could be s_mul_i32
639*06c3fb27SDimitry Andric   if (UA->isUniform(&I))
6400b57cec5SDimitry Andric     return false;
6410b57cec5SDimitry Andric 
6420b57cec5SDimitry Andric   Value *LHS = I.getOperand(0);
6430b57cec5SDimitry Andric   Value *RHS = I.getOperand(1);
6440b57cec5SDimitry Andric   IRBuilder<> Builder(&I);
6450b57cec5SDimitry Andric   Builder.SetCurrentDebugLocation(I.getDebugLoc());
6460b57cec5SDimitry Andric 
647349cc55cSDimitry Andric   unsigned LHSBits = 0, RHSBits = 0;
648349cc55cSDimitry Andric   bool IsSigned = false;
6490b57cec5SDimitry Andric 
65004eeddc0SDimitry Andric   if (ST->hasMulU24() && (LHSBits = numBitsUnsigned(LHS)) <= 24 &&
65104eeddc0SDimitry Andric       (RHSBits = numBitsUnsigned(RHS)) <= 24) {
652349cc55cSDimitry Andric     IsSigned = false;
653349cc55cSDimitry Andric 
65404eeddc0SDimitry Andric   } else if (ST->hasMulI24() && (LHSBits = numBitsSigned(LHS)) <= 24 &&
65504eeddc0SDimitry Andric              (RHSBits = numBitsSigned(RHS)) <= 24) {
656349cc55cSDimitry Andric     IsSigned = true;
657349cc55cSDimitry Andric 
6580b57cec5SDimitry Andric   } else
6590b57cec5SDimitry Andric     return false;
6600b57cec5SDimitry Andric 
6610b57cec5SDimitry Andric   SmallVector<Value *, 4> LHSVals;
6620b57cec5SDimitry Andric   SmallVector<Value *, 4> RHSVals;
6630b57cec5SDimitry Andric   SmallVector<Value *, 4> ResultVals;
6640b57cec5SDimitry Andric   extractValues(Builder, LHSVals, LHS);
6650b57cec5SDimitry Andric   extractValues(Builder, RHSVals, RHS);
6660b57cec5SDimitry Andric 
6670b57cec5SDimitry Andric   IntegerType *I32Ty = Builder.getInt32Ty();
6680b57cec5SDimitry Andric   for (int I = 0, E = LHSVals.size(); I != E; ++I) {
6690b57cec5SDimitry Andric     Value *LHS, *RHS;
670349cc55cSDimitry Andric     if (IsSigned) {
6710b57cec5SDimitry Andric       LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
6720b57cec5SDimitry Andric       RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
673349cc55cSDimitry Andric     } else {
674349cc55cSDimitry Andric       LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
675349cc55cSDimitry Andric       RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
6760b57cec5SDimitry Andric     }
6770b57cec5SDimitry Andric 
678349cc55cSDimitry Andric     Value *Result =
679349cc55cSDimitry Andric         getMul24(Builder, LHS, RHS, Size, LHSBits + RHSBits, IsSigned);
6800b57cec5SDimitry Andric 
681349cc55cSDimitry Andric     if (IsSigned) {
682349cc55cSDimitry Andric       ResultVals.push_back(
683349cc55cSDimitry Andric           Builder.CreateSExtOrTrunc(Result, LHSVals[I]->getType()));
6840b57cec5SDimitry Andric     } else {
685349cc55cSDimitry Andric       ResultVals.push_back(
686349cc55cSDimitry Andric           Builder.CreateZExtOrTrunc(Result, LHSVals[I]->getType()));
6870b57cec5SDimitry Andric     }
6880b57cec5SDimitry Andric   }
6890b57cec5SDimitry Andric 
6908bcb0991SDimitry Andric   Value *NewVal = insertValues(Builder, Ty, ResultVals);
6918bcb0991SDimitry Andric   NewVal->takeName(&I);
6928bcb0991SDimitry Andric   I.replaceAllUsesWith(NewVal);
6930b57cec5SDimitry Andric   I.eraseFromParent();
6940b57cec5SDimitry Andric 
6950b57cec5SDimitry Andric   return true;
6960b57cec5SDimitry Andric }
6970b57cec5SDimitry Andric 
6985ffd83dbSDimitry Andric // Find a select instruction, which may have been casted. This is mostly to deal
6995ffd83dbSDimitry Andric // with cases where i16 selects were promoted here to i32.
7005ffd83dbSDimitry Andric static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
7015ffd83dbSDimitry Andric   Cast = nullptr;
7025ffd83dbSDimitry Andric   if (SelectInst *Sel = dyn_cast<SelectInst>(V))
7035ffd83dbSDimitry Andric     return Sel;
7040b57cec5SDimitry Andric 
7055ffd83dbSDimitry Andric   if ((Cast = dyn_cast<CastInst>(V))) {
7065ffd83dbSDimitry Andric     if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
7075ffd83dbSDimitry Andric       return Sel;
7080b57cec5SDimitry Andric   }
7090b57cec5SDimitry Andric 
7105ffd83dbSDimitry Andric   return nullptr;
7115ffd83dbSDimitry Andric }
7120b57cec5SDimitry Andric 
713*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::foldBinOpIntoSelect(BinaryOperator &BO) const {
7145ffd83dbSDimitry Andric   // Don't do this unless the old select is going away. We want to eliminate the
7155ffd83dbSDimitry Andric   // binary operator, not replace a binop with a select.
7165ffd83dbSDimitry Andric   int SelOpNo = 0;
7175ffd83dbSDimitry Andric 
7185ffd83dbSDimitry Andric   CastInst *CastOp;
7195ffd83dbSDimitry Andric 
7205ffd83dbSDimitry Andric   // TODO: Should probably try to handle some cases with multiple
7215ffd83dbSDimitry Andric   // users. Duplicating the select may be profitable for division.
7225ffd83dbSDimitry Andric   SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
7235ffd83dbSDimitry Andric   if (!Sel || !Sel->hasOneUse()) {
7245ffd83dbSDimitry Andric     SelOpNo = 1;
7255ffd83dbSDimitry Andric     Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
7265ffd83dbSDimitry Andric   }
7275ffd83dbSDimitry Andric 
7285ffd83dbSDimitry Andric   if (!Sel || !Sel->hasOneUse())
7290b57cec5SDimitry Andric     return false;
7300b57cec5SDimitry Andric 
7315ffd83dbSDimitry Andric   Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
7325ffd83dbSDimitry Andric   Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
7335ffd83dbSDimitry Andric   Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
7345ffd83dbSDimitry Andric   if (!CBO || !CT || !CF)
7355ffd83dbSDimitry Andric     return false;
7365ffd83dbSDimitry Andric 
7375ffd83dbSDimitry Andric   if (CastOp) {
7385ffd83dbSDimitry Andric     if (!CastOp->hasOneUse())
7395ffd83dbSDimitry Andric       return false;
7405ffd83dbSDimitry Andric     CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
7415ffd83dbSDimitry Andric     CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
7425ffd83dbSDimitry Andric   }
7435ffd83dbSDimitry Andric 
7445ffd83dbSDimitry Andric   // TODO: Handle special 0/-1 cases DAG combine does, although we only really
7455ffd83dbSDimitry Andric   // need to handle divisions here.
7465ffd83dbSDimitry Andric   Constant *FoldedT = SelOpNo ?
7475ffd83dbSDimitry Andric     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
7485ffd83dbSDimitry Andric     ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
749753f127fSDimitry Andric   if (!FoldedT || isa<ConstantExpr>(FoldedT))
7505ffd83dbSDimitry Andric     return false;
7515ffd83dbSDimitry Andric 
7525ffd83dbSDimitry Andric   Constant *FoldedF = SelOpNo ?
7535ffd83dbSDimitry Andric     ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
7545ffd83dbSDimitry Andric     ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
755753f127fSDimitry Andric   if (!FoldedF || isa<ConstantExpr>(FoldedF))
7565ffd83dbSDimitry Andric     return false;
7575ffd83dbSDimitry Andric 
7585ffd83dbSDimitry Andric   IRBuilder<> Builder(&BO);
7595ffd83dbSDimitry Andric   Builder.SetCurrentDebugLocation(BO.getDebugLoc());
7605ffd83dbSDimitry Andric   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
7615ffd83dbSDimitry Andric     Builder.setFastMathFlags(FPOp->getFastMathFlags());
7625ffd83dbSDimitry Andric 
7635ffd83dbSDimitry Andric   Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
7645ffd83dbSDimitry Andric                                           FoldedT, FoldedF);
7655ffd83dbSDimitry Andric   NewSelect->takeName(&BO);
7665ffd83dbSDimitry Andric   BO.replaceAllUsesWith(NewSelect);
7675ffd83dbSDimitry Andric   BO.eraseFromParent();
7685ffd83dbSDimitry Andric   if (CastOp)
7695ffd83dbSDimitry Andric     CastOp->eraseFromParent();
7705ffd83dbSDimitry Andric   Sel->eraseFromParent();
7715ffd83dbSDimitry Andric   return true;
7725ffd83dbSDimitry Andric }
7735ffd83dbSDimitry Andric 
774*06c3fb27SDimitry Andric std::pair<Value *, Value *>
775*06c3fb27SDimitry Andric AMDGPUCodeGenPrepareImpl::getFrexpResults(IRBuilder<> &Builder,
776*06c3fb27SDimitry Andric                                           Value *Src) const {
777*06c3fb27SDimitry Andric   Type *Ty = Src->getType();
778*06c3fb27SDimitry Andric   Value *Frexp = Builder.CreateIntrinsic(Intrinsic::frexp,
779*06c3fb27SDimitry Andric                                          {Ty, Builder.getInt32Ty()}, Src);
780*06c3fb27SDimitry Andric   Value *FrexpMant = Builder.CreateExtractValue(Frexp, {0});
781*06c3fb27SDimitry Andric 
782*06c3fb27SDimitry Andric   // Bypass the bug workaround for the exponent result since it doesn't matter.
783*06c3fb27SDimitry Andric   // TODO: Does the bug workaround even really need to consider the exponent
784*06c3fb27SDimitry Andric   // result? It's unspecified by the spec.
785*06c3fb27SDimitry Andric 
786*06c3fb27SDimitry Andric   Value *FrexpExp =
787*06c3fb27SDimitry Andric       ST->hasFractBug()
788*06c3fb27SDimitry Andric           ? Builder.CreateIntrinsic(Intrinsic::amdgcn_frexp_exp,
789*06c3fb27SDimitry Andric                                     {Builder.getInt32Ty(), Ty}, Src)
790*06c3fb27SDimitry Andric           : Builder.CreateExtractValue(Frexp, {1});
791*06c3fb27SDimitry Andric   return {FrexpMant, FrexpExp};
792*06c3fb27SDimitry Andric }
793*06c3fb27SDimitry Andric 
794*06c3fb27SDimitry Andric /// Emit an expansion of 1.0 / Src good for 1ulp that supports denormals.
795*06c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::emitRcpIEEE1ULP(IRBuilder<> &Builder,
796*06c3fb27SDimitry Andric                                                  Value *Src,
797*06c3fb27SDimitry Andric                                                  bool IsNegative) const {
798*06c3fb27SDimitry Andric   // Same as for 1.0, but expand the sign out of the constant.
799*06c3fb27SDimitry Andric   // -1.0 / x -> rcp (fneg x)
800*06c3fb27SDimitry Andric   if (IsNegative)
801*06c3fb27SDimitry Andric     Src = Builder.CreateFNeg(Src);
802*06c3fb27SDimitry Andric 
803*06c3fb27SDimitry Andric   // The rcp instruction doesn't support denormals, so scale the input
804*06c3fb27SDimitry Andric   // out of the denormal range and convert at the end.
805*06c3fb27SDimitry Andric   //
806*06c3fb27SDimitry Andric   // Expand as 2^-n * (1.0 / (x * 2^n))
807*06c3fb27SDimitry Andric 
808*06c3fb27SDimitry Andric   // TODO: Skip scaling if input is known never denormal and the input
809*06c3fb27SDimitry Andric   // range won't underflow to denormal. The hard part is knowing the
810*06c3fb27SDimitry Andric   // result. We need a range check, the result could be denormal for
811*06c3fb27SDimitry Andric   // 0x1p+126 < den <= 0x1p+127.
812*06c3fb27SDimitry Andric 
813*06c3fb27SDimitry Andric   Type *Ty = Src->getType();
814*06c3fb27SDimitry Andric 
815*06c3fb27SDimitry Andric   auto [FrexpMant, FrexpExp] = getFrexpResults(Builder, Src);
816*06c3fb27SDimitry Andric   Value *ScaleFactor = Builder.CreateNeg(FrexpExp);
817*06c3fb27SDimitry Andric   Value *Rcp = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMant);
818*06c3fb27SDimitry Andric   return Builder.CreateIntrinsic(Intrinsic::ldexp, {Ty, Builder.getInt32Ty()},
819*06c3fb27SDimitry Andric                                  {Rcp, ScaleFactor});
820*06c3fb27SDimitry Andric }
821*06c3fb27SDimitry Andric 
822*06c3fb27SDimitry Andric /// Emit a 2ulp expansion for fdiv by using frexp for input scaling.
823*06c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::emitFrexpDiv(IRBuilder<> &Builder, Value *LHS,
824*06c3fb27SDimitry Andric                                               Value *RHS,
825*06c3fb27SDimitry Andric                                               FastMathFlags FMF) const {
826*06c3fb27SDimitry Andric   // If we have have to work around the fract/frexp bug, we're worse off than
827*06c3fb27SDimitry Andric   // using the fdiv.fast expansion. The full safe expansion is faster if we have
828*06c3fb27SDimitry Andric   // fast FMA.
829*06c3fb27SDimitry Andric   if (HasFP32DenormalFlush && ST->hasFractBug() && !ST->hasFastFMAF32() &&
830*06c3fb27SDimitry Andric       (!FMF.noNaNs() || !FMF.noInfs()))
831*06c3fb27SDimitry Andric     return nullptr;
832*06c3fb27SDimitry Andric 
833*06c3fb27SDimitry Andric   // We're scaling the LHS to avoid a denormal input, and scale the denominator
834*06c3fb27SDimitry Andric   // to avoid large values underflowing the result.
835*06c3fb27SDimitry Andric   Type *Ty = LHS->getType();
836*06c3fb27SDimitry Andric 
837*06c3fb27SDimitry Andric   auto [FrexpMantRHS, FrexpExpRHS] = getFrexpResults(Builder, RHS);
838*06c3fb27SDimitry Andric 
839*06c3fb27SDimitry Andric   Value *Rcp =
840*06c3fb27SDimitry Andric       Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, FrexpMantRHS);
841*06c3fb27SDimitry Andric 
842*06c3fb27SDimitry Andric   auto [FrexpMantLHS, FrexpExpLHS] = getFrexpResults(Builder, LHS);
843*06c3fb27SDimitry Andric   Value *Mul = Builder.CreateFMul(FrexpMantLHS, Rcp);
844*06c3fb27SDimitry Andric 
845*06c3fb27SDimitry Andric   // We multiplied by 2^N/2^M, so we need to multiply by 2^(N-M) to scale the
846*06c3fb27SDimitry Andric   // result.
847*06c3fb27SDimitry Andric   Value *ExpDiff = Builder.CreateSub(FrexpExpLHS, FrexpExpRHS);
848*06c3fb27SDimitry Andric   return Builder.CreateIntrinsic(Intrinsic::ldexp, {Ty, Builder.getInt32Ty()},
849*06c3fb27SDimitry Andric                                  {Mul, ExpDiff});
850*06c3fb27SDimitry Andric }
851*06c3fb27SDimitry Andric 
852*06c3fb27SDimitry Andric /// Emit an expansion of 1.0 / sqrt(Src) good for 1ulp that supports denormals.
853*06c3fb27SDimitry Andric static Value *emitRsqIEEE1ULP(IRBuilder<> &Builder, Value *Src,
854*06c3fb27SDimitry Andric                               bool IsNegative) {
855*06c3fb27SDimitry Andric   // bool need_scale = x < 0x1p-126f;
856*06c3fb27SDimitry Andric   // float input_scale = need_scale ? 0x1.0p+24f : 1.0f;
857*06c3fb27SDimitry Andric   // float output_scale = need_scale ? 0x1.0p+12f : 1.0f;
858*06c3fb27SDimitry Andric   // rsq(x * input_scale) * output_scale;
859*06c3fb27SDimitry Andric 
860*06c3fb27SDimitry Andric   Type *Ty = Src->getType();
861*06c3fb27SDimitry Andric   APFloat SmallestNormal =
862*06c3fb27SDimitry Andric       APFloat::getSmallestNormalized(Ty->getFltSemantics());
863*06c3fb27SDimitry Andric   Value *NeedScale =
864*06c3fb27SDimitry Andric       Builder.CreateFCmpOLT(Src, ConstantFP::get(Ty, SmallestNormal));
865*06c3fb27SDimitry Andric   Constant *One = ConstantFP::get(Ty, 1.0);
866*06c3fb27SDimitry Andric   Constant *InputScale = ConstantFP::get(Ty, 0x1.0p+24);
867*06c3fb27SDimitry Andric   Constant *OutputScale =
868*06c3fb27SDimitry Andric       ConstantFP::get(Ty, IsNegative ? -0x1.0p+12 : 0x1.0p+12);
869*06c3fb27SDimitry Andric 
870*06c3fb27SDimitry Andric   Value *InputScaleFactor = Builder.CreateSelect(NeedScale, InputScale, One);
871*06c3fb27SDimitry Andric 
872*06c3fb27SDimitry Andric   Value *ScaledInput = Builder.CreateFMul(Src, InputScaleFactor);
873*06c3fb27SDimitry Andric   Value *Rsq = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, ScaledInput);
874*06c3fb27SDimitry Andric   Value *OutputScaleFactor = Builder.CreateSelect(
875*06c3fb27SDimitry Andric       NeedScale, OutputScale, IsNegative ? ConstantFP::get(Ty, -1.0) : One);
876*06c3fb27SDimitry Andric 
877*06c3fb27SDimitry Andric   return Builder.CreateFMul(Rsq, OutputScaleFactor);
878*06c3fb27SDimitry Andric }
879*06c3fb27SDimitry Andric 
880*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::canOptimizeWithRsq(const FPMathOperator *SqrtOp,
881*06c3fb27SDimitry Andric                                                   FastMathFlags DivFMF,
882*06c3fb27SDimitry Andric                                                   FastMathFlags SqrtFMF) const {
883*06c3fb27SDimitry Andric   // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp.
884*06c3fb27SDimitry Andric   if (!DivFMF.allowContract() || !SqrtFMF.allowContract())
885*06c3fb27SDimitry Andric     return false;
886*06c3fb27SDimitry Andric 
887*06c3fb27SDimitry Andric   // v_rsq_f32 gives 1ulp
888*06c3fb27SDimitry Andric   return SqrtFMF.approxFunc() || HasUnsafeFPMath ||
889*06c3fb27SDimitry Andric          SqrtOp->getFPAccuracy() >= 1.0f;
890*06c3fb27SDimitry Andric }
891*06c3fb27SDimitry Andric 
892*06c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::optimizeWithRsq(
893*06c3fb27SDimitry Andric     IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF,
894*06c3fb27SDimitry Andric     FastMathFlags SqrtFMF, const Instruction *CtxI) const {
895*06c3fb27SDimitry Andric   // The rsqrt contraction increases accuracy from ~2ulp to ~1ulp.
896*06c3fb27SDimitry Andric   assert(DivFMF.allowContract() && SqrtFMF.allowContract());
897*06c3fb27SDimitry Andric 
898*06c3fb27SDimitry Andric   // rsq_f16 is accurate to 0.51 ulp.
899*06c3fb27SDimitry Andric   // rsq_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
900*06c3fb27SDimitry Andric   // rsq_f64 is never accurate.
901*06c3fb27SDimitry Andric   const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num);
902*06c3fb27SDimitry Andric   if (!CLHS)
903*06c3fb27SDimitry Andric     return nullptr;
904*06c3fb27SDimitry Andric 
905*06c3fb27SDimitry Andric   assert(Den->getType()->isFloatTy());
906*06c3fb27SDimitry Andric 
907*06c3fb27SDimitry Andric   bool IsNegative = false;
908*06c3fb27SDimitry Andric 
909*06c3fb27SDimitry Andric   // TODO: Handle other numerator values with arcp.
910*06c3fb27SDimitry Andric   if (CLHS->isExactlyValue(1.0) || (IsNegative = CLHS->isExactlyValue(-1.0))) {
911*06c3fb27SDimitry Andric     // Add in the sqrt flags.
912*06c3fb27SDimitry Andric     IRBuilder<>::FastMathFlagGuard Guard(Builder);
913*06c3fb27SDimitry Andric     DivFMF |= SqrtFMF;
914*06c3fb27SDimitry Andric     Builder.setFastMathFlags(DivFMF);
915*06c3fb27SDimitry Andric 
916*06c3fb27SDimitry Andric     if ((DivFMF.approxFunc() && SqrtFMF.approxFunc()) ||
917*06c3fb27SDimitry Andric         canIgnoreDenormalInput(Den, CtxI)) {
918*06c3fb27SDimitry Andric       Value *Result = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rsq, Den);
919*06c3fb27SDimitry Andric       // -1.0 / sqrt(x) -> fneg(rsq(x))
920*06c3fb27SDimitry Andric       return IsNegative ? Builder.CreateFNeg(Result) : Result;
921*06c3fb27SDimitry Andric     }
922*06c3fb27SDimitry Andric 
923*06c3fb27SDimitry Andric     return emitRsqIEEE1ULP(Builder, Den, IsNegative);
924*06c3fb27SDimitry Andric   }
925*06c3fb27SDimitry Andric 
926*06c3fb27SDimitry Andric   return nullptr;
927*06c3fb27SDimitry Andric }
928*06c3fb27SDimitry Andric 
9295ffd83dbSDimitry Andric // Optimize fdiv with rcp:
9305ffd83dbSDimitry Andric //
9315ffd83dbSDimitry Andric // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
9325ffd83dbSDimitry Andric //               allowed with unsafe-fp-math or afn.
9335ffd83dbSDimitry Andric //
934*06c3fb27SDimitry Andric // a/b -> a*rcp(b) when arcp is allowed, and we only need provide ULP 1.0
935*06c3fb27SDimitry Andric Value *
936*06c3fb27SDimitry Andric AMDGPUCodeGenPrepareImpl::optimizeWithRcp(IRBuilder<> &Builder, Value *Num,
937*06c3fb27SDimitry Andric                                           Value *Den, FastMathFlags FMF,
938*06c3fb27SDimitry Andric                                           const Instruction *CtxI) const {
939*06c3fb27SDimitry Andric   // rcp_f16 is accurate to 0.51 ulp.
940*06c3fb27SDimitry Andric   // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
941*06c3fb27SDimitry Andric   // rcp_f64 is never accurate.
942*06c3fb27SDimitry Andric   assert(Den->getType()->isFloatTy());
9435ffd83dbSDimitry Andric 
9445ffd83dbSDimitry Andric   if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
945*06c3fb27SDimitry Andric     bool IsNegative = false;
946*06c3fb27SDimitry Andric     if (CLHS->isExactlyValue(1.0) ||
947*06c3fb27SDimitry Andric         (IsNegative = CLHS->isExactlyValue(-1.0))) {
948*06c3fb27SDimitry Andric       Value *Src = Den;
949*06c3fb27SDimitry Andric 
950*06c3fb27SDimitry Andric       if (HasFP32DenormalFlush || FMF.approxFunc()) {
951*06c3fb27SDimitry Andric         // -1.0 / x -> 1.0 / fneg(x)
952*06c3fb27SDimitry Andric         if (IsNegative)
953*06c3fb27SDimitry Andric           Src = Builder.CreateFNeg(Src);
9545ffd83dbSDimitry Andric 
9555ffd83dbSDimitry Andric         // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
9565ffd83dbSDimitry Andric         // the CI documentation has a worst case error of 1 ulp.
957*06c3fb27SDimitry Andric         // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK
958*06c3fb27SDimitry Andric         // to use it as long as we aren't trying to use denormals.
9595ffd83dbSDimitry Andric         //
9605ffd83dbSDimitry Andric         // v_rcp_f16 and v_rsq_f16 DO support denormals.
9615ffd83dbSDimitry Andric 
9625ffd83dbSDimitry Andric         // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
9635ffd83dbSDimitry Andric         //       insert rsq intrinsic here.
9645ffd83dbSDimitry Andric 
9655ffd83dbSDimitry Andric         // 1.0 / x -> rcp(x)
966*06c3fb27SDimitry Andric         return Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Src);
9675ffd83dbSDimitry Andric       }
9685ffd83dbSDimitry Andric 
969*06c3fb27SDimitry Andric       // TODO: If the input isn't denormal, and we know the input exponent isn't
970*06c3fb27SDimitry Andric       // big enough to introduce a denormal we can avoid the scaling.
971*06c3fb27SDimitry Andric       return emitRcpIEEE1ULP(Builder, Src, IsNegative);
9725ffd83dbSDimitry Andric     }
9735ffd83dbSDimitry Andric   }
9745ffd83dbSDimitry Andric 
975*06c3fb27SDimitry Andric   if (FMF.allowReciprocal()) {
9765ffd83dbSDimitry Andric     // x / y -> x * (1.0 / y)
977*06c3fb27SDimitry Andric 
978*06c3fb27SDimitry Andric     // TODO: Could avoid denormal scaling and use raw rcp if we knew the output
979*06c3fb27SDimitry Andric     // will never underflow.
980*06c3fb27SDimitry Andric     if (HasFP32DenormalFlush || FMF.approxFunc()) {
981*06c3fb27SDimitry Andric       Value *Recip = Builder.CreateUnaryIntrinsic(Intrinsic::amdgcn_rcp, Den);
9825ffd83dbSDimitry Andric       return Builder.CreateFMul(Num, Recip);
9835ffd83dbSDimitry Andric     }
984*06c3fb27SDimitry Andric 
985*06c3fb27SDimitry Andric     Value *Recip = emitRcpIEEE1ULP(Builder, Den, false);
986*06c3fb27SDimitry Andric     return Builder.CreateFMul(Num, Recip);
987*06c3fb27SDimitry Andric   }
988*06c3fb27SDimitry Andric 
9895ffd83dbSDimitry Andric   return nullptr;
9905ffd83dbSDimitry Andric }
9915ffd83dbSDimitry Andric 
9925ffd83dbSDimitry Andric // optimize with fdiv.fast:
9935ffd83dbSDimitry Andric //
9945ffd83dbSDimitry Andric // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
9955ffd83dbSDimitry Andric //
9965ffd83dbSDimitry Andric // 1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
9975ffd83dbSDimitry Andric //
9985ffd83dbSDimitry Andric // NOTE: optimizeWithRcp should be tried first because rcp is the preference.
999*06c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::optimizeWithFDivFast(
1000*06c3fb27SDimitry Andric     IRBuilder<> &Builder, Value *Num, Value *Den, float ReqdAccuracy) const {
10015ffd83dbSDimitry Andric   // fdiv.fast can achieve 2.5 ULP accuracy.
10025ffd83dbSDimitry Andric   if (ReqdAccuracy < 2.5f)
10035ffd83dbSDimitry Andric     return nullptr;
10045ffd83dbSDimitry Andric 
10055ffd83dbSDimitry Andric   // Only have fdiv.fast for f32.
1006*06c3fb27SDimitry Andric   assert(Den->getType()->isFloatTy());
10075ffd83dbSDimitry Andric 
10085ffd83dbSDimitry Andric   bool NumIsOne = false;
10095ffd83dbSDimitry Andric   if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
10105ffd83dbSDimitry Andric     if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
10115ffd83dbSDimitry Andric       NumIsOne = true;
10125ffd83dbSDimitry Andric   }
10135ffd83dbSDimitry Andric 
10145ffd83dbSDimitry Andric   // fdiv does not support denormals. But 1.0/x is always fine to use it.
1015*06c3fb27SDimitry Andric   //
1016*06c3fb27SDimitry Andric   // TODO: This works for any value with a specific known exponent range, don't
1017*06c3fb27SDimitry Andric   // just limit to constant 1.
1018*06c3fb27SDimitry Andric   if (!HasFP32DenormalFlush && !NumIsOne)
10195ffd83dbSDimitry Andric     return nullptr;
10205ffd83dbSDimitry Andric 
1021*06c3fb27SDimitry Andric   return Builder.CreateIntrinsic(Intrinsic::amdgcn_fdiv_fast, {}, {Num, Den});
1022*06c3fb27SDimitry Andric }
1023*06c3fb27SDimitry Andric 
1024*06c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::visitFDivElement(
1025*06c3fb27SDimitry Andric     IRBuilder<> &Builder, Value *Num, Value *Den, FastMathFlags DivFMF,
1026*06c3fb27SDimitry Andric     FastMathFlags SqrtFMF, Value *RsqOp, const Instruction *FDivInst,
1027*06c3fb27SDimitry Andric     float ReqdDivAccuracy) const {
1028*06c3fb27SDimitry Andric   if (RsqOp) {
1029*06c3fb27SDimitry Andric     Value *Rsq =
1030*06c3fb27SDimitry Andric         optimizeWithRsq(Builder, Num, RsqOp, DivFMF, SqrtFMF, FDivInst);
1031*06c3fb27SDimitry Andric     if (Rsq)
1032*06c3fb27SDimitry Andric       return Rsq;
1033*06c3fb27SDimitry Andric   }
1034*06c3fb27SDimitry Andric 
1035*06c3fb27SDimitry Andric   Value *Rcp = optimizeWithRcp(Builder, Num, Den, DivFMF, FDivInst);
1036*06c3fb27SDimitry Andric   if (Rcp)
1037*06c3fb27SDimitry Andric     return Rcp;
1038*06c3fb27SDimitry Andric 
1039*06c3fb27SDimitry Andric   // In the basic case fdiv_fast has the same instruction count as the frexp div
1040*06c3fb27SDimitry Andric   // expansion. Slightly prefer fdiv_fast since it ends in an fmul that can
1041*06c3fb27SDimitry Andric   // potentially be fused into a user. Also, materialization of the constants
1042*06c3fb27SDimitry Andric   // can be reused for multiple instances.
1043*06c3fb27SDimitry Andric   Value *FDivFast = optimizeWithFDivFast(Builder, Num, Den, ReqdDivAccuracy);
1044*06c3fb27SDimitry Andric   if (FDivFast)
1045*06c3fb27SDimitry Andric     return FDivFast;
1046*06c3fb27SDimitry Andric 
1047*06c3fb27SDimitry Andric   return emitFrexpDiv(Builder, Num, Den, DivFMF);
10485ffd83dbSDimitry Andric }
10495ffd83dbSDimitry Andric 
10505ffd83dbSDimitry Andric // Optimizations is performed based on fpmath, fast math flags as well as
10515ffd83dbSDimitry Andric // denormals to optimize fdiv with either rcp or fdiv.fast.
10525ffd83dbSDimitry Andric //
10535ffd83dbSDimitry Andric // With rcp:
10545ffd83dbSDimitry Andric //   1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
10555ffd83dbSDimitry Andric //                 allowed with unsafe-fp-math or afn.
10565ffd83dbSDimitry Andric //
10575ffd83dbSDimitry Andric //   a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
10585ffd83dbSDimitry Andric //
10595ffd83dbSDimitry Andric // With fdiv.fast:
10605ffd83dbSDimitry Andric //   a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
10615ffd83dbSDimitry Andric //
10625ffd83dbSDimitry Andric //   1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
10635ffd83dbSDimitry Andric //
10645ffd83dbSDimitry Andric // NOTE: rcp is the preference in cases that both are legal.
1065*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitFDiv(BinaryOperator &FDiv) {
1066*06c3fb27SDimitry Andric   if (DisableFDivExpand)
1067*06c3fb27SDimitry Andric     return false;
10685ffd83dbSDimitry Andric 
10695ffd83dbSDimitry Andric   Type *Ty = FDiv.getType()->getScalarType();
1070*06c3fb27SDimitry Andric   if (!Ty->isFloatTy())
1071*06c3fb27SDimitry Andric     return false;
10725ffd83dbSDimitry Andric 
1073e8d8bef9SDimitry Andric   // The f64 rcp/rsq approximations are pretty inaccurate. We can do an
1074*06c3fb27SDimitry Andric   // expansion around them in codegen. f16 is good enough to always use.
10750b57cec5SDimitry Andric 
10760b57cec5SDimitry Andric   const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
1077*06c3fb27SDimitry Andric   const FastMathFlags DivFMF = FPOp->getFastMathFlags();
10785ffd83dbSDimitry Andric   const float ReqdAccuracy = FPOp->getFPAccuracy();
10790b57cec5SDimitry Andric 
10805ffd83dbSDimitry Andric   // Inaccurate rcp is allowed with unsafe-fp-math or afn.
1081*06c3fb27SDimitry Andric   //
1082*06c3fb27SDimitry Andric   // Defer to codegen to handle this.
1083*06c3fb27SDimitry Andric   //
1084*06c3fb27SDimitry Andric   // TODO: Decide on an interpretation for interactions between afn + arcp +
1085*06c3fb27SDimitry Andric   // !fpmath, and make it consistent between here and codegen. For now, defer
1086*06c3fb27SDimitry Andric   // expansion of afn to codegen. The current interpretation is so aggressive we
1087*06c3fb27SDimitry Andric   // don't need any pre-consideration here when we have better information. A
1088*06c3fb27SDimitry Andric   // more conservative interpretation could use handling here.
1089*06c3fb27SDimitry Andric   const bool AllowInaccurateRcp = HasUnsafeFPMath || DivFMF.approxFunc();
1090*06c3fb27SDimitry Andric   if (AllowInaccurateRcp)
1091*06c3fb27SDimitry Andric     return false;
10920b57cec5SDimitry Andric 
1093*06c3fb27SDimitry Andric   // Defer the correct implementations to codegen.
1094*06c3fb27SDimitry Andric   if (ReqdAccuracy < 1.0f)
1095*06c3fb27SDimitry Andric     return false;
10960b57cec5SDimitry Andric 
1097*06c3fb27SDimitry Andric   FastMathFlags SqrtFMF;
10980b57cec5SDimitry Andric 
10990b57cec5SDimitry Andric   Value *Num = FDiv.getOperand(0);
11000b57cec5SDimitry Andric   Value *Den = FDiv.getOperand(1);
11010b57cec5SDimitry Andric 
1102*06c3fb27SDimitry Andric   Value *RsqOp = nullptr;
1103*06c3fb27SDimitry Andric   auto *DenII = dyn_cast<IntrinsicInst>(Den);
1104*06c3fb27SDimitry Andric   if (DenII && DenII->getIntrinsicID() == Intrinsic::sqrt &&
1105*06c3fb27SDimitry Andric       DenII->hasOneUse()) {
1106*06c3fb27SDimitry Andric     const auto *SqrtOp = cast<FPMathOperator>(DenII);
1107*06c3fb27SDimitry Andric     SqrtFMF = SqrtOp->getFastMathFlags();
1108*06c3fb27SDimitry Andric     if (canOptimizeWithRsq(SqrtOp, DivFMF, SqrtFMF))
1109*06c3fb27SDimitry Andric       RsqOp = SqrtOp->getOperand(0);
11100b57cec5SDimitry Andric   }
11110b57cec5SDimitry Andric 
1112*06c3fb27SDimitry Andric   IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
1113*06c3fb27SDimitry Andric   Builder.setFastMathFlags(DivFMF);
1114*06c3fb27SDimitry Andric   Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
1115*06c3fb27SDimitry Andric 
1116*06c3fb27SDimitry Andric   SmallVector<Value *, 4> NumVals;
1117*06c3fb27SDimitry Andric   SmallVector<Value *, 4> DenVals;
1118*06c3fb27SDimitry Andric   SmallVector<Value *, 4> RsqDenVals;
1119*06c3fb27SDimitry Andric   extractValues(Builder, NumVals, Num);
1120*06c3fb27SDimitry Andric   extractValues(Builder, DenVals, Den);
1121*06c3fb27SDimitry Andric 
1122*06c3fb27SDimitry Andric   if (RsqOp)
1123*06c3fb27SDimitry Andric     extractValues(Builder, RsqDenVals, RsqOp);
1124*06c3fb27SDimitry Andric 
1125*06c3fb27SDimitry Andric   SmallVector<Value *, 4> ResultVals(NumVals.size());
1126*06c3fb27SDimitry Andric   for (int I = 0, E = NumVals.size(); I != E; ++I) {
1127*06c3fb27SDimitry Andric     Value *NumElt = NumVals[I];
1128*06c3fb27SDimitry Andric     Value *DenElt = DenVals[I];
1129*06c3fb27SDimitry Andric     Value *RsqDenElt = RsqOp ? RsqDenVals[I] : nullptr;
1130*06c3fb27SDimitry Andric 
1131*06c3fb27SDimitry Andric     Value *NewElt =
1132*06c3fb27SDimitry Andric         visitFDivElement(Builder, NumElt, DenElt, DivFMF, SqrtFMF, RsqDenElt,
1133*06c3fb27SDimitry Andric                          cast<Instruction>(FPOp), ReqdAccuracy);
1134*06c3fb27SDimitry Andric     if (!NewElt) {
1135*06c3fb27SDimitry Andric       // Keep the original, but scalarized.
1136*06c3fb27SDimitry Andric 
1137*06c3fb27SDimitry Andric       // This has the unfortunate side effect of sometimes scalarizing when
1138*06c3fb27SDimitry Andric       // we're not going to do anything.
1139*06c3fb27SDimitry Andric       NewElt = Builder.CreateFDiv(NumElt, DenElt);
1140*06c3fb27SDimitry Andric       if (auto *NewEltInst = dyn_cast<Instruction>(NewElt))
1141*06c3fb27SDimitry Andric         NewEltInst->copyMetadata(FDiv);
11420b57cec5SDimitry Andric     }
11430b57cec5SDimitry Andric 
1144*06c3fb27SDimitry Andric     ResultVals[I] = NewElt;
11450b57cec5SDimitry Andric   }
11460b57cec5SDimitry Andric 
1147*06c3fb27SDimitry Andric   Value *NewVal = insertValues(Builder, FDiv.getType(), ResultVals);
1148fe6060f1SDimitry Andric 
1149*06c3fb27SDimitry Andric   if (NewVal) {
1150*06c3fb27SDimitry Andric     FDiv.replaceAllUsesWith(NewVal);
1151*06c3fb27SDimitry Andric     NewVal->takeName(&FDiv);
1152*06c3fb27SDimitry Andric     RecursivelyDeleteTriviallyDeadInstructions(&FDiv, TLInfo);
1153*06c3fb27SDimitry Andric   }
1154fe6060f1SDimitry Andric 
1155fe6060f1SDimitry Andric   return true;
1156fe6060f1SDimitry Andric }
1157fe6060f1SDimitry Andric 
11580b57cec5SDimitry Andric static bool hasUnsafeFPMath(const Function &F) {
11590b57cec5SDimitry Andric   Attribute Attr = F.getFnAttribute("unsafe-fp-math");
1160fe6060f1SDimitry Andric   return Attr.getValueAsBool();
11610b57cec5SDimitry Andric }
11620b57cec5SDimitry Andric 
11630b57cec5SDimitry Andric static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
11640b57cec5SDimitry Andric                                           Value *LHS, Value *RHS) {
11650b57cec5SDimitry Andric   Type *I32Ty = Builder.getInt32Ty();
11660b57cec5SDimitry Andric   Type *I64Ty = Builder.getInt64Ty();
11670b57cec5SDimitry Andric 
11680b57cec5SDimitry Andric   Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
11690b57cec5SDimitry Andric   Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
11700b57cec5SDimitry Andric   Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
11710b57cec5SDimitry Andric   Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
11720b57cec5SDimitry Andric   Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
11730b57cec5SDimitry Andric   Hi = Builder.CreateTrunc(Hi, I32Ty);
1174bdd1243dSDimitry Andric   return std::pair(Lo, Hi);
11750b57cec5SDimitry Andric }
11760b57cec5SDimitry Andric 
11770b57cec5SDimitry Andric static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
11780b57cec5SDimitry Andric   return getMul64(Builder, LHS, RHS).second;
11790b57cec5SDimitry Andric }
11800b57cec5SDimitry Andric 
118181ad6265SDimitry Andric /// Figure out how many bits are really needed for this division. \p AtLeast is
11825ffd83dbSDimitry Andric /// an optimization hint to bypass the second ComputeNumSignBits call if we the
11835ffd83dbSDimitry Andric /// first one is insufficient. Returns -1 on failure.
1184*06c3fb27SDimitry Andric int AMDGPUCodeGenPrepareImpl::getDivNumBits(BinaryOperator &I, Value *Num,
1185*06c3fb27SDimitry Andric                                             Value *Den, unsigned AtLeast,
1186*06c3fb27SDimitry Andric                                             bool IsSigned) const {
11875ffd83dbSDimitry Andric   const DataLayout &DL = Mod->getDataLayout();
11885ffd83dbSDimitry Andric   unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
11895ffd83dbSDimitry Andric   if (LHSSignBits < AtLeast)
11905ffd83dbSDimitry Andric     return -1;
11915ffd83dbSDimitry Andric 
11925ffd83dbSDimitry Andric   unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
11935ffd83dbSDimitry Andric   if (RHSSignBits < AtLeast)
11945ffd83dbSDimitry Andric     return -1;
11955ffd83dbSDimitry Andric 
11965ffd83dbSDimitry Andric   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
11975ffd83dbSDimitry Andric   unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
11985ffd83dbSDimitry Andric   if (IsSigned)
11995ffd83dbSDimitry Andric     ++DivBits;
12005ffd83dbSDimitry Andric   return DivBits;
12015ffd83dbSDimitry Andric }
12025ffd83dbSDimitry Andric 
12030b57cec5SDimitry Andric // The fractional part of a float is enough to accurately represent up to
12040b57cec5SDimitry Andric // a 24-bit signed integer.
1205*06c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::expandDivRem24(IRBuilder<> &Builder,
1206*06c3fb27SDimitry Andric                                                 BinaryOperator &I, Value *Num,
1207*06c3fb27SDimitry Andric                                                 Value *Den, bool IsDiv,
1208*06c3fb27SDimitry Andric                                                 bool IsSigned) const {
12095ffd83dbSDimitry Andric   int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
12105ffd83dbSDimitry Andric   if (DivBits == -1)
12110b57cec5SDimitry Andric     return nullptr;
12125ffd83dbSDimitry Andric   return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
12135ffd83dbSDimitry Andric }
12140b57cec5SDimitry Andric 
1215*06c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::expandDivRem24Impl(
1216*06c3fb27SDimitry Andric     IRBuilder<> &Builder, BinaryOperator &I, Value *Num, Value *Den,
1217*06c3fb27SDimitry Andric     unsigned DivBits, bool IsDiv, bool IsSigned) const {
12180b57cec5SDimitry Andric   Type *I32Ty = Builder.getInt32Ty();
12195ffd83dbSDimitry Andric   Num = Builder.CreateTrunc(Num, I32Ty);
12205ffd83dbSDimitry Andric   Den = Builder.CreateTrunc(Den, I32Ty);
12215ffd83dbSDimitry Andric 
12220b57cec5SDimitry Andric   Type *F32Ty = Builder.getFloatTy();
12230b57cec5SDimitry Andric   ConstantInt *One = Builder.getInt32(1);
12240b57cec5SDimitry Andric   Value *JQ = One;
12250b57cec5SDimitry Andric 
12260b57cec5SDimitry Andric   if (IsSigned) {
12270b57cec5SDimitry Andric     // char|short jq = ia ^ ib;
12280b57cec5SDimitry Andric     JQ = Builder.CreateXor(Num, Den);
12290b57cec5SDimitry Andric 
12300b57cec5SDimitry Andric     // jq = jq >> (bitsize - 2)
12310b57cec5SDimitry Andric     JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
12320b57cec5SDimitry Andric 
12330b57cec5SDimitry Andric     // jq = jq | 0x1
12340b57cec5SDimitry Andric     JQ = Builder.CreateOr(JQ, One);
12350b57cec5SDimitry Andric   }
12360b57cec5SDimitry Andric 
12370b57cec5SDimitry Andric   // int ia = (int)LHS;
12380b57cec5SDimitry Andric   Value *IA = Num;
12390b57cec5SDimitry Andric 
12400b57cec5SDimitry Andric   // int ib, (int)RHS;
12410b57cec5SDimitry Andric   Value *IB = Den;
12420b57cec5SDimitry Andric 
12430b57cec5SDimitry Andric   // float fa = (float)ia;
12440b57cec5SDimitry Andric   Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
12450b57cec5SDimitry Andric                        : Builder.CreateUIToFP(IA, F32Ty);
12460b57cec5SDimitry Andric 
12470b57cec5SDimitry Andric   // float fb = (float)ib;
12480b57cec5SDimitry Andric   Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
12490b57cec5SDimitry Andric                        : Builder.CreateUIToFP(IB,F32Ty);
12500b57cec5SDimitry Andric 
12515ffd83dbSDimitry Andric   Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
12525ffd83dbSDimitry Andric                                                 Builder.getFloatTy());
12535ffd83dbSDimitry Andric   Value *RCP = Builder.CreateCall(RcpDecl, { FB });
12540b57cec5SDimitry Andric   Value *FQM = Builder.CreateFMul(FA, RCP);
12550b57cec5SDimitry Andric 
12560b57cec5SDimitry Andric   // fq = trunc(fqm);
12570b57cec5SDimitry Andric   CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
12580b57cec5SDimitry Andric   FQ->copyFastMathFlags(Builder.getFastMathFlags());
12590b57cec5SDimitry Andric 
12600b57cec5SDimitry Andric   // float fqneg = -fq;
12610b57cec5SDimitry Andric   Value *FQNeg = Builder.CreateFNeg(FQ);
12620b57cec5SDimitry Andric 
12630b57cec5SDimitry Andric   // float fr = mad(fqneg, fb, fa);
12645ffd83dbSDimitry Andric   auto FMAD = !ST->hasMadMacF32Insts()
12655ffd83dbSDimitry Andric                   ? Intrinsic::fma
12665ffd83dbSDimitry Andric                   : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
12675ffd83dbSDimitry Andric   Value *FR = Builder.CreateIntrinsic(FMAD,
12680b57cec5SDimitry Andric                                       {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
12690b57cec5SDimitry Andric 
12700b57cec5SDimitry Andric   // int iq = (int)fq;
12710b57cec5SDimitry Andric   Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
12720b57cec5SDimitry Andric                        : Builder.CreateFPToUI(FQ, I32Ty);
12730b57cec5SDimitry Andric 
12740b57cec5SDimitry Andric   // fr = fabs(fr);
12750b57cec5SDimitry Andric   FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
12760b57cec5SDimitry Andric 
12770b57cec5SDimitry Andric   // fb = fabs(fb);
12780b57cec5SDimitry Andric   FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
12790b57cec5SDimitry Andric 
12800b57cec5SDimitry Andric   // int cv = fr >= fb;
12810b57cec5SDimitry Andric   Value *CV = Builder.CreateFCmpOGE(FR, FB);
12820b57cec5SDimitry Andric 
12830b57cec5SDimitry Andric   // jq = (cv ? jq : 0);
12840b57cec5SDimitry Andric   JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
12850b57cec5SDimitry Andric 
12860b57cec5SDimitry Andric   // dst = iq + jq;
12870b57cec5SDimitry Andric   Value *Div = Builder.CreateAdd(IQ, JQ);
12880b57cec5SDimitry Andric 
12890b57cec5SDimitry Andric   Value *Res = Div;
12900b57cec5SDimitry Andric   if (!IsDiv) {
12910b57cec5SDimitry Andric     // Rem needs compensation, it's easier to recompute it
12920b57cec5SDimitry Andric     Value *Rem = Builder.CreateMul(Div, Den);
12930b57cec5SDimitry Andric     Res = Builder.CreateSub(Num, Rem);
12940b57cec5SDimitry Andric   }
12950b57cec5SDimitry Andric 
12965ffd83dbSDimitry Andric   if (DivBits != 0 && DivBits < 32) {
12975ffd83dbSDimitry Andric     // Extend in register from the number of bits this divide really is.
12980b57cec5SDimitry Andric     if (IsSigned) {
12995ffd83dbSDimitry Andric       int InRegBits = 32 - DivBits;
13005ffd83dbSDimitry Andric 
13015ffd83dbSDimitry Andric       Res = Builder.CreateShl(Res, InRegBits);
13025ffd83dbSDimitry Andric       Res = Builder.CreateAShr(Res, InRegBits);
13030b57cec5SDimitry Andric     } else {
13045ffd83dbSDimitry Andric       ConstantInt *TruncMask
13055ffd83dbSDimitry Andric         = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
13060b57cec5SDimitry Andric       Res = Builder.CreateAnd(Res, TruncMask);
13070b57cec5SDimitry Andric     }
13085ffd83dbSDimitry Andric   }
13090b57cec5SDimitry Andric 
13100b57cec5SDimitry Andric   return Res;
13110b57cec5SDimitry Andric }
13120b57cec5SDimitry Andric 
13135ffd83dbSDimitry Andric // Try to recognize special cases the DAG will emit special, better expansions
13145ffd83dbSDimitry Andric // than the general expansion we do here.
13155ffd83dbSDimitry Andric 
13165ffd83dbSDimitry Andric // TODO: It would be better to just directly handle those optimizations here.
1317*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::divHasSpecialOptimization(BinaryOperator &I,
1318*06c3fb27SDimitry Andric                                                          Value *Num,
1319*06c3fb27SDimitry Andric                                                          Value *Den) const {
13205ffd83dbSDimitry Andric   if (Constant *C = dyn_cast<Constant>(Den)) {
13215ffd83dbSDimitry Andric     // Arbitrary constants get a better expansion as long as a wider mulhi is
13225ffd83dbSDimitry Andric     // legal.
13235ffd83dbSDimitry Andric     if (C->getType()->getScalarSizeInBits() <= 32)
13245ffd83dbSDimitry Andric       return true;
13255ffd83dbSDimitry Andric 
13265ffd83dbSDimitry Andric     // TODO: Sdiv check for not exact for some reason.
13275ffd83dbSDimitry Andric 
13285ffd83dbSDimitry Andric     // If there's no wider mulhi, there's only a better expansion for powers of
13295ffd83dbSDimitry Andric     // two.
13305ffd83dbSDimitry Andric     // TODO: Should really know for each vector element.
13315ffd83dbSDimitry Andric     if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
13325ffd83dbSDimitry Andric       return true;
13335ffd83dbSDimitry Andric 
13345ffd83dbSDimitry Andric     return false;
13355ffd83dbSDimitry Andric   }
13365ffd83dbSDimitry Andric 
13375ffd83dbSDimitry Andric   if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
13385ffd83dbSDimitry Andric     // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
13395ffd83dbSDimitry Andric     if (BinOpDen->getOpcode() == Instruction::Shl &&
13405ffd83dbSDimitry Andric         isa<Constant>(BinOpDen->getOperand(0)) &&
13415ffd83dbSDimitry Andric         isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
13425ffd83dbSDimitry Andric                                0, AC, &I, DT)) {
13435ffd83dbSDimitry Andric       return true;
13445ffd83dbSDimitry Andric     }
13455ffd83dbSDimitry Andric   }
13465ffd83dbSDimitry Andric 
13475ffd83dbSDimitry Andric   return false;
13485ffd83dbSDimitry Andric }
13495ffd83dbSDimitry Andric 
13505ffd83dbSDimitry Andric static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
13515ffd83dbSDimitry Andric   // Check whether the sign can be determined statically.
13525ffd83dbSDimitry Andric   KnownBits Known = computeKnownBits(V, *DL);
13535ffd83dbSDimitry Andric   if (Known.isNegative())
13545ffd83dbSDimitry Andric     return Constant::getAllOnesValue(V->getType());
13555ffd83dbSDimitry Andric   if (Known.isNonNegative())
13565ffd83dbSDimitry Andric     return Constant::getNullValue(V->getType());
13575ffd83dbSDimitry Andric   return Builder.CreateAShr(V, Builder.getInt32(31));
13585ffd83dbSDimitry Andric }
13595ffd83dbSDimitry Andric 
1360*06c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::expandDivRem32(IRBuilder<> &Builder,
13615ffd83dbSDimitry Andric                                                 BinaryOperator &I, Value *X,
13625ffd83dbSDimitry Andric                                                 Value *Y) const {
13630b57cec5SDimitry Andric   Instruction::BinaryOps Opc = I.getOpcode();
13640b57cec5SDimitry Andric   assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
13650b57cec5SDimitry Andric          Opc == Instruction::SRem || Opc == Instruction::SDiv);
13660b57cec5SDimitry Andric 
13670b57cec5SDimitry Andric   FastMathFlags FMF;
13680b57cec5SDimitry Andric   FMF.setFast();
13690b57cec5SDimitry Andric   Builder.setFastMathFlags(FMF);
13700b57cec5SDimitry Andric 
13715ffd83dbSDimitry Andric   if (divHasSpecialOptimization(I, X, Y))
13725ffd83dbSDimitry Andric     return nullptr;  // Keep it for later optimization.
13730b57cec5SDimitry Andric 
13740b57cec5SDimitry Andric   bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
13750b57cec5SDimitry Andric   bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
13760b57cec5SDimitry Andric 
13775ffd83dbSDimitry Andric   Type *Ty = X->getType();
13780b57cec5SDimitry Andric   Type *I32Ty = Builder.getInt32Ty();
13790b57cec5SDimitry Andric   Type *F32Ty = Builder.getFloatTy();
13800b57cec5SDimitry Andric 
13810b57cec5SDimitry Andric   if (Ty->getScalarSizeInBits() < 32) {
13820b57cec5SDimitry Andric     if (IsSigned) {
13835ffd83dbSDimitry Andric       X = Builder.CreateSExt(X, I32Ty);
13845ffd83dbSDimitry Andric       Y = Builder.CreateSExt(Y, I32Ty);
13850b57cec5SDimitry Andric     } else {
13865ffd83dbSDimitry Andric       X = Builder.CreateZExt(X, I32Ty);
13875ffd83dbSDimitry Andric       Y = Builder.CreateZExt(Y, I32Ty);
13880b57cec5SDimitry Andric     }
13890b57cec5SDimitry Andric   }
13900b57cec5SDimitry Andric 
13915ffd83dbSDimitry Andric   if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
13925ffd83dbSDimitry Andric     return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
13935ffd83dbSDimitry Andric                       Builder.CreateZExtOrTrunc(Res, Ty);
13940b57cec5SDimitry Andric   }
13950b57cec5SDimitry Andric 
13960b57cec5SDimitry Andric   ConstantInt *Zero = Builder.getInt32(0);
13970b57cec5SDimitry Andric   ConstantInt *One = Builder.getInt32(1);
13980b57cec5SDimitry Andric 
13990b57cec5SDimitry Andric   Value *Sign = nullptr;
14000b57cec5SDimitry Andric   if (IsSigned) {
14015ffd83dbSDimitry Andric     Value *SignX = getSign32(X, Builder, DL);
14025ffd83dbSDimitry Andric     Value *SignY = getSign32(Y, Builder, DL);
14030b57cec5SDimitry Andric     // Remainder sign is the same as LHS
14045ffd83dbSDimitry Andric     Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
14050b57cec5SDimitry Andric 
14065ffd83dbSDimitry Andric     X = Builder.CreateAdd(X, SignX);
14075ffd83dbSDimitry Andric     Y = Builder.CreateAdd(Y, SignY);
14080b57cec5SDimitry Andric 
14095ffd83dbSDimitry Andric     X = Builder.CreateXor(X, SignX);
14105ffd83dbSDimitry Andric     Y = Builder.CreateXor(Y, SignY);
14110b57cec5SDimitry Andric   }
14120b57cec5SDimitry Andric 
14135ffd83dbSDimitry Andric   // The algorithm here is based on ideas from "Software Integer Division", Tom
14145ffd83dbSDimitry Andric   // Rodeheffer, August 2008.
14155ffd83dbSDimitry Andric   //
14165ffd83dbSDimitry Andric   // unsigned udiv(unsigned x, unsigned y) {
14175ffd83dbSDimitry Andric   //   // Initial estimate of inv(y). The constant is less than 2^32 to ensure
14185ffd83dbSDimitry Andric   //   // that this is a lower bound on inv(y), even if some of the calculations
14195ffd83dbSDimitry Andric   //   // round up.
14205ffd83dbSDimitry Andric   //   unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
14215ffd83dbSDimitry Andric   //
14225ffd83dbSDimitry Andric   //   // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
14235ffd83dbSDimitry Andric   //   // Empirically this is guaranteed to give a "two-y" lower bound on
14245ffd83dbSDimitry Andric   //   // inv(y).
14255ffd83dbSDimitry Andric   //   z += umulh(z, -y * z);
14265ffd83dbSDimitry Andric   //
14275ffd83dbSDimitry Andric   //   // Quotient/remainder estimate.
14285ffd83dbSDimitry Andric   //   unsigned q = umulh(x, z);
14295ffd83dbSDimitry Andric   //   unsigned r = x - q * y;
14305ffd83dbSDimitry Andric   //
14315ffd83dbSDimitry Andric   //   // Two rounds of quotient/remainder refinement.
14325ffd83dbSDimitry Andric   //   if (r >= y) {
14335ffd83dbSDimitry Andric   //     ++q;
14345ffd83dbSDimitry Andric   //     r -= y;
14355ffd83dbSDimitry Andric   //   }
14365ffd83dbSDimitry Andric   //   if (r >= y) {
14375ffd83dbSDimitry Andric   //     ++q;
14385ffd83dbSDimitry Andric   //     r -= y;
14395ffd83dbSDimitry Andric   //   }
14405ffd83dbSDimitry Andric   //
14415ffd83dbSDimitry Andric   //   return q;
14425ffd83dbSDimitry Andric   // }
14430b57cec5SDimitry Andric 
14445ffd83dbSDimitry Andric   // Initial estimate of inv(y).
14455ffd83dbSDimitry Andric   Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
14465ffd83dbSDimitry Andric   Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
14475ffd83dbSDimitry Andric   Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
1448*06c3fb27SDimitry Andric   Constant *Scale = ConstantFP::get(F32Ty, llvm::bit_cast<float>(0x4F7FFFFE));
14495ffd83dbSDimitry Andric   Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
14505ffd83dbSDimitry Andric   Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
14510b57cec5SDimitry Andric 
14525ffd83dbSDimitry Andric   // One round of UNR.
14535ffd83dbSDimitry Andric   Value *NegY = Builder.CreateSub(Zero, Y);
14545ffd83dbSDimitry Andric   Value *NegYZ = Builder.CreateMul(NegY, Z);
14555ffd83dbSDimitry Andric   Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
14560b57cec5SDimitry Andric 
14575ffd83dbSDimitry Andric   // Quotient/remainder estimate.
14585ffd83dbSDimitry Andric   Value *Q = getMulHu(Builder, X, Z);
14595ffd83dbSDimitry Andric   Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
14600b57cec5SDimitry Andric 
14615ffd83dbSDimitry Andric   // First quotient/remainder refinement.
14625ffd83dbSDimitry Andric   Value *Cond = Builder.CreateICmpUGE(R, Y);
14635ffd83dbSDimitry Andric   if (IsDiv)
14645ffd83dbSDimitry Andric     Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
14655ffd83dbSDimitry Andric   R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
14660b57cec5SDimitry Andric 
14675ffd83dbSDimitry Andric   // Second quotient/remainder refinement.
14685ffd83dbSDimitry Andric   Cond = Builder.CreateICmpUGE(R, Y);
14690b57cec5SDimitry Andric   Value *Res;
14705ffd83dbSDimitry Andric   if (IsDiv)
14715ffd83dbSDimitry Andric     Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
14725ffd83dbSDimitry Andric   else
14735ffd83dbSDimitry Andric     Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
14740b57cec5SDimitry Andric 
14750b57cec5SDimitry Andric   if (IsSigned) {
14760b57cec5SDimitry Andric     Res = Builder.CreateXor(Res, Sign);
14770b57cec5SDimitry Andric     Res = Builder.CreateSub(Res, Sign);
14780b57cec5SDimitry Andric   }
14790b57cec5SDimitry Andric 
14800b57cec5SDimitry Andric   Res = Builder.CreateTrunc(Res, Ty);
14810b57cec5SDimitry Andric 
14820b57cec5SDimitry Andric   return Res;
14830b57cec5SDimitry Andric }
14840b57cec5SDimitry Andric 
1485*06c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::shrinkDivRem64(IRBuilder<> &Builder,
1486*06c3fb27SDimitry Andric                                                 BinaryOperator &I, Value *Num,
1487*06c3fb27SDimitry Andric                                                 Value *Den) const {
14885ffd83dbSDimitry Andric   if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
14895ffd83dbSDimitry Andric     return nullptr;  // Keep it for later optimization.
14905ffd83dbSDimitry Andric 
14915ffd83dbSDimitry Andric   Instruction::BinaryOps Opc = I.getOpcode();
14925ffd83dbSDimitry Andric 
14935ffd83dbSDimitry Andric   bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
14945ffd83dbSDimitry Andric   bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
14955ffd83dbSDimitry Andric 
14965ffd83dbSDimitry Andric   int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
14975ffd83dbSDimitry Andric   if (NumDivBits == -1)
14985ffd83dbSDimitry Andric     return nullptr;
14995ffd83dbSDimitry Andric 
15005ffd83dbSDimitry Andric   Value *Narrowed = nullptr;
15015ffd83dbSDimitry Andric   if (NumDivBits <= 24) {
15025ffd83dbSDimitry Andric     Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
15035ffd83dbSDimitry Andric                                   IsDiv, IsSigned);
15045ffd83dbSDimitry Andric   } else if (NumDivBits <= 32) {
15055ffd83dbSDimitry Andric     Narrowed = expandDivRem32(Builder, I, Num, Den);
15065ffd83dbSDimitry Andric   }
15075ffd83dbSDimitry Andric 
15085ffd83dbSDimitry Andric   if (Narrowed) {
15095ffd83dbSDimitry Andric     return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
15105ffd83dbSDimitry Andric                       Builder.CreateZExt(Narrowed, Num->getType());
15115ffd83dbSDimitry Andric   }
15125ffd83dbSDimitry Andric 
15135ffd83dbSDimitry Andric   return nullptr;
15145ffd83dbSDimitry Andric }
15155ffd83dbSDimitry Andric 
1516*06c3fb27SDimitry Andric void AMDGPUCodeGenPrepareImpl::expandDivRem64(BinaryOperator &I) const {
15175ffd83dbSDimitry Andric   Instruction::BinaryOps Opc = I.getOpcode();
15185ffd83dbSDimitry Andric   // Do the general expansion.
15195ffd83dbSDimitry Andric   if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
15205ffd83dbSDimitry Andric     expandDivisionUpTo64Bits(&I);
15215ffd83dbSDimitry Andric     return;
15225ffd83dbSDimitry Andric   }
15235ffd83dbSDimitry Andric 
15245ffd83dbSDimitry Andric   if (Opc == Instruction::URem || Opc == Instruction::SRem) {
15255ffd83dbSDimitry Andric     expandRemainderUpTo64Bits(&I);
15265ffd83dbSDimitry Andric     return;
15275ffd83dbSDimitry Andric   }
15285ffd83dbSDimitry Andric 
15295ffd83dbSDimitry Andric   llvm_unreachable("not a division");
15305ffd83dbSDimitry Andric }
15315ffd83dbSDimitry Andric 
1532*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitBinaryOperator(BinaryOperator &I) {
15335ffd83dbSDimitry Andric   if (foldBinOpIntoSelect(I))
15345ffd83dbSDimitry Andric     return true;
15355ffd83dbSDimitry Andric 
15360b57cec5SDimitry Andric   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1537*06c3fb27SDimitry Andric       UA->isUniform(&I) && promoteUniformOpToI32(I))
15380b57cec5SDimitry Andric     return true;
15390b57cec5SDimitry Andric 
15408bcb0991SDimitry Andric   if (UseMul24Intrin && replaceMulWithMul24(I))
15410b57cec5SDimitry Andric     return true;
15420b57cec5SDimitry Andric 
15430b57cec5SDimitry Andric   bool Changed = false;
15440b57cec5SDimitry Andric   Instruction::BinaryOps Opc = I.getOpcode();
15450b57cec5SDimitry Andric   Type *Ty = I.getType();
15460b57cec5SDimitry Andric   Value *NewDiv = nullptr;
15475ffd83dbSDimitry Andric   unsigned ScalarSize = Ty->getScalarSizeInBits();
15485ffd83dbSDimitry Andric 
15495ffd83dbSDimitry Andric   SmallVector<BinaryOperator *, 8> Div64ToExpand;
15505ffd83dbSDimitry Andric 
15510b57cec5SDimitry Andric   if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
15520b57cec5SDimitry Andric        Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
15535ffd83dbSDimitry Andric       ScalarSize <= 64 &&
15545ffd83dbSDimitry Andric       !DisableIDivExpand) {
15550b57cec5SDimitry Andric     Value *Num = I.getOperand(0);
15560b57cec5SDimitry Andric     Value *Den = I.getOperand(1);
15570b57cec5SDimitry Andric     IRBuilder<> Builder(&I);
15580b57cec5SDimitry Andric     Builder.SetCurrentDebugLocation(I.getDebugLoc());
15590b57cec5SDimitry Andric 
15605ffd83dbSDimitry Andric     if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1561bdd1243dSDimitry Andric       NewDiv = PoisonValue::get(VT);
15620b57cec5SDimitry Andric 
15630b57cec5SDimitry Andric       for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
15640b57cec5SDimitry Andric         Value *NumEltN = Builder.CreateExtractElement(Num, N);
15650b57cec5SDimitry Andric         Value *DenEltN = Builder.CreateExtractElement(Den, N);
15665ffd83dbSDimitry Andric 
15675ffd83dbSDimitry Andric         Value *NewElt;
15685ffd83dbSDimitry Andric         if (ScalarSize <= 32) {
15695ffd83dbSDimitry Andric           NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
15700b57cec5SDimitry Andric           if (!NewElt)
15710b57cec5SDimitry Andric             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
15725ffd83dbSDimitry Andric         } else {
15735ffd83dbSDimitry Andric           // See if this 64-bit division can be shrunk to 32/24-bits before
15745ffd83dbSDimitry Andric           // producing the general expansion.
15755ffd83dbSDimitry Andric           NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
15765ffd83dbSDimitry Andric           if (!NewElt) {
15775ffd83dbSDimitry Andric             // The general 64-bit expansion introduces control flow and doesn't
15785ffd83dbSDimitry Andric             // return the new value. Just insert a scalar copy and defer
15795ffd83dbSDimitry Andric             // expanding it.
15805ffd83dbSDimitry Andric             NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
15815ffd83dbSDimitry Andric             Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
15825ffd83dbSDimitry Andric           }
15835ffd83dbSDimitry Andric         }
15845ffd83dbSDimitry Andric 
15850b57cec5SDimitry Andric         NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
15860b57cec5SDimitry Andric       }
15870b57cec5SDimitry Andric     } else {
15885ffd83dbSDimitry Andric       if (ScalarSize <= 32)
15890b57cec5SDimitry Andric         NewDiv = expandDivRem32(Builder, I, Num, Den);
15905ffd83dbSDimitry Andric       else {
15915ffd83dbSDimitry Andric         NewDiv = shrinkDivRem64(Builder, I, Num, Den);
15925ffd83dbSDimitry Andric         if (!NewDiv)
15935ffd83dbSDimitry Andric           Div64ToExpand.push_back(&I);
15945ffd83dbSDimitry Andric       }
15950b57cec5SDimitry Andric     }
15960b57cec5SDimitry Andric 
15970b57cec5SDimitry Andric     if (NewDiv) {
15980b57cec5SDimitry Andric       I.replaceAllUsesWith(NewDiv);
15990b57cec5SDimitry Andric       I.eraseFromParent();
16000b57cec5SDimitry Andric       Changed = true;
16010b57cec5SDimitry Andric     }
16020b57cec5SDimitry Andric   }
16030b57cec5SDimitry Andric 
16045ffd83dbSDimitry Andric   if (ExpandDiv64InIR) {
16055ffd83dbSDimitry Andric     // TODO: We get much worse code in specially handled constant cases.
16065ffd83dbSDimitry Andric     for (BinaryOperator *Div : Div64ToExpand) {
16075ffd83dbSDimitry Andric       expandDivRem64(*Div);
1608*06c3fb27SDimitry Andric       FlowChanged = true;
16095ffd83dbSDimitry Andric       Changed = true;
16105ffd83dbSDimitry Andric     }
16115ffd83dbSDimitry Andric   }
16125ffd83dbSDimitry Andric 
16130b57cec5SDimitry Andric   return Changed;
16140b57cec5SDimitry Andric }
16150b57cec5SDimitry Andric 
1616*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitLoadInst(LoadInst &I) {
16170b57cec5SDimitry Andric   if (!WidenLoads)
16180b57cec5SDimitry Andric     return false;
16190b57cec5SDimitry Andric 
16200b57cec5SDimitry Andric   if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
16210b57cec5SDimitry Andric        I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
16220b57cec5SDimitry Andric       canWidenScalarExtLoad(I)) {
16230b57cec5SDimitry Andric     IRBuilder<> Builder(&I);
16240b57cec5SDimitry Andric     Builder.SetCurrentDebugLocation(I.getDebugLoc());
16250b57cec5SDimitry Andric 
16260b57cec5SDimitry Andric     Type *I32Ty = Builder.getInt32Ty();
1627*06c3fb27SDimitry Andric     LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, I.getPointerOperand());
16280b57cec5SDimitry Andric     WidenLoad->copyMetadata(I);
16290b57cec5SDimitry Andric 
16300b57cec5SDimitry Andric     // If we have range metadata, we need to convert the type, and not make
16310b57cec5SDimitry Andric     // assumptions about the high bits.
16320b57cec5SDimitry Andric     if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
16330b57cec5SDimitry Andric       ConstantInt *Lower =
16340b57cec5SDimitry Andric         mdconst::extract<ConstantInt>(Range->getOperand(0));
16350b57cec5SDimitry Andric 
1636349cc55cSDimitry Andric       if (Lower->isNullValue()) {
16370b57cec5SDimitry Andric         WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
16380b57cec5SDimitry Andric       } else {
16390b57cec5SDimitry Andric         Metadata *LowAndHigh[] = {
16400b57cec5SDimitry Andric           ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
16410b57cec5SDimitry Andric           // Don't make assumptions about the high bits.
16420b57cec5SDimitry Andric           ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
16430b57cec5SDimitry Andric         };
16440b57cec5SDimitry Andric 
16450b57cec5SDimitry Andric         WidenLoad->setMetadata(LLVMContext::MD_range,
16460b57cec5SDimitry Andric                                MDNode::get(Mod->getContext(), LowAndHigh));
16470b57cec5SDimitry Andric       }
16480b57cec5SDimitry Andric     }
16490b57cec5SDimitry Andric 
16500b57cec5SDimitry Andric     int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
16510b57cec5SDimitry Andric     Type *IntNTy = Builder.getIntNTy(TySize);
16520b57cec5SDimitry Andric     Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
16530b57cec5SDimitry Andric     Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
16540b57cec5SDimitry Andric     I.replaceAllUsesWith(ValOrig);
16550b57cec5SDimitry Andric     I.eraseFromParent();
16560b57cec5SDimitry Andric     return true;
16570b57cec5SDimitry Andric   }
16580b57cec5SDimitry Andric 
16590b57cec5SDimitry Andric   return false;
16600b57cec5SDimitry Andric }
16610b57cec5SDimitry Andric 
1662*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitICmpInst(ICmpInst &I) {
16630b57cec5SDimitry Andric   bool Changed = false;
16640b57cec5SDimitry Andric 
16650b57cec5SDimitry Andric   if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
1666*06c3fb27SDimitry Andric       UA->isUniform(&I))
16670b57cec5SDimitry Andric     Changed |= promoteUniformOpToI32(I);
16680b57cec5SDimitry Andric 
16690b57cec5SDimitry Andric   return Changed;
16700b57cec5SDimitry Andric }
16710b57cec5SDimitry Andric 
1672*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitSelectInst(SelectInst &I) {
1673*06c3fb27SDimitry Andric   Value *Cond = I.getCondition();
1674*06c3fb27SDimitry Andric   Value *TrueVal = I.getTrueValue();
1675*06c3fb27SDimitry Andric   Value *FalseVal = I.getFalseValue();
1676*06c3fb27SDimitry Andric   Value *CmpVal;
1677*06c3fb27SDimitry Andric   FCmpInst::Predicate Pred;
16780b57cec5SDimitry Andric 
1679*06c3fb27SDimitry Andric   if (ST->has16BitInsts() && needsPromotionToI32(I.getType())) {
1680*06c3fb27SDimitry Andric     if (UA->isUniform(&I))
1681*06c3fb27SDimitry Andric       return promoteUniformOpToI32(I);
1682*06c3fb27SDimitry Andric     return false;
16830b57cec5SDimitry Andric   }
16840b57cec5SDimitry Andric 
1685*06c3fb27SDimitry Andric   // Match fract pattern with nan check.
1686*06c3fb27SDimitry Andric   if (!match(Cond, m_FCmp(Pred, m_Value(CmpVal), m_NonNaN())))
1687*06c3fb27SDimitry Andric     return false;
1688*06c3fb27SDimitry Andric 
1689*06c3fb27SDimitry Andric   FPMathOperator *FPOp = dyn_cast<FPMathOperator>(&I);
1690*06c3fb27SDimitry Andric   if (!FPOp)
1691*06c3fb27SDimitry Andric     return false;
1692*06c3fb27SDimitry Andric 
1693*06c3fb27SDimitry Andric   IRBuilder<> Builder(&I);
1694*06c3fb27SDimitry Andric   Builder.setFastMathFlags(FPOp->getFastMathFlags());
1695*06c3fb27SDimitry Andric 
1696*06c3fb27SDimitry Andric   auto *IITrue = dyn_cast<IntrinsicInst>(TrueVal);
1697*06c3fb27SDimitry Andric   auto *IIFalse = dyn_cast<IntrinsicInst>(FalseVal);
1698*06c3fb27SDimitry Andric 
1699*06c3fb27SDimitry Andric   Value *Fract = nullptr;
1700*06c3fb27SDimitry Andric   if (Pred == FCmpInst::FCMP_UNO && TrueVal == CmpVal && IIFalse &&
1701*06c3fb27SDimitry Andric       CmpVal == matchFractPat(*IIFalse)) {
1702*06c3fb27SDimitry Andric     // isnan(x) ? x : fract(x)
1703*06c3fb27SDimitry Andric     Fract = applyFractPat(Builder, CmpVal);
1704*06c3fb27SDimitry Andric   } else if (Pred == FCmpInst::FCMP_ORD && FalseVal == CmpVal && IITrue &&
1705*06c3fb27SDimitry Andric              CmpVal == matchFractPat(*IITrue)) {
1706*06c3fb27SDimitry Andric     // !isnan(x) ? fract(x) : x
1707*06c3fb27SDimitry Andric     Fract = applyFractPat(Builder, CmpVal);
1708*06c3fb27SDimitry Andric   } else
1709*06c3fb27SDimitry Andric     return false;
1710*06c3fb27SDimitry Andric 
1711*06c3fb27SDimitry Andric   Fract->takeName(&I);
1712*06c3fb27SDimitry Andric   I.replaceAllUsesWith(Fract);
1713*06c3fb27SDimitry Andric   RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo);
1714*06c3fb27SDimitry Andric   return true;
1715*06c3fb27SDimitry Andric }
1716*06c3fb27SDimitry Andric 
1717*06c3fb27SDimitry Andric static bool areInSameBB(const Value *A, const Value *B) {
1718*06c3fb27SDimitry Andric   const auto *IA = dyn_cast<Instruction>(A);
1719*06c3fb27SDimitry Andric   const auto *IB = dyn_cast<Instruction>(B);
1720*06c3fb27SDimitry Andric   return IA && IB && IA->getParent() == IB->getParent();
1721*06c3fb27SDimitry Andric }
1722*06c3fb27SDimitry Andric 
1723*06c3fb27SDimitry Andric // Helper for breaking large PHIs that returns true when an extractelement on V
1724*06c3fb27SDimitry Andric // is likely to be folded away by the DAG combiner.
1725*06c3fb27SDimitry Andric static bool isInterestingPHIIncomingValue(const Value *V) {
1726*06c3fb27SDimitry Andric   const auto *FVT = dyn_cast<FixedVectorType>(V->getType());
1727*06c3fb27SDimitry Andric   if (!FVT)
1728*06c3fb27SDimitry Andric     return false;
1729*06c3fb27SDimitry Andric 
1730*06c3fb27SDimitry Andric   const Value *CurVal = V;
1731*06c3fb27SDimitry Andric 
1732*06c3fb27SDimitry Andric   // Check for insertelements, keeping track of the elements covered.
1733*06c3fb27SDimitry Andric   BitVector EltsCovered(FVT->getNumElements());
1734*06c3fb27SDimitry Andric   while (const auto *IE = dyn_cast<InsertElementInst>(CurVal)) {
1735*06c3fb27SDimitry Andric     const auto *Idx = dyn_cast<ConstantInt>(IE->getOperand(2));
1736*06c3fb27SDimitry Andric 
1737*06c3fb27SDimitry Andric     // Non constant index/out of bounds index -> folding is unlikely.
1738*06c3fb27SDimitry Andric     // The latter is more of a sanity check because canonical IR should just
1739*06c3fb27SDimitry Andric     // have replaced those with poison.
1740*06c3fb27SDimitry Andric     if (!Idx || Idx->getSExtValue() >= FVT->getNumElements())
1741*06c3fb27SDimitry Andric       return false;
1742*06c3fb27SDimitry Andric 
1743*06c3fb27SDimitry Andric     const auto *VecSrc = IE->getOperand(0);
1744*06c3fb27SDimitry Andric 
1745*06c3fb27SDimitry Andric     // If the vector source is another instruction, it must be in the same basic
1746*06c3fb27SDimitry Andric     // block. Otherwise, the DAGCombiner won't see the whole thing and is
1747*06c3fb27SDimitry Andric     // unlikely to be able to do anything interesting here.
1748*06c3fb27SDimitry Andric     if (isa<Instruction>(VecSrc) && !areInSameBB(VecSrc, IE))
1749*06c3fb27SDimitry Andric       return false;
1750*06c3fb27SDimitry Andric 
1751*06c3fb27SDimitry Andric     CurVal = VecSrc;
1752*06c3fb27SDimitry Andric     EltsCovered.set(Idx->getSExtValue());
1753*06c3fb27SDimitry Andric 
1754*06c3fb27SDimitry Andric     // All elements covered.
1755*06c3fb27SDimitry Andric     if (EltsCovered.all())
1756*06c3fb27SDimitry Andric       return true;
1757*06c3fb27SDimitry Andric   }
1758*06c3fb27SDimitry Andric 
1759*06c3fb27SDimitry Andric   // We either didn't find a single insertelement, or the insertelement chain
1760*06c3fb27SDimitry Andric   // ended before all elements were covered. Check for other interesting values.
1761*06c3fb27SDimitry Andric 
1762*06c3fb27SDimitry Andric   // Constants are always interesting because we can just constant fold the
1763*06c3fb27SDimitry Andric   // extractelements.
1764*06c3fb27SDimitry Andric   if (isa<Constant>(CurVal))
1765*06c3fb27SDimitry Andric     return true;
1766*06c3fb27SDimitry Andric 
1767*06c3fb27SDimitry Andric   // shufflevector is likely to be profitable if either operand is a constant,
1768*06c3fb27SDimitry Andric   // or if either source is in the same block.
1769*06c3fb27SDimitry Andric   // This is because shufflevector is most often lowered as a series of
1770*06c3fb27SDimitry Andric   // insert/extract elements anyway.
1771*06c3fb27SDimitry Andric   if (const auto *SV = dyn_cast<ShuffleVectorInst>(CurVal)) {
1772*06c3fb27SDimitry Andric     return isa<Constant>(SV->getOperand(1)) ||
1773*06c3fb27SDimitry Andric            areInSameBB(SV, SV->getOperand(0)) ||
1774*06c3fb27SDimitry Andric            areInSameBB(SV, SV->getOperand(1));
1775*06c3fb27SDimitry Andric   }
1776*06c3fb27SDimitry Andric 
1777*06c3fb27SDimitry Andric   return false;
1778*06c3fb27SDimitry Andric }
1779*06c3fb27SDimitry Andric 
1780*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::canBreakPHINode(const PHINode &I) {
1781*06c3fb27SDimitry Andric   // Check in the cache, or add an entry for this node.
1782*06c3fb27SDimitry Andric   //
1783*06c3fb27SDimitry Andric   // We init with false because we consider all PHI nodes unbreakable until we
1784*06c3fb27SDimitry Andric   // reach a conclusion. Doing the opposite - assuming they're break-able until
1785*06c3fb27SDimitry Andric   // proven otherwise - can be harmful in some pathological cases so we're
1786*06c3fb27SDimitry Andric   // conservative for now.
1787*06c3fb27SDimitry Andric   const auto [It, DidInsert] = BreakPhiNodesCache.insert({&I, false});
1788*06c3fb27SDimitry Andric   if (!DidInsert)
1789*06c3fb27SDimitry Andric     return It->second;
1790*06c3fb27SDimitry Andric 
1791*06c3fb27SDimitry Andric   // This function may recurse, so to guard against infinite looping, this PHI
1792*06c3fb27SDimitry Andric   // is conservatively considered unbreakable until we reach a conclusion.
1793*06c3fb27SDimitry Andric 
1794*06c3fb27SDimitry Andric   // Don't break PHIs that have no interesting incoming values. That is, where
1795*06c3fb27SDimitry Andric   // there is no clear opportunity to fold the "extractelement" instructions we
1796*06c3fb27SDimitry Andric   // would add.
1797*06c3fb27SDimitry Andric   //
1798*06c3fb27SDimitry Andric   // Note: IC does not run after this pass, so we're only interested in the
1799*06c3fb27SDimitry Andric   // foldings that the DAG combiner can do.
1800*06c3fb27SDimitry Andric   if (none_of(I.incoming_values(),
1801*06c3fb27SDimitry Andric               [&](Value *V) { return isInterestingPHIIncomingValue(V); }))
1802*06c3fb27SDimitry Andric     return false;
1803*06c3fb27SDimitry Andric 
1804*06c3fb27SDimitry Andric   // Now, check users for unbreakable PHI nodes. If we have an unbreakable PHI
1805*06c3fb27SDimitry Andric   // node as user, we don't want to break this PHI either because it's unlikely
1806*06c3fb27SDimitry Andric   // to be beneficial. We would just explode the vector and reassemble it
1807*06c3fb27SDimitry Andric   // directly, wasting instructions.
1808*06c3fb27SDimitry Andric   //
1809*06c3fb27SDimitry Andric   // In the case where multiple users are PHI nodes, we want at least half of
1810*06c3fb27SDimitry Andric   // them to be breakable.
1811*06c3fb27SDimitry Andric   int Score = 0;
1812*06c3fb27SDimitry Andric   for (const Value *U : I.users()) {
1813*06c3fb27SDimitry Andric     if (const auto *PU = dyn_cast<PHINode>(U))
1814*06c3fb27SDimitry Andric       Score += canBreakPHINode(*PU) ? 1 : -1;
1815*06c3fb27SDimitry Andric   }
1816*06c3fb27SDimitry Andric 
1817*06c3fb27SDimitry Andric   if (Score < 0)
1818*06c3fb27SDimitry Andric     return false;
1819*06c3fb27SDimitry Andric 
1820*06c3fb27SDimitry Andric   return BreakPhiNodesCache[&I] = true;
1821*06c3fb27SDimitry Andric }
1822*06c3fb27SDimitry Andric 
1823*06c3fb27SDimitry Andric /// Helper class for "break large PHIs" (visitPHINode).
1824*06c3fb27SDimitry Andric ///
1825*06c3fb27SDimitry Andric /// This represents a slice of a PHI's incoming value, which is made up of:
1826*06c3fb27SDimitry Andric ///   - The type of the slice (Ty)
1827*06c3fb27SDimitry Andric ///   - The index in the incoming value's vector where the slice starts (Idx)
1828*06c3fb27SDimitry Andric ///   - The number of elements in the slice (NumElts).
1829*06c3fb27SDimitry Andric /// It also keeps track of the NewPHI node inserted for this particular slice.
1830*06c3fb27SDimitry Andric ///
1831*06c3fb27SDimitry Andric /// Slice examples:
1832*06c3fb27SDimitry Andric ///   <4 x i64> -> Split into four i64 slices.
1833*06c3fb27SDimitry Andric ///     -> [i64, 0, 1], [i64, 1, 1], [i64, 2, 1], [i64, 3, 1]
1834*06c3fb27SDimitry Andric ///   <5 x i16> -> Split into 2 <2 x i16> slices + a i16 tail.
1835*06c3fb27SDimitry Andric ///     -> [<2 x i16>, 0, 2], [<2 x i16>, 2, 2], [i16, 4, 1]
1836*06c3fb27SDimitry Andric class VectorSlice {
1837*06c3fb27SDimitry Andric public:
1838*06c3fb27SDimitry Andric   VectorSlice(Type *Ty, unsigned Idx, unsigned NumElts)
1839*06c3fb27SDimitry Andric       : Ty(Ty), Idx(Idx), NumElts(NumElts) {}
1840*06c3fb27SDimitry Andric 
1841*06c3fb27SDimitry Andric   Type *Ty = nullptr;
1842*06c3fb27SDimitry Andric   unsigned Idx = 0;
1843*06c3fb27SDimitry Andric   unsigned NumElts = 0;
1844*06c3fb27SDimitry Andric   PHINode *NewPHI = nullptr;
1845*06c3fb27SDimitry Andric 
1846*06c3fb27SDimitry Andric   /// Slice \p Inc according to the information contained within this slice.
1847*06c3fb27SDimitry Andric   /// This is cached, so if called multiple times for the same \p BB & \p Inc
1848*06c3fb27SDimitry Andric   /// pair, it returns the same Sliced value as well.
1849*06c3fb27SDimitry Andric   ///
1850*06c3fb27SDimitry Andric   /// Note this *intentionally* does not return the same value for, say,
1851*06c3fb27SDimitry Andric   /// [%bb.0, %0] & [%bb.1, %0] as:
1852*06c3fb27SDimitry Andric   ///   - It could cause issues with dominance (e.g. if bb.1 is seen first, then
1853*06c3fb27SDimitry Andric   ///   the value in bb.1 may not be reachable from bb.0 if it's its
1854*06c3fb27SDimitry Andric   ///   predecessor.)
1855*06c3fb27SDimitry Andric   ///   - We also want to make our extract instructions as local as possible so
1856*06c3fb27SDimitry Andric   ///   the DAG has better chances of folding them out. Duplicating them like
1857*06c3fb27SDimitry Andric   ///   that is beneficial in that regard.
1858*06c3fb27SDimitry Andric   ///
1859*06c3fb27SDimitry Andric   /// This is both a minor optimization to avoid creating duplicate
1860*06c3fb27SDimitry Andric   /// instructions, but also a requirement for correctness. It is not forbidden
1861*06c3fb27SDimitry Andric   /// for a PHI node to have the same [BB, Val] pair multiple times. If we
1862*06c3fb27SDimitry Andric   /// returned a new value each time, those previously identical pairs would all
1863*06c3fb27SDimitry Andric   /// have different incoming values (from the same block) and it'd cause a "PHI
1864*06c3fb27SDimitry Andric   /// node has multiple entries for the same basic block with different incoming
1865*06c3fb27SDimitry Andric   /// values!" verifier error.
1866*06c3fb27SDimitry Andric   Value *getSlicedVal(BasicBlock *BB, Value *Inc, StringRef NewValName) {
1867*06c3fb27SDimitry Andric     Value *&Res = SlicedVals[{BB, Inc}];
1868*06c3fb27SDimitry Andric     if (Res)
1869*06c3fb27SDimitry Andric       return Res;
1870*06c3fb27SDimitry Andric 
1871*06c3fb27SDimitry Andric     IRBuilder<> B(BB->getTerminator());
1872*06c3fb27SDimitry Andric     if (Instruction *IncInst = dyn_cast<Instruction>(Inc))
1873*06c3fb27SDimitry Andric       B.SetCurrentDebugLocation(IncInst->getDebugLoc());
1874*06c3fb27SDimitry Andric 
1875*06c3fb27SDimitry Andric     if (NumElts > 1) {
1876*06c3fb27SDimitry Andric       SmallVector<int, 4> Mask;
1877*06c3fb27SDimitry Andric       for (unsigned K = Idx; K < (Idx + NumElts); ++K)
1878*06c3fb27SDimitry Andric         Mask.push_back(K);
1879*06c3fb27SDimitry Andric       Res = B.CreateShuffleVector(Inc, Mask, NewValName);
1880*06c3fb27SDimitry Andric     } else
1881*06c3fb27SDimitry Andric       Res = B.CreateExtractElement(Inc, Idx, NewValName);
1882*06c3fb27SDimitry Andric 
1883*06c3fb27SDimitry Andric     return Res;
1884*06c3fb27SDimitry Andric   }
1885*06c3fb27SDimitry Andric 
1886*06c3fb27SDimitry Andric private:
1887*06c3fb27SDimitry Andric   SmallDenseMap<std::pair<BasicBlock *, Value *>, Value *> SlicedVals;
1888*06c3fb27SDimitry Andric };
1889*06c3fb27SDimitry Andric 
1890*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitPHINode(PHINode &I) {
1891*06c3fb27SDimitry Andric   // Break-up fixed-vector PHIs into smaller pieces.
1892*06c3fb27SDimitry Andric   // Default threshold is 32, so it breaks up any vector that's >32 bits into
1893*06c3fb27SDimitry Andric   // its elements, or into 32-bit pieces (for 8/16 bit elts).
1894*06c3fb27SDimitry Andric   //
1895*06c3fb27SDimitry Andric   // This is only helpful for DAGISel because it doesn't handle large PHIs as
1896*06c3fb27SDimitry Andric   // well as GlobalISel. DAGISel lowers PHIs by using CopyToReg/CopyFromReg.
1897*06c3fb27SDimitry Andric   // With large, odd-sized PHIs we may end up needing many `build_vector`
1898*06c3fb27SDimitry Andric   // operations with most elements being "undef". This inhibits a lot of
1899*06c3fb27SDimitry Andric   // optimization opportunities and can result in unreasonably high register
1900*06c3fb27SDimitry Andric   // pressure and the inevitable stack spilling.
1901*06c3fb27SDimitry Andric   if (!ScalarizeLargePHIs || getCGPassBuilderOption().EnableGlobalISelOption)
1902*06c3fb27SDimitry Andric     return false;
1903*06c3fb27SDimitry Andric 
1904*06c3fb27SDimitry Andric   FixedVectorType *FVT = dyn_cast<FixedVectorType>(I.getType());
1905*06c3fb27SDimitry Andric   if (!FVT || DL->getTypeSizeInBits(FVT) <= ScalarizeLargePHIsThreshold)
1906*06c3fb27SDimitry Andric     return false;
1907*06c3fb27SDimitry Andric 
1908*06c3fb27SDimitry Andric   if (!ForceScalarizeLargePHIs && !canBreakPHINode(I))
1909*06c3fb27SDimitry Andric     return false;
1910*06c3fb27SDimitry Andric 
1911*06c3fb27SDimitry Andric   std::vector<VectorSlice> Slices;
1912*06c3fb27SDimitry Andric 
1913*06c3fb27SDimitry Andric   Type *EltTy = FVT->getElementType();
1914*06c3fb27SDimitry Andric   {
1915*06c3fb27SDimitry Andric     unsigned Idx = 0;
1916*06c3fb27SDimitry Andric     // For 8/16 bits type, don't scalarize fully but break it up into as many
1917*06c3fb27SDimitry Andric     // 32-bit slices as we can, and scalarize the tail.
1918*06c3fb27SDimitry Andric     const unsigned EltSize = DL->getTypeSizeInBits(EltTy);
1919*06c3fb27SDimitry Andric     const unsigned NumElts = FVT->getNumElements();
1920*06c3fb27SDimitry Andric     if (EltSize == 8 || EltSize == 16) {
1921*06c3fb27SDimitry Andric       const unsigned SubVecSize = (32 / EltSize);
1922*06c3fb27SDimitry Andric       Type *SubVecTy = FixedVectorType::get(EltTy, SubVecSize);
1923*06c3fb27SDimitry Andric       for (unsigned End = alignDown(NumElts, SubVecSize); Idx < End;
1924*06c3fb27SDimitry Andric            Idx += SubVecSize)
1925*06c3fb27SDimitry Andric         Slices.emplace_back(SubVecTy, Idx, SubVecSize);
1926*06c3fb27SDimitry Andric     }
1927*06c3fb27SDimitry Andric 
1928*06c3fb27SDimitry Andric     // Scalarize all remaining elements.
1929*06c3fb27SDimitry Andric     for (; Idx < NumElts; ++Idx)
1930*06c3fb27SDimitry Andric       Slices.emplace_back(EltTy, Idx, 1);
1931*06c3fb27SDimitry Andric   }
1932*06c3fb27SDimitry Andric 
1933*06c3fb27SDimitry Andric   if (Slices.size() == 1)
1934*06c3fb27SDimitry Andric     return false;
1935*06c3fb27SDimitry Andric 
1936*06c3fb27SDimitry Andric   // Create one PHI per vector piece. The "VectorSlice" class takes care of
1937*06c3fb27SDimitry Andric   // creating the necessary instruction to extract the relevant slices of each
1938*06c3fb27SDimitry Andric   // incoming value.
1939*06c3fb27SDimitry Andric   IRBuilder<> B(I.getParent());
1940*06c3fb27SDimitry Andric   B.SetCurrentDebugLocation(I.getDebugLoc());
1941*06c3fb27SDimitry Andric 
1942*06c3fb27SDimitry Andric   unsigned IncNameSuffix = 0;
1943*06c3fb27SDimitry Andric   for (VectorSlice &S : Slices) {
1944*06c3fb27SDimitry Andric     // We need to reset the build on each iteration, because getSlicedVal may
1945*06c3fb27SDimitry Andric     // have inserted something into I's BB.
1946*06c3fb27SDimitry Andric     B.SetInsertPoint(I.getParent()->getFirstNonPHI());
1947*06c3fb27SDimitry Andric     S.NewPHI = B.CreatePHI(S.Ty, I.getNumIncomingValues());
1948*06c3fb27SDimitry Andric 
1949*06c3fb27SDimitry Andric     for (const auto &[Idx, BB] : enumerate(I.blocks())) {
1950*06c3fb27SDimitry Andric       S.NewPHI->addIncoming(S.getSlicedVal(BB, I.getIncomingValue(Idx),
1951*06c3fb27SDimitry Andric                                            "largephi.extractslice" +
1952*06c3fb27SDimitry Andric                                                std::to_string(IncNameSuffix++)),
1953*06c3fb27SDimitry Andric                             BB);
1954*06c3fb27SDimitry Andric     }
1955*06c3fb27SDimitry Andric   }
1956*06c3fb27SDimitry Andric 
1957*06c3fb27SDimitry Andric   // And replace this PHI with a vector of all the previous PHI values.
1958*06c3fb27SDimitry Andric   Value *Vec = PoisonValue::get(FVT);
1959*06c3fb27SDimitry Andric   unsigned NameSuffix = 0;
1960*06c3fb27SDimitry Andric   for (VectorSlice &S : Slices) {
1961*06c3fb27SDimitry Andric     const auto ValName = "largephi.insertslice" + std::to_string(NameSuffix++);
1962*06c3fb27SDimitry Andric     if (S.NumElts > 1)
1963*06c3fb27SDimitry Andric       Vec =
1964*06c3fb27SDimitry Andric           B.CreateInsertVector(FVT, Vec, S.NewPHI, B.getInt64(S.Idx), ValName);
1965*06c3fb27SDimitry Andric     else
1966*06c3fb27SDimitry Andric       Vec = B.CreateInsertElement(Vec, S.NewPHI, S.Idx, ValName);
1967*06c3fb27SDimitry Andric   }
1968*06c3fb27SDimitry Andric 
1969*06c3fb27SDimitry Andric   I.replaceAllUsesWith(Vec);
1970*06c3fb27SDimitry Andric   I.eraseFromParent();
1971*06c3fb27SDimitry Andric   return true;
1972*06c3fb27SDimitry Andric }
1973*06c3fb27SDimitry Andric 
1974*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitIntrinsicInst(IntrinsicInst &I) {
19750b57cec5SDimitry Andric   switch (I.getIntrinsicID()) {
19760b57cec5SDimitry Andric   case Intrinsic::bitreverse:
19770b57cec5SDimitry Andric     return visitBitreverseIntrinsicInst(I);
1978*06c3fb27SDimitry Andric   case Intrinsic::minnum:
1979*06c3fb27SDimitry Andric     return visitMinNum(I);
19800b57cec5SDimitry Andric   default:
19810b57cec5SDimitry Andric     return false;
19820b57cec5SDimitry Andric   }
19830b57cec5SDimitry Andric }
19840b57cec5SDimitry Andric 
1985*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
19860b57cec5SDimitry Andric   bool Changed = false;
19870b57cec5SDimitry Andric 
19880b57cec5SDimitry Andric   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1989*06c3fb27SDimitry Andric       UA->isUniform(&I))
19900b57cec5SDimitry Andric     Changed |= promoteUniformBitreverseToI32(I);
19910b57cec5SDimitry Andric 
19920b57cec5SDimitry Andric   return Changed;
19930b57cec5SDimitry Andric }
19940b57cec5SDimitry Andric 
1995*06c3fb27SDimitry Andric /// Match non-nan fract pattern.
1996*06c3fb27SDimitry Andric ///   minnum(fsub(x, floor(x)), nextafter(1.0, -1.0)
1997*06c3fb27SDimitry Andric ///
1998*06c3fb27SDimitry Andric /// If fract is a useful instruction for the subtarget. Does not account for the
1999*06c3fb27SDimitry Andric /// nan handling; the instruction has a nan check on the input value.
2000*06c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::matchFractPat(IntrinsicInst &I) {
2001*06c3fb27SDimitry Andric   if (ST->hasFractBug())
2002*06c3fb27SDimitry Andric     return nullptr;
2003*06c3fb27SDimitry Andric 
2004*06c3fb27SDimitry Andric   if (I.getIntrinsicID() != Intrinsic::minnum)
2005*06c3fb27SDimitry Andric     return nullptr;
2006*06c3fb27SDimitry Andric 
2007*06c3fb27SDimitry Andric   Type *Ty = I.getType();
2008*06c3fb27SDimitry Andric   if (!isLegalFloatingTy(Ty->getScalarType()))
2009*06c3fb27SDimitry Andric     return nullptr;
2010*06c3fb27SDimitry Andric 
2011*06c3fb27SDimitry Andric   Value *Arg0 = I.getArgOperand(0);
2012*06c3fb27SDimitry Andric   Value *Arg1 = I.getArgOperand(1);
2013*06c3fb27SDimitry Andric 
2014*06c3fb27SDimitry Andric   const APFloat *C;
2015*06c3fb27SDimitry Andric   if (!match(Arg1, m_APFloat(C)))
2016*06c3fb27SDimitry Andric     return nullptr;
2017*06c3fb27SDimitry Andric 
2018*06c3fb27SDimitry Andric   APFloat One(1.0);
2019*06c3fb27SDimitry Andric   bool LosesInfo;
2020*06c3fb27SDimitry Andric   One.convert(C->getSemantics(), APFloat::rmNearestTiesToEven, &LosesInfo);
2021*06c3fb27SDimitry Andric 
2022*06c3fb27SDimitry Andric   // Match nextafter(1.0, -1)
2023*06c3fb27SDimitry Andric   One.next(true);
2024*06c3fb27SDimitry Andric   if (One != *C)
2025*06c3fb27SDimitry Andric     return nullptr;
2026*06c3fb27SDimitry Andric 
2027*06c3fb27SDimitry Andric   Value *FloorSrc;
2028*06c3fb27SDimitry Andric   if (match(Arg0, m_FSub(m_Value(FloorSrc),
2029*06c3fb27SDimitry Andric                          m_Intrinsic<Intrinsic::floor>(m_Deferred(FloorSrc)))))
2030*06c3fb27SDimitry Andric     return FloorSrc;
2031*06c3fb27SDimitry Andric   return nullptr;
2032*06c3fb27SDimitry Andric }
2033*06c3fb27SDimitry Andric 
2034*06c3fb27SDimitry Andric Value *AMDGPUCodeGenPrepareImpl::applyFractPat(IRBuilder<> &Builder,
2035*06c3fb27SDimitry Andric                                                Value *FractArg) {
2036*06c3fb27SDimitry Andric   SmallVector<Value *, 4> FractVals;
2037*06c3fb27SDimitry Andric   extractValues(Builder, FractVals, FractArg);
2038*06c3fb27SDimitry Andric 
2039*06c3fb27SDimitry Andric   SmallVector<Value *, 4> ResultVals(FractVals.size());
2040*06c3fb27SDimitry Andric 
2041*06c3fb27SDimitry Andric   Type *Ty = FractArg->getType()->getScalarType();
2042*06c3fb27SDimitry Andric   for (unsigned I = 0, E = FractVals.size(); I != E; ++I) {
2043*06c3fb27SDimitry Andric     ResultVals[I] =
2044*06c3fb27SDimitry Andric         Builder.CreateIntrinsic(Intrinsic::amdgcn_fract, {Ty}, {FractVals[I]});
2045*06c3fb27SDimitry Andric   }
2046*06c3fb27SDimitry Andric 
2047*06c3fb27SDimitry Andric   return insertValues(Builder, FractArg->getType(), ResultVals);
2048*06c3fb27SDimitry Andric }
2049*06c3fb27SDimitry Andric 
2050*06c3fb27SDimitry Andric bool AMDGPUCodeGenPrepareImpl::visitMinNum(IntrinsicInst &I) {
2051*06c3fb27SDimitry Andric   Value *FractArg = matchFractPat(I);
2052*06c3fb27SDimitry Andric   if (!FractArg)
2053*06c3fb27SDimitry Andric     return false;
2054*06c3fb27SDimitry Andric 
2055*06c3fb27SDimitry Andric   // Match pattern for fract intrinsic in contexts where the nan check has been
2056*06c3fb27SDimitry Andric   // optimized out (and hope the knowledge the source can't be nan wasn't lost).
2057*06c3fb27SDimitry Andric   if (!I.hasNoNaNs() && !isKnownNeverNaN(FractArg, *DL, TLInfo))
2058*06c3fb27SDimitry Andric     return false;
2059*06c3fb27SDimitry Andric 
2060*06c3fb27SDimitry Andric   IRBuilder<> Builder(&I);
2061*06c3fb27SDimitry Andric   FastMathFlags FMF = I.getFastMathFlags();
2062*06c3fb27SDimitry Andric   FMF.setNoNaNs();
2063*06c3fb27SDimitry Andric   Builder.setFastMathFlags(FMF);
2064*06c3fb27SDimitry Andric 
2065*06c3fb27SDimitry Andric   Value *Fract = applyFractPat(Builder, FractArg);
2066*06c3fb27SDimitry Andric   Fract->takeName(&I);
2067*06c3fb27SDimitry Andric   I.replaceAllUsesWith(Fract);
2068*06c3fb27SDimitry Andric 
2069*06c3fb27SDimitry Andric   RecursivelyDeleteTriviallyDeadInstructions(&I, TLInfo);
2070*06c3fb27SDimitry Andric   return true;
2071*06c3fb27SDimitry Andric }
2072*06c3fb27SDimitry Andric 
20730b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
2074*06c3fb27SDimitry Andric   Impl.Mod = &M;
2075*06c3fb27SDimitry Andric   Impl.DL = &Impl.Mod->getDataLayout();
20760b57cec5SDimitry Andric   return false;
20770b57cec5SDimitry Andric }
20780b57cec5SDimitry Andric 
20790b57cec5SDimitry Andric bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
20800b57cec5SDimitry Andric   if (skipFunction(F))
20810b57cec5SDimitry Andric     return false;
20820b57cec5SDimitry Andric 
20830b57cec5SDimitry Andric   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
20840b57cec5SDimitry Andric   if (!TPC)
20850b57cec5SDimitry Andric     return false;
20860b57cec5SDimitry Andric 
20870b57cec5SDimitry Andric   const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
2088*06c3fb27SDimitry Andric   Impl.TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2089*06c3fb27SDimitry Andric   Impl.ST = &TM.getSubtarget<GCNSubtarget>(F);
2090*06c3fb27SDimitry Andric   Impl.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2091*06c3fb27SDimitry Andric   Impl.UA = &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
20925ffd83dbSDimitry Andric   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
2093*06c3fb27SDimitry Andric   Impl.DT = DTWP ? &DTWP->getDomTree() : nullptr;
2094*06c3fb27SDimitry Andric   Impl.HasUnsafeFPMath = hasUnsafeFPMath(F);
2095*06c3fb27SDimitry Andric   SIModeRegisterDefaults Mode(F);
2096*06c3fb27SDimitry Andric   Impl.HasFP32DenormalFlush =
2097*06c3fb27SDimitry Andric       Mode.FP32Denormals == DenormalMode::getPreserveSign();
2098*06c3fb27SDimitry Andric   return Impl.run(F);
20990b57cec5SDimitry Andric }
21000b57cec5SDimitry Andric 
2101*06c3fb27SDimitry Andric PreservedAnalyses AMDGPUCodeGenPreparePass::run(Function &F,
2102*06c3fb27SDimitry Andric                                                 FunctionAnalysisManager &FAM) {
2103*06c3fb27SDimitry Andric   AMDGPUCodeGenPrepareImpl Impl;
2104*06c3fb27SDimitry Andric   Impl.Mod = F.getParent();
2105*06c3fb27SDimitry Andric   Impl.DL = &Impl.Mod->getDataLayout();
2106*06c3fb27SDimitry Andric   Impl.TLInfo = &FAM.getResult<TargetLibraryAnalysis>(F);
2107*06c3fb27SDimitry Andric   Impl.ST = &TM.getSubtarget<GCNSubtarget>(F);
2108*06c3fb27SDimitry Andric   Impl.AC = &FAM.getResult<AssumptionAnalysis>(F);
2109*06c3fb27SDimitry Andric   Impl.UA = &FAM.getResult<UniformityInfoAnalysis>(F);
2110*06c3fb27SDimitry Andric   Impl.DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
2111*06c3fb27SDimitry Andric   Impl.HasUnsafeFPMath = hasUnsafeFPMath(F);
2112*06c3fb27SDimitry Andric   SIModeRegisterDefaults Mode(F);
2113*06c3fb27SDimitry Andric   Impl.HasFP32DenormalFlush =
2114*06c3fb27SDimitry Andric       Mode.FP32Denormals == DenormalMode::getPreserveSign();
2115*06c3fb27SDimitry Andric   PreservedAnalyses PA = PreservedAnalyses::none();
2116*06c3fb27SDimitry Andric   if (!Impl.FlowChanged)
2117*06c3fb27SDimitry Andric     PA.preserveSet<CFGAnalyses>();
2118*06c3fb27SDimitry Andric   return Impl.run(F) ? PA : PreservedAnalyses::all();
21190b57cec5SDimitry Andric }
21200b57cec5SDimitry Andric 
21210b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
21220b57cec5SDimitry Andric                       "AMDGPU IR optimizations", false, false)
21230b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2124*06c3fb27SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2125*06c3fb27SDimitry Andric INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
21260b57cec5SDimitry Andric INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
21270b57cec5SDimitry Andric                     false, false)
21280b57cec5SDimitry Andric 
21290b57cec5SDimitry Andric char AMDGPUCodeGenPrepare::ID = 0;
21300b57cec5SDimitry Andric 
21310b57cec5SDimitry Andric FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
21320b57cec5SDimitry Andric   return new AMDGPUCodeGenPrepare();
21330b57cec5SDimitry Andric }
2134