1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "SIRegisterInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 26 #define DEBUG_TYPE "amdgpu-call-lowering" 27 28 using namespace llvm; 29 30 namespace { 31 32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register. 33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler, 34 Register ValVReg, CCValAssign &VA) { 35 if (VA.getLocVT().getSizeInBits() < 32) { 36 // 16-bit types are reported as legal for 32-bit registers. We need to 37 // extend and do a 32-bit copy to avoid the verifier complaining about it. 38 return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 39 } 40 41 return Handler.extendRegister(ValVReg, VA); 42 } 43 44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler { 45 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 46 MachineInstrBuilder MIB) 47 : OutgoingValueHandler(B, MRI), MIB(MIB) {} 48 49 MachineInstrBuilder MIB; 50 51 Register getStackAddress(uint64_t Size, int64_t Offset, 52 MachinePointerInfo &MPO, 53 ISD::ArgFlagsTy Flags) override { 54 llvm_unreachable("not implemented"); 55 } 56 57 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 58 MachinePointerInfo &MPO, CCValAssign &VA) override { 59 llvm_unreachable("not implemented"); 60 } 61 62 void assignValueToReg(Register ValVReg, Register PhysReg, 63 CCValAssign &VA) override { 64 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 65 66 // If this is a scalar return, insert a readfirstlane just in case the value 67 // ends up in a VGPR. 68 // FIXME: Assert this is a shader return. 69 const SIRegisterInfo *TRI 70 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 71 if (TRI->isSGPRReg(MRI, PhysReg)) { 72 auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane, 73 {MRI.getType(ExtReg)}, false) 74 .addReg(ExtReg); 75 ExtReg = ToSGPR.getReg(0); 76 } 77 78 MIRBuilder.buildCopy(PhysReg, ExtReg); 79 MIB.addUse(PhysReg, RegState::Implicit); 80 } 81 }; 82 83 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler { 84 uint64_t StackUsed = 0; 85 86 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 87 : IncomingValueHandler(B, MRI) {} 88 89 Register getStackAddress(uint64_t Size, int64_t Offset, 90 MachinePointerInfo &MPO, 91 ISD::ArgFlagsTy Flags) override { 92 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 93 94 // Byval is assumed to be writable memory, but other stack passed arguments 95 // are not. 96 const bool IsImmutable = !Flags.isByVal(); 97 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); 98 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 99 auto AddrReg = MIRBuilder.buildFrameIndex( 100 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 101 StackUsed = std::max(StackUsed, Size + Offset); 102 return AddrReg.getReg(0); 103 } 104 105 void assignValueToReg(Register ValVReg, Register PhysReg, 106 CCValAssign &VA) override { 107 markPhysRegUsed(PhysReg); 108 109 if (VA.getLocVT().getSizeInBits() < 32) { 110 // 16-bit types are reported as legal for 32-bit registers. We need to do 111 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 112 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 113 114 // If we have signext/zeroext, it applies to the whole 32-bit register 115 // before truncation. 116 auto Extended = 117 buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT())); 118 MIRBuilder.buildTrunc(ValVReg, Extended); 119 return; 120 } 121 122 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); 123 } 124 125 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 126 MachinePointerInfo &MPO, CCValAssign &VA) override { 127 MachineFunction &MF = MIRBuilder.getMF(); 128 129 auto MMO = MF.getMachineMemOperand( 130 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy, 131 inferAlignFromPtrInfo(MF, MPO)); 132 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 133 } 134 135 /// How the physical register gets marked varies between formal 136 /// parameters (it's a basic-block live-in), and a call instruction 137 /// (it's an implicit-def of the BL). 138 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 139 }; 140 141 struct FormalArgHandler : public AMDGPUIncomingArgHandler { 142 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 143 : AMDGPUIncomingArgHandler(B, MRI) {} 144 145 void markPhysRegUsed(unsigned PhysReg) override { 146 MIRBuilder.getMBB().addLiveIn(PhysReg); 147 } 148 }; 149 150 struct CallReturnHandler : public AMDGPUIncomingArgHandler { 151 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 152 MachineInstrBuilder MIB) 153 : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {} 154 155 void markPhysRegUsed(unsigned PhysReg) override { 156 MIB.addDef(PhysReg, RegState::Implicit); 157 } 158 159 MachineInstrBuilder MIB; 160 }; 161 162 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler { 163 /// For tail calls, the byte offset of the call's argument area from the 164 /// callee's. Unused elsewhere. 165 int FPDiff; 166 167 // Cache the SP register vreg if we need it more than once in this call site. 168 Register SPReg; 169 170 bool IsTailCall; 171 172 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, 173 MachineRegisterInfo &MRI, MachineInstrBuilder MIB, 174 bool IsTailCall = false, int FPDiff = 0) 175 : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff), 176 IsTailCall(IsTailCall) {} 177 178 Register getStackAddress(uint64_t Size, int64_t Offset, 179 MachinePointerInfo &MPO, 180 ISD::ArgFlagsTy Flags) override { 181 MachineFunction &MF = MIRBuilder.getMF(); 182 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); 183 const LLT S32 = LLT::scalar(32); 184 185 if (IsTailCall) { 186 Offset += FPDiff; 187 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); 188 auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI); 189 MPO = MachinePointerInfo::getFixedStack(MF, FI); 190 return FIReg.getReg(0); 191 } 192 193 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 194 195 if (!SPReg) 196 SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0); 197 198 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); 199 200 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); 201 MPO = MachinePointerInfo::getStack(MF, Offset); 202 return AddrReg.getReg(0); 203 } 204 205 void assignValueToReg(Register ValVReg, Register PhysReg, 206 CCValAssign &VA) override { 207 MIB.addUse(PhysReg, RegState::Implicit); 208 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 209 MIRBuilder.buildCopy(PhysReg, ExtReg); 210 } 211 212 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 213 MachinePointerInfo &MPO, CCValAssign &VA) override { 214 MachineFunction &MF = MIRBuilder.getMF(); 215 uint64_t LocMemOffset = VA.getLocMemOffset(); 216 const auto &ST = MF.getSubtarget<GCNSubtarget>(); 217 218 auto MMO = MF.getMachineMemOperand( 219 MPO, MachineMemOperand::MOStore, MemTy, 220 commonAlignment(ST.getStackAlignment(), LocMemOffset)); 221 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 222 } 223 224 void assignValueToAddress(const CallLowering::ArgInfo &Arg, 225 unsigned ValRegIndex, Register Addr, LLT MemTy, 226 MachinePointerInfo &MPO, CCValAssign &VA) override { 227 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 228 ? extendRegister(Arg.Regs[ValRegIndex], VA) 229 : Arg.Regs[ValRegIndex]; 230 assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA); 231 } 232 }; 233 } 234 235 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 236 : CallLowering(&TLI) { 237 } 238 239 // FIXME: Compatability shim 240 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { 241 switch (MIOpc) { 242 case TargetOpcode::G_SEXT: 243 return ISD::SIGN_EXTEND; 244 case TargetOpcode::G_ZEXT: 245 return ISD::ZERO_EXTEND; 246 case TargetOpcode::G_ANYEXT: 247 return ISD::ANY_EXTEND; 248 default: 249 llvm_unreachable("not an extend opcode"); 250 } 251 } 252 253 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, 254 CallingConv::ID CallConv, 255 SmallVectorImpl<BaseArgInfo> &Outs, 256 bool IsVarArg) const { 257 // For shaders. Vector types should be explicitly handled by CC. 258 if (AMDGPU::isEntryFunctionCC(CallConv)) 259 return true; 260 261 SmallVector<CCValAssign, 16> ArgLocs; 262 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 263 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 264 MF.getFunction().getContext()); 265 266 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); 267 } 268 269 /// Lower the return value for the already existing \p Ret. This assumes that 270 /// \p B's insertion point is correct. 271 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 272 const Value *Val, ArrayRef<Register> VRegs, 273 MachineInstrBuilder &Ret) const { 274 if (!Val) 275 return true; 276 277 auto &MF = B.getMF(); 278 const auto &F = MF.getFunction(); 279 const DataLayout &DL = MF.getDataLayout(); 280 MachineRegisterInfo *MRI = B.getMRI(); 281 LLVMContext &Ctx = F.getContext(); 282 283 CallingConv::ID CC = F.getCallingConv(); 284 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 285 286 SmallVector<EVT, 8> SplitEVTs; 287 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 288 assert(VRegs.size() == SplitEVTs.size() && 289 "For each split Type there should be exactly one VReg."); 290 291 SmallVector<ArgInfo, 8> SplitRetInfos; 292 293 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 294 EVT VT = SplitEVTs[i]; 295 Register Reg = VRegs[i]; 296 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0); 297 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 298 299 if (VT.isScalarInteger()) { 300 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 301 if (RetInfo.Flags[0].isSExt()) { 302 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 303 ExtendOp = TargetOpcode::G_SEXT; 304 } else if (RetInfo.Flags[0].isZExt()) { 305 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 306 ExtendOp = TargetOpcode::G_ZEXT; 307 } 308 309 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, 310 extOpcodeToISDExtOpcode(ExtendOp)); 311 if (ExtVT != VT) { 312 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); 313 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); 314 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); 315 } 316 } 317 318 if (Reg != RetInfo.Regs[0]) { 319 RetInfo.Regs[0] = Reg; 320 // Reset the arg flags after modifying Reg. 321 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 322 } 323 324 splitToValueTypes(RetInfo, SplitRetInfos, DL, CC); 325 } 326 327 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 328 329 OutgoingValueAssigner Assigner(AssignFn); 330 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret); 331 return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B, 332 CC, F.isVarArg()); 333 } 334 335 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, 336 ArrayRef<Register> VRegs, 337 FunctionLoweringInfo &FLI) const { 338 339 MachineFunction &MF = B.getMF(); 340 MachineRegisterInfo &MRI = MF.getRegInfo(); 341 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 342 MFI->setIfReturnsVoid(!Val); 343 344 assert(!Val == VRegs.empty() && "Return value without a vreg"); 345 346 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 347 const bool IsShader = AMDGPU::isShader(CC); 348 const bool IsWaveEnd = 349 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); 350 if (IsWaveEnd) { 351 B.buildInstr(AMDGPU::S_ENDPGM) 352 .addImm(0); 353 return true; 354 } 355 356 auto const &ST = MF.getSubtarget<GCNSubtarget>(); 357 358 unsigned ReturnOpc = 359 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return; 360 361 auto Ret = B.buildInstrNoInsert(ReturnOpc); 362 Register ReturnAddrVReg; 363 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 364 ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass); 365 Ret.addUse(ReturnAddrVReg); 366 } 367 368 if (!FLI.CanLowerReturn) 369 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); 370 else if (!lowerReturnVal(B, Val, VRegs, Ret)) 371 return false; 372 373 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 374 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 375 Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF), 376 &AMDGPU::SGPR_64RegClass); 377 B.buildCopy(ReturnAddrVReg, LiveInReturn); 378 } 379 380 // TODO: Handle CalleeSavedRegsViaCopy. 381 382 B.insertInstr(Ret); 383 return true; 384 } 385 386 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, 387 uint64_t Offset) const { 388 MachineFunction &MF = B.getMF(); 389 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 390 MachineRegisterInfo &MRI = MF.getRegInfo(); 391 Register KernArgSegmentPtr = 392 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 393 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 394 395 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 396 397 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); 398 } 399 400 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg, 401 uint64_t Offset, 402 Align Alignment) const { 403 MachineFunction &MF = B.getMF(); 404 const Function &F = MF.getFunction(); 405 const DataLayout &DL = F.getParent()->getDataLayout(); 406 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 407 408 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 409 410 SmallVector<ArgInfo, 32> SplitArgs; 411 SmallVector<uint64_t> FieldOffsets; 412 splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets); 413 414 unsigned Idx = 0; 415 for (ArgInfo &SplitArg : SplitArgs) { 416 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); 417 lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]); 418 419 LLT ArgTy = getLLTForType(*SplitArg.Ty, DL); 420 if (SplitArg.Flags[0].isPointer()) { 421 // Compensate for losing pointeriness in splitValueTypes. 422 LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(), 423 ArgTy.getScalarSizeInBits()); 424 ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy) 425 : PtrTy; 426 } 427 428 MachineMemOperand *MMO = MF.getMachineMemOperand( 429 PtrInfo, 430 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 431 MachineMemOperand::MOInvariant, 432 ArgTy, commonAlignment(Alignment, FieldOffsets[Idx])); 433 434 assert(SplitArg.Regs.size() == 1); 435 436 B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO); 437 ++Idx; 438 } 439 } 440 441 // Allocate special inputs passed in user SGPRs. 442 static void allocateHSAUserSGPRs(CCState &CCInfo, 443 MachineIRBuilder &B, 444 MachineFunction &MF, 445 const SIRegisterInfo &TRI, 446 SIMachineFunctionInfo &Info) { 447 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 448 if (Info.hasPrivateSegmentBuffer()) { 449 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 450 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 451 CCInfo.AllocateReg(PrivateSegmentBufferReg); 452 } 453 454 if (Info.hasDispatchPtr()) { 455 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 456 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 457 CCInfo.AllocateReg(DispatchPtrReg); 458 } 459 460 if (Info.hasQueuePtr()) { 461 Register QueuePtrReg = Info.addQueuePtr(TRI); 462 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 463 CCInfo.AllocateReg(QueuePtrReg); 464 } 465 466 if (Info.hasKernargSegmentPtr()) { 467 MachineRegisterInfo &MRI = MF.getRegInfo(); 468 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 469 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 470 Register VReg = MRI.createGenericVirtualRegister(P4); 471 MRI.addLiveIn(InputPtrReg, VReg); 472 B.getMBB().addLiveIn(InputPtrReg); 473 B.buildCopy(VReg, InputPtrReg); 474 CCInfo.AllocateReg(InputPtrReg); 475 } 476 477 if (Info.hasDispatchID()) { 478 Register DispatchIDReg = Info.addDispatchID(TRI); 479 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 480 CCInfo.AllocateReg(DispatchIDReg); 481 } 482 483 if (Info.hasFlatScratchInit()) { 484 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 485 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 486 CCInfo.AllocateReg(FlatScratchInitReg); 487 } 488 489 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 490 // these from the dispatch pointer. 491 } 492 493 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 494 MachineIRBuilder &B, const Function &F, 495 ArrayRef<ArrayRef<Register>> VRegs) const { 496 MachineFunction &MF = B.getMF(); 497 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 498 MachineRegisterInfo &MRI = MF.getRegInfo(); 499 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 500 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 501 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 502 const DataLayout &DL = F.getParent()->getDataLayout(); 503 504 Info->allocateModuleLDSGlobal(F.getParent()); 505 506 SmallVector<CCValAssign, 16> ArgLocs; 507 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 508 509 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 510 511 unsigned i = 0; 512 const Align KernArgBaseAlign(16); 513 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F); 514 uint64_t ExplicitArgOffset = 0; 515 516 // TODO: Align down to dword alignment and extract bits for extending loads. 517 for (auto &Arg : F.args()) { 518 const bool IsByRef = Arg.hasByRefAttr(); 519 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 520 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 521 if (AllocSize == 0) 522 continue; 523 524 MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None; 525 if (!ABIAlign) 526 ABIAlign = DL.getABITypeAlign(ArgTy); 527 528 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 529 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 530 531 if (Arg.use_empty()) { 532 ++i; 533 continue; 534 } 535 536 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); 537 538 if (IsByRef) { 539 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); 540 541 assert(VRegs[i].size() == 1 && 542 "expected only one register for byval pointers"); 543 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { 544 lowerParameterPtr(VRegs[i][0], B, ArgOffset); 545 } else { 546 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 547 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); 548 lowerParameterPtr(PtrReg, B, ArgOffset); 549 550 B.buildAddrSpaceCast(VRegs[i][0], PtrReg); 551 } 552 } else { 553 ArgInfo OrigArg(VRegs[i], Arg, i); 554 const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex; 555 setArgFlags(OrigArg, OrigArgIdx, DL, F); 556 lowerParameter(B, OrigArg, ArgOffset, Alignment); 557 } 558 559 ++i; 560 } 561 562 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 563 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 564 return true; 565 } 566 567 bool AMDGPUCallLowering::lowerFormalArguments( 568 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, 569 FunctionLoweringInfo &FLI) const { 570 CallingConv::ID CC = F.getCallingConv(); 571 572 // The infrastructure for normal calling convention lowering is essentially 573 // useless for kernels. We want to avoid any kind of legalization or argument 574 // splitting. 575 if (CC == CallingConv::AMDGPU_KERNEL) 576 return lowerFormalArgumentsKernel(B, F, VRegs); 577 578 const bool IsGraphics = AMDGPU::isGraphics(CC); 579 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 580 581 MachineFunction &MF = B.getMF(); 582 MachineBasicBlock &MBB = B.getMBB(); 583 MachineRegisterInfo &MRI = MF.getRegInfo(); 584 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 585 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 586 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 587 const DataLayout &DL = F.getParent()->getDataLayout(); 588 589 Info->allocateModuleLDSGlobal(F.getParent()); 590 591 SmallVector<CCValAssign, 16> ArgLocs; 592 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 593 594 if (!IsEntryFunc) { 595 Register ReturnAddrReg = TRI->getReturnAddressReg(MF); 596 Register LiveInReturn = MF.addLiveIn(ReturnAddrReg, 597 &AMDGPU::SGPR_64RegClass); 598 MBB.addLiveIn(ReturnAddrReg); 599 B.buildCopy(LiveInReturn, ReturnAddrReg); 600 } 601 602 if (Info->hasImplicitBufferPtr()) { 603 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 604 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 605 CCInfo.AllocateReg(ImplicitBufferPtrReg); 606 } 607 608 SmallVector<ArgInfo, 32> SplitArgs; 609 unsigned Idx = 0; 610 unsigned PSInputNum = 0; 611 612 // Insert the hidden sret parameter if the return value won't fit in the 613 // return registers. 614 if (!FLI.CanLowerReturn) 615 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 616 617 for (auto &Arg : F.args()) { 618 if (DL.getTypeStoreSize(Arg.getType()) == 0) 619 continue; 620 621 const bool InReg = Arg.hasAttribute(Attribute::InReg); 622 623 // SGPR arguments to functions not implemented. 624 if (!IsGraphics && InReg) 625 return false; 626 627 if (Arg.hasAttribute(Attribute::SwiftSelf) || 628 Arg.hasAttribute(Attribute::SwiftError) || 629 Arg.hasAttribute(Attribute::Nest)) 630 return false; 631 632 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 633 const bool ArgUsed = !Arg.use_empty(); 634 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 635 636 if (!SkipArg) { 637 Info->markPSInputAllocated(PSInputNum); 638 if (ArgUsed) 639 Info->markPSInputEnabled(PSInputNum); 640 } 641 642 ++PSInputNum; 643 644 if (SkipArg) { 645 for (int I = 0, E = VRegs[Idx].size(); I != E; ++I) 646 B.buildUndef(VRegs[Idx][I]); 647 648 ++Idx; 649 continue; 650 } 651 } 652 653 ArgInfo OrigArg(VRegs[Idx], Arg, Idx); 654 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; 655 setArgFlags(OrigArg, OrigArgIdx, DL, F); 656 657 splitToValueTypes(OrigArg, SplitArgs, DL, CC); 658 ++Idx; 659 } 660 661 // At least one interpolation mode must be enabled or else the GPU will 662 // hang. 663 // 664 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 665 // set PSInputAddr, the user wants to enable some bits after the compilation 666 // based on run-time states. Since we can't know what the final PSInputEna 667 // will look like, so we shouldn't do anything here and the user should take 668 // responsibility for the correct programming. 669 // 670 // Otherwise, the following restrictions apply: 671 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 672 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 673 // enabled too. 674 if (CC == CallingConv::AMDGPU_PS) { 675 if ((Info->getPSInputAddr() & 0x7F) == 0 || 676 ((Info->getPSInputAddr() & 0xF) == 0 && 677 Info->isPSInputAllocated(11))) { 678 CCInfo.AllocateReg(AMDGPU::VGPR0); 679 CCInfo.AllocateReg(AMDGPU::VGPR1); 680 Info->markPSInputAllocated(0); 681 Info->markPSInputEnabled(0); 682 } 683 684 if (Subtarget.isAmdPalOS()) { 685 // For isAmdPalOS, the user does not enable some bits after compilation 686 // based on run-time states; the register values being generated here are 687 // the final ones set in hardware. Therefore we need to apply the 688 // workaround to PSInputAddr and PSInputEnable together. (The case where 689 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 690 // set up an input arg for a particular interpolation mode, but nothing 691 // uses that input arg. Really we should have an earlier pass that removes 692 // such an arg.) 693 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 694 if ((PsInputBits & 0x7F) == 0 || 695 ((PsInputBits & 0xF) == 0 && 696 (PsInputBits >> 11 & 1))) 697 Info->markPSInputEnabled( 698 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 699 } 700 } 701 702 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 703 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 704 705 if (!MBB.empty()) 706 B.setInstr(*MBB.begin()); 707 708 if (!IsEntryFunc) { 709 // For the fixed ABI, pass workitem IDs in the last argument register. 710 if (AMDGPUTargetMachine::EnableFixedFunctionABI) 711 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 712 } 713 714 IncomingValueAssigner Assigner(AssignFn); 715 if (!determineAssignments(Assigner, SplitArgs, CCInfo)) 716 return false; 717 718 FormalArgHandler Handler(B, MRI); 719 if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B)) 720 return false; 721 722 uint64_t StackOffset = Assigner.StackOffset; 723 724 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { 725 // Special inputs come after user arguments. 726 TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 727 } 728 729 // Start adding system SGPRs. 730 if (IsEntryFunc) { 731 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); 732 } else { 733 if (!Subtarget.enableFlatScratch()) 734 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 735 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 736 } 737 738 // When we tail call, we need to check if the callee's arguments will fit on 739 // the caller's stack. So, whenever we lower formal arguments, we should keep 740 // track of this information, since we might lower a tail call in this 741 // function later. 742 Info->setBytesInStackArgArea(StackOffset); 743 744 // Move back to the end of the basic block. 745 B.setMBB(MBB); 746 747 return true; 748 } 749 750 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, 751 CCState &CCInfo, 752 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, 753 CallLoweringInfo &Info) const { 754 MachineFunction &MF = MIRBuilder.getMF(); 755 756 const AMDGPUFunctionArgInfo *CalleeArgInfo 757 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 758 759 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 760 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); 761 762 763 // TODO: Unify with private memory register handling. This is complicated by 764 // the fact that at least in kernels, the input argument is not necessarily 765 // in the same location as the input. 766 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 767 AMDGPUFunctionArgInfo::DISPATCH_PTR, 768 AMDGPUFunctionArgInfo::QUEUE_PTR, 769 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 770 AMDGPUFunctionArgInfo::DISPATCH_ID, 771 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 772 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 773 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 774 }; 775 776 MachineRegisterInfo &MRI = MF.getRegInfo(); 777 778 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 779 const AMDGPULegalizerInfo *LI 780 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); 781 782 for (auto InputID : InputRegs) { 783 const ArgDescriptor *OutgoingArg; 784 const TargetRegisterClass *ArgRC; 785 LLT ArgTy; 786 787 std::tie(OutgoingArg, ArgRC, ArgTy) = 788 CalleeArgInfo->getPreloadedValue(InputID); 789 if (!OutgoingArg) 790 continue; 791 792 const ArgDescriptor *IncomingArg; 793 const TargetRegisterClass *IncomingArgRC; 794 std::tie(IncomingArg, IncomingArgRC, ArgTy) = 795 CallerArgInfo.getPreloadedValue(InputID); 796 assert(IncomingArgRC == ArgRC); 797 798 Register InputReg = MRI.createGenericVirtualRegister(ArgTy); 799 800 if (IncomingArg) { 801 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); 802 } else { 803 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 804 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); 805 } 806 807 if (OutgoingArg->isRegister()) { 808 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 809 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 810 report_fatal_error("failed to allocate implicit input argument"); 811 } else { 812 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 813 return false; 814 } 815 } 816 817 // Pack workitem IDs into a single register or pass it as is if already 818 // packed. 819 const ArgDescriptor *OutgoingArg; 820 const TargetRegisterClass *ArgRC; 821 LLT ArgTy; 822 823 std::tie(OutgoingArg, ArgRC, ArgTy) = 824 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 825 if (!OutgoingArg) 826 std::tie(OutgoingArg, ArgRC, ArgTy) = 827 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 828 if (!OutgoingArg) 829 std::tie(OutgoingArg, ArgRC, ArgTy) = 830 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 831 if (!OutgoingArg) 832 return false; 833 834 auto WorkitemIDX = 835 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 836 auto WorkitemIDY = 837 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 838 auto WorkitemIDZ = 839 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 840 841 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); 842 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); 843 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); 844 const LLT S32 = LLT::scalar(32); 845 846 // If incoming ids are not packed we need to pack them. 847 // FIXME: Should consider known workgroup size to eliminate known 0 cases. 848 Register InputReg; 849 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) { 850 InputReg = MRI.createGenericVirtualRegister(S32); 851 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, 852 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); 853 } 854 855 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) { 856 Register Y = MRI.createGenericVirtualRegister(S32); 857 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), 858 std::get<2>(WorkitemIDY)); 859 860 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); 861 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; 862 } 863 864 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) { 865 Register Z = MRI.createGenericVirtualRegister(S32); 866 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), 867 std::get<2>(WorkitemIDZ)); 868 869 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); 870 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; 871 } 872 873 if (!InputReg) { 874 InputReg = MRI.createGenericVirtualRegister(S32); 875 876 // Workitem ids are already packed, any of present incoming arguments will 877 // carry all required fields. 878 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 879 IncomingArgX ? *IncomingArgX : 880 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); 881 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, 882 &AMDGPU::VGPR_32RegClass, S32); 883 } 884 885 if (OutgoingArg->isRegister()) { 886 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 887 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 888 report_fatal_error("failed to allocate implicit input argument"); 889 } else { 890 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 891 return false; 892 } 893 894 return true; 895 } 896 897 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 898 /// CC. 899 static std::pair<CCAssignFn *, CCAssignFn *> 900 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { 901 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 902 } 903 904 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 905 bool IsTailCall) { 906 return IsTailCall ? AMDGPU::SI_TCRETURN : AMDGPU::SI_CALL; 907 } 908 909 // Add operands to call instruction to track the callee. 910 static bool addCallTargetOperands(MachineInstrBuilder &CallInst, 911 MachineIRBuilder &MIRBuilder, 912 AMDGPUCallLowering::CallLoweringInfo &Info) { 913 if (Info.Callee.isReg()) { 914 CallInst.addReg(Info.Callee.getReg()); 915 CallInst.addImm(0); 916 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { 917 // The call lowering lightly assumed we can directly encode a call target in 918 // the instruction, which is not the case. Materialize the address here. 919 const GlobalValue *GV = Info.Callee.getGlobal(); 920 auto Ptr = MIRBuilder.buildGlobalValue( 921 LLT::pointer(GV->getAddressSpace(), 64), GV); 922 CallInst.addReg(Ptr.getReg(0)); 923 CallInst.add(Info.Callee); 924 } else 925 return false; 926 927 return true; 928 } 929 930 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay( 931 CallLoweringInfo &Info, MachineFunction &MF, 932 SmallVectorImpl<ArgInfo> &InArgs) const { 933 const Function &CallerF = MF.getFunction(); 934 CallingConv::ID CalleeCC = Info.CallConv; 935 CallingConv::ID CallerCC = CallerF.getCallingConv(); 936 937 // If the calling conventions match, then everything must be the same. 938 if (CalleeCC == CallerCC) 939 return true; 940 941 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 942 943 // Make sure that the caller and callee preserve all of the same registers. 944 auto TRI = ST.getRegisterInfo(); 945 946 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 947 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 948 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 949 return false; 950 951 // Check if the caller and callee will handle arguments in the same way. 952 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 953 CCAssignFn *CalleeAssignFnFixed; 954 CCAssignFn *CalleeAssignFnVarArg; 955 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) = 956 getAssignFnsForCC(CalleeCC, TLI); 957 958 CCAssignFn *CallerAssignFnFixed; 959 CCAssignFn *CallerAssignFnVarArg; 960 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) = 961 getAssignFnsForCC(CallerCC, TLI); 962 963 // FIXME: We are not accounting for potential differences in implicitly passed 964 // inputs, but only the fixed ABI is supported now anyway. 965 IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed, 966 CalleeAssignFnVarArg); 967 IncomingValueAssigner CallerAssigner(CallerAssignFnFixed, 968 CallerAssignFnVarArg); 969 return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner); 970 } 971 972 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable( 973 CallLoweringInfo &Info, MachineFunction &MF, 974 SmallVectorImpl<ArgInfo> &OutArgs) const { 975 // If there are no outgoing arguments, then we are done. 976 if (OutArgs.empty()) 977 return true; 978 979 const Function &CallerF = MF.getFunction(); 980 CallingConv::ID CalleeCC = Info.CallConv; 981 CallingConv::ID CallerCC = CallerF.getCallingConv(); 982 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 983 984 CCAssignFn *AssignFnFixed; 985 CCAssignFn *AssignFnVarArg; 986 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 987 988 // We have outgoing arguments. Make sure that we can tail call with them. 989 SmallVector<CCValAssign, 16> OutLocs; 990 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext()); 991 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 992 993 if (!determineAssignments(Assigner, OutArgs, OutInfo)) { 994 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); 995 return false; 996 } 997 998 // Make sure that they can fit on the caller's stack. 999 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1000 if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) { 1001 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); 1002 return false; 1003 } 1004 1005 // Verify that the parameters in callee-saved registers match. 1006 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1007 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1008 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); 1009 MachineRegisterInfo &MRI = MF.getRegInfo(); 1010 return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs); 1011 } 1012 1013 /// Return true if the calling convention is one that we can guarantee TCO for. 1014 static bool canGuaranteeTCO(CallingConv::ID CC) { 1015 return CC == CallingConv::Fast; 1016 } 1017 1018 /// Return true if we might ever do TCO for calls with this calling convention. 1019 static bool mayTailCallThisCC(CallingConv::ID CC) { 1020 switch (CC) { 1021 case CallingConv::C: 1022 case CallingConv::AMDGPU_Gfx: 1023 return true; 1024 default: 1025 return canGuaranteeTCO(CC); 1026 } 1027 } 1028 1029 bool AMDGPUCallLowering::isEligibleForTailCallOptimization( 1030 MachineIRBuilder &B, CallLoweringInfo &Info, 1031 SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const { 1032 // Must pass all target-independent checks in order to tail call optimize. 1033 if (!Info.IsTailCall) 1034 return false; 1035 1036 MachineFunction &MF = B.getMF(); 1037 const Function &CallerF = MF.getFunction(); 1038 CallingConv::ID CalleeCC = Info.CallConv; 1039 CallingConv::ID CallerCC = CallerF.getCallingConv(); 1040 1041 const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo(); 1042 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1043 // Kernels aren't callable, and don't have a live in return address so it 1044 // doesn't make sense to do a tail call with entry functions. 1045 if (!CallerPreserved) 1046 return false; 1047 1048 if (!mayTailCallThisCC(CalleeCC)) { 1049 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); 1050 return false; 1051 } 1052 1053 if (any_of(CallerF.args(), [](const Argument &A) { 1054 return A.hasByValAttr() || A.hasSwiftErrorAttr(); 1055 })) { 1056 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval " 1057 "or swifterror arguments\n"); 1058 return false; 1059 } 1060 1061 // If we have -tailcallopt, then we're done. 1062 if (MF.getTarget().Options.GuaranteedTailCallOpt) 1063 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv(); 1064 1065 // Verify that the incoming and outgoing arguments from the callee are 1066 // safe to tail call. 1067 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { 1068 LLVM_DEBUG( 1069 dbgs() 1070 << "... Caller and callee have incompatible calling conventions.\n"); 1071 return false; 1072 } 1073 1074 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) 1075 return false; 1076 1077 LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n"); 1078 return true; 1079 } 1080 1081 // Insert outgoing implicit arguments for a call, by inserting copies to the 1082 // implicit argument registers and adding the necessary implicit uses to the 1083 // call instruction. 1084 void AMDGPUCallLowering::handleImplicitCallArguments( 1085 MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst, 1086 const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo, 1087 ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const { 1088 if (!ST.enableFlatScratch()) { 1089 // Insert copies for the SRD. In the HSA case, this should be an identity 1090 // copy. 1091 auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32), 1092 FuncInfo.getScratchRSrcReg()); 1093 MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 1094 CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit); 1095 } 1096 1097 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { 1098 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); 1099 CallInst.addReg(ArgReg.first, RegState::Implicit); 1100 } 1101 } 1102 1103 bool AMDGPUCallLowering::lowerTailCall( 1104 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 1105 SmallVectorImpl<ArgInfo> &OutArgs) const { 1106 MachineFunction &MF = MIRBuilder.getMF(); 1107 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1108 SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1109 const Function &F = MF.getFunction(); 1110 MachineRegisterInfo &MRI = MF.getRegInfo(); 1111 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1112 1113 // True when we're tail calling, but without -tailcallopt. 1114 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt; 1115 1116 // Find out which ABI gets to decide where things go. 1117 CallingConv::ID CalleeCC = Info.CallConv; 1118 CCAssignFn *AssignFnFixed; 1119 CCAssignFn *AssignFnVarArg; 1120 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1121 1122 MachineInstrBuilder CallSeqStart; 1123 if (!IsSibCall) 1124 CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP); 1125 1126 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true); 1127 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1128 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1129 return false; 1130 1131 // Byte offset for the tail call. When we are sibcalling, this will always 1132 // be 0. 1133 MIB.addImm(0); 1134 1135 // Tell the call which registers are clobbered. 1136 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1137 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); 1138 MIB.addRegMask(Mask); 1139 1140 // FPDiff is the byte offset of the call's argument area from the callee's. 1141 // Stores to callee stack arguments will be placed in FixedStackSlots offset 1142 // by this amount for a tail call. In a sibling call it must be 0 because the 1143 // caller will deallocate the entire stack and the callee still expects its 1144 // arguments to begin at SP+0. 1145 int FPDiff = 0; 1146 1147 // This will be 0 for sibcalls, potentially nonzero for tail calls produced 1148 // by -tailcallopt. For sibcalls, the memory operands for the call are 1149 // already available in the caller's incoming argument space. 1150 unsigned NumBytes = 0; 1151 if (!IsSibCall) { 1152 // We aren't sibcalling, so we need to compute FPDiff. We need to do this 1153 // before handling assignments, because FPDiff must be known for memory 1154 // arguments. 1155 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 1156 SmallVector<CCValAssign, 16> OutLocs; 1157 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); 1158 1159 // FIXME: Not accounting for callee implicit inputs 1160 OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg); 1161 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) 1162 return false; 1163 1164 // The callee will pop the argument stack as a tail call. Thus, we must 1165 // keep it 16-byte aligned. 1166 NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment()); 1167 1168 // FPDiff will be negative if this tail call requires more space than we 1169 // would automatically have in our incoming argument space. Positive if we 1170 // actually shrink the stack. 1171 FPDiff = NumReusableBytes - NumBytes; 1172 1173 // The stack pointer must be 16-byte aligned at all times it's used for a 1174 // memory operation, which in practice means at *all* times and in 1175 // particular across call boundaries. Therefore our own arguments started at 1176 // a 16-byte aligned SP and the delta applied for the tail call should 1177 // satisfy the same constraint. 1178 assert(isAligned(ST.getStackAlignment(), FPDiff) && 1179 "unaligned stack on tail call"); 1180 } 1181 1182 SmallVector<CCValAssign, 16> ArgLocs; 1183 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1184 1185 // We could pass MIB and directly add the implicit uses to the call 1186 // now. However, as an aesthetic choice, place implicit argument operands 1187 // after the ordinary user argument registers. 1188 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1189 1190 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 1191 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1192 // With a fixed ABI, allocate fixed registers before user arguments. 1193 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1194 return false; 1195 } 1196 1197 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1198 1199 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1200 return false; 1201 1202 // Do the actual argument marshalling. 1203 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff); 1204 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1205 return false; 1206 1207 handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs); 1208 1209 // If we have -tailcallopt, we need to adjust the stack. We'll do the call 1210 // sequence start and end here. 1211 if (!IsSibCall) { 1212 MIB->getOperand(1).setImm(FPDiff); 1213 CallSeqStart.addImm(NumBytes).addImm(0); 1214 // End the call sequence *before* emitting the call. Normally, we would 1215 // tidy the frame up after the call. However, here, we've laid out the 1216 // parameters so that when SP is reset, they will be in the correct 1217 // location. 1218 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0); 1219 } 1220 1221 // Now we can add the actual call instruction to the correct basic block. 1222 MIRBuilder.insertInstr(MIB); 1223 1224 // If Callee is a reg, since it is used by a target specific 1225 // instruction, it must have a register class matching the 1226 // constraint of that instruction. 1227 1228 // FIXME: We should define regbankselectable call instructions to handle 1229 // divergent call targets. 1230 if (MIB->getOperand(0).isReg()) { 1231 MIB->getOperand(0).setReg(constrainOperandRegClass( 1232 MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB, 1233 MIB->getDesc(), MIB->getOperand(0), 0)); 1234 } 1235 1236 MF.getFrameInfo().setHasTailCall(); 1237 Info.LoweredTailCall = true; 1238 return true; 1239 } 1240 1241 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 1242 CallLoweringInfo &Info) const { 1243 if (Info.IsVarArg) { 1244 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); 1245 return false; 1246 } 1247 1248 MachineFunction &MF = MIRBuilder.getMF(); 1249 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1250 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1251 1252 const Function &F = MF.getFunction(); 1253 MachineRegisterInfo &MRI = MF.getRegInfo(); 1254 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1255 const DataLayout &DL = F.getParent()->getDataLayout(); 1256 1257 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 1258 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1259 LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n"); 1260 return false; 1261 } 1262 1263 SmallVector<ArgInfo, 8> OutArgs; 1264 for (auto &OrigArg : Info.OrigArgs) 1265 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); 1266 1267 SmallVector<ArgInfo, 8> InArgs; 1268 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) 1269 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); 1270 1271 // If we can lower as a tail call, do that instead. 1272 bool CanTailCallOpt = 1273 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs); 1274 1275 // We must emit a tail call if we have musttail. 1276 if (Info.IsMustTailCall && !CanTailCallOpt) { 1277 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 1278 return false; 1279 } 1280 1281 if (CanTailCallOpt) 1282 return lowerTailCall(MIRBuilder, Info, OutArgs); 1283 1284 // Find out which ABI gets to decide where things go. 1285 CCAssignFn *AssignFnFixed; 1286 CCAssignFn *AssignFnVarArg; 1287 std::tie(AssignFnFixed, AssignFnVarArg) = 1288 getAssignFnsForCC(Info.CallConv, TLI); 1289 1290 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) 1291 .addImm(0) 1292 .addImm(0); 1293 1294 // Create a temporarily-floating call instruction so we can add the implicit 1295 // uses of arg registers. 1296 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 1297 1298 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1299 MIB.addDef(TRI->getReturnAddressReg(MF)); 1300 1301 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1302 return false; 1303 1304 // Tell the call which registers are clobbered. 1305 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 1306 MIB.addRegMask(Mask); 1307 1308 SmallVector<CCValAssign, 16> ArgLocs; 1309 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1310 1311 // We could pass MIB and directly add the implicit uses to the call 1312 // now. However, as an aesthetic choice, place implicit argument operands 1313 // after the ordinary user argument registers. 1314 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1315 1316 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 1317 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1318 // With a fixed ABI, allocate fixed registers before user arguments. 1319 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1320 return false; 1321 } 1322 1323 // Do the actual argument marshalling. 1324 SmallVector<Register, 8> PhysRegs; 1325 1326 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1327 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1328 return false; 1329 1330 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false); 1331 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1332 return false; 1333 1334 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1335 1336 handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs); 1337 1338 // Get a count of how many bytes are to be pushed on the stack. 1339 unsigned NumBytes = CCInfo.getNextStackOffset(); 1340 1341 // If Callee is a reg, since it is used by a target specific 1342 // instruction, it must have a register class matching the 1343 // constraint of that instruction. 1344 1345 // FIXME: We should define regbankselectable call instructions to handle 1346 // divergent call targets. 1347 if (MIB->getOperand(1).isReg()) { 1348 MIB->getOperand(1).setReg(constrainOperandRegClass( 1349 MF, *TRI, MRI, *ST.getInstrInfo(), 1350 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), 1351 1)); 1352 } 1353 1354 // Now we can add the actual call instruction to the correct position. 1355 MIRBuilder.insertInstr(MIB); 1356 1357 // Finally we can copy the returned value back into its virtual-register. In 1358 // symmetry with the arguments, the physical register must be an 1359 // implicit-define of the call instruction. 1360 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1361 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, 1362 Info.IsVarArg); 1363 IncomingValueAssigner Assigner(RetAssignFn); 1364 CallReturnHandler Handler(MIRBuilder, MRI, MIB); 1365 if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder, 1366 Info.CallConv, Info.IsVarArg)) 1367 return false; 1368 } 1369 1370 uint64_t CalleePopBytes = NumBytes; 1371 1372 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN) 1373 .addImm(0) 1374 .addImm(CalleePopBytes); 1375 1376 if (!Info.CanLowerReturn) { 1377 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1378 Info.DemoteRegister, Info.DemoteStackIndex); 1379 } 1380 1381 return true; 1382 } 1383