xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp (revision c40487d49bde43806672a0917a7ccc5d1e6301fd)
1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUISelLowering.h"
18 #include "AMDGPUSubtarget.h"
19 #include "AMDGPUTargetMachine.h"
20 #include "SIISelLowering.h"
21 #include "SIMachineFunctionInfo.h"
22 #include "SIRegisterInfo.h"
23 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/Support/LowLevelTypeImpl.h"
29 
30 using namespace llvm;
31 
32 namespace {
33 
34 struct OutgoingValueHandler : public CallLowering::ValueHandler {
35   OutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
36                        MachineInstrBuilder MIB, CCAssignFn *AssignFn)
37       : ValueHandler(B, MRI, AssignFn), MIB(MIB) {}
38 
39   MachineInstrBuilder MIB;
40 
41   bool isIncomingArgumentHandler() const override { return false; }
42 
43   Register getStackAddress(uint64_t Size, int64_t Offset,
44                            MachinePointerInfo &MPO) override {
45     llvm_unreachable("not implemented");
46   }
47 
48   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
49                             MachinePointerInfo &MPO, CCValAssign &VA) override {
50     llvm_unreachable("not implemented");
51   }
52 
53   void assignValueToReg(Register ValVReg, Register PhysReg,
54                         CCValAssign &VA) override {
55     Register ExtReg;
56     if (VA.getLocVT().getSizeInBits() < 32) {
57       // 16-bit types are reported as legal for 32-bit registers. We need to
58       // extend and do a 32-bit copy to avoid the verifier complaining about it.
59       ExtReg = MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
60     } else
61       ExtReg = extendRegister(ValVReg, VA);
62 
63     // If this is a scalar return, insert a readfirstlane just in case the value
64     // ends up in a VGPR.
65     // FIXME: Assert this is a shader return.
66     const SIRegisterInfo *TRI
67       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
68     if (TRI->isSGPRReg(MRI, PhysReg)) {
69       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
70                                               {MRI.getType(ExtReg)}, false)
71         .addReg(ExtReg);
72       ExtReg = ToSGPR.getReg(0);
73     }
74 
75     MIRBuilder.buildCopy(PhysReg, ExtReg);
76     MIB.addUse(PhysReg, RegState::Implicit);
77   }
78 
79   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
80                  CCValAssign::LocInfo LocInfo,
81                  const CallLowering::ArgInfo &Info,
82                  ISD::ArgFlagsTy Flags,
83                  CCState &State) override {
84     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
85   }
86 };
87 
88 struct IncomingArgHandler : public CallLowering::ValueHandler {
89   uint64_t StackUsed = 0;
90 
91   IncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
92                      CCAssignFn *AssignFn)
93     : ValueHandler(B, MRI, AssignFn) {}
94 
95   Register getStackAddress(uint64_t Size, int64_t Offset,
96                            MachinePointerInfo &MPO) override {
97     auto &MFI = MIRBuilder.getMF().getFrameInfo();
98     int FI = MFI.CreateFixedObject(Size, Offset, true);
99     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
100     auto AddrReg = MIRBuilder.buildFrameIndex(
101         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
102     StackUsed = std::max(StackUsed, Size + Offset);
103     return AddrReg.getReg(0);
104   }
105 
106   void assignValueToReg(Register ValVReg, Register PhysReg,
107                         CCValAssign &VA) override {
108     markPhysRegUsed(PhysReg);
109 
110     if (VA.getLocVT().getSizeInBits() < 32) {
111       // 16-bit types are reported as legal for 32-bit registers. We need to do
112       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
113       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
114       MIRBuilder.buildTrunc(ValVReg, Copy);
115       return;
116     }
117 
118     switch (VA.getLocInfo()) {
119     case CCValAssign::LocInfo::SExt:
120     case CCValAssign::LocInfo::ZExt:
121     case CCValAssign::LocInfo::AExt: {
122       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
123       MIRBuilder.buildTrunc(ValVReg, Copy);
124       break;
125     }
126     default:
127       MIRBuilder.buildCopy(ValVReg, PhysReg);
128       break;
129     }
130   }
131 
132   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
133                             MachinePointerInfo &MPO, CCValAssign &VA) override {
134     MachineFunction &MF = MIRBuilder.getMF();
135 
136     // The reported memory location may be wider than the value.
137     const LLT RegTy = MRI.getType(ValVReg);
138     MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
139 
140     // FIXME: Get alignment
141     auto MMO = MF.getMachineMemOperand(
142         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
143         inferAlignFromPtrInfo(MF, MPO));
144     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
145   }
146 
147   /// How the physical register gets marked varies between formal
148   /// parameters (it's a basic-block live-in), and a call instruction
149   /// (it's an implicit-def of the BL).
150   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
151 
152   // FIXME: What is the point of this being a callback?
153   bool isIncomingArgumentHandler() const override { return true; }
154 };
155 
156 struct FormalArgHandler : public IncomingArgHandler {
157   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
158                    CCAssignFn *AssignFn)
159     : IncomingArgHandler(B, MRI, AssignFn) {}
160 
161   void markPhysRegUsed(unsigned PhysReg) override {
162     MIRBuilder.getMBB().addLiveIn(PhysReg);
163   }
164 };
165 
166 }
167 
168 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
169   : CallLowering(&TLI) {
170 }
171 
172 // FIXME: Compatability shim
173 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
174   switch (MIOpc) {
175   case TargetOpcode::G_SEXT:
176     return ISD::SIGN_EXTEND;
177   case TargetOpcode::G_ZEXT:
178     return ISD::ZERO_EXTEND;
179   case TargetOpcode::G_ANYEXT:
180     return ISD::ANY_EXTEND;
181   default:
182     llvm_unreachable("not an extend opcode");
183   }
184 }
185 
186 void AMDGPUCallLowering::splitToValueTypes(
187   MachineIRBuilder &B,
188   const ArgInfo &OrigArg, unsigned OrigArgIdx,
189   SmallVectorImpl<ArgInfo> &SplitArgs,
190   const DataLayout &DL, CallingConv::ID CallConv,
191   SplitArgTy PerformArgSplit) const {
192   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
193   LLVMContext &Ctx = OrigArg.Ty->getContext();
194 
195   if (OrigArg.Ty->isVoidTy())
196     return;
197 
198   SmallVector<EVT, 4> SplitVTs;
199   ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
200 
201   assert(OrigArg.Regs.size() == SplitVTs.size());
202 
203   int SplitIdx = 0;
204   for (EVT VT : SplitVTs) {
205     Register Reg = OrigArg.Regs[SplitIdx];
206     Type *Ty = VT.getTypeForEVT(Ctx);
207     LLT LLTy = getLLTForType(*Ty, DL);
208 
209     if (OrigArgIdx == AttributeList::ReturnIndex && VT.isScalarInteger()) {
210       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
211       if (OrigArg.Flags[0].isSExt()) {
212         assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
213         ExtendOp = TargetOpcode::G_SEXT;
214       } else if (OrigArg.Flags[0].isZExt()) {
215         assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
216         ExtendOp = TargetOpcode::G_ZEXT;
217       }
218 
219       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
220                                           extOpcodeToISDExtOpcode(ExtendOp));
221       if (ExtVT != VT) {
222         VT = ExtVT;
223         Ty = ExtVT.getTypeForEVT(Ctx);
224         LLTy = getLLTForType(*Ty, DL);
225         Reg = B.buildInstr(ExtendOp, {LLTy}, {Reg}).getReg(0);
226       }
227     }
228 
229     unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
230     MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
231 
232     if (NumParts == 1) {
233       // No splitting to do, but we want to replace the original type (e.g. [1 x
234       // double] -> double).
235       SplitArgs.emplace_back(Reg, Ty, OrigArg.Flags, OrigArg.IsFixed);
236 
237       ++SplitIdx;
238       continue;
239     }
240 
241     SmallVector<Register, 8> SplitRegs;
242     Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx);
243     LLT PartLLT = getLLTForType(*PartTy, DL);
244     MachineRegisterInfo &MRI = *B.getMRI();
245 
246     // FIXME: Should we be reporting all of the part registers for a single
247     // argument, and let handleAssignments take care of the repacking?
248     for (unsigned i = 0; i < NumParts; ++i) {
249       Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
250       SplitRegs.push_back(PartReg);
251       SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
252     }
253 
254     PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx);
255 
256     ++SplitIdx;
257   }
258 }
259 
260 // Get the appropriate type to make \p OrigTy \p Factor times bigger.
261 static LLT getMultipleType(LLT OrigTy, int Factor) {
262   if (OrigTy.isVector()) {
263     return LLT::vector(OrigTy.getNumElements() * Factor,
264                        OrigTy.getElementType());
265   }
266 
267   return LLT::scalar(OrigTy.getSizeInBits() * Factor);
268 }
269 
270 // TODO: Move to generic code
271 static void unpackRegsToOrigType(MachineIRBuilder &B,
272                                  ArrayRef<Register> DstRegs,
273                                  Register SrcReg,
274                                  const CallLowering::ArgInfo &Info,
275                                  LLT SrcTy,
276                                  LLT PartTy) {
277   assert(DstRegs.size() > 1 && "Nothing to unpack");
278 
279   const unsigned SrcSize = SrcTy.getSizeInBits();
280   const unsigned PartSize = PartTy.getSizeInBits();
281 
282   if (SrcTy.isVector() && !PartTy.isVector() &&
283       PartSize > SrcTy.getElementType().getSizeInBits()) {
284     // Vector was scalarized, and the elements extended.
285     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(),
286                                                   SrcReg);
287     for (int i = 0, e = DstRegs.size(); i != e; ++i)
288       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
289     return;
290   }
291 
292   if (SrcSize % PartSize == 0) {
293     B.buildUnmerge(DstRegs, SrcReg);
294     return;
295   }
296 
297   const int NumRoundedParts = (SrcSize + PartSize - 1) / PartSize;
298 
299   LLT BigTy = getMultipleType(PartTy, NumRoundedParts);
300   auto ImpDef = B.buildUndef(BigTy);
301 
302   auto Big = B.buildInsert(BigTy, ImpDef.getReg(0), SrcReg, 0).getReg(0);
303 
304   int64_t Offset = 0;
305   for (unsigned i = 0, e = DstRegs.size(); i != e; ++i, Offset += PartSize)
306     B.buildExtract(DstRegs[i], Big, Offset);
307 }
308 
309 /// Lower the return value for the already existing \p Ret. This assumes that
310 /// \p B's insertion point is correct.
311 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
312                                         const Value *Val, ArrayRef<Register> VRegs,
313                                         MachineInstrBuilder &Ret) const {
314   if (!Val)
315     return true;
316 
317   auto &MF = B.getMF();
318   const auto &F = MF.getFunction();
319   const DataLayout &DL = MF.getDataLayout();
320   MachineRegisterInfo *MRI = B.getMRI();
321 
322   CallingConv::ID CC = F.getCallingConv();
323   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
324 
325   ArgInfo OrigRetInfo(VRegs, Val->getType());
326   setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
327   SmallVector<ArgInfo, 4> SplitRetInfos;
328 
329   splitToValueTypes(
330     B, OrigRetInfo, AttributeList::ReturnIndex, SplitRetInfos, DL, CC,
331     [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
332         int VTSplitIdx) {
333       unpackRegsToOrigType(B, Regs, SrcReg,
334                            SplitRetInfos[VTSplitIdx],
335                            LLTy, PartLLT);
336     });
337 
338   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
339   OutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
340   return handleAssignments(B, SplitRetInfos, RetHandler);
341 }
342 
343 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B,
344                                      const Value *Val,
345                                      ArrayRef<Register> VRegs) const {
346 
347   MachineFunction &MF = B.getMF();
348   MachineRegisterInfo &MRI = MF.getRegInfo();
349   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
350   MFI->setIfReturnsVoid(!Val);
351 
352   assert(!Val == VRegs.empty() && "Return value without a vreg");
353 
354   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
355   const bool IsShader = AMDGPU::isShader(CC);
356   const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) ||
357                          AMDGPU::isKernel(CC);
358   if (IsWaveEnd) {
359     B.buildInstr(AMDGPU::S_ENDPGM)
360       .addImm(0);
361     return true;
362   }
363 
364   auto const &ST = MF.getSubtarget<GCNSubtarget>();
365 
366   unsigned ReturnOpc =
367       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
368 
369   auto Ret = B.buildInstrNoInsert(ReturnOpc);
370   Register ReturnAddrVReg;
371   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
372     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
373     Ret.addUse(ReturnAddrVReg);
374   }
375 
376   if (!lowerReturnVal(B, Val, VRegs, Ret))
377     return false;
378 
379   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
380     const SIRegisterInfo *TRI = ST.getRegisterInfo();
381     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
382                                          &AMDGPU::SGPR_64RegClass);
383     B.buildCopy(ReturnAddrVReg, LiveInReturn);
384   }
385 
386   // TODO: Handle CalleeSavedRegsViaCopy.
387 
388   B.insertInstr(Ret);
389   return true;
390 }
391 
392 Register AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &B,
393                                                Type *ParamTy,
394                                                uint64_t Offset) const {
395 
396   MachineFunction &MF = B.getMF();
397   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
398   MachineRegisterInfo &MRI = MF.getRegInfo();
399   const Function &F = MF.getFunction();
400   const DataLayout &DL = F.getParent()->getDataLayout();
401   PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
402   LLT PtrType = getLLTForType(*PtrTy, DL);
403   Register KernArgSegmentPtr =
404     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
405   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
406 
407   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
408 
409   return B.buildPtrAdd(PtrType, KernArgSegmentVReg, OffsetReg).getReg(0);
410 }
411 
412 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
413                                         uint64_t Offset, Align Alignment,
414                                         Register DstReg) const {
415   MachineFunction &MF = B.getMF();
416   const Function &F = MF.getFunction();
417   const DataLayout &DL = F.getParent()->getDataLayout();
418   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
419   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
420   Register PtrReg = lowerParameterPtr(B, ParamTy, Offset);
421 
422   MachineMemOperand *MMO = MF.getMachineMemOperand(
423       PtrInfo,
424       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
425           MachineMemOperand::MOInvariant,
426       TypeSize, Alignment);
427 
428   B.buildLoad(DstReg, PtrReg, *MMO);
429 }
430 
431 // Allocate special inputs passed in user SGPRs.
432 static void allocateHSAUserSGPRs(CCState &CCInfo,
433                                  MachineIRBuilder &B,
434                                  MachineFunction &MF,
435                                  const SIRegisterInfo &TRI,
436                                  SIMachineFunctionInfo &Info) {
437   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
438   if (Info.hasPrivateSegmentBuffer()) {
439     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
440     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
441     CCInfo.AllocateReg(PrivateSegmentBufferReg);
442   }
443 
444   if (Info.hasDispatchPtr()) {
445     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
446     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
447     CCInfo.AllocateReg(DispatchPtrReg);
448   }
449 
450   if (Info.hasQueuePtr()) {
451     Register QueuePtrReg = Info.addQueuePtr(TRI);
452     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
453     CCInfo.AllocateReg(QueuePtrReg);
454   }
455 
456   if (Info.hasKernargSegmentPtr()) {
457     MachineRegisterInfo &MRI = MF.getRegInfo();
458     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
459     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
460     Register VReg = MRI.createGenericVirtualRegister(P4);
461     MRI.addLiveIn(InputPtrReg, VReg);
462     B.getMBB().addLiveIn(InputPtrReg);
463     B.buildCopy(VReg, InputPtrReg);
464     CCInfo.AllocateReg(InputPtrReg);
465   }
466 
467   if (Info.hasDispatchID()) {
468     Register DispatchIDReg = Info.addDispatchID(TRI);
469     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
470     CCInfo.AllocateReg(DispatchIDReg);
471   }
472 
473   if (Info.hasFlatScratchInit()) {
474     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
475     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
476     CCInfo.AllocateReg(FlatScratchInitReg);
477   }
478 
479   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
480   // these from the dispatch pointer.
481 }
482 
483 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
484     MachineIRBuilder &B, const Function &F,
485     ArrayRef<ArrayRef<Register>> VRegs) const {
486   MachineFunction &MF = B.getMF();
487   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
488   MachineRegisterInfo &MRI = MF.getRegInfo();
489   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
490   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
491   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
492 
493   const DataLayout &DL = F.getParent()->getDataLayout();
494 
495   SmallVector<CCValAssign, 16> ArgLocs;
496   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
497 
498   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
499 
500   unsigned i = 0;
501   const Align KernArgBaseAlign(16);
502   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
503   uint64_t ExplicitArgOffset = 0;
504 
505   // TODO: Align down to dword alignment and extract bits for extending loads.
506   for (auto &Arg : F.args()) {
507     Type *ArgTy = Arg.getType();
508     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
509     if (AllocSize == 0)
510       continue;
511 
512     Align ABIAlign = DL.getABITypeAlign(ArgTy);
513 
514     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
515     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
516 
517     if (Arg.use_empty()) {
518       ++i;
519       continue;
520     }
521 
522     ArrayRef<Register> OrigArgRegs = VRegs[i];
523     Register ArgReg =
524       OrigArgRegs.size() == 1
525       ? OrigArgRegs[0]
526       : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
527 
528     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
529     lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
530     if (OrigArgRegs.size() > 1)
531       unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
532     ++i;
533   }
534 
535   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
536   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
537   return true;
538 }
539 
540 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
541 static MachineInstrBuilder mergeVectorRegsToResultRegs(
542   MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) {
543   MachineRegisterInfo &MRI = *B.getMRI();
544   LLT LLTy = MRI.getType(DstRegs[0]);
545   LLT PartLLT = MRI.getType(SrcRegs[0]);
546 
547   // Deal with v3s16 split into v2s16
548   LLT LCMTy = getLCMType(LLTy, PartLLT);
549   if (LCMTy == LLTy) {
550     // Common case where no padding is needed.
551     assert(DstRegs.size() == 1);
552     return B.buildConcatVectors(DstRegs[0], SrcRegs);
553   }
554 
555   const int NumWide =  LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
556   Register Undef = B.buildUndef(PartLLT).getReg(0);
557 
558   // Build vector of undefs.
559   SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
560 
561   // Replace the first sources with the real registers.
562   std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
563 
564   auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
565   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
566 
567   SmallVector<Register, 8> PadDstRegs(NumDst);
568   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
569 
570   // Create the excess dead defs for the unmerge.
571   for (int I = DstRegs.size(); I != NumDst; ++I)
572     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
573 
574   return B.buildUnmerge(PadDstRegs, Widened);
575 }
576 
577 // TODO: Move this to generic code
578 static void packSplitRegsToOrigType(MachineIRBuilder &B,
579                                     ArrayRef<Register> OrigRegs,
580                                     ArrayRef<Register> Regs,
581                                     LLT LLTy,
582                                     LLT PartLLT) {
583   MachineRegisterInfo &MRI = *B.getMRI();
584 
585   if (!LLTy.isVector() && !PartLLT.isVector()) {
586     assert(OrigRegs.size() == 1);
587     LLT OrigTy = MRI.getType(OrigRegs[0]);
588 
589     unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
590     if (SrcSize == OrigTy.getSizeInBits())
591       B.buildMerge(OrigRegs[0], Regs);
592     else {
593       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
594       B.buildTrunc(OrigRegs[0], Widened);
595     }
596 
597     return;
598   }
599 
600   if (LLTy.isVector() && PartLLT.isVector()) {
601     assert(OrigRegs.size() == 1);
602     assert(LLTy.getElementType() == PartLLT.getElementType());
603     mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
604     return;
605   }
606 
607   assert(LLTy.isVector() && !PartLLT.isVector());
608 
609   LLT DstEltTy = LLTy.getElementType();
610 
611   // Pointer information was discarded. We'll need to coerce some register types
612   // to avoid violating type constraints.
613   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
614 
615   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
616 
617   if (DstEltTy == PartLLT) {
618     // Vector was trivially scalarized.
619 
620     if (RealDstEltTy.isPointer()) {
621       for (Register Reg : Regs)
622         MRI.setType(Reg, RealDstEltTy);
623     }
624 
625     B.buildBuildVector(OrigRegs[0], Regs);
626   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
627     // Deal with vector with 64-bit elements decomposed to 32-bit
628     // registers. Need to create intermediate 64-bit elements.
629     SmallVector<Register, 8> EltMerges;
630     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
631 
632     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
633 
634     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I)  {
635       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
636       // Fix the type in case this is really a vector of pointers.
637       MRI.setType(Merge.getReg(0), RealDstEltTy);
638       EltMerges.push_back(Merge.getReg(0));
639       Regs = Regs.drop_front(PartsPerElt);
640     }
641 
642     B.buildBuildVector(OrigRegs[0], EltMerges);
643   } else {
644     // Vector was split, and elements promoted to a wider type.
645     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
646     auto BV = B.buildBuildVector(BVType, Regs);
647     B.buildTrunc(OrigRegs[0], BV);
648   }
649 }
650 
651 bool AMDGPUCallLowering::lowerFormalArguments(
652     MachineIRBuilder &B, const Function &F,
653     ArrayRef<ArrayRef<Register>> VRegs) const {
654   CallingConv::ID CC = F.getCallingConv();
655 
656   // The infrastructure for normal calling convention lowering is essentially
657   // useless for kernels. We want to avoid any kind of legalization or argument
658   // splitting.
659   if (CC == CallingConv::AMDGPU_KERNEL)
660     return lowerFormalArgumentsKernel(B, F, VRegs);
661 
662   const bool IsShader = AMDGPU::isShader(CC);
663   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
664 
665   MachineFunction &MF = B.getMF();
666   MachineBasicBlock &MBB = B.getMBB();
667   MachineRegisterInfo &MRI = MF.getRegInfo();
668   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
669   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
670   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
671   const DataLayout &DL = F.getParent()->getDataLayout();
672 
673 
674   SmallVector<CCValAssign, 16> ArgLocs;
675   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
676 
677   if (!IsEntryFunc) {
678     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
679     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
680                                          &AMDGPU::SGPR_64RegClass);
681     MBB.addLiveIn(ReturnAddrReg);
682     B.buildCopy(LiveInReturn, ReturnAddrReg);
683   }
684 
685   if (Info->hasImplicitBufferPtr()) {
686     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
687     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
688     CCInfo.AllocateReg(ImplicitBufferPtrReg);
689   }
690 
691 
692   SmallVector<ArgInfo, 32> SplitArgs;
693   unsigned Idx = 0;
694   unsigned PSInputNum = 0;
695 
696   for (auto &Arg : F.args()) {
697     if (DL.getTypeStoreSize(Arg.getType()) == 0)
698       continue;
699 
700     const bool InReg = Arg.hasAttribute(Attribute::InReg);
701 
702     // SGPR arguments to functions not implemented.
703     if (!IsShader && InReg)
704       return false;
705 
706     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
707         Arg.hasAttribute(Attribute::SwiftError) ||
708         Arg.hasAttribute(Attribute::Nest))
709       return false;
710 
711     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
712       const bool ArgUsed = !Arg.use_empty();
713       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
714 
715       if (!SkipArg) {
716         Info->markPSInputAllocated(PSInputNum);
717         if (ArgUsed)
718           Info->markPSInputEnabled(PSInputNum);
719       }
720 
721       ++PSInputNum;
722 
723       if (SkipArg) {
724         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
725           B.buildUndef(VRegs[Idx][I]);
726 
727         ++Idx;
728         continue;
729       }
730     }
731 
732     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
733     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
734     setArgFlags(OrigArg, OrigArgIdx, DL, F);
735 
736     splitToValueTypes(
737       B, OrigArg, OrigArgIdx, SplitArgs, DL, CC,
738       // FIXME: We should probably be passing multiple registers to
739       // handleAssignments to do this
740       [&](ArrayRef<Register> Regs, Register DstReg,
741           LLT LLTy, LLT PartLLT, int VTSplitIdx) {
742         assert(DstReg == VRegs[Idx][VTSplitIdx]);
743         packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
744                                 LLTy, PartLLT);
745       });
746 
747     ++Idx;
748   }
749 
750   // At least one interpolation mode must be enabled or else the GPU will
751   // hang.
752   //
753   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
754   // set PSInputAddr, the user wants to enable some bits after the compilation
755   // based on run-time states. Since we can't know what the final PSInputEna
756   // will look like, so we shouldn't do anything here and the user should take
757   // responsibility for the correct programming.
758   //
759   // Otherwise, the following restrictions apply:
760   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
761   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
762   //   enabled too.
763   if (CC == CallingConv::AMDGPU_PS) {
764     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
765         ((Info->getPSInputAddr() & 0xF) == 0 &&
766          Info->isPSInputAllocated(11))) {
767       CCInfo.AllocateReg(AMDGPU::VGPR0);
768       CCInfo.AllocateReg(AMDGPU::VGPR1);
769       Info->markPSInputAllocated(0);
770       Info->markPSInputEnabled(0);
771     }
772 
773     if (Subtarget.isAmdPalOS()) {
774       // For isAmdPalOS, the user does not enable some bits after compilation
775       // based on run-time states; the register values being generated here are
776       // the final ones set in hardware. Therefore we need to apply the
777       // workaround to PSInputAddr and PSInputEnable together.  (The case where
778       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
779       // set up an input arg for a particular interpolation mode, but nothing
780       // uses that input arg. Really we should have an earlier pass that removes
781       // such an arg.)
782       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
783       if ((PsInputBits & 0x7F) == 0 ||
784           ((PsInputBits & 0xF) == 0 &&
785            (PsInputBits >> 11 & 1)))
786         Info->markPSInputEnabled(
787           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
788     }
789   }
790 
791   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
792   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
793 
794   if (!MBB.empty())
795     B.setInstr(*MBB.begin());
796 
797   if (!IsEntryFunc) {
798     // For the fixed ABI, pass workitem IDs in the last argument register.
799     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
800       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
801   }
802 
803   FormalArgHandler Handler(B, MRI, AssignFn);
804   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
805     return false;
806 
807   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
808     // Special inputs come after user arguments.
809     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
810   }
811 
812   // Start adding system SGPRs.
813   if (IsEntryFunc) {
814     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
815   } else {
816     CCInfo.AllocateReg(Info->getScratchRSrcReg());
817     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
818   }
819 
820   // Move back to the end of the basic block.
821   B.setMBB(MBB);
822 
823   return true;
824 }
825