xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/IR/IntrinsicsAMDGPU.h"
26 
27 #define DEBUG_TYPE "amdgpu-call-lowering"
28 
29 using namespace llvm;
30 
31 namespace {
32 
33 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
34 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
35                                     Register ValVReg, const CCValAssign &VA) {
36   if (VA.getLocVT().getSizeInBits() < 32) {
37     // 16-bit types are reported as legal for 32-bit registers. We need to
38     // extend and do a 32-bit copy to avoid the verifier complaining about it.
39     return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
40   }
41 
42   return Handler.extendRegister(ValVReg, VA);
43 }
44 
45 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
46   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
47                              MachineInstrBuilder MIB)
48       : OutgoingValueHandler(B, MRI), MIB(MIB) {}
49 
50   MachineInstrBuilder MIB;
51 
52   Register getStackAddress(uint64_t Size, int64_t Offset,
53                            MachinePointerInfo &MPO,
54                            ISD::ArgFlagsTy Flags) override {
55     llvm_unreachable("not implemented");
56   }
57 
58   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
59                             const MachinePointerInfo &MPO,
60                             const CCValAssign &VA) override {
61     llvm_unreachable("not implemented");
62   }
63 
64   void assignValueToReg(Register ValVReg, Register PhysReg,
65                         const CCValAssign &VA) override {
66     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
67 
68     // If this is a scalar return, insert a readfirstlane just in case the value
69     // ends up in a VGPR.
70     // FIXME: Assert this is a shader return.
71     const SIRegisterInfo *TRI
72       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
73     if (TRI->isSGPRReg(MRI, PhysReg)) {
74       LLT Ty = MRI.getType(ExtReg);
75       LLT S32 = LLT::scalar(32);
76       if (Ty != S32) {
77         // FIXME: We should probably support readfirstlane intrinsics with all
78         // legal 32-bit types.
79         assert(Ty.getSizeInBits() == 32);
80         if (Ty.isPointer())
81           ExtReg = MIRBuilder.buildPtrToInt(S32, ExtReg).getReg(0);
82         else
83           ExtReg = MIRBuilder.buildBitcast(S32, ExtReg).getReg(0);
84       }
85 
86       auto ToSGPR = MIRBuilder
87                         .buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
88                                         {MRI.getType(ExtReg)})
89                         .addReg(ExtReg);
90       ExtReg = ToSGPR.getReg(0);
91     }
92 
93     MIRBuilder.buildCopy(PhysReg, ExtReg);
94     MIB.addUse(PhysReg, RegState::Implicit);
95   }
96 };
97 
98 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
99   uint64_t StackUsed = 0;
100 
101   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
102       : IncomingValueHandler(B, MRI) {}
103 
104   Register getStackAddress(uint64_t Size, int64_t Offset,
105                            MachinePointerInfo &MPO,
106                            ISD::ArgFlagsTy Flags) override {
107     auto &MFI = MIRBuilder.getMF().getFrameInfo();
108 
109     // Byval is assumed to be writable memory, but other stack passed arguments
110     // are not.
111     const bool IsImmutable = !Flags.isByVal();
112     int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
113     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
114     auto AddrReg = MIRBuilder.buildFrameIndex(
115         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
116     StackUsed = std::max(StackUsed, Size + Offset);
117     return AddrReg.getReg(0);
118   }
119 
120   void assignValueToReg(Register ValVReg, Register PhysReg,
121                         const CCValAssign &VA) override {
122     markPhysRegUsed(PhysReg);
123 
124     if (VA.getLocVT().getSizeInBits() < 32) {
125       // 16-bit types are reported as legal for 32-bit registers. We need to do
126       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
127       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
128 
129       // If we have signext/zeroext, it applies to the whole 32-bit register
130       // before truncation.
131       auto Extended =
132           buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
133       MIRBuilder.buildTrunc(ValVReg, Extended);
134       return;
135     }
136 
137     IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
138   }
139 
140   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
141                             const MachinePointerInfo &MPO,
142                             const CCValAssign &VA) override {
143     MachineFunction &MF = MIRBuilder.getMF();
144 
145     auto MMO = MF.getMachineMemOperand(
146         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy,
147         inferAlignFromPtrInfo(MF, MPO));
148     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
149   }
150 
151   /// How the physical register gets marked varies between formal
152   /// parameters (it's a basic-block live-in), and a call instruction
153   /// (it's an implicit-def of the BL).
154   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
155 };
156 
157 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
158   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
159       : AMDGPUIncomingArgHandler(B, MRI) {}
160 
161   void markPhysRegUsed(unsigned PhysReg) override {
162     MIRBuilder.getMBB().addLiveIn(PhysReg);
163   }
164 };
165 
166 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
167   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
168                     MachineInstrBuilder MIB)
169       : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}
170 
171   void markPhysRegUsed(unsigned PhysReg) override {
172     MIB.addDef(PhysReg, RegState::Implicit);
173   }
174 
175   MachineInstrBuilder MIB;
176 };
177 
178 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
179   /// For tail calls, the byte offset of the call's argument area from the
180   /// callee's. Unused elsewhere.
181   int FPDiff;
182 
183   // Cache the SP register vreg if we need it more than once in this call site.
184   Register SPReg;
185 
186   bool IsTailCall;
187 
188   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
189                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
190                            bool IsTailCall = false, int FPDiff = 0)
191       : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff),
192         IsTailCall(IsTailCall) {}
193 
194   Register getStackAddress(uint64_t Size, int64_t Offset,
195                            MachinePointerInfo &MPO,
196                            ISD::ArgFlagsTy Flags) override {
197     MachineFunction &MF = MIRBuilder.getMF();
198     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
199     const LLT S32 = LLT::scalar(32);
200 
201     if (IsTailCall) {
202       Offset += FPDiff;
203       int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
204       auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI);
205       MPO = MachinePointerInfo::getFixedStack(MF, FI);
206       return FIReg.getReg(0);
207     }
208 
209     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
210 
211     if (!SPReg) {
212       const GCNSubtarget &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>();
213       if (ST.enableFlatScratch()) {
214         // The stack is accessed unswizzled, so we can use a regular copy.
215         SPReg = MIRBuilder.buildCopy(PtrTy,
216                                      MFI->getStackPtrOffsetReg()).getReg(0);
217       } else {
218         // The address we produce here, without knowing the use context, is going
219         // to be interpreted as a vector address, so we need to convert to a
220         // swizzled address.
221         SPReg = MIRBuilder.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {PtrTy},
222                                       {MFI->getStackPtrOffsetReg()}).getReg(0);
223       }
224     }
225 
226     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
227 
228     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
229     MPO = MachinePointerInfo::getStack(MF, Offset);
230     return AddrReg.getReg(0);
231   }
232 
233   void assignValueToReg(Register ValVReg, Register PhysReg,
234                         const CCValAssign &VA) override {
235     MIB.addUse(PhysReg, RegState::Implicit);
236     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
237     MIRBuilder.buildCopy(PhysReg, ExtReg);
238   }
239 
240   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
241                             const MachinePointerInfo &MPO,
242                             const CCValAssign &VA) override {
243     MachineFunction &MF = MIRBuilder.getMF();
244     uint64_t LocMemOffset = VA.getLocMemOffset();
245     const auto &ST = MF.getSubtarget<GCNSubtarget>();
246 
247     auto MMO = MF.getMachineMemOperand(
248         MPO, MachineMemOperand::MOStore, MemTy,
249         commonAlignment(ST.getStackAlignment(), LocMemOffset));
250     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
251   }
252 
253   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
254                             unsigned ValRegIndex, Register Addr, LLT MemTy,
255                             const MachinePointerInfo &MPO,
256                             const CCValAssign &VA) override {
257     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
258                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
259                            : Arg.Regs[ValRegIndex];
260     assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA);
261   }
262 };
263 } // anonymous namespace
264 
265 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
266   : CallLowering(&TLI) {
267 }
268 
269 // FIXME: Compatibility shim
270 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
271   switch (MIOpc) {
272   case TargetOpcode::G_SEXT:
273     return ISD::SIGN_EXTEND;
274   case TargetOpcode::G_ZEXT:
275     return ISD::ZERO_EXTEND;
276   case TargetOpcode::G_ANYEXT:
277     return ISD::ANY_EXTEND;
278   default:
279     llvm_unreachable("not an extend opcode");
280   }
281 }
282 
283 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
284                                         CallingConv::ID CallConv,
285                                         SmallVectorImpl<BaseArgInfo> &Outs,
286                                         bool IsVarArg) const {
287   // For shaders. Vector types should be explicitly handled by CC.
288   if (AMDGPU::isEntryFunctionCC(CallConv))
289     return true;
290 
291   SmallVector<CCValAssign, 16> ArgLocs;
292   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
293   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
294                  MF.getFunction().getContext());
295 
296   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
297 }
298 
299 /// Lower the return value for the already existing \p Ret. This assumes that
300 /// \p B's insertion point is correct.
301 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
302                                         const Value *Val, ArrayRef<Register> VRegs,
303                                         MachineInstrBuilder &Ret) const {
304   if (!Val)
305     return true;
306 
307   auto &MF = B.getMF();
308   const auto &F = MF.getFunction();
309   const DataLayout &DL = MF.getDataLayout();
310   MachineRegisterInfo *MRI = B.getMRI();
311   LLVMContext &Ctx = F.getContext();
312 
313   CallingConv::ID CC = F.getCallingConv();
314   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
315 
316   SmallVector<EVT, 8> SplitEVTs;
317   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
318   assert(VRegs.size() == SplitEVTs.size() &&
319          "For each split Type there should be exactly one VReg.");
320 
321   SmallVector<ArgInfo, 8> SplitRetInfos;
322 
323   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
324     EVT VT = SplitEVTs[i];
325     Register Reg = VRegs[i];
326     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0);
327     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
328 
329     if (VT.isScalarInteger()) {
330       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
331       if (RetInfo.Flags[0].isSExt()) {
332         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
333         ExtendOp = TargetOpcode::G_SEXT;
334       } else if (RetInfo.Flags[0].isZExt()) {
335         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
336         ExtendOp = TargetOpcode::G_ZEXT;
337       }
338 
339       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
340                                           extOpcodeToISDExtOpcode(ExtendOp));
341       if (ExtVT != VT) {
342         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
343         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
344         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
345       }
346     }
347 
348     if (Reg != RetInfo.Regs[0]) {
349       RetInfo.Regs[0] = Reg;
350       // Reset the arg flags after modifying Reg.
351       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
352     }
353 
354     splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
355   }
356 
357   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
358 
359   OutgoingValueAssigner Assigner(AssignFn);
360   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret);
361   return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B,
362                                        CC, F.isVarArg());
363 }
364 
365 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
366                                      ArrayRef<Register> VRegs,
367                                      FunctionLoweringInfo &FLI) const {
368 
369   MachineFunction &MF = B.getMF();
370   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
371   MFI->setIfReturnsVoid(!Val);
372 
373   assert(!Val == VRegs.empty() && "Return value without a vreg");
374 
375   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
376   const bool IsShader = AMDGPU::isShader(CC);
377   const bool IsWaveEnd =
378       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
379   if (IsWaveEnd) {
380     B.buildInstr(AMDGPU::S_ENDPGM)
381       .addImm(0);
382     return true;
383   }
384 
385   unsigned ReturnOpc =
386       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::SI_RETURN;
387   auto Ret = B.buildInstrNoInsert(ReturnOpc);
388 
389   if (!FLI.CanLowerReturn)
390     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
391   else if (!lowerReturnVal(B, Val, VRegs, Ret))
392     return false;
393 
394   // TODO: Handle CalleeSavedRegsViaCopy.
395 
396   B.insertInstr(Ret);
397   return true;
398 }
399 
400 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
401                                            uint64_t Offset) const {
402   MachineFunction &MF = B.getMF();
403   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
404   MachineRegisterInfo &MRI = MF.getRegInfo();
405   Register KernArgSegmentPtr =
406     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
407   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
408 
409   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
410 
411   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
412 }
413 
414 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg,
415                                         uint64_t Offset,
416                                         Align Alignment) const {
417   MachineFunction &MF = B.getMF();
418   const Function &F = MF.getFunction();
419   const DataLayout &DL = F.getDataLayout();
420   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
421 
422   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
423 
424   SmallVector<ArgInfo, 32> SplitArgs;
425   SmallVector<uint64_t> FieldOffsets;
426   splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets);
427 
428   unsigned Idx = 0;
429   for (ArgInfo &SplitArg : SplitArgs) {
430     Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
431     lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]);
432 
433     LLT ArgTy = getLLTForType(*SplitArg.Ty, DL);
434     if (SplitArg.Flags[0].isPointer()) {
435       // Compensate for losing pointeriness in splitValueTypes.
436       LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(),
437                                ArgTy.getScalarSizeInBits());
438       ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy)
439                                : PtrTy;
440     }
441 
442     MachineMemOperand *MMO = MF.getMachineMemOperand(
443         PtrInfo,
444         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
445             MachineMemOperand::MOInvariant,
446         ArgTy, commonAlignment(Alignment, FieldOffsets[Idx]));
447 
448     assert(SplitArg.Regs.size() == 1);
449 
450     B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO);
451     ++Idx;
452   }
453 }
454 
455 // Allocate special inputs passed in user SGPRs.
456 static void allocateHSAUserSGPRs(CCState &CCInfo,
457                                  MachineIRBuilder &B,
458                                  MachineFunction &MF,
459                                  const SIRegisterInfo &TRI,
460                                  SIMachineFunctionInfo &Info) {
461   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
462   const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo();
463   if (UserSGPRInfo.hasPrivateSegmentBuffer()) {
464     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
465     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
466     CCInfo.AllocateReg(PrivateSegmentBufferReg);
467   }
468 
469   if (UserSGPRInfo.hasDispatchPtr()) {
470     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
471     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
472     CCInfo.AllocateReg(DispatchPtrReg);
473   }
474 
475   const Module *M = MF.getFunction().getParent();
476   if (UserSGPRInfo.hasQueuePtr() &&
477       AMDGPU::getAMDHSACodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) {
478     Register QueuePtrReg = Info.addQueuePtr(TRI);
479     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
480     CCInfo.AllocateReg(QueuePtrReg);
481   }
482 
483   if (UserSGPRInfo.hasKernargSegmentPtr()) {
484     MachineRegisterInfo &MRI = MF.getRegInfo();
485     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
486     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
487     Register VReg = MRI.createGenericVirtualRegister(P4);
488     MRI.addLiveIn(InputPtrReg, VReg);
489     B.getMBB().addLiveIn(InputPtrReg);
490     B.buildCopy(VReg, InputPtrReg);
491     CCInfo.AllocateReg(InputPtrReg);
492   }
493 
494   if (UserSGPRInfo.hasDispatchID()) {
495     Register DispatchIDReg = Info.addDispatchID(TRI);
496     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
497     CCInfo.AllocateReg(DispatchIDReg);
498   }
499 
500   if (UserSGPRInfo.hasFlatScratchInit()) {
501     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
502     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
503     CCInfo.AllocateReg(FlatScratchInitReg);
504   }
505 
506   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
507   // these from the dispatch pointer.
508 }
509 
510 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
511     MachineIRBuilder &B, const Function &F,
512     ArrayRef<ArrayRef<Register>> VRegs) const {
513   MachineFunction &MF = B.getMF();
514   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
515   MachineRegisterInfo &MRI = MF.getRegInfo();
516   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
517   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
518   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
519   const DataLayout &DL = F.getDataLayout();
520 
521   SmallVector<CCValAssign, 16> ArgLocs;
522   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
523 
524   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
525 
526   unsigned i = 0;
527   const Align KernArgBaseAlign(16);
528   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset();
529   uint64_t ExplicitArgOffset = 0;
530 
531   // TODO: Align down to dword alignment and extract bits for extending loads.
532   for (auto &Arg : F.args()) {
533     const bool IsByRef = Arg.hasByRefAttr();
534     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
535     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
536     if (AllocSize == 0)
537       continue;
538 
539     MaybeAlign ParamAlign = IsByRef ? Arg.getParamAlign() : std::nullopt;
540     Align ABIAlign = DL.getValueOrABITypeAlignment(ParamAlign, ArgTy);
541 
542     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
543     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
544 
545     if (Arg.use_empty()) {
546       ++i;
547       continue;
548     }
549 
550     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
551 
552     if (IsByRef) {
553       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
554 
555       assert(VRegs[i].size() == 1 &&
556              "expected only one register for byval pointers");
557       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
558         lowerParameterPtr(VRegs[i][0], B, ArgOffset);
559       } else {
560         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
561         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
562         lowerParameterPtr(PtrReg, B, ArgOffset);
563 
564         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
565       }
566     } else {
567       ArgInfo OrigArg(VRegs[i], Arg, i);
568       const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex;
569       setArgFlags(OrigArg, OrigArgIdx, DL, F);
570       lowerParameter(B, OrigArg, ArgOffset, Alignment);
571     }
572 
573     ++i;
574   }
575 
576   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
577   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
578   return true;
579 }
580 
581 bool AMDGPUCallLowering::lowerFormalArguments(
582     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
583     FunctionLoweringInfo &FLI) const {
584   CallingConv::ID CC = F.getCallingConv();
585 
586   // The infrastructure for normal calling convention lowering is essentially
587   // useless for kernels. We want to avoid any kind of legalization or argument
588   // splitting.
589   if (CC == CallingConv::AMDGPU_KERNEL)
590     return lowerFormalArgumentsKernel(B, F, VRegs);
591 
592   const bool IsGraphics = AMDGPU::isGraphics(CC);
593   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
594 
595   MachineFunction &MF = B.getMF();
596   MachineBasicBlock &MBB = B.getMBB();
597   MachineRegisterInfo &MRI = MF.getRegInfo();
598   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
599   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
600   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
601   const DataLayout &DL = F.getDataLayout();
602 
603   SmallVector<CCValAssign, 16> ArgLocs;
604   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
605   const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo();
606 
607   if (UserSGPRInfo.hasImplicitBufferPtr()) {
608     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
609     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
610     CCInfo.AllocateReg(ImplicitBufferPtrReg);
611   }
612 
613   // FIXME: This probably isn't defined for mesa
614   if (UserSGPRInfo.hasFlatScratchInit() && !Subtarget.isAmdPalOS()) {
615     Register FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
616     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
617     CCInfo.AllocateReg(FlatScratchInitReg);
618   }
619 
620   SmallVector<ArgInfo, 32> SplitArgs;
621   unsigned Idx = 0;
622   unsigned PSInputNum = 0;
623 
624   // Insert the hidden sret parameter if the return value won't fit in the
625   // return registers.
626   if (!FLI.CanLowerReturn)
627     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
628 
629   for (auto &Arg : F.args()) {
630     if (DL.getTypeStoreSize(Arg.getType()) == 0)
631       continue;
632 
633     const bool InReg = Arg.hasAttribute(Attribute::InReg);
634 
635     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
636         Arg.hasAttribute(Attribute::SwiftError) ||
637         Arg.hasAttribute(Attribute::Nest))
638       return false;
639 
640     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
641       const bool ArgUsed = !Arg.use_empty();
642       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
643 
644       if (!SkipArg) {
645         Info->markPSInputAllocated(PSInputNum);
646         if (ArgUsed)
647           Info->markPSInputEnabled(PSInputNum);
648       }
649 
650       ++PSInputNum;
651 
652       if (SkipArg) {
653         for (Register R : VRegs[Idx])
654           B.buildUndef(R);
655 
656         ++Idx;
657         continue;
658       }
659     }
660 
661     ArgInfo OrigArg(VRegs[Idx], Arg, Idx);
662     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
663     setArgFlags(OrigArg, OrigArgIdx, DL, F);
664 
665     splitToValueTypes(OrigArg, SplitArgs, DL, CC);
666     ++Idx;
667   }
668 
669   // At least one interpolation mode must be enabled or else the GPU will
670   // hang.
671   //
672   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
673   // set PSInputAddr, the user wants to enable some bits after the compilation
674   // based on run-time states. Since we can't know what the final PSInputEna
675   // will look like, so we shouldn't do anything here and the user should take
676   // responsibility for the correct programming.
677   //
678   // Otherwise, the following restrictions apply:
679   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
680   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
681   //   enabled too.
682   if (CC == CallingConv::AMDGPU_PS) {
683     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
684         ((Info->getPSInputAddr() & 0xF) == 0 &&
685          Info->isPSInputAllocated(11))) {
686       CCInfo.AllocateReg(AMDGPU::VGPR0);
687       CCInfo.AllocateReg(AMDGPU::VGPR1);
688       Info->markPSInputAllocated(0);
689       Info->markPSInputEnabled(0);
690     }
691 
692     if (Subtarget.isAmdPalOS()) {
693       // For isAmdPalOS, the user does not enable some bits after compilation
694       // based on run-time states; the register values being generated here are
695       // the final ones set in hardware. Therefore we need to apply the
696       // workaround to PSInputAddr and PSInputEnable together.  (The case where
697       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
698       // set up an input arg for a particular interpolation mode, but nothing
699       // uses that input arg. Really we should have an earlier pass that removes
700       // such an arg.)
701       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
702       if ((PsInputBits & 0x7F) == 0 ||
703           ((PsInputBits & 0xF) == 0 &&
704            (PsInputBits >> 11 & 1)))
705         Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr()));
706     }
707   }
708 
709   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
710   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
711 
712   if (!MBB.empty())
713     B.setInstr(*MBB.begin());
714 
715   if (!IsEntryFunc && !IsGraphics) {
716     // For the fixed ABI, pass workitem IDs in the last argument register.
717     TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
718 
719     if (!Subtarget.enableFlatScratch())
720       CCInfo.AllocateReg(Info->getScratchRSrcReg());
721     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
722   }
723 
724   IncomingValueAssigner Assigner(AssignFn);
725   if (!determineAssignments(Assigner, SplitArgs, CCInfo))
726     return false;
727 
728   FormalArgHandler Handler(B, MRI);
729   if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B))
730     return false;
731 
732   uint64_t StackSize = Assigner.StackSize;
733 
734   // Start adding system SGPRs.
735   if (IsEntryFunc)
736     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
737 
738   // When we tail call, we need to check if the callee's arguments will fit on
739   // the caller's stack. So, whenever we lower formal arguments, we should keep
740   // track of this information, since we might lower a tail call in this
741   // function later.
742   Info->setBytesInStackArgArea(StackSize);
743 
744   // Move back to the end of the basic block.
745   B.setMBB(MBB);
746 
747   return true;
748 }
749 
750 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
751                                            CCState &CCInfo,
752                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
753                                            CallLoweringInfo &Info) const {
754   MachineFunction &MF = MIRBuilder.getMF();
755 
756   // If there's no call site, this doesn't correspond to a call from the IR and
757   // doesn't need implicit inputs.
758   if (!Info.CB)
759     return true;
760 
761   const AMDGPUFunctionArgInfo *CalleeArgInfo
762     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
763 
764   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
765   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
766 
767 
768   // TODO: Unify with private memory register handling. This is complicated by
769   // the fact that at least in kernels, the input argument is not necessarily
770   // in the same location as the input.
771   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
772     AMDGPUFunctionArgInfo::DISPATCH_PTR,
773     AMDGPUFunctionArgInfo::QUEUE_PTR,
774     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
775     AMDGPUFunctionArgInfo::DISPATCH_ID,
776     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
777     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
778     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
779     AMDGPUFunctionArgInfo::LDS_KERNEL_ID,
780   };
781 
782   static constexpr StringLiteral ImplicitAttrNames[] = {
783     "amdgpu-no-dispatch-ptr",
784     "amdgpu-no-queue-ptr",
785     "amdgpu-no-implicitarg-ptr",
786     "amdgpu-no-dispatch-id",
787     "amdgpu-no-workgroup-id-x",
788     "amdgpu-no-workgroup-id-y",
789     "amdgpu-no-workgroup-id-z",
790     "amdgpu-no-lds-kernel-id",
791   };
792 
793   MachineRegisterInfo &MRI = MF.getRegInfo();
794 
795   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
796   const AMDGPULegalizerInfo *LI
797     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
798 
799   unsigned I = 0;
800   for (auto InputID : InputRegs) {
801     const ArgDescriptor *OutgoingArg;
802     const TargetRegisterClass *ArgRC;
803     LLT ArgTy;
804 
805     // If the callee does not use the attribute value, skip copying the value.
806     if (Info.CB->hasFnAttr(ImplicitAttrNames[I++]))
807       continue;
808 
809     std::tie(OutgoingArg, ArgRC, ArgTy) =
810         CalleeArgInfo->getPreloadedValue(InputID);
811     if (!OutgoingArg)
812       continue;
813 
814     const ArgDescriptor *IncomingArg;
815     const TargetRegisterClass *IncomingArgRC;
816     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
817         CallerArgInfo.getPreloadedValue(InputID);
818     assert(IncomingArgRC == ArgRC);
819 
820     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
821 
822     if (IncomingArg) {
823       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
824     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
825       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
826     } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
827       std::optional<uint32_t> Id =
828           AMDGPUMachineFunction::getLDSKernelIdMetadata(MF.getFunction());
829       if (Id) {
830         MIRBuilder.buildConstant(InputReg, *Id);
831       } else {
832         MIRBuilder.buildUndef(InputReg);
833       }
834     } else {
835       // We may have proven the input wasn't needed, although the ABI is
836       // requiring it. We just need to allocate the register appropriately.
837       MIRBuilder.buildUndef(InputReg);
838     }
839 
840     if (OutgoingArg->isRegister()) {
841       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
842       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
843         report_fatal_error("failed to allocate implicit input argument");
844     } else {
845       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
846       return false;
847     }
848   }
849 
850   // Pack workitem IDs into a single register or pass it as is if already
851   // packed.
852   const ArgDescriptor *OutgoingArg;
853   const TargetRegisterClass *ArgRC;
854   LLT ArgTy;
855 
856   std::tie(OutgoingArg, ArgRC, ArgTy) =
857       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
858   if (!OutgoingArg)
859     std::tie(OutgoingArg, ArgRC, ArgTy) =
860         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
861   if (!OutgoingArg)
862     std::tie(OutgoingArg, ArgRC, ArgTy) =
863         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
864   if (!OutgoingArg)
865     return false;
866 
867   auto WorkitemIDX =
868       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
869   auto WorkitemIDY =
870       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
871   auto WorkitemIDZ =
872       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
873 
874   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
875   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
876   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
877   const LLT S32 = LLT::scalar(32);
878 
879   const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x");
880   const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y");
881   const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z");
882 
883   // If incoming ids are not packed we need to pack them.
884   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
885   Register InputReg;
886   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
887       NeedWorkItemIDX) {
888     if (ST.getMaxWorkitemID(MF.getFunction(), 0) != 0) {
889       InputReg = MRI.createGenericVirtualRegister(S32);
890       LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
891                          std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
892     } else {
893       InputReg = MIRBuilder.buildConstant(S32, 0).getReg(0);
894     }
895   }
896 
897   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
898       NeedWorkItemIDY && ST.getMaxWorkitemID(MF.getFunction(), 1) != 0) {
899     Register Y = MRI.createGenericVirtualRegister(S32);
900     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
901                        std::get<2>(WorkitemIDY));
902 
903     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
904     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
905   }
906 
907   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
908       NeedWorkItemIDZ && ST.getMaxWorkitemID(MF.getFunction(), 2) != 0) {
909     Register Z = MRI.createGenericVirtualRegister(S32);
910     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
911                        std::get<2>(WorkitemIDZ));
912 
913     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
914     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
915   }
916 
917   if (!InputReg &&
918       (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
919     InputReg = MRI.createGenericVirtualRegister(S32);
920     if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
921       // We're in a situation where the outgoing function requires the workitem
922       // ID, but the calling function does not have it (e.g a graphics function
923       // calling a C calling convention function). This is illegal, but we need
924       // to produce something.
925       MIRBuilder.buildUndef(InputReg);
926     } else {
927       // Workitem ids are already packed, any of present incoming arguments will
928       // carry all required fields.
929       ArgDescriptor IncomingArg = ArgDescriptor::createArg(
930         IncomingArgX ? *IncomingArgX :
931         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
932       LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
933                          &AMDGPU::VGPR_32RegClass, S32);
934     }
935   }
936 
937   if (OutgoingArg->isRegister()) {
938     if (InputReg)
939       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
940 
941     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
942       report_fatal_error("failed to allocate implicit input argument");
943   } else {
944     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
945     return false;
946   }
947 
948   return true;
949 }
950 
951 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
952 /// CC.
953 static std::pair<CCAssignFn *, CCAssignFn *>
954 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
955   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
956 }
957 
958 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
959                               bool IsTailCall, bool isWave32,
960                               CallingConv::ID CC) {
961   // For calls to amdgpu_cs_chain functions, the address is known to be uniform.
962   assert((AMDGPU::isChainCC(CC) || !IsIndirect || !IsTailCall) &&
963          "Indirect calls can't be tail calls, "
964          "because the address can be divergent");
965   if (!IsTailCall)
966     return AMDGPU::G_SI_CALL;
967 
968   if (AMDGPU::isChainCC(CC))
969     return isWave32 ? AMDGPU::SI_CS_CHAIN_TC_W32 : AMDGPU::SI_CS_CHAIN_TC_W64;
970 
971   return CC == CallingConv::AMDGPU_Gfx ? AMDGPU::SI_TCRETURN_GFX :
972                                          AMDGPU::SI_TCRETURN;
973 }
974 
975 // Add operands to call instruction to track the callee.
976 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
977                                   MachineIRBuilder &MIRBuilder,
978                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
979   if (Info.Callee.isReg()) {
980     CallInst.addReg(Info.Callee.getReg());
981     CallInst.addImm(0);
982   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
983     // The call lowering lightly assumed we can directly encode a call target in
984     // the instruction, which is not the case. Materialize the address here.
985     const GlobalValue *GV = Info.Callee.getGlobal();
986     auto Ptr = MIRBuilder.buildGlobalValue(
987       LLT::pointer(GV->getAddressSpace(), 64), GV);
988     CallInst.addReg(Ptr.getReg(0));
989     CallInst.add(Info.Callee);
990   } else
991     return false;
992 
993   return true;
994 }
995 
996 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay(
997     CallLoweringInfo &Info, MachineFunction &MF,
998     SmallVectorImpl<ArgInfo> &InArgs) const {
999   const Function &CallerF = MF.getFunction();
1000   CallingConv::ID CalleeCC = Info.CallConv;
1001   CallingConv::ID CallerCC = CallerF.getCallingConv();
1002 
1003   // If the calling conventions match, then everything must be the same.
1004   if (CalleeCC == CallerCC)
1005     return true;
1006 
1007   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1008 
1009   // Make sure that the caller and callee preserve all of the same registers.
1010   auto TRI = ST.getRegisterInfo();
1011 
1012   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1013   const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
1014   if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
1015     return false;
1016 
1017   // Check if the caller and callee will handle arguments in the same way.
1018   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1019   CCAssignFn *CalleeAssignFnFixed;
1020   CCAssignFn *CalleeAssignFnVarArg;
1021   std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
1022       getAssignFnsForCC(CalleeCC, TLI);
1023 
1024   CCAssignFn *CallerAssignFnFixed;
1025   CCAssignFn *CallerAssignFnVarArg;
1026   std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
1027       getAssignFnsForCC(CallerCC, TLI);
1028 
1029   // FIXME: We are not accounting for potential differences in implicitly passed
1030   // inputs, but only the fixed ABI is supported now anyway.
1031   IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
1032                                        CalleeAssignFnVarArg);
1033   IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
1034                                        CallerAssignFnVarArg);
1035   return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner);
1036 }
1037 
1038 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable(
1039     CallLoweringInfo &Info, MachineFunction &MF,
1040     SmallVectorImpl<ArgInfo> &OutArgs) const {
1041   // If there are no outgoing arguments, then we are done.
1042   if (OutArgs.empty())
1043     return true;
1044 
1045   const Function &CallerF = MF.getFunction();
1046   CallingConv::ID CalleeCC = Info.CallConv;
1047   CallingConv::ID CallerCC = CallerF.getCallingConv();
1048   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1049 
1050   CCAssignFn *AssignFnFixed;
1051   CCAssignFn *AssignFnVarArg;
1052   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1053 
1054   // We have outgoing arguments. Make sure that we can tail call with them.
1055   SmallVector<CCValAssign, 16> OutLocs;
1056   CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
1057   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1058 
1059   if (!determineAssignments(Assigner, OutArgs, OutInfo)) {
1060     LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
1061     return false;
1062   }
1063 
1064   // Make sure that they can fit on the caller's stack.
1065   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1066   if (OutInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) {
1067     LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
1068     return false;
1069   }
1070 
1071   // Verify that the parameters in callee-saved registers match.
1072   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1073   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1074   const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
1075   MachineRegisterInfo &MRI = MF.getRegInfo();
1076   return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
1077 }
1078 
1079 /// Return true if the calling convention is one that we can guarantee TCO for.
1080 static bool canGuaranteeTCO(CallingConv::ID CC) {
1081   return CC == CallingConv::Fast;
1082 }
1083 
1084 /// Return true if we might ever do TCO for calls with this calling convention.
1085 static bool mayTailCallThisCC(CallingConv::ID CC) {
1086   switch (CC) {
1087   case CallingConv::C:
1088   case CallingConv::AMDGPU_Gfx:
1089     return true;
1090   default:
1091     return canGuaranteeTCO(CC);
1092   }
1093 }
1094 
1095 bool AMDGPUCallLowering::isEligibleForTailCallOptimization(
1096     MachineIRBuilder &B, CallLoweringInfo &Info,
1097     SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const {
1098   // Must pass all target-independent checks in order to tail call optimize.
1099   if (!Info.IsTailCall)
1100     return false;
1101 
1102   // Indirect calls can't be tail calls, because the address can be divergent.
1103   // TODO Check divergence info if the call really is divergent.
1104   if (Info.Callee.isReg())
1105     return false;
1106 
1107   MachineFunction &MF = B.getMF();
1108   const Function &CallerF = MF.getFunction();
1109   CallingConv::ID CalleeCC = Info.CallConv;
1110   CallingConv::ID CallerCC = CallerF.getCallingConv();
1111 
1112   const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
1113   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1114   // Kernels aren't callable, and don't have a live in return address so it
1115   // doesn't make sense to do a tail call with entry functions.
1116   if (!CallerPreserved)
1117     return false;
1118 
1119   if (!mayTailCallThisCC(CalleeCC)) {
1120     LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
1121     return false;
1122   }
1123 
1124   if (any_of(CallerF.args(), [](const Argument &A) {
1125         return A.hasByValAttr() || A.hasSwiftErrorAttr();
1126       })) {
1127     LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval "
1128                          "or swifterror arguments\n");
1129     return false;
1130   }
1131 
1132   // If we have -tailcallopt, then we're done.
1133   if (MF.getTarget().Options.GuaranteedTailCallOpt)
1134     return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
1135 
1136   // Verify that the incoming and outgoing arguments from the callee are
1137   // safe to tail call.
1138   if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
1139     LLVM_DEBUG(
1140         dbgs()
1141         << "... Caller and callee have incompatible calling conventions.\n");
1142     return false;
1143   }
1144 
1145   if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
1146     return false;
1147 
1148   LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n");
1149   return true;
1150 }
1151 
1152 // Insert outgoing implicit arguments for a call, by inserting copies to the
1153 // implicit argument registers and adding the necessary implicit uses to the
1154 // call instruction.
1155 void AMDGPUCallLowering::handleImplicitCallArguments(
1156     MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst,
1157     const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo,
1158     CallingConv::ID CalleeCC,
1159     ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const {
1160   if (!ST.enableFlatScratch()) {
1161     // Insert copies for the SRD. In the HSA case, this should be an identity
1162     // copy.
1163     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32),
1164                                                FuncInfo.getScratchRSrcReg());
1165 
1166     auto CalleeRSrcReg = AMDGPU::isChainCC(CalleeCC)
1167                              ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51
1168                              : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3;
1169 
1170     MIRBuilder.buildCopy(CalleeRSrcReg, ScratchRSrcReg);
1171     CallInst.addReg(CalleeRSrcReg, RegState::Implicit);
1172   }
1173 
1174   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1175     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1176     CallInst.addReg(ArgReg.first, RegState::Implicit);
1177   }
1178 }
1179 
1180 bool AMDGPUCallLowering::lowerTailCall(
1181     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
1182     SmallVectorImpl<ArgInfo> &OutArgs) const {
1183   MachineFunction &MF = MIRBuilder.getMF();
1184   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1185   SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1186   const Function &F = MF.getFunction();
1187   MachineRegisterInfo &MRI = MF.getRegInfo();
1188   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1189 
1190   // True when we're tail calling, but without -tailcallopt.
1191   bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
1192 
1193   // Find out which ABI gets to decide where things go.
1194   CallingConv::ID CalleeCC = Info.CallConv;
1195   CCAssignFn *AssignFnFixed;
1196   CCAssignFn *AssignFnVarArg;
1197   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1198 
1199   MachineInstrBuilder CallSeqStart;
1200   if (!IsSibCall)
1201     CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP);
1202 
1203   unsigned Opc =
1204       getCallOpcode(MF, Info.Callee.isReg(), true, ST.isWave32(), CalleeCC);
1205   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1206   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1207     return false;
1208 
1209   // Byte offset for the tail call. When we are sibcalling, this will always
1210   // be 0.
1211   MIB.addImm(0);
1212 
1213   // If this is a chain call, we need to pass in the EXEC mask.
1214   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1215   if (AMDGPU::isChainCC(Info.CallConv)) {
1216     ArgInfo ExecArg = Info.OrigArgs[1];
1217     assert(ExecArg.Regs.size() == 1 && "Too many regs for EXEC");
1218 
1219     if (!ExecArg.Ty->isIntegerTy(ST.getWavefrontSize()))
1220       return false;
1221 
1222     if (auto CI = dyn_cast<ConstantInt>(ExecArg.OrigValue)) {
1223       MIB.addImm(CI->getSExtValue());
1224     } else {
1225       MIB.addReg(ExecArg.Regs[0]);
1226       unsigned Idx = MIB->getNumOperands() - 1;
1227       MIB->getOperand(Idx).setReg(constrainOperandRegClass(
1228           MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
1229           MIB->getDesc(), MIB->getOperand(Idx), Idx));
1230     }
1231   }
1232 
1233   // Tell the call which registers are clobbered.
1234   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
1235   MIB.addRegMask(Mask);
1236 
1237   // FPDiff is the byte offset of the call's argument area from the callee's.
1238   // Stores to callee stack arguments will be placed in FixedStackSlots offset
1239   // by this amount for a tail call. In a sibling call it must be 0 because the
1240   // caller will deallocate the entire stack and the callee still expects its
1241   // arguments to begin at SP+0.
1242   int FPDiff = 0;
1243 
1244   // This will be 0 for sibcalls, potentially nonzero for tail calls produced
1245   // by -tailcallopt. For sibcalls, the memory operands for the call are
1246   // already available in the caller's incoming argument space.
1247   unsigned NumBytes = 0;
1248   if (!IsSibCall) {
1249     // We aren't sibcalling, so we need to compute FPDiff. We need to do this
1250     // before handling assignments, because FPDiff must be known for memory
1251     // arguments.
1252     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1253     SmallVector<CCValAssign, 16> OutLocs;
1254     CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
1255 
1256     // FIXME: Not accounting for callee implicit inputs
1257     OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg);
1258     if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
1259       return false;
1260 
1261     // The callee will pop the argument stack as a tail call. Thus, we must
1262     // keep it 16-byte aligned.
1263     NumBytes = alignTo(OutInfo.getStackSize(), ST.getStackAlignment());
1264 
1265     // FPDiff will be negative if this tail call requires more space than we
1266     // would automatically have in our incoming argument space. Positive if we
1267     // actually shrink the stack.
1268     FPDiff = NumReusableBytes - NumBytes;
1269 
1270     // The stack pointer must be 16-byte aligned at all times it's used for a
1271     // memory operation, which in practice means at *all* times and in
1272     // particular across call boundaries. Therefore our own arguments started at
1273     // a 16-byte aligned SP and the delta applied for the tail call should
1274     // satisfy the same constraint.
1275     assert(isAligned(ST.getStackAlignment(), FPDiff) &&
1276            "unaligned stack on tail call");
1277   }
1278 
1279   SmallVector<CCValAssign, 16> ArgLocs;
1280   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1281 
1282   // We could pass MIB and directly add the implicit uses to the call
1283   // now. However, as an aesthetic choice, place implicit argument operands
1284   // after the ordinary user argument registers.
1285   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1286 
1287   if (Info.CallConv != CallingConv::AMDGPU_Gfx &&
1288       !AMDGPU::isChainCC(Info.CallConv)) {
1289     // With a fixed ABI, allocate fixed registers before user arguments.
1290     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1291       return false;
1292   }
1293 
1294   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1295 
1296   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1297     return false;
1298 
1299   // Do the actual argument marshalling.
1300   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff);
1301   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1302     return false;
1303 
1304   if (Info.ConvergenceCtrlToken) {
1305     MIB.addUse(Info.ConvergenceCtrlToken, RegState::Implicit);
1306   }
1307   handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, CalleeCC,
1308                               ImplicitArgRegs);
1309 
1310   // If we have -tailcallopt, we need to adjust the stack. We'll do the call
1311   // sequence start and end here.
1312   if (!IsSibCall) {
1313     MIB->getOperand(1).setImm(FPDiff);
1314     CallSeqStart.addImm(NumBytes).addImm(0);
1315     // End the call sequence *before* emitting the call. Normally, we would
1316     // tidy the frame up after the call. However, here, we've laid out the
1317     // parameters so that when SP is reset, they will be in the correct
1318     // location.
1319     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0);
1320   }
1321 
1322   // Now we can add the actual call instruction to the correct basic block.
1323   MIRBuilder.insertInstr(MIB);
1324 
1325   // If Callee is a reg, since it is used by a target specific
1326   // instruction, it must have a register class matching the
1327   // constraint of that instruction.
1328 
1329   // FIXME: We should define regbankselectable call instructions to handle
1330   // divergent call targets.
1331   if (MIB->getOperand(0).isReg()) {
1332     MIB->getOperand(0).setReg(constrainOperandRegClass(
1333         MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
1334         MIB->getDesc(), MIB->getOperand(0), 0));
1335   }
1336 
1337   MF.getFrameInfo().setHasTailCall();
1338   Info.LoweredTailCall = true;
1339   return true;
1340 }
1341 
1342 /// Lower a call to the @llvm.amdgcn.cs.chain intrinsic.
1343 bool AMDGPUCallLowering::lowerChainCall(MachineIRBuilder &MIRBuilder,
1344                                         CallLoweringInfo &Info) const {
1345   ArgInfo Callee = Info.OrigArgs[0];
1346   ArgInfo SGPRArgs = Info.OrigArgs[2];
1347   ArgInfo VGPRArgs = Info.OrigArgs[3];
1348   ArgInfo Flags = Info.OrigArgs[4];
1349 
1350   assert(cast<ConstantInt>(Flags.OrigValue)->isZero() &&
1351          "Non-zero flags aren't supported yet.");
1352   assert(Info.OrigArgs.size() == 5 && "Additional args aren't supported yet.");
1353 
1354   MachineFunction &MF = MIRBuilder.getMF();
1355   const Function &F = MF.getFunction();
1356   const DataLayout &DL = F.getDataLayout();
1357 
1358   // The function to jump to is actually the first argument, so we'll change the
1359   // Callee and other info to match that before using our existing helper.
1360   const Value *CalleeV = Callee.OrigValue->stripPointerCasts();
1361   if (const Function *F = dyn_cast<Function>(CalleeV)) {
1362     Info.Callee = MachineOperand::CreateGA(F, 0);
1363     Info.CallConv = F->getCallingConv();
1364   } else {
1365     assert(Callee.Regs.size() == 1 && "Too many regs for the callee");
1366     Info.Callee = MachineOperand::CreateReg(Callee.Regs[0], false);
1367     Info.CallConv = CallingConv::AMDGPU_CS_Chain; // amdgpu_cs_chain_preserve
1368                                                   // behaves the same here.
1369   }
1370 
1371   // The function that we're calling cannot be vararg (only the intrinsic is).
1372   Info.IsVarArg = false;
1373 
1374   assert(std::all_of(SGPRArgs.Flags.begin(), SGPRArgs.Flags.end(),
1375                      [](ISD::ArgFlagsTy F) { return F.isInReg(); }) &&
1376          "SGPR arguments should be marked inreg");
1377   assert(std::none_of(VGPRArgs.Flags.begin(), VGPRArgs.Flags.end(),
1378                       [](ISD::ArgFlagsTy F) { return F.isInReg(); }) &&
1379          "VGPR arguments should not be marked inreg");
1380 
1381   SmallVector<ArgInfo, 8> OutArgs;
1382   splitToValueTypes(SGPRArgs, OutArgs, DL, Info.CallConv);
1383   splitToValueTypes(VGPRArgs, OutArgs, DL, Info.CallConv);
1384 
1385   Info.IsMustTailCall = true;
1386   return lowerTailCall(MIRBuilder, Info, OutArgs);
1387 }
1388 
1389 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1390                                    CallLoweringInfo &Info) const {
1391   if (Function *F = Info.CB->getCalledFunction())
1392     if (F->isIntrinsic()) {
1393       assert(F->getIntrinsicID() == Intrinsic::amdgcn_cs_chain &&
1394              "Unexpected intrinsic");
1395       return lowerChainCall(MIRBuilder, Info);
1396     }
1397 
1398   if (Info.IsVarArg) {
1399     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1400     return false;
1401   }
1402 
1403   MachineFunction &MF = MIRBuilder.getMF();
1404   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1405   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1406 
1407   const Function &F = MF.getFunction();
1408   MachineRegisterInfo &MRI = MF.getRegInfo();
1409   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1410   const DataLayout &DL = F.getDataLayout();
1411 
1412   SmallVector<ArgInfo, 8> OutArgs;
1413   for (auto &OrigArg : Info.OrigArgs)
1414     splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
1415 
1416   SmallVector<ArgInfo, 8> InArgs;
1417   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
1418     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1419 
1420   // If we can lower as a tail call, do that instead.
1421   bool CanTailCallOpt =
1422       isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
1423 
1424   // We must emit a tail call if we have musttail.
1425   if (Info.IsMustTailCall && !CanTailCallOpt) {
1426     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1427     return false;
1428   }
1429 
1430   Info.IsTailCall = CanTailCallOpt;
1431   if (CanTailCallOpt)
1432     return lowerTailCall(MIRBuilder, Info, OutArgs);
1433 
1434   // Find out which ABI gets to decide where things go.
1435   CCAssignFn *AssignFnFixed;
1436   CCAssignFn *AssignFnVarArg;
1437   std::tie(AssignFnFixed, AssignFnVarArg) =
1438       getAssignFnsForCC(Info.CallConv, TLI);
1439 
1440   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1441     .addImm(0)
1442     .addImm(0);
1443 
1444   // Create a temporarily-floating call instruction so we can add the implicit
1445   // uses of arg registers.
1446   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false, ST.isWave32(),
1447                                Info.CallConv);
1448 
1449   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1450   MIB.addDef(TRI->getReturnAddressReg(MF));
1451 
1452   if (!Info.IsConvergent)
1453     MIB.setMIFlag(MachineInstr::NoConvergent);
1454 
1455   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1456     return false;
1457 
1458   // Tell the call which registers are clobbered.
1459   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1460   MIB.addRegMask(Mask);
1461 
1462   SmallVector<CCValAssign, 16> ArgLocs;
1463   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1464 
1465   // We could pass MIB and directly add the implicit uses to the call
1466   // now. However, as an aesthetic choice, place implicit argument operands
1467   // after the ordinary user argument registers.
1468   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1469 
1470   if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
1471     // With a fixed ABI, allocate fixed registers before user arguments.
1472     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1473       return false;
1474   }
1475 
1476   // Do the actual argument marshalling.
1477   SmallVector<Register, 8> PhysRegs;
1478 
1479   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1480   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1481     return false;
1482 
1483   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false);
1484   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1485     return false;
1486 
1487   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1488 
1489   if (Info.ConvergenceCtrlToken) {
1490     MIB.addUse(Info.ConvergenceCtrlToken, RegState::Implicit);
1491   }
1492   handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, Info.CallConv,
1493                               ImplicitArgRegs);
1494 
1495   // Get a count of how many bytes are to be pushed on the stack.
1496   unsigned NumBytes = CCInfo.getStackSize();
1497 
1498   // If Callee is a reg, since it is used by a target specific
1499   // instruction, it must have a register class matching the
1500   // constraint of that instruction.
1501 
1502   // FIXME: We should define regbankselectable call instructions to handle
1503   // divergent call targets.
1504   if (MIB->getOperand(1).isReg()) {
1505     MIB->getOperand(1).setReg(constrainOperandRegClass(
1506         MF, *TRI, MRI, *ST.getInstrInfo(),
1507         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1508         1));
1509   }
1510 
1511   // Now we can add the actual call instruction to the correct position.
1512   MIRBuilder.insertInstr(MIB);
1513 
1514   // Finally we can copy the returned value back into its virtual-register. In
1515   // symmetry with the arguments, the physical register must be an
1516   // implicit-define of the call instruction.
1517   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1518     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1519                                                       Info.IsVarArg);
1520     IncomingValueAssigner Assigner(RetAssignFn);
1521     CallReturnHandler Handler(MIRBuilder, MRI, MIB);
1522     if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder,
1523                                        Info.CallConv, Info.IsVarArg))
1524       return false;
1525   }
1526 
1527   uint64_t CalleePopBytes = NumBytes;
1528 
1529   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
1530             .addImm(0)
1531             .addImm(CalleePopBytes);
1532 
1533   if (!Info.CanLowerReturn) {
1534     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1535                     Info.DemoteRegister, Info.DemoteStackIndex);
1536   }
1537 
1538   return true;
1539 }
1540