xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 
26 #define DEBUG_TYPE "amdgpu-call-lowering"
27 
28 using namespace llvm;
29 
30 namespace {
31 
32 struct AMDGPUValueHandler : public CallLowering::ValueHandler {
33   AMDGPUValueHandler(bool IsIncoming, MachineIRBuilder &B,
34                      MachineRegisterInfo &MRI, CCAssignFn *AssignFn)
35       : ValueHandler(IsIncoming, B, MRI, AssignFn) {}
36 
37   /// Wrapper around extendRegister to ensure we extend to a full 32-bit
38   /// register.
39   Register extendRegisterMin32(Register ValVReg, CCValAssign &VA) {
40     if (VA.getLocVT().getSizeInBits() < 32) {
41       // 16-bit types are reported as legal for 32-bit registers. We need to
42       // extend and do a 32-bit copy to avoid the verifier complaining about it.
43       return MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
44     }
45 
46     return extendRegister(ValVReg, VA);
47   }
48 };
49 
50 struct AMDGPUOutgoingValueHandler : public AMDGPUValueHandler {
51   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
52                              MachineInstrBuilder MIB, CCAssignFn *AssignFn)
53       : AMDGPUValueHandler(false, B, MRI, AssignFn), MIB(MIB) {}
54 
55   MachineInstrBuilder MIB;
56 
57   Register getStackAddress(uint64_t Size, int64_t Offset,
58                            MachinePointerInfo &MPO) override {
59     llvm_unreachable("not implemented");
60   }
61 
62   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
63                             MachinePointerInfo &MPO, CCValAssign &VA) override {
64     llvm_unreachable("not implemented");
65   }
66 
67   void assignValueToReg(Register ValVReg, Register PhysReg,
68                         CCValAssign &VA) override {
69     Register ExtReg = extendRegisterMin32(ValVReg, VA);
70 
71     // If this is a scalar return, insert a readfirstlane just in case the value
72     // ends up in a VGPR.
73     // FIXME: Assert this is a shader return.
74     const SIRegisterInfo *TRI
75       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
76     if (TRI->isSGPRReg(MRI, PhysReg)) {
77       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
78                                               {MRI.getType(ExtReg)}, false)
79         .addReg(ExtReg);
80       ExtReg = ToSGPR.getReg(0);
81     }
82 
83     MIRBuilder.buildCopy(PhysReg, ExtReg);
84     MIB.addUse(PhysReg, RegState::Implicit);
85   }
86 
87   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
88                  CCValAssign::LocInfo LocInfo,
89                  const CallLowering::ArgInfo &Info,
90                  ISD::ArgFlagsTy Flags,
91                  CCState &State) override {
92     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
93   }
94 };
95 
96 struct AMDGPUIncomingArgHandler : public AMDGPUValueHandler {
97   uint64_t StackUsed = 0;
98 
99   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
100                            CCAssignFn *AssignFn)
101       : AMDGPUValueHandler(true, B, MRI, AssignFn) {}
102 
103   Register getStackAddress(uint64_t Size, int64_t Offset,
104                            MachinePointerInfo &MPO) override {
105     auto &MFI = MIRBuilder.getMF().getFrameInfo();
106     int FI = MFI.CreateFixedObject(Size, Offset, true);
107     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
108     auto AddrReg = MIRBuilder.buildFrameIndex(
109         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
110     StackUsed = std::max(StackUsed, Size + Offset);
111     return AddrReg.getReg(0);
112   }
113 
114   void assignValueToReg(Register ValVReg, Register PhysReg,
115                         CCValAssign &VA) override {
116     markPhysRegUsed(PhysReg);
117 
118     if (VA.getLocVT().getSizeInBits() < 32) {
119       // 16-bit types are reported as legal for 32-bit registers. We need to do
120       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
121       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
122       MIRBuilder.buildTrunc(ValVReg, Copy);
123       return;
124     }
125 
126     switch (VA.getLocInfo()) {
127     case CCValAssign::LocInfo::SExt:
128     case CCValAssign::LocInfo::ZExt:
129     case CCValAssign::LocInfo::AExt: {
130       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
131       MIRBuilder.buildTrunc(ValVReg, Copy);
132       break;
133     }
134     default:
135       MIRBuilder.buildCopy(ValVReg, PhysReg);
136       break;
137     }
138   }
139 
140   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
141                             MachinePointerInfo &MPO, CCValAssign &VA) override {
142     MachineFunction &MF = MIRBuilder.getMF();
143 
144     // The reported memory location may be wider than the value.
145     const LLT RegTy = MRI.getType(ValVReg);
146     MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
147 
148     // FIXME: Get alignment
149     auto MMO = MF.getMachineMemOperand(
150         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
151         inferAlignFromPtrInfo(MF, MPO));
152     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
153   }
154 
155   /// How the physical register gets marked varies between formal
156   /// parameters (it's a basic-block live-in), and a call instruction
157   /// (it's an implicit-def of the BL).
158   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
159 };
160 
161 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
162   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
163                    CCAssignFn *AssignFn)
164       : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {}
165 
166   void markPhysRegUsed(unsigned PhysReg) override {
167     MIRBuilder.getMBB().addLiveIn(PhysReg);
168   }
169 };
170 
171 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
172   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
173                     MachineInstrBuilder MIB, CCAssignFn *AssignFn)
174       : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
175 
176   void markPhysRegUsed(unsigned PhysReg) override {
177     MIB.addDef(PhysReg, RegState::Implicit);
178   }
179 
180   MachineInstrBuilder MIB;
181 };
182 
183 struct AMDGPUOutgoingArgHandler : public AMDGPUValueHandler {
184   MachineInstrBuilder MIB;
185   CCAssignFn *AssignFnVarArg;
186 
187   /// For tail calls, the byte offset of the call's argument area from the
188   /// callee's. Unused elsewhere.
189   int FPDiff;
190 
191   // Cache the SP register vreg if we need it more than once in this call site.
192   Register SPReg;
193 
194   bool IsTailCall;
195 
196   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
197                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
198                            CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg,
199                            bool IsTailCall = false, int FPDiff = 0)
200       : AMDGPUValueHandler(false, MIRBuilder, MRI, AssignFn), MIB(MIB),
201         AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) {
202   }
203 
204   Register getStackAddress(uint64_t Size, int64_t Offset,
205                            MachinePointerInfo &MPO) override {
206     MachineFunction &MF = MIRBuilder.getMF();
207     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
208     const LLT S32 = LLT::scalar(32);
209 
210     if (IsTailCall) {
211       llvm_unreachable("implement me");
212     }
213 
214     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
215 
216     if (!SPReg)
217       SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
218 
219     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
220 
221     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
222     MPO = MachinePointerInfo::getStack(MF, Offset);
223     return AddrReg.getReg(0);
224   }
225 
226   void assignValueToReg(Register ValVReg, Register PhysReg,
227                         CCValAssign &VA) override {
228     MIB.addUse(PhysReg, RegState::Implicit);
229     Register ExtReg = extendRegisterMin32(ValVReg, VA);
230     MIRBuilder.buildCopy(PhysReg, ExtReg);
231   }
232 
233   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
234                             MachinePointerInfo &MPO, CCValAssign &VA) override {
235     MachineFunction &MF = MIRBuilder.getMF();
236     uint64_t LocMemOffset = VA.getLocMemOffset();
237     const auto &ST = MF.getSubtarget<GCNSubtarget>();
238 
239     auto MMO = MF.getMachineMemOperand(
240       MPO, MachineMemOperand::MOStore, Size,
241       commonAlignment(ST.getStackAlignment(), LocMemOffset));
242     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
243   }
244 
245   void assignValueToAddress(const CallLowering::ArgInfo &Arg, Register Addr,
246                             uint64_t MemSize, MachinePointerInfo &MPO,
247                             CCValAssign &VA) override {
248     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
249                            ? extendRegister(Arg.Regs[0], VA)
250                            : Arg.Regs[0];
251 
252     // If we extended the value type we might need to adjust the MMO's
253     // Size. This happens if ComputeValueVTs widened a small type value to a
254     // legal register type (e.g. s8->s16)
255     const LLT RegTy = MRI.getType(ValVReg);
256     MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes());
257     assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA);
258   }
259 };
260 }
261 
262 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
263   : CallLowering(&TLI) {
264 }
265 
266 // FIXME: Compatability shim
267 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
268   switch (MIOpc) {
269   case TargetOpcode::G_SEXT:
270     return ISD::SIGN_EXTEND;
271   case TargetOpcode::G_ZEXT:
272     return ISD::ZERO_EXTEND;
273   case TargetOpcode::G_ANYEXT:
274     return ISD::ANY_EXTEND;
275   default:
276     llvm_unreachable("not an extend opcode");
277   }
278 }
279 
280 // FIXME: This should move to generic code.
281 void AMDGPUCallLowering::splitToValueTypes(MachineIRBuilder &B,
282                                            const ArgInfo &OrigArg,
283                                            SmallVectorImpl<ArgInfo> &SplitArgs,
284                                            const DataLayout &DL,
285                                            CallingConv::ID CallConv) const {
286   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
287   LLVMContext &Ctx = OrigArg.Ty->getContext();
288 
289   SmallVector<EVT, 4> SplitVTs;
290   ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
291 
292   assert(OrigArg.Regs.size() == SplitVTs.size());
293 
294   if (SplitVTs.size() == 0)
295     return;
296 
297   if (SplitVTs.size() == 1) {
298     // No splitting to do, but we want to replace the original type (e.g. [1 x
299     // double] -> double).
300     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
301                            OrigArg.Flags[0], OrigArg.IsFixed);
302     return;
303   }
304 
305   // Create one ArgInfo for each virtual register in the original ArgInfo.
306   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
307 
308   bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
309       OrigArg.Ty, CallConv, false);
310   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
311     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
312     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
313                            OrigArg.IsFixed);
314     if (NeedsRegBlock)
315       SplitArgs.back().Flags[0].setInConsecutiveRegs();
316   }
317 
318   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
319 }
320 
321 void AMDGPUCallLowering::processSplitArgs(
322     MachineIRBuilder &B, const ArgInfo &OrigArg,
323     const SmallVectorImpl<ArgInfo> &SplitArg,
324     SmallVectorImpl<ArgInfo> &SplitArgs, const DataLayout &DL,
325     CallingConv::ID CallConv, bool IsOutgoing,
326     SplitArgTy PerformArgSplit) const {
327   LLVMContext &Ctx = OrigArg.Ty->getContext();
328   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
329 
330   // FIXME: This is mostly nasty pre-processing before handleAssignments. Most
331   // of this should be performed by handleAssignments.
332 
333   for (int SplitIdx = 0, e = SplitArg.size(); SplitIdx != e; ++SplitIdx) {
334     const ArgInfo &CurSplitArg = SplitArg[SplitIdx];
335     Register Reg = OrigArg.Regs[SplitIdx];
336     EVT VT = EVT::getEVT(CurSplitArg.Ty);
337     LLT LLTy = getLLTForType(*CurSplitArg.Ty, DL);
338 
339     unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
340     MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
341 
342     if (NumParts == 1) {
343       // No splitting to do, but we want to replace the original type (e.g. [1 x
344       // double] -> double).
345       SplitArgs.emplace_back(Reg, CurSplitArg.Ty, OrigArg.Flags,
346                              OrigArg.IsFixed);
347       continue;
348     }
349 
350     SmallVector<Register, 8> SplitRegs;
351     Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx);
352     LLT PartLLT = getLLTForType(*PartTy, DL);
353     MachineRegisterInfo &MRI = *B.getMRI();
354 
355     // FIXME: Should we be reporting all of the part registers for a single
356     // argument, and let handleAssignments take care of the repacking?
357     for (unsigned i = 0; i < NumParts; ++i) {
358       Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
359       SplitRegs.push_back(PartReg);
360       SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
361     }
362 
363     PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx);
364   }
365 }
366 
367 // TODO: Move to generic code
368 static void unpackRegsToOrigType(MachineIRBuilder &B,
369                                  ArrayRef<Register> DstRegs,
370                                  Register SrcReg,
371                                  const CallLowering::ArgInfo &Info,
372                                  LLT SrcTy,
373                                  LLT PartTy) {
374   assert(DstRegs.size() > 1 && "Nothing to unpack");
375 
376   const unsigned PartSize = PartTy.getSizeInBits();
377 
378   if (SrcTy.isVector() && !PartTy.isVector() &&
379       PartSize > SrcTy.getElementType().getSizeInBits()) {
380     // Vector was scalarized, and the elements extended.
381     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
382     for (int i = 0, e = DstRegs.size(); i != e; ++i)
383       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
384     return;
385   }
386 
387   LLT GCDTy = getGCDType(SrcTy, PartTy);
388   if (GCDTy == PartTy) {
389     // If this already evenly divisible, we can create a simple unmerge.
390     B.buildUnmerge(DstRegs, SrcReg);
391     return;
392   }
393 
394   MachineRegisterInfo &MRI = *B.getMRI();
395   LLT DstTy = MRI.getType(DstRegs[0]);
396   LLT LCMTy = getLCMType(SrcTy, PartTy);
397 
398   const unsigned LCMSize = LCMTy.getSizeInBits();
399   const unsigned DstSize = DstTy.getSizeInBits();
400   const unsigned SrcSize = SrcTy.getSizeInBits();
401 
402   Register UnmergeSrc = SrcReg;
403   if (LCMSize != SrcSize) {
404     // Widen to the common type.
405     Register Undef = B.buildUndef(SrcTy).getReg(0);
406     SmallVector<Register, 8> MergeParts(1, SrcReg);
407     for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize)
408       MergeParts.push_back(Undef);
409 
410     UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
411   }
412 
413   // Unmerge to the original registers and pad with dead defs.
414   SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
415   for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize;
416        Size += DstSize) {
417     UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
418   }
419 
420   B.buildUnmerge(UnmergeResults, UnmergeSrc);
421 }
422 
423 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
424                                         CallingConv::ID CallConv,
425                                         SmallVectorImpl<BaseArgInfo> &Outs,
426                                         bool IsVarArg) const {
427   // For shaders. Vector types should be explicitly handled by CC.
428   if (AMDGPU::isEntryFunctionCC(CallConv))
429     return true;
430 
431   SmallVector<CCValAssign, 16> ArgLocs;
432   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
433   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
434                  MF.getFunction().getContext());
435 
436   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
437 }
438 
439 /// Lower the return value for the already existing \p Ret. This assumes that
440 /// \p B's insertion point is correct.
441 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
442                                         const Value *Val, ArrayRef<Register> VRegs,
443                                         MachineInstrBuilder &Ret) const {
444   if (!Val)
445     return true;
446 
447   auto &MF = B.getMF();
448   const auto &F = MF.getFunction();
449   const DataLayout &DL = MF.getDataLayout();
450   MachineRegisterInfo *MRI = B.getMRI();
451   LLVMContext &Ctx = F.getContext();
452 
453   CallingConv::ID CC = F.getCallingConv();
454   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
455 
456   SmallVector<EVT, 8> SplitEVTs;
457   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
458   assert(VRegs.size() == SplitEVTs.size() &&
459          "For each split Type there should be exactly one VReg.");
460 
461   // We pre-process the return value decomposed into EVTs.
462   SmallVector<ArgInfo, 8> PreSplitRetInfos;
463 
464   // Further processing is applied to split the arguments from PreSplitRetInfos
465   // into 32-bit pieces in SplitRetInfos before passing off to
466   // handleAssignments.
467   SmallVector<ArgInfo, 8> SplitRetInfos;
468 
469   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
470     EVT VT = SplitEVTs[i];
471     Register Reg = VRegs[i];
472     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx));
473     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
474 
475     if (VT.isScalarInteger()) {
476       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
477       if (RetInfo.Flags[0].isSExt()) {
478         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
479         ExtendOp = TargetOpcode::G_SEXT;
480       } else if (RetInfo.Flags[0].isZExt()) {
481         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
482         ExtendOp = TargetOpcode::G_ZEXT;
483       }
484 
485       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
486                                           extOpcodeToISDExtOpcode(ExtendOp));
487       if (ExtVT != VT) {
488         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
489         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
490         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
491       }
492     }
493 
494     if (Reg != RetInfo.Regs[0]) {
495       RetInfo.Regs[0] = Reg;
496       // Reset the arg flags after modifying Reg.
497       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
498     }
499 
500     splitToValueTypes(B, RetInfo, PreSplitRetInfos, DL, CC);
501 
502     // FIXME: This splitting should mostly be done by handleAssignments
503     processSplitArgs(B, RetInfo,
504                      PreSplitRetInfos, SplitRetInfos, DL, CC, true,
505                      [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy,
506                          LLT PartLLT, int VTSplitIdx) {
507                        unpackRegsToOrigType(B, Regs, SrcReg,
508                                             PreSplitRetInfos[VTSplitIdx], LLTy,
509                                             PartLLT);
510                      });
511     PreSplitRetInfos.clear();
512   }
513 
514   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
515   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
516   return handleAssignments(B, SplitRetInfos, RetHandler);
517 }
518 
519 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
520                                      ArrayRef<Register> VRegs,
521                                      FunctionLoweringInfo &FLI) const {
522 
523   MachineFunction &MF = B.getMF();
524   MachineRegisterInfo &MRI = MF.getRegInfo();
525   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
526   MFI->setIfReturnsVoid(!Val);
527 
528   assert(!Val == VRegs.empty() && "Return value without a vreg");
529 
530   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
531   const bool IsShader = AMDGPU::isShader(CC);
532   const bool IsWaveEnd =
533       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
534   if (IsWaveEnd) {
535     B.buildInstr(AMDGPU::S_ENDPGM)
536       .addImm(0);
537     return true;
538   }
539 
540   auto const &ST = MF.getSubtarget<GCNSubtarget>();
541 
542   unsigned ReturnOpc =
543       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
544 
545   auto Ret = B.buildInstrNoInsert(ReturnOpc);
546   Register ReturnAddrVReg;
547   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
548     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
549     Ret.addUse(ReturnAddrVReg);
550   }
551 
552   if (!FLI.CanLowerReturn)
553     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
554   else if (!lowerReturnVal(B, Val, VRegs, Ret))
555     return false;
556 
557   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
558     const SIRegisterInfo *TRI = ST.getRegisterInfo();
559     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
560                                          &AMDGPU::SGPR_64RegClass);
561     B.buildCopy(ReturnAddrVReg, LiveInReturn);
562   }
563 
564   // TODO: Handle CalleeSavedRegsViaCopy.
565 
566   B.insertInstr(Ret);
567   return true;
568 }
569 
570 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
571                                            Type *ParamTy,
572                                            uint64_t Offset) const {
573   MachineFunction &MF = B.getMF();
574   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
575   MachineRegisterInfo &MRI = MF.getRegInfo();
576   Register KernArgSegmentPtr =
577     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
578   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
579 
580   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
581 
582   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
583 }
584 
585 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
586                                         uint64_t Offset, Align Alignment,
587                                         Register DstReg) const {
588   MachineFunction &MF = B.getMF();
589   const Function &F = MF.getFunction();
590   const DataLayout &DL = F.getParent()->getDataLayout();
591   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
592   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
593 
594   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
595   Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
596   lowerParameterPtr(PtrReg, B, ParamTy, Offset);
597 
598   MachineMemOperand *MMO = MF.getMachineMemOperand(
599       PtrInfo,
600       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
601           MachineMemOperand::MOInvariant,
602       TypeSize, Alignment);
603 
604   B.buildLoad(DstReg, PtrReg, *MMO);
605 }
606 
607 // Allocate special inputs passed in user SGPRs.
608 static void allocateHSAUserSGPRs(CCState &CCInfo,
609                                  MachineIRBuilder &B,
610                                  MachineFunction &MF,
611                                  const SIRegisterInfo &TRI,
612                                  SIMachineFunctionInfo &Info) {
613   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
614   if (Info.hasPrivateSegmentBuffer()) {
615     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
616     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
617     CCInfo.AllocateReg(PrivateSegmentBufferReg);
618   }
619 
620   if (Info.hasDispatchPtr()) {
621     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
622     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
623     CCInfo.AllocateReg(DispatchPtrReg);
624   }
625 
626   if (Info.hasQueuePtr()) {
627     Register QueuePtrReg = Info.addQueuePtr(TRI);
628     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
629     CCInfo.AllocateReg(QueuePtrReg);
630   }
631 
632   if (Info.hasKernargSegmentPtr()) {
633     MachineRegisterInfo &MRI = MF.getRegInfo();
634     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
635     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
636     Register VReg = MRI.createGenericVirtualRegister(P4);
637     MRI.addLiveIn(InputPtrReg, VReg);
638     B.getMBB().addLiveIn(InputPtrReg);
639     B.buildCopy(VReg, InputPtrReg);
640     CCInfo.AllocateReg(InputPtrReg);
641   }
642 
643   if (Info.hasDispatchID()) {
644     Register DispatchIDReg = Info.addDispatchID(TRI);
645     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
646     CCInfo.AllocateReg(DispatchIDReg);
647   }
648 
649   if (Info.hasFlatScratchInit()) {
650     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
651     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
652     CCInfo.AllocateReg(FlatScratchInitReg);
653   }
654 
655   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
656   // these from the dispatch pointer.
657 }
658 
659 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
660     MachineIRBuilder &B, const Function &F,
661     ArrayRef<ArrayRef<Register>> VRegs) const {
662   MachineFunction &MF = B.getMF();
663   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
664   MachineRegisterInfo &MRI = MF.getRegInfo();
665   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
666   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
667   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
668 
669   const DataLayout &DL = F.getParent()->getDataLayout();
670 
671   SmallVector<CCValAssign, 16> ArgLocs;
672   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
673 
674   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
675 
676   unsigned i = 0;
677   const Align KernArgBaseAlign(16);
678   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
679   uint64_t ExplicitArgOffset = 0;
680 
681   // TODO: Align down to dword alignment and extract bits for extending loads.
682   for (auto &Arg : F.args()) {
683     const bool IsByRef = Arg.hasByRefAttr();
684     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
685     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
686     if (AllocSize == 0)
687       continue;
688 
689     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
690     if (!ABIAlign)
691       ABIAlign = DL.getABITypeAlign(ArgTy);
692 
693     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
694     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
695 
696     if (Arg.use_empty()) {
697       ++i;
698       continue;
699     }
700 
701     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
702 
703     if (IsByRef) {
704       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
705 
706       assert(VRegs[i].size() == 1 &&
707              "expected only one register for byval pointers");
708       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
709         lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset);
710       } else {
711         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
712         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
713         lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset);
714 
715         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
716       }
717     } else {
718       ArrayRef<Register> OrigArgRegs = VRegs[i];
719       Register ArgReg =
720         OrigArgRegs.size() == 1
721         ? OrigArgRegs[0]
722         : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
723 
724       lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
725       if (OrigArgRegs.size() > 1)
726         unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
727     }
728 
729     ++i;
730   }
731 
732   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
733   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
734   return true;
735 }
736 
737 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
738 static MachineInstrBuilder mergeVectorRegsToResultRegs(
739   MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) {
740   MachineRegisterInfo &MRI = *B.getMRI();
741   LLT LLTy = MRI.getType(DstRegs[0]);
742   LLT PartLLT = MRI.getType(SrcRegs[0]);
743 
744   // Deal with v3s16 split into v2s16
745   LLT LCMTy = getLCMType(LLTy, PartLLT);
746   if (LCMTy == LLTy) {
747     // Common case where no padding is needed.
748     assert(DstRegs.size() == 1);
749     return B.buildConcatVectors(DstRegs[0], SrcRegs);
750   }
751 
752   const int NumWide =  LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
753   Register Undef = B.buildUndef(PartLLT).getReg(0);
754 
755   // Build vector of undefs.
756   SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
757 
758   // Replace the first sources with the real registers.
759   std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
760 
761   auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
762   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
763 
764   SmallVector<Register, 8> PadDstRegs(NumDst);
765   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
766 
767   // Create the excess dead defs for the unmerge.
768   for (int I = DstRegs.size(); I != NumDst; ++I)
769     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
770 
771   return B.buildUnmerge(PadDstRegs, Widened);
772 }
773 
774 // TODO: Move this to generic code
775 static void packSplitRegsToOrigType(MachineIRBuilder &B,
776                                     ArrayRef<Register> OrigRegs,
777                                     ArrayRef<Register> Regs,
778                                     LLT LLTy,
779                                     LLT PartLLT) {
780   MachineRegisterInfo &MRI = *B.getMRI();
781 
782   if (!LLTy.isVector() && !PartLLT.isVector()) {
783     assert(OrigRegs.size() == 1);
784     LLT OrigTy = MRI.getType(OrigRegs[0]);
785 
786     unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
787     if (SrcSize == OrigTy.getSizeInBits())
788       B.buildMerge(OrigRegs[0], Regs);
789     else {
790       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
791       B.buildTrunc(OrigRegs[0], Widened);
792     }
793 
794     return;
795   }
796 
797   if (LLTy.isVector() && PartLLT.isVector()) {
798     assert(OrigRegs.size() == 1);
799     assert(LLTy.getElementType() == PartLLT.getElementType());
800     mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
801     return;
802   }
803 
804   assert(LLTy.isVector() && !PartLLT.isVector());
805 
806   LLT DstEltTy = LLTy.getElementType();
807 
808   // Pointer information was discarded. We'll need to coerce some register types
809   // to avoid violating type constraints.
810   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
811 
812   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
813 
814   if (DstEltTy == PartLLT) {
815     // Vector was trivially scalarized.
816 
817     if (RealDstEltTy.isPointer()) {
818       for (Register Reg : Regs)
819         MRI.setType(Reg, RealDstEltTy);
820     }
821 
822     B.buildBuildVector(OrigRegs[0], Regs);
823   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
824     // Deal with vector with 64-bit elements decomposed to 32-bit
825     // registers. Need to create intermediate 64-bit elements.
826     SmallVector<Register, 8> EltMerges;
827     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
828 
829     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
830 
831     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I)  {
832       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
833       // Fix the type in case this is really a vector of pointers.
834       MRI.setType(Merge.getReg(0), RealDstEltTy);
835       EltMerges.push_back(Merge.getReg(0));
836       Regs = Regs.drop_front(PartsPerElt);
837     }
838 
839     B.buildBuildVector(OrigRegs[0], EltMerges);
840   } else {
841     // Vector was split, and elements promoted to a wider type.
842     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
843     auto BV = B.buildBuildVector(BVType, Regs);
844     B.buildTrunc(OrigRegs[0], BV);
845   }
846 }
847 
848 bool AMDGPUCallLowering::lowerFormalArguments(
849     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
850     FunctionLoweringInfo &FLI) const {
851   CallingConv::ID CC = F.getCallingConv();
852 
853   // The infrastructure for normal calling convention lowering is essentially
854   // useless for kernels. We want to avoid any kind of legalization or argument
855   // splitting.
856   if (CC == CallingConv::AMDGPU_KERNEL)
857     return lowerFormalArgumentsKernel(B, F, VRegs);
858 
859   const bool IsGraphics = AMDGPU::isGraphics(CC);
860   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
861 
862   MachineFunction &MF = B.getMF();
863   MachineBasicBlock &MBB = B.getMBB();
864   MachineRegisterInfo &MRI = MF.getRegInfo();
865   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
866   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
867   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
868   const DataLayout &DL = F.getParent()->getDataLayout();
869 
870 
871   SmallVector<CCValAssign, 16> ArgLocs;
872   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
873 
874   if (!IsEntryFunc) {
875     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
876     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
877                                          &AMDGPU::SGPR_64RegClass);
878     MBB.addLiveIn(ReturnAddrReg);
879     B.buildCopy(LiveInReturn, ReturnAddrReg);
880   }
881 
882   if (Info->hasImplicitBufferPtr()) {
883     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
884     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
885     CCInfo.AllocateReg(ImplicitBufferPtrReg);
886   }
887 
888   SmallVector<ArgInfo, 8> SplitArg;
889   SmallVector<ArgInfo, 32> SplitArgs;
890   unsigned Idx = 0;
891   unsigned PSInputNum = 0;
892 
893   // Insert the hidden sret parameter if the return value won't fit in the
894   // return registers.
895   if (!FLI.CanLowerReturn)
896     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
897 
898   for (auto &Arg : F.args()) {
899     if (DL.getTypeStoreSize(Arg.getType()) == 0)
900       continue;
901 
902     const bool InReg = Arg.hasAttribute(Attribute::InReg);
903 
904     // SGPR arguments to functions not implemented.
905     if (!IsGraphics && InReg)
906       return false;
907 
908     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
909         Arg.hasAttribute(Attribute::SwiftError) ||
910         Arg.hasAttribute(Attribute::Nest))
911       return false;
912 
913     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
914       const bool ArgUsed = !Arg.use_empty();
915       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
916 
917       if (!SkipArg) {
918         Info->markPSInputAllocated(PSInputNum);
919         if (ArgUsed)
920           Info->markPSInputEnabled(PSInputNum);
921       }
922 
923       ++PSInputNum;
924 
925       if (SkipArg) {
926         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
927           B.buildUndef(VRegs[Idx][I]);
928 
929         ++Idx;
930         continue;
931       }
932     }
933 
934     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
935     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
936     setArgFlags(OrigArg, OrigArgIdx, DL, F);
937 
938     SplitArg.clear();
939     splitToValueTypes(B, OrigArg, SplitArg, DL, CC);
940 
941     processSplitArgs(B, OrigArg, SplitArg, SplitArgs, DL, CC, false,
942                      // FIXME: We should probably be passing multiple registers
943                      // to handleAssignments to do this
944                      [&](ArrayRef<Register> Regs, Register DstReg, LLT LLTy,
945                          LLT PartLLT, int VTSplitIdx) {
946                        assert(DstReg == VRegs[Idx][VTSplitIdx]);
947                        packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
948                                                LLTy, PartLLT);
949                      });
950 
951     ++Idx;
952   }
953 
954   // At least one interpolation mode must be enabled or else the GPU will
955   // hang.
956   //
957   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
958   // set PSInputAddr, the user wants to enable some bits after the compilation
959   // based on run-time states. Since we can't know what the final PSInputEna
960   // will look like, so we shouldn't do anything here and the user should take
961   // responsibility for the correct programming.
962   //
963   // Otherwise, the following restrictions apply:
964   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
965   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
966   //   enabled too.
967   if (CC == CallingConv::AMDGPU_PS) {
968     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
969         ((Info->getPSInputAddr() & 0xF) == 0 &&
970          Info->isPSInputAllocated(11))) {
971       CCInfo.AllocateReg(AMDGPU::VGPR0);
972       CCInfo.AllocateReg(AMDGPU::VGPR1);
973       Info->markPSInputAllocated(0);
974       Info->markPSInputEnabled(0);
975     }
976 
977     if (Subtarget.isAmdPalOS()) {
978       // For isAmdPalOS, the user does not enable some bits after compilation
979       // based on run-time states; the register values being generated here are
980       // the final ones set in hardware. Therefore we need to apply the
981       // workaround to PSInputAddr and PSInputEnable together.  (The case where
982       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
983       // set up an input arg for a particular interpolation mode, but nothing
984       // uses that input arg. Really we should have an earlier pass that removes
985       // such an arg.)
986       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
987       if ((PsInputBits & 0x7F) == 0 ||
988           ((PsInputBits & 0xF) == 0 &&
989            (PsInputBits >> 11 & 1)))
990         Info->markPSInputEnabled(
991           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
992     }
993   }
994 
995   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
996   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
997 
998   if (!MBB.empty())
999     B.setInstr(*MBB.begin());
1000 
1001   if (!IsEntryFunc) {
1002     // For the fixed ABI, pass workitem IDs in the last argument register.
1003     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
1004       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
1005   }
1006 
1007   FormalArgHandler Handler(B, MRI, AssignFn);
1008   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
1009     return false;
1010 
1011   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
1012     // Special inputs come after user arguments.
1013     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
1014   }
1015 
1016   // Start adding system SGPRs.
1017   if (IsEntryFunc) {
1018     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
1019   } else {
1020     if (!Subtarget.enableFlatScratch())
1021       CCInfo.AllocateReg(Info->getScratchRSrcReg());
1022     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
1023   }
1024 
1025   // Move back to the end of the basic block.
1026   B.setMBB(MBB);
1027 
1028   return true;
1029 }
1030 
1031 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
1032                                            CCState &CCInfo,
1033                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
1034                                            CallLoweringInfo &Info) const {
1035   MachineFunction &MF = MIRBuilder.getMF();
1036 
1037   const AMDGPUFunctionArgInfo *CalleeArgInfo
1038     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
1039 
1040   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1041   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
1042 
1043 
1044   // TODO: Unify with private memory register handling. This is complicated by
1045   // the fact that at least in kernels, the input argument is not necessarily
1046   // in the same location as the input.
1047   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
1048     AMDGPUFunctionArgInfo::DISPATCH_PTR,
1049     AMDGPUFunctionArgInfo::QUEUE_PTR,
1050     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
1051     AMDGPUFunctionArgInfo::DISPATCH_ID,
1052     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
1053     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
1054     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
1055   };
1056 
1057   MachineRegisterInfo &MRI = MF.getRegInfo();
1058 
1059   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1060   const AMDGPULegalizerInfo *LI
1061     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
1062 
1063   for (auto InputID : InputRegs) {
1064     const ArgDescriptor *OutgoingArg;
1065     const TargetRegisterClass *ArgRC;
1066     LLT ArgTy;
1067 
1068     std::tie(OutgoingArg, ArgRC, ArgTy) =
1069         CalleeArgInfo->getPreloadedValue(InputID);
1070     if (!OutgoingArg)
1071       continue;
1072 
1073     const ArgDescriptor *IncomingArg;
1074     const TargetRegisterClass *IncomingArgRC;
1075     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
1076         CallerArgInfo.getPreloadedValue(InputID);
1077     assert(IncomingArgRC == ArgRC);
1078 
1079     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
1080 
1081     if (IncomingArg) {
1082       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
1083     } else {
1084       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
1085       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
1086     }
1087 
1088     if (OutgoingArg->isRegister()) {
1089       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
1090       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
1091         report_fatal_error("failed to allocate implicit input argument");
1092     } else {
1093       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
1094       return false;
1095     }
1096   }
1097 
1098   // Pack workitem IDs into a single register or pass it as is if already
1099   // packed.
1100   const ArgDescriptor *OutgoingArg;
1101   const TargetRegisterClass *ArgRC;
1102   LLT ArgTy;
1103 
1104   std::tie(OutgoingArg, ArgRC, ArgTy) =
1105       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
1106   if (!OutgoingArg)
1107     std::tie(OutgoingArg, ArgRC, ArgTy) =
1108         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
1109   if (!OutgoingArg)
1110     std::tie(OutgoingArg, ArgRC, ArgTy) =
1111         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
1112   if (!OutgoingArg)
1113     return false;
1114 
1115   auto WorkitemIDX =
1116       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
1117   auto WorkitemIDY =
1118       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
1119   auto WorkitemIDZ =
1120       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
1121 
1122   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
1123   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
1124   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
1125   const LLT S32 = LLT::scalar(32);
1126 
1127   // If incoming ids are not packed we need to pack them.
1128   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
1129   Register InputReg;
1130   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
1131     InputReg = MRI.createGenericVirtualRegister(S32);
1132     LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
1133                        std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
1134   }
1135 
1136   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
1137     Register Y = MRI.createGenericVirtualRegister(S32);
1138     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
1139                        std::get<2>(WorkitemIDY));
1140 
1141     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
1142     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
1143   }
1144 
1145   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
1146     Register Z = MRI.createGenericVirtualRegister(S32);
1147     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
1148                        std::get<2>(WorkitemIDZ));
1149 
1150     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
1151     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
1152   }
1153 
1154   if (!InputReg) {
1155     InputReg = MRI.createGenericVirtualRegister(S32);
1156 
1157     // Workitem ids are already packed, any of present incoming arguments will
1158     // carry all required fields.
1159     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
1160       IncomingArgX ? *IncomingArgX :
1161         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
1162     LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
1163                        &AMDGPU::VGPR_32RegClass, S32);
1164   }
1165 
1166   if (OutgoingArg->isRegister()) {
1167     ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
1168     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
1169       report_fatal_error("failed to allocate implicit input argument");
1170   } else {
1171     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
1172     return false;
1173   }
1174 
1175   return true;
1176 }
1177 
1178 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
1179 /// CC.
1180 static std::pair<CCAssignFn *, CCAssignFn *>
1181 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
1182   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
1183 }
1184 
1185 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
1186                               bool IsTailCall) {
1187   return AMDGPU::SI_CALL;
1188 }
1189 
1190 // Add operands to call instruction to track the callee.
1191 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
1192                                   MachineIRBuilder &MIRBuilder,
1193                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
1194   if (Info.Callee.isReg()) {
1195     CallInst.addReg(Info.Callee.getReg());
1196     CallInst.addImm(0);
1197   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
1198     // The call lowering lightly assumed we can directly encode a call target in
1199     // the instruction, which is not the case. Materialize the address here.
1200     const GlobalValue *GV = Info.Callee.getGlobal();
1201     auto Ptr = MIRBuilder.buildGlobalValue(
1202       LLT::pointer(GV->getAddressSpace(), 64), GV);
1203     CallInst.addReg(Ptr.getReg(0));
1204     CallInst.add(Info.Callee);
1205   } else
1206     return false;
1207 
1208   return true;
1209 }
1210 
1211 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1212                                    CallLoweringInfo &Info) const {
1213   if (Info.IsVarArg) {
1214     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1215     return false;
1216   }
1217 
1218   MachineFunction &MF = MIRBuilder.getMF();
1219   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1220   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1221 
1222   const Function &F = MF.getFunction();
1223   MachineRegisterInfo &MRI = MF.getRegInfo();
1224   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1225   const DataLayout &DL = F.getParent()->getDataLayout();
1226   CallingConv::ID CallConv = F.getCallingConv();
1227 
1228   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
1229       CallConv != CallingConv::AMDGPU_Gfx) {
1230     LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
1231     return false;
1232   }
1233 
1234   if (AMDGPU::isShader(CallConv)) {
1235     LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n");
1236     return false;
1237   }
1238 
1239   SmallVector<ArgInfo, 8> OutArgs;
1240 
1241   SmallVector<ArgInfo, 8> SplitArg;
1242   for (auto &OrigArg : Info.OrigArgs) {
1243     splitToValueTypes(MIRBuilder, OrigArg, SplitArg, DL, Info.CallConv);
1244 
1245     processSplitArgs(
1246       MIRBuilder, OrigArg, SplitArg, OutArgs, DL, Info.CallConv, true,
1247       // FIXME: We should probably be passing multiple registers to
1248       // handleAssignments to do this
1249       [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
1250           int VTSplitIdx) {
1251         unpackRegsToOrigType(MIRBuilder, Regs, SrcReg, OrigArg, LLTy, PartLLT);
1252       });
1253 
1254     SplitArg.clear();
1255   }
1256 
1257   // If we can lower as a tail call, do that instead.
1258   bool CanTailCallOpt = false;
1259 
1260   // We must emit a tail call if we have musttail.
1261   if (Info.IsMustTailCall && !CanTailCallOpt) {
1262     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1263     return false;
1264   }
1265 
1266   // Find out which ABI gets to decide where things go.
1267   CCAssignFn *AssignFnFixed;
1268   CCAssignFn *AssignFnVarArg;
1269   std::tie(AssignFnFixed, AssignFnVarArg) =
1270       getAssignFnsForCC(Info.CallConv, TLI);
1271 
1272   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1273     .addImm(0)
1274     .addImm(0);
1275 
1276   // Create a temporarily-floating call instruction so we can add the implicit
1277   // uses of arg registers.
1278   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
1279 
1280   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1281   MIB.addDef(TRI->getReturnAddressReg(MF));
1282 
1283   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1284     return false;
1285 
1286   // Tell the call which registers are clobbered.
1287   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1288   MIB.addRegMask(Mask);
1289 
1290   SmallVector<CCValAssign, 16> ArgLocs;
1291   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1292 
1293   // We could pass MIB and directly add the implicit uses to the call
1294   // now. However, as an aesthetic choice, place implicit argument operands
1295   // after the ordinary user argument registers.
1296   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1297 
1298   if (AMDGPUTargetMachine::EnableFixedFunctionABI) {
1299     // With a fixed ABI, allocate fixed registers before user arguments.
1300     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1301       return false;
1302   }
1303 
1304   // Do the actual argument marshalling.
1305   SmallVector<Register, 8> PhysRegs;
1306   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
1307                                    AssignFnVarArg, false);
1308   if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler))
1309     return false;
1310 
1311   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1312 
1313   if (!ST.enableFlatScratch()) {
1314     // Insert copies for the SRD. In the HSA case, this should be an identity
1315     // copy.
1316     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32),
1317                                                MFI->getScratchRSrcReg());
1318     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1319     MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1320   }
1321 
1322   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1323     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1324     MIB.addReg(ArgReg.first, RegState::Implicit);
1325   }
1326 
1327   // Get a count of how many bytes are to be pushed on the stack.
1328   unsigned NumBytes = CCInfo.getNextStackOffset();
1329 
1330   // If Callee is a reg, since it is used by a target specific
1331   // instruction, it must have a register class matching the
1332   // constraint of that instruction.
1333 
1334   // FIXME: We should define regbankselectable call instructions to handle
1335   // divergent call targets.
1336   if (MIB->getOperand(1).isReg()) {
1337     MIB->getOperand(1).setReg(constrainOperandRegClass(
1338         MF, *TRI, MRI, *ST.getInstrInfo(),
1339         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1340         1));
1341   }
1342 
1343   auto OrigInsertPt = MIRBuilder.getInsertPt();
1344 
1345   // Now we can add the actual call instruction to the correct position.
1346   MIRBuilder.insertInstr(MIB);
1347 
1348   // Insert this now to give us an anchor point for managing the insert point.
1349   MachineInstrBuilder CallSeqEnd =
1350     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN);
1351 
1352   SmallVector<ArgInfo, 8> InArgs;
1353   if (!Info.CanLowerReturn) {
1354     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1355                     Info.DemoteRegister, Info.DemoteStackIndex);
1356   } else if (!Info.OrigRet.Ty->isVoidTy()) {
1357     SmallVector<ArgInfo, 8> PreSplitRetInfos;
1358 
1359     splitToValueTypes(
1360       MIRBuilder, Info.OrigRet, PreSplitRetInfos/*InArgs*/, DL, Info.CallConv);
1361 
1362     processSplitArgs(MIRBuilder, Info.OrigRet,
1363                      PreSplitRetInfos, InArgs/*SplitRetInfos*/, DL, Info.CallConv, false,
1364                      [&](ArrayRef<Register> Regs, Register DstReg,
1365                          LLT LLTy, LLT PartLLT, int VTSplitIdx) {
1366                        assert(DstReg == Info.OrigRet.Regs[VTSplitIdx]);
1367                        packSplitRegsToOrigType(MIRBuilder, Info.OrigRet.Regs[VTSplitIdx],
1368                                                Regs, LLTy, PartLLT);
1369                      });
1370   }
1371 
1372   // Make sure the raw argument copies are inserted before the marshalling to
1373   // the original types.
1374   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), CallSeqEnd);
1375 
1376   // Finally we can copy the returned value back into its virtual-register. In
1377   // symmetry with the arguments, the physical register must be an
1378   // implicit-define of the call instruction.
1379   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1380     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1381                                                       Info.IsVarArg);
1382     CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1383     if (!handleAssignments(MIRBuilder, InArgs, Handler))
1384       return false;
1385   }
1386 
1387   uint64_t CalleePopBytes = NumBytes;
1388   CallSeqEnd.addImm(0)
1389             .addImm(CalleePopBytes);
1390 
1391   // Restore the insert point to after the call sequence.
1392   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), OrigInsertPt);
1393   return true;
1394 }
1395