xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/IR/IntrinsicsAMDGPU.h"
26 
27 #define DEBUG_TYPE "amdgpu-call-lowering"
28 
29 using namespace llvm;
30 
31 namespace {
32 
33 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
34 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
35                                     Register ValVReg, CCValAssign &VA) {
36   if (VA.getLocVT().getSizeInBits() < 32) {
37     // 16-bit types are reported as legal for 32-bit registers. We need to
38     // extend and do a 32-bit copy to avoid the verifier complaining about it.
39     return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
40   }
41 
42   return Handler.extendRegister(ValVReg, VA);
43 }
44 
45 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
46   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
47                              MachineInstrBuilder MIB)
48       : OutgoingValueHandler(B, MRI), MIB(MIB) {}
49 
50   MachineInstrBuilder MIB;
51 
52   Register getStackAddress(uint64_t Size, int64_t Offset,
53                            MachinePointerInfo &MPO,
54                            ISD::ArgFlagsTy Flags) override {
55     llvm_unreachable("not implemented");
56   }
57 
58   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
59                             MachinePointerInfo &MPO, CCValAssign &VA) override {
60     llvm_unreachable("not implemented");
61   }
62 
63   void assignValueToReg(Register ValVReg, Register PhysReg,
64                         CCValAssign VA) override {
65     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
66 
67     // If this is a scalar return, insert a readfirstlane just in case the value
68     // ends up in a VGPR.
69     // FIXME: Assert this is a shader return.
70     const SIRegisterInfo *TRI
71       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
72     if (TRI->isSGPRReg(MRI, PhysReg)) {
73       LLT Ty = MRI.getType(ExtReg);
74       LLT S32 = LLT::scalar(32);
75       if (Ty != S32) {
76         // FIXME: We should probably support readfirstlane intrinsics with all
77         // legal 32-bit types.
78         assert(Ty.getSizeInBits() == 32);
79         if (Ty.isPointer())
80           ExtReg = MIRBuilder.buildPtrToInt(S32, ExtReg).getReg(0);
81         else
82           ExtReg = MIRBuilder.buildBitcast(S32, ExtReg).getReg(0);
83       }
84 
85       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
86                                               {MRI.getType(ExtReg)}, false)
87         .addReg(ExtReg);
88       ExtReg = ToSGPR.getReg(0);
89     }
90 
91     MIRBuilder.buildCopy(PhysReg, ExtReg);
92     MIB.addUse(PhysReg, RegState::Implicit);
93   }
94 };
95 
96 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
97   uint64_t StackUsed = 0;
98 
99   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
100       : IncomingValueHandler(B, MRI) {}
101 
102   Register getStackAddress(uint64_t Size, int64_t Offset,
103                            MachinePointerInfo &MPO,
104                            ISD::ArgFlagsTy Flags) override {
105     auto &MFI = MIRBuilder.getMF().getFrameInfo();
106 
107     // Byval is assumed to be writable memory, but other stack passed arguments
108     // are not.
109     const bool IsImmutable = !Flags.isByVal();
110     int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
111     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
112     auto AddrReg = MIRBuilder.buildFrameIndex(
113         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
114     StackUsed = std::max(StackUsed, Size + Offset);
115     return AddrReg.getReg(0);
116   }
117 
118   void assignValueToReg(Register ValVReg, Register PhysReg,
119                         CCValAssign VA) override {
120     markPhysRegUsed(PhysReg);
121 
122     if (VA.getLocVT().getSizeInBits() < 32) {
123       // 16-bit types are reported as legal for 32-bit registers. We need to do
124       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
125       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
126 
127       // If we have signext/zeroext, it applies to the whole 32-bit register
128       // before truncation.
129       auto Extended =
130           buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
131       MIRBuilder.buildTrunc(ValVReg, Extended);
132       return;
133     }
134 
135     IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
136   }
137 
138   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
139                             MachinePointerInfo &MPO, CCValAssign &VA) override {
140     MachineFunction &MF = MIRBuilder.getMF();
141 
142     auto MMO = MF.getMachineMemOperand(
143         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy,
144         inferAlignFromPtrInfo(MF, MPO));
145     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
146   }
147 
148   /// How the physical register gets marked varies between formal
149   /// parameters (it's a basic-block live-in), and a call instruction
150   /// (it's an implicit-def of the BL).
151   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
152 };
153 
154 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
155   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
156       : AMDGPUIncomingArgHandler(B, MRI) {}
157 
158   void markPhysRegUsed(unsigned PhysReg) override {
159     MIRBuilder.getMBB().addLiveIn(PhysReg);
160   }
161 };
162 
163 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
164   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
165                     MachineInstrBuilder MIB)
166       : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}
167 
168   void markPhysRegUsed(unsigned PhysReg) override {
169     MIB.addDef(PhysReg, RegState::Implicit);
170   }
171 
172   MachineInstrBuilder MIB;
173 };
174 
175 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
176   /// For tail calls, the byte offset of the call's argument area from the
177   /// callee's. Unused elsewhere.
178   int FPDiff;
179 
180   // Cache the SP register vreg if we need it more than once in this call site.
181   Register SPReg;
182 
183   bool IsTailCall;
184 
185   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
186                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
187                            bool IsTailCall = false, int FPDiff = 0)
188       : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff),
189         IsTailCall(IsTailCall) {}
190 
191   Register getStackAddress(uint64_t Size, int64_t Offset,
192                            MachinePointerInfo &MPO,
193                            ISD::ArgFlagsTy Flags) override {
194     MachineFunction &MF = MIRBuilder.getMF();
195     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
196     const LLT S32 = LLT::scalar(32);
197 
198     if (IsTailCall) {
199       Offset += FPDiff;
200       int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
201       auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI);
202       MPO = MachinePointerInfo::getFixedStack(MF, FI);
203       return FIReg.getReg(0);
204     }
205 
206     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
207 
208     if (!SPReg) {
209       const GCNSubtarget &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>();
210       if (ST.enableFlatScratch()) {
211         // The stack is accessed unswizzled, so we can use a regular copy.
212         SPReg = MIRBuilder.buildCopy(PtrTy,
213                                      MFI->getStackPtrOffsetReg()).getReg(0);
214       } else {
215         // The address we produce here, without knowing the use context, is going
216         // to be interpreted as a vector address, so we need to convert to a
217         // swizzled address.
218         SPReg = MIRBuilder.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {PtrTy},
219                                       {MFI->getStackPtrOffsetReg()}).getReg(0);
220       }
221     }
222 
223     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
224 
225     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
226     MPO = MachinePointerInfo::getStack(MF, Offset);
227     return AddrReg.getReg(0);
228   }
229 
230   void assignValueToReg(Register ValVReg, Register PhysReg,
231                         CCValAssign VA) override {
232     MIB.addUse(PhysReg, RegState::Implicit);
233     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
234     MIRBuilder.buildCopy(PhysReg, ExtReg);
235   }
236 
237   void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
238                             MachinePointerInfo &MPO, CCValAssign &VA) override {
239     MachineFunction &MF = MIRBuilder.getMF();
240     uint64_t LocMemOffset = VA.getLocMemOffset();
241     const auto &ST = MF.getSubtarget<GCNSubtarget>();
242 
243     auto MMO = MF.getMachineMemOperand(
244         MPO, MachineMemOperand::MOStore, MemTy,
245         commonAlignment(ST.getStackAlignment(), LocMemOffset));
246     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
247   }
248 
249   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
250                             unsigned ValRegIndex, Register Addr, LLT MemTy,
251                             MachinePointerInfo &MPO, CCValAssign &VA) override {
252     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
253                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
254                            : Arg.Regs[ValRegIndex];
255     assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA);
256   }
257 };
258 }
259 
260 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
261   : CallLowering(&TLI) {
262 }
263 
264 // FIXME: Compatibility shim
265 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
266   switch (MIOpc) {
267   case TargetOpcode::G_SEXT:
268     return ISD::SIGN_EXTEND;
269   case TargetOpcode::G_ZEXT:
270     return ISD::ZERO_EXTEND;
271   case TargetOpcode::G_ANYEXT:
272     return ISD::ANY_EXTEND;
273   default:
274     llvm_unreachable("not an extend opcode");
275   }
276 }
277 
278 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
279                                         CallingConv::ID CallConv,
280                                         SmallVectorImpl<BaseArgInfo> &Outs,
281                                         bool IsVarArg) const {
282   // For shaders. Vector types should be explicitly handled by CC.
283   if (AMDGPU::isEntryFunctionCC(CallConv))
284     return true;
285 
286   SmallVector<CCValAssign, 16> ArgLocs;
287   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
288   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
289                  MF.getFunction().getContext());
290 
291   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
292 }
293 
294 /// Lower the return value for the already existing \p Ret. This assumes that
295 /// \p B's insertion point is correct.
296 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
297                                         const Value *Val, ArrayRef<Register> VRegs,
298                                         MachineInstrBuilder &Ret) const {
299   if (!Val)
300     return true;
301 
302   auto &MF = B.getMF();
303   const auto &F = MF.getFunction();
304   const DataLayout &DL = MF.getDataLayout();
305   MachineRegisterInfo *MRI = B.getMRI();
306   LLVMContext &Ctx = F.getContext();
307 
308   CallingConv::ID CC = F.getCallingConv();
309   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
310 
311   SmallVector<EVT, 8> SplitEVTs;
312   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
313   assert(VRegs.size() == SplitEVTs.size() &&
314          "For each split Type there should be exactly one VReg.");
315 
316   SmallVector<ArgInfo, 8> SplitRetInfos;
317 
318   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
319     EVT VT = SplitEVTs[i];
320     Register Reg = VRegs[i];
321     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0);
322     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
323 
324     if (VT.isScalarInteger()) {
325       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
326       if (RetInfo.Flags[0].isSExt()) {
327         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
328         ExtendOp = TargetOpcode::G_SEXT;
329       } else if (RetInfo.Flags[0].isZExt()) {
330         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
331         ExtendOp = TargetOpcode::G_ZEXT;
332       }
333 
334       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
335                                           extOpcodeToISDExtOpcode(ExtendOp));
336       if (ExtVT != VT) {
337         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
338         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
339         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
340       }
341     }
342 
343     if (Reg != RetInfo.Regs[0]) {
344       RetInfo.Regs[0] = Reg;
345       // Reset the arg flags after modifying Reg.
346       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
347     }
348 
349     splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
350   }
351 
352   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
353 
354   OutgoingValueAssigner Assigner(AssignFn);
355   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret);
356   return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B,
357                                        CC, F.isVarArg());
358 }
359 
360 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
361                                      ArrayRef<Register> VRegs,
362                                      FunctionLoweringInfo &FLI) const {
363 
364   MachineFunction &MF = B.getMF();
365   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
366   MFI->setIfReturnsVoid(!Val);
367 
368   assert(!Val == VRegs.empty() && "Return value without a vreg");
369 
370   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
371   const bool IsShader = AMDGPU::isShader(CC);
372   const bool IsWaveEnd =
373       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
374   if (IsWaveEnd) {
375     B.buildInstr(AMDGPU::S_ENDPGM)
376       .addImm(0);
377     return true;
378   }
379 
380   unsigned ReturnOpc =
381       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::SI_RETURN;
382   auto Ret = B.buildInstrNoInsert(ReturnOpc);
383 
384   if (!FLI.CanLowerReturn)
385     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
386   else if (!lowerReturnVal(B, Val, VRegs, Ret))
387     return false;
388 
389   // TODO: Handle CalleeSavedRegsViaCopy.
390 
391   B.insertInstr(Ret);
392   return true;
393 }
394 
395 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
396                                            uint64_t Offset) const {
397   MachineFunction &MF = B.getMF();
398   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
399   MachineRegisterInfo &MRI = MF.getRegInfo();
400   Register KernArgSegmentPtr =
401     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
402   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
403 
404   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
405 
406   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
407 }
408 
409 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg,
410                                         uint64_t Offset,
411                                         Align Alignment) const {
412   MachineFunction &MF = B.getMF();
413   const Function &F = MF.getFunction();
414   const DataLayout &DL = F.getParent()->getDataLayout();
415   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
416 
417   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
418 
419   SmallVector<ArgInfo, 32> SplitArgs;
420   SmallVector<uint64_t> FieldOffsets;
421   splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets);
422 
423   unsigned Idx = 0;
424   for (ArgInfo &SplitArg : SplitArgs) {
425     Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
426     lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]);
427 
428     LLT ArgTy = getLLTForType(*SplitArg.Ty, DL);
429     if (SplitArg.Flags[0].isPointer()) {
430       // Compensate for losing pointeriness in splitValueTypes.
431       LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(),
432                                ArgTy.getScalarSizeInBits());
433       ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy)
434                                : PtrTy;
435     }
436 
437     MachineMemOperand *MMO = MF.getMachineMemOperand(
438         PtrInfo,
439         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
440             MachineMemOperand::MOInvariant,
441         ArgTy, commonAlignment(Alignment, FieldOffsets[Idx]));
442 
443     assert(SplitArg.Regs.size() == 1);
444 
445     B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO);
446     ++Idx;
447   }
448 }
449 
450 // Allocate special inputs passed in user SGPRs.
451 static void allocateHSAUserSGPRs(CCState &CCInfo,
452                                  MachineIRBuilder &B,
453                                  MachineFunction &MF,
454                                  const SIRegisterInfo &TRI,
455                                  SIMachineFunctionInfo &Info) {
456   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
457   if (Info.hasPrivateSegmentBuffer()) {
458     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
459     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
460     CCInfo.AllocateReg(PrivateSegmentBufferReg);
461   }
462 
463   if (Info.hasDispatchPtr()) {
464     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
465     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
466     CCInfo.AllocateReg(DispatchPtrReg);
467   }
468 
469   if (Info.hasQueuePtr() && AMDGPU::getAmdhsaCodeObjectVersion() < 5) {
470     Register QueuePtrReg = Info.addQueuePtr(TRI);
471     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
472     CCInfo.AllocateReg(QueuePtrReg);
473   }
474 
475   if (Info.hasKernargSegmentPtr()) {
476     MachineRegisterInfo &MRI = MF.getRegInfo();
477     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
478     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
479     Register VReg = MRI.createGenericVirtualRegister(P4);
480     MRI.addLiveIn(InputPtrReg, VReg);
481     B.getMBB().addLiveIn(InputPtrReg);
482     B.buildCopy(VReg, InputPtrReg);
483     CCInfo.AllocateReg(InputPtrReg);
484   }
485 
486   if (Info.hasDispatchID()) {
487     Register DispatchIDReg = Info.addDispatchID(TRI);
488     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
489     CCInfo.AllocateReg(DispatchIDReg);
490   }
491 
492   if (Info.hasFlatScratchInit()) {
493     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
494     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
495     CCInfo.AllocateReg(FlatScratchInitReg);
496   }
497 
498   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
499   // these from the dispatch pointer.
500 }
501 
502 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
503     MachineIRBuilder &B, const Function &F,
504     ArrayRef<ArrayRef<Register>> VRegs) const {
505   MachineFunction &MF = B.getMF();
506   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
507   MachineRegisterInfo &MRI = MF.getRegInfo();
508   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
509   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
510   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
511   const DataLayout &DL = F.getParent()->getDataLayout();
512 
513   Info->allocateKnownAddressLDSGlobal(F);
514 
515   SmallVector<CCValAssign, 16> ArgLocs;
516   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
517 
518   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
519 
520   unsigned i = 0;
521   const Align KernArgBaseAlign(16);
522   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
523   uint64_t ExplicitArgOffset = 0;
524 
525   // TODO: Align down to dword alignment and extract bits for extending loads.
526   for (auto &Arg : F.args()) {
527     const bool IsByRef = Arg.hasByRefAttr();
528     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
529     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
530     if (AllocSize == 0)
531       continue;
532 
533     MaybeAlign ParamAlign = IsByRef ? Arg.getParamAlign() : std::nullopt;
534     Align ABIAlign = DL.getValueOrABITypeAlignment(ParamAlign, ArgTy);
535 
536     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
537     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
538 
539     if (Arg.use_empty()) {
540       ++i;
541       continue;
542     }
543 
544     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
545 
546     if (IsByRef) {
547       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
548 
549       assert(VRegs[i].size() == 1 &&
550              "expected only one register for byval pointers");
551       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
552         lowerParameterPtr(VRegs[i][0], B, ArgOffset);
553       } else {
554         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
555         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
556         lowerParameterPtr(PtrReg, B, ArgOffset);
557 
558         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
559       }
560     } else {
561       ArgInfo OrigArg(VRegs[i], Arg, i);
562       const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex;
563       setArgFlags(OrigArg, OrigArgIdx, DL, F);
564       lowerParameter(B, OrigArg, ArgOffset, Alignment);
565     }
566 
567     ++i;
568   }
569 
570   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
571   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
572   return true;
573 }
574 
575 bool AMDGPUCallLowering::lowerFormalArguments(
576     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
577     FunctionLoweringInfo &FLI) const {
578   CallingConv::ID CC = F.getCallingConv();
579 
580   // The infrastructure for normal calling convention lowering is essentially
581   // useless for kernels. We want to avoid any kind of legalization or argument
582   // splitting.
583   if (CC == CallingConv::AMDGPU_KERNEL)
584     return lowerFormalArgumentsKernel(B, F, VRegs);
585 
586   const bool IsGraphics = AMDGPU::isGraphics(CC);
587   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
588 
589   MachineFunction &MF = B.getMF();
590   MachineBasicBlock &MBB = B.getMBB();
591   MachineRegisterInfo &MRI = MF.getRegInfo();
592   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
593   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
594   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
595   const DataLayout &DL = F.getParent()->getDataLayout();
596 
597   Info->allocateKnownAddressLDSGlobal(F);
598 
599   SmallVector<CCValAssign, 16> ArgLocs;
600   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
601 
602   if (Info->hasImplicitBufferPtr()) {
603     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
604     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
605     CCInfo.AllocateReg(ImplicitBufferPtrReg);
606   }
607 
608   // FIXME: This probably isn't defined for mesa
609   if (Info->hasFlatScratchInit() && !Subtarget.isAmdPalOS()) {
610     Register FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
611     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
612     CCInfo.AllocateReg(FlatScratchInitReg);
613   }
614 
615   SmallVector<ArgInfo, 32> SplitArgs;
616   unsigned Idx = 0;
617   unsigned PSInputNum = 0;
618 
619   // Insert the hidden sret parameter if the return value won't fit in the
620   // return registers.
621   if (!FLI.CanLowerReturn)
622     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
623 
624   for (auto &Arg : F.args()) {
625     if (DL.getTypeStoreSize(Arg.getType()) == 0)
626       continue;
627 
628     const bool InReg = Arg.hasAttribute(Attribute::InReg);
629 
630     // SGPR arguments to functions not implemented.
631     if (!IsGraphics && InReg)
632       return false;
633 
634     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
635         Arg.hasAttribute(Attribute::SwiftError) ||
636         Arg.hasAttribute(Attribute::Nest))
637       return false;
638 
639     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
640       const bool ArgUsed = !Arg.use_empty();
641       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
642 
643       if (!SkipArg) {
644         Info->markPSInputAllocated(PSInputNum);
645         if (ArgUsed)
646           Info->markPSInputEnabled(PSInputNum);
647       }
648 
649       ++PSInputNum;
650 
651       if (SkipArg) {
652         for (Register R : VRegs[Idx])
653           B.buildUndef(R);
654 
655         ++Idx;
656         continue;
657       }
658     }
659 
660     ArgInfo OrigArg(VRegs[Idx], Arg, Idx);
661     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
662     setArgFlags(OrigArg, OrigArgIdx, DL, F);
663 
664     splitToValueTypes(OrigArg, SplitArgs, DL, CC);
665     ++Idx;
666   }
667 
668   // At least one interpolation mode must be enabled or else the GPU will
669   // hang.
670   //
671   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
672   // set PSInputAddr, the user wants to enable some bits after the compilation
673   // based on run-time states. Since we can't know what the final PSInputEna
674   // will look like, so we shouldn't do anything here and the user should take
675   // responsibility for the correct programming.
676   //
677   // Otherwise, the following restrictions apply:
678   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
679   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
680   //   enabled too.
681   if (CC == CallingConv::AMDGPU_PS) {
682     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
683         ((Info->getPSInputAddr() & 0xF) == 0 &&
684          Info->isPSInputAllocated(11))) {
685       CCInfo.AllocateReg(AMDGPU::VGPR0);
686       CCInfo.AllocateReg(AMDGPU::VGPR1);
687       Info->markPSInputAllocated(0);
688       Info->markPSInputEnabled(0);
689     }
690 
691     if (Subtarget.isAmdPalOS()) {
692       // For isAmdPalOS, the user does not enable some bits after compilation
693       // based on run-time states; the register values being generated here are
694       // the final ones set in hardware. Therefore we need to apply the
695       // workaround to PSInputAddr and PSInputEnable together.  (The case where
696       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
697       // set up an input arg for a particular interpolation mode, but nothing
698       // uses that input arg. Really we should have an earlier pass that removes
699       // such an arg.)
700       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
701       if ((PsInputBits & 0x7F) == 0 ||
702           ((PsInputBits & 0xF) == 0 &&
703            (PsInputBits >> 11 & 1)))
704         Info->markPSInputEnabled(countTrailingZeros(Info->getPSInputAddr()));
705     }
706   }
707 
708   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
709   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
710 
711   if (!MBB.empty())
712     B.setInstr(*MBB.begin());
713 
714   if (!IsEntryFunc && !IsGraphics) {
715     // For the fixed ABI, pass workitem IDs in the last argument register.
716     TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
717   }
718 
719   IncomingValueAssigner Assigner(AssignFn);
720   if (!determineAssignments(Assigner, SplitArgs, CCInfo))
721     return false;
722 
723   FormalArgHandler Handler(B, MRI);
724   if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B))
725     return false;
726 
727   uint64_t StackOffset = Assigner.StackOffset;
728 
729   // Start adding system SGPRs.
730   if (IsEntryFunc) {
731     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
732   } else {
733     if (!Subtarget.enableFlatScratch())
734       CCInfo.AllocateReg(Info->getScratchRSrcReg());
735     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
736   }
737 
738   // When we tail call, we need to check if the callee's arguments will fit on
739   // the caller's stack. So, whenever we lower formal arguments, we should keep
740   // track of this information, since we might lower a tail call in this
741   // function later.
742   Info->setBytesInStackArgArea(StackOffset);
743 
744   // Move back to the end of the basic block.
745   B.setMBB(MBB);
746 
747   return true;
748 }
749 
750 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
751                                            CCState &CCInfo,
752                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
753                                            CallLoweringInfo &Info) const {
754   MachineFunction &MF = MIRBuilder.getMF();
755 
756   // If there's no call site, this doesn't correspond to a call from the IR and
757   // doesn't need implicit inputs.
758   if (!Info.CB)
759     return true;
760 
761   const AMDGPUFunctionArgInfo *CalleeArgInfo
762     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
763 
764   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
765   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
766 
767 
768   // TODO: Unify with private memory register handling. This is complicated by
769   // the fact that at least in kernels, the input argument is not necessarily
770   // in the same location as the input.
771   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
772     AMDGPUFunctionArgInfo::DISPATCH_PTR,
773     AMDGPUFunctionArgInfo::QUEUE_PTR,
774     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
775     AMDGPUFunctionArgInfo::DISPATCH_ID,
776     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
777     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
778     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
779     AMDGPUFunctionArgInfo::LDS_KERNEL_ID,
780   };
781 
782   static constexpr StringLiteral ImplicitAttrNames[] = {
783     "amdgpu-no-dispatch-ptr",
784     "amdgpu-no-queue-ptr",
785     "amdgpu-no-implicitarg-ptr",
786     "amdgpu-no-dispatch-id",
787     "amdgpu-no-workgroup-id-x",
788     "amdgpu-no-workgroup-id-y",
789     "amdgpu-no-workgroup-id-z",
790     "amdgpu-no-lds-kernel-id",
791   };
792 
793   MachineRegisterInfo &MRI = MF.getRegInfo();
794 
795   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
796   const AMDGPULegalizerInfo *LI
797     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
798 
799   unsigned I = 0;
800   for (auto InputID : InputRegs) {
801     const ArgDescriptor *OutgoingArg;
802     const TargetRegisterClass *ArgRC;
803     LLT ArgTy;
804 
805     // If the callee does not use the attribute value, skip copying the value.
806     if (Info.CB->hasFnAttr(ImplicitAttrNames[I++]))
807       continue;
808 
809     std::tie(OutgoingArg, ArgRC, ArgTy) =
810         CalleeArgInfo->getPreloadedValue(InputID);
811     if (!OutgoingArg)
812       continue;
813 
814     const ArgDescriptor *IncomingArg;
815     const TargetRegisterClass *IncomingArgRC;
816     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
817         CallerArgInfo.getPreloadedValue(InputID);
818     assert(IncomingArgRC == ArgRC);
819 
820     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
821 
822     if (IncomingArg) {
823       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
824     } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
825       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
826     } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
827       std::optional<uint32_t> Id =
828           AMDGPUMachineFunction::getLDSKernelIdMetadata(MF.getFunction());
829       if (Id) {
830         MIRBuilder.buildConstant(InputReg, *Id);
831       } else {
832         MIRBuilder.buildUndef(InputReg);
833       }
834     } else {
835       // We may have proven the input wasn't needed, although the ABI is
836       // requiring it. We just need to allocate the register appropriately.
837       MIRBuilder.buildUndef(InputReg);
838     }
839 
840     if (OutgoingArg->isRegister()) {
841       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
842       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
843         report_fatal_error("failed to allocate implicit input argument");
844     } else {
845       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
846       return false;
847     }
848   }
849 
850   // Pack workitem IDs into a single register or pass it as is if already
851   // packed.
852   const ArgDescriptor *OutgoingArg;
853   const TargetRegisterClass *ArgRC;
854   LLT ArgTy;
855 
856   std::tie(OutgoingArg, ArgRC, ArgTy) =
857       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
858   if (!OutgoingArg)
859     std::tie(OutgoingArg, ArgRC, ArgTy) =
860         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
861   if (!OutgoingArg)
862     std::tie(OutgoingArg, ArgRC, ArgTy) =
863         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
864   if (!OutgoingArg)
865     return false;
866 
867   auto WorkitemIDX =
868       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
869   auto WorkitemIDY =
870       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
871   auto WorkitemIDZ =
872       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
873 
874   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
875   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
876   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
877   const LLT S32 = LLT::scalar(32);
878 
879   const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x");
880   const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y");
881   const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z");
882 
883   // If incoming ids are not packed we need to pack them.
884   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
885   Register InputReg;
886   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
887       NeedWorkItemIDX) {
888     if (ST.getMaxWorkitemID(MF.getFunction(), 0) != 0) {
889       InputReg = MRI.createGenericVirtualRegister(S32);
890       LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
891                          std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
892     } else {
893       InputReg = MIRBuilder.buildConstant(S32, 0).getReg(0);
894     }
895   }
896 
897   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
898       NeedWorkItemIDY && ST.getMaxWorkitemID(MF.getFunction(), 1) != 0) {
899     Register Y = MRI.createGenericVirtualRegister(S32);
900     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
901                        std::get<2>(WorkitemIDY));
902 
903     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
904     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
905   }
906 
907   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
908       NeedWorkItemIDZ && ST.getMaxWorkitemID(MF.getFunction(), 2) != 0) {
909     Register Z = MRI.createGenericVirtualRegister(S32);
910     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
911                        std::get<2>(WorkitemIDZ));
912 
913     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
914     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
915   }
916 
917   if (!InputReg &&
918       (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
919     InputReg = MRI.createGenericVirtualRegister(S32);
920     if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
921       // We're in a situation where the outgoing function requires the workitem
922       // ID, but the calling function does not have it (e.g a graphics function
923       // calling a C calling convention function). This is illegal, but we need
924       // to produce something.
925       MIRBuilder.buildUndef(InputReg);
926     } else {
927       // Workitem ids are already packed, any of present incoming arguments will
928       // carry all required fields.
929       ArgDescriptor IncomingArg = ArgDescriptor::createArg(
930         IncomingArgX ? *IncomingArgX :
931         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
932       LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
933                          &AMDGPU::VGPR_32RegClass, S32);
934     }
935   }
936 
937   if (OutgoingArg->isRegister()) {
938     if (InputReg)
939       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
940 
941     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
942       report_fatal_error("failed to allocate implicit input argument");
943   } else {
944     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
945     return false;
946   }
947 
948   return true;
949 }
950 
951 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
952 /// CC.
953 static std::pair<CCAssignFn *, CCAssignFn *>
954 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
955   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
956 }
957 
958 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
959                               bool IsTailCall) {
960   assert(!(IsIndirect && IsTailCall) && "Indirect calls can't be tail calls, "
961                                         "because the address can be divergent");
962   return IsTailCall ? AMDGPU::SI_TCRETURN : AMDGPU::G_SI_CALL;
963 }
964 
965 // Add operands to call instruction to track the callee.
966 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
967                                   MachineIRBuilder &MIRBuilder,
968                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
969   if (Info.Callee.isReg()) {
970     CallInst.addReg(Info.Callee.getReg());
971     CallInst.addImm(0);
972   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
973     // The call lowering lightly assumed we can directly encode a call target in
974     // the instruction, which is not the case. Materialize the address here.
975     const GlobalValue *GV = Info.Callee.getGlobal();
976     auto Ptr = MIRBuilder.buildGlobalValue(
977       LLT::pointer(GV->getAddressSpace(), 64), GV);
978     CallInst.addReg(Ptr.getReg(0));
979     CallInst.add(Info.Callee);
980   } else
981     return false;
982 
983   return true;
984 }
985 
986 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay(
987     CallLoweringInfo &Info, MachineFunction &MF,
988     SmallVectorImpl<ArgInfo> &InArgs) const {
989   const Function &CallerF = MF.getFunction();
990   CallingConv::ID CalleeCC = Info.CallConv;
991   CallingConv::ID CallerCC = CallerF.getCallingConv();
992 
993   // If the calling conventions match, then everything must be the same.
994   if (CalleeCC == CallerCC)
995     return true;
996 
997   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
998 
999   // Make sure that the caller and callee preserve all of the same registers.
1000   auto TRI = ST.getRegisterInfo();
1001 
1002   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1003   const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
1004   if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
1005     return false;
1006 
1007   // Check if the caller and callee will handle arguments in the same way.
1008   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1009   CCAssignFn *CalleeAssignFnFixed;
1010   CCAssignFn *CalleeAssignFnVarArg;
1011   std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
1012       getAssignFnsForCC(CalleeCC, TLI);
1013 
1014   CCAssignFn *CallerAssignFnFixed;
1015   CCAssignFn *CallerAssignFnVarArg;
1016   std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
1017       getAssignFnsForCC(CallerCC, TLI);
1018 
1019   // FIXME: We are not accounting for potential differences in implicitly passed
1020   // inputs, but only the fixed ABI is supported now anyway.
1021   IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
1022                                        CalleeAssignFnVarArg);
1023   IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
1024                                        CallerAssignFnVarArg);
1025   return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner);
1026 }
1027 
1028 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable(
1029     CallLoweringInfo &Info, MachineFunction &MF,
1030     SmallVectorImpl<ArgInfo> &OutArgs) const {
1031   // If there are no outgoing arguments, then we are done.
1032   if (OutArgs.empty())
1033     return true;
1034 
1035   const Function &CallerF = MF.getFunction();
1036   CallingConv::ID CalleeCC = Info.CallConv;
1037   CallingConv::ID CallerCC = CallerF.getCallingConv();
1038   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1039 
1040   CCAssignFn *AssignFnFixed;
1041   CCAssignFn *AssignFnVarArg;
1042   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1043 
1044   // We have outgoing arguments. Make sure that we can tail call with them.
1045   SmallVector<CCValAssign, 16> OutLocs;
1046   CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
1047   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1048 
1049   if (!determineAssignments(Assigner, OutArgs, OutInfo)) {
1050     LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
1051     return false;
1052   }
1053 
1054   // Make sure that they can fit on the caller's stack.
1055   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1056   if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
1057     LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
1058     return false;
1059   }
1060 
1061   // Verify that the parameters in callee-saved registers match.
1062   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1063   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1064   const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
1065   MachineRegisterInfo &MRI = MF.getRegInfo();
1066   return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
1067 }
1068 
1069 /// Return true if the calling convention is one that we can guarantee TCO for.
1070 static bool canGuaranteeTCO(CallingConv::ID CC) {
1071   return CC == CallingConv::Fast;
1072 }
1073 
1074 /// Return true if we might ever do TCO for calls with this calling convention.
1075 static bool mayTailCallThisCC(CallingConv::ID CC) {
1076   switch (CC) {
1077   case CallingConv::C:
1078   case CallingConv::AMDGPU_Gfx:
1079     return true;
1080   default:
1081     return canGuaranteeTCO(CC);
1082   }
1083 }
1084 
1085 bool AMDGPUCallLowering::isEligibleForTailCallOptimization(
1086     MachineIRBuilder &B, CallLoweringInfo &Info,
1087     SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const {
1088   // Must pass all target-independent checks in order to tail call optimize.
1089   if (!Info.IsTailCall)
1090     return false;
1091 
1092   // Indirect calls can't be tail calls, because the address can be divergent.
1093   // TODO Check divergence info if the call really is divergent.
1094   if (Info.Callee.isReg())
1095     return false;
1096 
1097   MachineFunction &MF = B.getMF();
1098   const Function &CallerF = MF.getFunction();
1099   CallingConv::ID CalleeCC = Info.CallConv;
1100   CallingConv::ID CallerCC = CallerF.getCallingConv();
1101 
1102   const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
1103   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1104   // Kernels aren't callable, and don't have a live in return address so it
1105   // doesn't make sense to do a tail call with entry functions.
1106   if (!CallerPreserved)
1107     return false;
1108 
1109   if (!mayTailCallThisCC(CalleeCC)) {
1110     LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
1111     return false;
1112   }
1113 
1114   if (any_of(CallerF.args(), [](const Argument &A) {
1115         return A.hasByValAttr() || A.hasSwiftErrorAttr();
1116       })) {
1117     LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval "
1118                          "or swifterror arguments\n");
1119     return false;
1120   }
1121 
1122   // If we have -tailcallopt, then we're done.
1123   if (MF.getTarget().Options.GuaranteedTailCallOpt)
1124     return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
1125 
1126   // Verify that the incoming and outgoing arguments from the callee are
1127   // safe to tail call.
1128   if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
1129     LLVM_DEBUG(
1130         dbgs()
1131         << "... Caller and callee have incompatible calling conventions.\n");
1132     return false;
1133   }
1134 
1135   if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
1136     return false;
1137 
1138   LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n");
1139   return true;
1140 }
1141 
1142 // Insert outgoing implicit arguments for a call, by inserting copies to the
1143 // implicit argument registers and adding the necessary implicit uses to the
1144 // call instruction.
1145 void AMDGPUCallLowering::handleImplicitCallArguments(
1146     MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst,
1147     const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo,
1148     ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const {
1149   if (!ST.enableFlatScratch()) {
1150     // Insert copies for the SRD. In the HSA case, this should be an identity
1151     // copy.
1152     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32),
1153                                                FuncInfo.getScratchRSrcReg());
1154     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1155     CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1156   }
1157 
1158   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1159     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1160     CallInst.addReg(ArgReg.first, RegState::Implicit);
1161   }
1162 }
1163 
1164 bool AMDGPUCallLowering::lowerTailCall(
1165     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
1166     SmallVectorImpl<ArgInfo> &OutArgs) const {
1167   MachineFunction &MF = MIRBuilder.getMF();
1168   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1169   SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1170   const Function &F = MF.getFunction();
1171   MachineRegisterInfo &MRI = MF.getRegInfo();
1172   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1173 
1174   // True when we're tail calling, but without -tailcallopt.
1175   bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
1176 
1177   // Find out which ABI gets to decide where things go.
1178   CallingConv::ID CalleeCC = Info.CallConv;
1179   CCAssignFn *AssignFnFixed;
1180   CCAssignFn *AssignFnVarArg;
1181   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1182 
1183   MachineInstrBuilder CallSeqStart;
1184   if (!IsSibCall)
1185     CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP);
1186 
1187   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true);
1188   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1189   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1190     return false;
1191 
1192   // Byte offset for the tail call. When we are sibcalling, this will always
1193   // be 0.
1194   MIB.addImm(0);
1195 
1196   // Tell the call which registers are clobbered.
1197   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1198   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
1199   MIB.addRegMask(Mask);
1200 
1201   // FPDiff is the byte offset of the call's argument area from the callee's.
1202   // Stores to callee stack arguments will be placed in FixedStackSlots offset
1203   // by this amount for a tail call. In a sibling call it must be 0 because the
1204   // caller will deallocate the entire stack and the callee still expects its
1205   // arguments to begin at SP+0.
1206   int FPDiff = 0;
1207 
1208   // This will be 0 for sibcalls, potentially nonzero for tail calls produced
1209   // by -tailcallopt. For sibcalls, the memory operands for the call are
1210   // already available in the caller's incoming argument space.
1211   unsigned NumBytes = 0;
1212   if (!IsSibCall) {
1213     // We aren't sibcalling, so we need to compute FPDiff. We need to do this
1214     // before handling assignments, because FPDiff must be known for memory
1215     // arguments.
1216     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1217     SmallVector<CCValAssign, 16> OutLocs;
1218     CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
1219 
1220     // FIXME: Not accounting for callee implicit inputs
1221     OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg);
1222     if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
1223       return false;
1224 
1225     // The callee will pop the argument stack as a tail call. Thus, we must
1226     // keep it 16-byte aligned.
1227     NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment());
1228 
1229     // FPDiff will be negative if this tail call requires more space than we
1230     // would automatically have in our incoming argument space. Positive if we
1231     // actually shrink the stack.
1232     FPDiff = NumReusableBytes - NumBytes;
1233 
1234     // The stack pointer must be 16-byte aligned at all times it's used for a
1235     // memory operation, which in practice means at *all* times and in
1236     // particular across call boundaries. Therefore our own arguments started at
1237     // a 16-byte aligned SP and the delta applied for the tail call should
1238     // satisfy the same constraint.
1239     assert(isAligned(ST.getStackAlignment(), FPDiff) &&
1240            "unaligned stack on tail call");
1241   }
1242 
1243   SmallVector<CCValAssign, 16> ArgLocs;
1244   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1245 
1246   // We could pass MIB and directly add the implicit uses to the call
1247   // now. However, as an aesthetic choice, place implicit argument operands
1248   // after the ordinary user argument registers.
1249   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1250 
1251   if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
1252     // With a fixed ABI, allocate fixed registers before user arguments.
1253     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1254       return false;
1255   }
1256 
1257   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1258 
1259   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1260     return false;
1261 
1262   // Do the actual argument marshalling.
1263   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff);
1264   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1265     return false;
1266 
1267   handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs);
1268 
1269   // If we have -tailcallopt, we need to adjust the stack. We'll do the call
1270   // sequence start and end here.
1271   if (!IsSibCall) {
1272     MIB->getOperand(1).setImm(FPDiff);
1273     CallSeqStart.addImm(NumBytes).addImm(0);
1274     // End the call sequence *before* emitting the call. Normally, we would
1275     // tidy the frame up after the call. However, here, we've laid out the
1276     // parameters so that when SP is reset, they will be in the correct
1277     // location.
1278     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0);
1279   }
1280 
1281   // Now we can add the actual call instruction to the correct basic block.
1282   MIRBuilder.insertInstr(MIB);
1283 
1284   // If Callee is a reg, since it is used by a target specific
1285   // instruction, it must have a register class matching the
1286   // constraint of that instruction.
1287 
1288   // FIXME: We should define regbankselectable call instructions to handle
1289   // divergent call targets.
1290   if (MIB->getOperand(0).isReg()) {
1291     MIB->getOperand(0).setReg(constrainOperandRegClass(
1292         MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
1293         MIB->getDesc(), MIB->getOperand(0), 0));
1294   }
1295 
1296   MF.getFrameInfo().setHasTailCall();
1297   Info.LoweredTailCall = true;
1298   return true;
1299 }
1300 
1301 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1302                                    CallLoweringInfo &Info) const {
1303   if (Info.IsVarArg) {
1304     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1305     return false;
1306   }
1307 
1308   MachineFunction &MF = MIRBuilder.getMF();
1309   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1310   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1311 
1312   const Function &F = MF.getFunction();
1313   MachineRegisterInfo &MRI = MF.getRegInfo();
1314   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1315   const DataLayout &DL = F.getParent()->getDataLayout();
1316 
1317   SmallVector<ArgInfo, 8> OutArgs;
1318   for (auto &OrigArg : Info.OrigArgs)
1319     splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
1320 
1321   SmallVector<ArgInfo, 8> InArgs;
1322   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
1323     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1324 
1325   // If we can lower as a tail call, do that instead.
1326   bool CanTailCallOpt =
1327       isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
1328 
1329   // We must emit a tail call if we have musttail.
1330   if (Info.IsMustTailCall && !CanTailCallOpt) {
1331     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1332     return false;
1333   }
1334 
1335   Info.IsTailCall = CanTailCallOpt;
1336   if (CanTailCallOpt)
1337     return lowerTailCall(MIRBuilder, Info, OutArgs);
1338 
1339   // Find out which ABI gets to decide where things go.
1340   CCAssignFn *AssignFnFixed;
1341   CCAssignFn *AssignFnVarArg;
1342   std::tie(AssignFnFixed, AssignFnVarArg) =
1343       getAssignFnsForCC(Info.CallConv, TLI);
1344 
1345   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1346     .addImm(0)
1347     .addImm(0);
1348 
1349   // Create a temporarily-floating call instruction so we can add the implicit
1350   // uses of arg registers.
1351   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
1352 
1353   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1354   MIB.addDef(TRI->getReturnAddressReg(MF));
1355 
1356   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1357     return false;
1358 
1359   // Tell the call which registers are clobbered.
1360   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1361   MIB.addRegMask(Mask);
1362 
1363   SmallVector<CCValAssign, 16> ArgLocs;
1364   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1365 
1366   // We could pass MIB and directly add the implicit uses to the call
1367   // now. However, as an aesthetic choice, place implicit argument operands
1368   // after the ordinary user argument registers.
1369   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1370 
1371   if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
1372     // With a fixed ABI, allocate fixed registers before user arguments.
1373     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1374       return false;
1375   }
1376 
1377   // Do the actual argument marshalling.
1378   SmallVector<Register, 8> PhysRegs;
1379 
1380   OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1381   if (!determineAssignments(Assigner, OutArgs, CCInfo))
1382     return false;
1383 
1384   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false);
1385   if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1386     return false;
1387 
1388   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1389 
1390   handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs);
1391 
1392   // Get a count of how many bytes are to be pushed on the stack.
1393   unsigned NumBytes = CCInfo.getNextStackOffset();
1394 
1395   // If Callee is a reg, since it is used by a target specific
1396   // instruction, it must have a register class matching the
1397   // constraint of that instruction.
1398 
1399   // FIXME: We should define regbankselectable call instructions to handle
1400   // divergent call targets.
1401   if (MIB->getOperand(1).isReg()) {
1402     MIB->getOperand(1).setReg(constrainOperandRegClass(
1403         MF, *TRI, MRI, *ST.getInstrInfo(),
1404         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1405         1));
1406   }
1407 
1408   // Now we can add the actual call instruction to the correct position.
1409   MIRBuilder.insertInstr(MIB);
1410 
1411   // Finally we can copy the returned value back into its virtual-register. In
1412   // symmetry with the arguments, the physical register must be an
1413   // implicit-define of the call instruction.
1414   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1415     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1416                                                       Info.IsVarArg);
1417     IncomingValueAssigner Assigner(RetAssignFn);
1418     CallReturnHandler Handler(MIRBuilder, MRI, MIB);
1419     if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder,
1420                                        Info.CallConv, Info.IsVarArg))
1421       return false;
1422   }
1423 
1424   uint64_t CalleePopBytes = NumBytes;
1425 
1426   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
1427             .addImm(0)
1428             .addImm(CalleePopBytes);
1429 
1430   if (!Info.CanLowerReturn) {
1431     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1432                     Info.DemoteRegister, Info.DemoteStackIndex);
1433   }
1434 
1435   return true;
1436 }
1437