1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "SIRegisterInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 26 #define DEBUG_TYPE "amdgpu-call-lowering" 27 28 using namespace llvm; 29 30 namespace { 31 32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register. 33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler, 34 Register ValVReg, CCValAssign &VA) { 35 if (VA.getLocVT().getSizeInBits() < 32) { 36 // 16-bit types are reported as legal for 32-bit registers. We need to 37 // extend and do a 32-bit copy to avoid the verifier complaining about it. 38 return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 39 } 40 41 return Handler.extendRegister(ValVReg, VA); 42 } 43 44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler { 45 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 46 MachineInstrBuilder MIB) 47 : OutgoingValueHandler(B, MRI), MIB(MIB) {} 48 49 MachineInstrBuilder MIB; 50 51 Register getStackAddress(uint64_t Size, int64_t Offset, 52 MachinePointerInfo &MPO, 53 ISD::ArgFlagsTy Flags) override { 54 llvm_unreachable("not implemented"); 55 } 56 57 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 58 MachinePointerInfo &MPO, CCValAssign &VA) override { 59 llvm_unreachable("not implemented"); 60 } 61 62 void assignValueToReg(Register ValVReg, Register PhysReg, 63 CCValAssign VA) override { 64 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 65 66 // If this is a scalar return, insert a readfirstlane just in case the value 67 // ends up in a VGPR. 68 // FIXME: Assert this is a shader return. 69 const SIRegisterInfo *TRI 70 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 71 if (TRI->isSGPRReg(MRI, PhysReg)) { 72 auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane, 73 {MRI.getType(ExtReg)}, false) 74 .addReg(ExtReg); 75 ExtReg = ToSGPR.getReg(0); 76 } 77 78 MIRBuilder.buildCopy(PhysReg, ExtReg); 79 MIB.addUse(PhysReg, RegState::Implicit); 80 } 81 }; 82 83 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler { 84 uint64_t StackUsed = 0; 85 86 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 87 : IncomingValueHandler(B, MRI) {} 88 89 Register getStackAddress(uint64_t Size, int64_t Offset, 90 MachinePointerInfo &MPO, 91 ISD::ArgFlagsTy Flags) override { 92 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 93 94 // Byval is assumed to be writable memory, but other stack passed arguments 95 // are not. 96 const bool IsImmutable = !Flags.isByVal(); 97 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); 98 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 99 auto AddrReg = MIRBuilder.buildFrameIndex( 100 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 101 StackUsed = std::max(StackUsed, Size + Offset); 102 return AddrReg.getReg(0); 103 } 104 105 void assignValueToReg(Register ValVReg, Register PhysReg, 106 CCValAssign VA) override { 107 markPhysRegUsed(PhysReg); 108 109 if (VA.getLocVT().getSizeInBits() < 32) { 110 // 16-bit types are reported as legal for 32-bit registers. We need to do 111 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 112 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 113 114 // If we have signext/zeroext, it applies to the whole 32-bit register 115 // before truncation. 116 auto Extended = 117 buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT())); 118 MIRBuilder.buildTrunc(ValVReg, Extended); 119 return; 120 } 121 122 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); 123 } 124 125 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 126 MachinePointerInfo &MPO, CCValAssign &VA) override { 127 MachineFunction &MF = MIRBuilder.getMF(); 128 129 auto MMO = MF.getMachineMemOperand( 130 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy, 131 inferAlignFromPtrInfo(MF, MPO)); 132 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 133 } 134 135 /// How the physical register gets marked varies between formal 136 /// parameters (it's a basic-block live-in), and a call instruction 137 /// (it's an implicit-def of the BL). 138 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 139 }; 140 141 struct FormalArgHandler : public AMDGPUIncomingArgHandler { 142 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 143 : AMDGPUIncomingArgHandler(B, MRI) {} 144 145 void markPhysRegUsed(unsigned PhysReg) override { 146 MIRBuilder.getMBB().addLiveIn(PhysReg); 147 } 148 }; 149 150 struct CallReturnHandler : public AMDGPUIncomingArgHandler { 151 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 152 MachineInstrBuilder MIB) 153 : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {} 154 155 void markPhysRegUsed(unsigned PhysReg) override { 156 MIB.addDef(PhysReg, RegState::Implicit); 157 } 158 159 MachineInstrBuilder MIB; 160 }; 161 162 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler { 163 /// For tail calls, the byte offset of the call's argument area from the 164 /// callee's. Unused elsewhere. 165 int FPDiff; 166 167 // Cache the SP register vreg if we need it more than once in this call site. 168 Register SPReg; 169 170 bool IsTailCall; 171 172 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, 173 MachineRegisterInfo &MRI, MachineInstrBuilder MIB, 174 bool IsTailCall = false, int FPDiff = 0) 175 : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff), 176 IsTailCall(IsTailCall) {} 177 178 Register getStackAddress(uint64_t Size, int64_t Offset, 179 MachinePointerInfo &MPO, 180 ISD::ArgFlagsTy Flags) override { 181 MachineFunction &MF = MIRBuilder.getMF(); 182 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); 183 const LLT S32 = LLT::scalar(32); 184 185 if (IsTailCall) { 186 Offset += FPDiff; 187 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); 188 auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI); 189 MPO = MachinePointerInfo::getFixedStack(MF, FI); 190 return FIReg.getReg(0); 191 } 192 193 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 194 195 if (!SPReg) 196 SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0); 197 198 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); 199 200 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); 201 MPO = MachinePointerInfo::getStack(MF, Offset); 202 return AddrReg.getReg(0); 203 } 204 205 void assignValueToReg(Register ValVReg, Register PhysReg, 206 CCValAssign VA) override { 207 MIB.addUse(PhysReg, RegState::Implicit); 208 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 209 MIRBuilder.buildCopy(PhysReg, ExtReg); 210 } 211 212 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 213 MachinePointerInfo &MPO, CCValAssign &VA) override { 214 MachineFunction &MF = MIRBuilder.getMF(); 215 uint64_t LocMemOffset = VA.getLocMemOffset(); 216 const auto &ST = MF.getSubtarget<GCNSubtarget>(); 217 218 auto MMO = MF.getMachineMemOperand( 219 MPO, MachineMemOperand::MOStore, MemTy, 220 commonAlignment(ST.getStackAlignment(), LocMemOffset)); 221 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 222 } 223 224 void assignValueToAddress(const CallLowering::ArgInfo &Arg, 225 unsigned ValRegIndex, Register Addr, LLT MemTy, 226 MachinePointerInfo &MPO, CCValAssign &VA) override { 227 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 228 ? extendRegister(Arg.Regs[ValRegIndex], VA) 229 : Arg.Regs[ValRegIndex]; 230 assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA); 231 } 232 }; 233 } 234 235 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 236 : CallLowering(&TLI) { 237 } 238 239 // FIXME: Compatibility shim 240 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { 241 switch (MIOpc) { 242 case TargetOpcode::G_SEXT: 243 return ISD::SIGN_EXTEND; 244 case TargetOpcode::G_ZEXT: 245 return ISD::ZERO_EXTEND; 246 case TargetOpcode::G_ANYEXT: 247 return ISD::ANY_EXTEND; 248 default: 249 llvm_unreachable("not an extend opcode"); 250 } 251 } 252 253 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, 254 CallingConv::ID CallConv, 255 SmallVectorImpl<BaseArgInfo> &Outs, 256 bool IsVarArg) const { 257 // For shaders. Vector types should be explicitly handled by CC. 258 if (AMDGPU::isEntryFunctionCC(CallConv)) 259 return true; 260 261 SmallVector<CCValAssign, 16> ArgLocs; 262 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 263 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 264 MF.getFunction().getContext()); 265 266 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); 267 } 268 269 /// Lower the return value for the already existing \p Ret. This assumes that 270 /// \p B's insertion point is correct. 271 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 272 const Value *Val, ArrayRef<Register> VRegs, 273 MachineInstrBuilder &Ret) const { 274 if (!Val) 275 return true; 276 277 auto &MF = B.getMF(); 278 const auto &F = MF.getFunction(); 279 const DataLayout &DL = MF.getDataLayout(); 280 MachineRegisterInfo *MRI = B.getMRI(); 281 LLVMContext &Ctx = F.getContext(); 282 283 CallingConv::ID CC = F.getCallingConv(); 284 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 285 286 SmallVector<EVT, 8> SplitEVTs; 287 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 288 assert(VRegs.size() == SplitEVTs.size() && 289 "For each split Type there should be exactly one VReg."); 290 291 SmallVector<ArgInfo, 8> SplitRetInfos; 292 293 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 294 EVT VT = SplitEVTs[i]; 295 Register Reg = VRegs[i]; 296 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0); 297 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 298 299 if (VT.isScalarInteger()) { 300 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 301 if (RetInfo.Flags[0].isSExt()) { 302 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 303 ExtendOp = TargetOpcode::G_SEXT; 304 } else if (RetInfo.Flags[0].isZExt()) { 305 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 306 ExtendOp = TargetOpcode::G_ZEXT; 307 } 308 309 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, 310 extOpcodeToISDExtOpcode(ExtendOp)); 311 if (ExtVT != VT) { 312 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); 313 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); 314 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); 315 } 316 } 317 318 if (Reg != RetInfo.Regs[0]) { 319 RetInfo.Regs[0] = Reg; 320 // Reset the arg flags after modifying Reg. 321 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 322 } 323 324 splitToValueTypes(RetInfo, SplitRetInfos, DL, CC); 325 } 326 327 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 328 329 OutgoingValueAssigner Assigner(AssignFn); 330 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret); 331 return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B, 332 CC, F.isVarArg()); 333 } 334 335 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, 336 ArrayRef<Register> VRegs, 337 FunctionLoweringInfo &FLI) const { 338 339 MachineFunction &MF = B.getMF(); 340 MachineRegisterInfo &MRI = MF.getRegInfo(); 341 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 342 MFI->setIfReturnsVoid(!Val); 343 344 assert(!Val == VRegs.empty() && "Return value without a vreg"); 345 346 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 347 const bool IsShader = AMDGPU::isShader(CC); 348 const bool IsWaveEnd = 349 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); 350 if (IsWaveEnd) { 351 B.buildInstr(AMDGPU::S_ENDPGM) 352 .addImm(0); 353 return true; 354 } 355 356 auto const &ST = MF.getSubtarget<GCNSubtarget>(); 357 358 unsigned ReturnOpc = 0; 359 if (IsShader) 360 ReturnOpc = AMDGPU::SI_RETURN_TO_EPILOG; 361 else if (CC == CallingConv::AMDGPU_Gfx) 362 ReturnOpc = AMDGPU::S_SETPC_B64_return_gfx; 363 else 364 ReturnOpc = AMDGPU::S_SETPC_B64_return; 365 366 auto Ret = B.buildInstrNoInsert(ReturnOpc); 367 Register ReturnAddrVReg; 368 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 369 ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass); 370 Ret.addUse(ReturnAddrVReg); 371 } else if (ReturnOpc == AMDGPU::S_SETPC_B64_return_gfx) { 372 ReturnAddrVReg = 373 MRI.createVirtualRegister(&AMDGPU::Gfx_CCR_SGPR_64RegClass); 374 Ret.addUse(ReturnAddrVReg); 375 } 376 377 if (!FLI.CanLowerReturn) 378 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); 379 else if (!lowerReturnVal(B, Val, VRegs, Ret)) 380 return false; 381 382 if (ReturnOpc == AMDGPU::S_SETPC_B64_return || 383 ReturnOpc == AMDGPU::S_SETPC_B64_return_gfx) { 384 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 385 Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF), 386 &AMDGPU::SGPR_64RegClass); 387 B.buildCopy(ReturnAddrVReg, LiveInReturn); 388 } 389 390 // TODO: Handle CalleeSavedRegsViaCopy. 391 392 B.insertInstr(Ret); 393 return true; 394 } 395 396 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, 397 uint64_t Offset) const { 398 MachineFunction &MF = B.getMF(); 399 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 400 MachineRegisterInfo &MRI = MF.getRegInfo(); 401 Register KernArgSegmentPtr = 402 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 403 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 404 405 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 406 407 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); 408 } 409 410 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg, 411 uint64_t Offset, 412 Align Alignment) const { 413 MachineFunction &MF = B.getMF(); 414 const Function &F = MF.getFunction(); 415 const DataLayout &DL = F.getParent()->getDataLayout(); 416 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 417 418 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 419 420 SmallVector<ArgInfo, 32> SplitArgs; 421 SmallVector<uint64_t> FieldOffsets; 422 splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets); 423 424 unsigned Idx = 0; 425 for (ArgInfo &SplitArg : SplitArgs) { 426 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); 427 lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]); 428 429 LLT ArgTy = getLLTForType(*SplitArg.Ty, DL); 430 if (SplitArg.Flags[0].isPointer()) { 431 // Compensate for losing pointeriness in splitValueTypes. 432 LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(), 433 ArgTy.getScalarSizeInBits()); 434 ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy) 435 : PtrTy; 436 } 437 438 MachineMemOperand *MMO = MF.getMachineMemOperand( 439 PtrInfo, 440 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 441 MachineMemOperand::MOInvariant, 442 ArgTy, commonAlignment(Alignment, FieldOffsets[Idx])); 443 444 assert(SplitArg.Regs.size() == 1); 445 446 B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO); 447 ++Idx; 448 } 449 } 450 451 // Allocate special inputs passed in user SGPRs. 452 static void allocateHSAUserSGPRs(CCState &CCInfo, 453 MachineIRBuilder &B, 454 MachineFunction &MF, 455 const SIRegisterInfo &TRI, 456 SIMachineFunctionInfo &Info) { 457 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 458 if (Info.hasPrivateSegmentBuffer()) { 459 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 460 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 461 CCInfo.AllocateReg(PrivateSegmentBufferReg); 462 } 463 464 if (Info.hasDispatchPtr()) { 465 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 466 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 467 CCInfo.AllocateReg(DispatchPtrReg); 468 } 469 470 if (Info.hasQueuePtr()) { 471 Register QueuePtrReg = Info.addQueuePtr(TRI); 472 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 473 CCInfo.AllocateReg(QueuePtrReg); 474 } 475 476 if (Info.hasKernargSegmentPtr()) { 477 MachineRegisterInfo &MRI = MF.getRegInfo(); 478 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 479 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 480 Register VReg = MRI.createGenericVirtualRegister(P4); 481 MRI.addLiveIn(InputPtrReg, VReg); 482 B.getMBB().addLiveIn(InputPtrReg); 483 B.buildCopy(VReg, InputPtrReg); 484 CCInfo.AllocateReg(InputPtrReg); 485 } 486 487 if (Info.hasDispatchID()) { 488 Register DispatchIDReg = Info.addDispatchID(TRI); 489 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 490 CCInfo.AllocateReg(DispatchIDReg); 491 } 492 493 if (Info.hasFlatScratchInit()) { 494 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 495 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 496 CCInfo.AllocateReg(FlatScratchInitReg); 497 } 498 499 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 500 // these from the dispatch pointer. 501 } 502 503 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 504 MachineIRBuilder &B, const Function &F, 505 ArrayRef<ArrayRef<Register>> VRegs) const { 506 MachineFunction &MF = B.getMF(); 507 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 508 MachineRegisterInfo &MRI = MF.getRegInfo(); 509 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 510 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 511 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 512 const DataLayout &DL = F.getParent()->getDataLayout(); 513 514 Info->allocateModuleLDSGlobal(F.getParent()); 515 516 SmallVector<CCValAssign, 16> ArgLocs; 517 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 518 519 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 520 521 unsigned i = 0; 522 const Align KernArgBaseAlign(16); 523 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F); 524 uint64_t ExplicitArgOffset = 0; 525 526 // TODO: Align down to dword alignment and extract bits for extending loads. 527 for (auto &Arg : F.args()) { 528 const bool IsByRef = Arg.hasByRefAttr(); 529 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 530 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 531 if (AllocSize == 0) 532 continue; 533 534 MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None; 535 if (!ABIAlign) 536 ABIAlign = DL.getABITypeAlign(ArgTy); 537 538 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 539 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 540 541 if (Arg.use_empty()) { 542 ++i; 543 continue; 544 } 545 546 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); 547 548 if (IsByRef) { 549 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); 550 551 assert(VRegs[i].size() == 1 && 552 "expected only one register for byval pointers"); 553 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { 554 lowerParameterPtr(VRegs[i][0], B, ArgOffset); 555 } else { 556 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 557 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); 558 lowerParameterPtr(PtrReg, B, ArgOffset); 559 560 B.buildAddrSpaceCast(VRegs[i][0], PtrReg); 561 } 562 } else { 563 ArgInfo OrigArg(VRegs[i], Arg, i); 564 const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex; 565 setArgFlags(OrigArg, OrigArgIdx, DL, F); 566 lowerParameter(B, OrigArg, ArgOffset, Alignment); 567 } 568 569 ++i; 570 } 571 572 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 573 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 574 return true; 575 } 576 577 bool AMDGPUCallLowering::lowerFormalArguments( 578 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, 579 FunctionLoweringInfo &FLI) const { 580 CallingConv::ID CC = F.getCallingConv(); 581 582 // The infrastructure for normal calling convention lowering is essentially 583 // useless for kernels. We want to avoid any kind of legalization or argument 584 // splitting. 585 if (CC == CallingConv::AMDGPU_KERNEL) 586 return lowerFormalArgumentsKernel(B, F, VRegs); 587 588 const bool IsGraphics = AMDGPU::isGraphics(CC); 589 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 590 591 MachineFunction &MF = B.getMF(); 592 MachineBasicBlock &MBB = B.getMBB(); 593 MachineRegisterInfo &MRI = MF.getRegInfo(); 594 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 595 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 596 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 597 const DataLayout &DL = F.getParent()->getDataLayout(); 598 599 Info->allocateModuleLDSGlobal(F.getParent()); 600 601 SmallVector<CCValAssign, 16> ArgLocs; 602 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 603 604 if (!IsEntryFunc) { 605 Register ReturnAddrReg = TRI->getReturnAddressReg(MF); 606 Register LiveInReturn = MF.addLiveIn(ReturnAddrReg, 607 &AMDGPU::SGPR_64RegClass); 608 MBB.addLiveIn(ReturnAddrReg); 609 B.buildCopy(LiveInReturn, ReturnAddrReg); 610 } 611 612 if (Info->hasImplicitBufferPtr()) { 613 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 614 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 615 CCInfo.AllocateReg(ImplicitBufferPtrReg); 616 } 617 618 SmallVector<ArgInfo, 32> SplitArgs; 619 unsigned Idx = 0; 620 unsigned PSInputNum = 0; 621 622 // Insert the hidden sret parameter if the return value won't fit in the 623 // return registers. 624 if (!FLI.CanLowerReturn) 625 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 626 627 for (auto &Arg : F.args()) { 628 if (DL.getTypeStoreSize(Arg.getType()) == 0) 629 continue; 630 631 const bool InReg = Arg.hasAttribute(Attribute::InReg); 632 633 // SGPR arguments to functions not implemented. 634 if (!IsGraphics && InReg) 635 return false; 636 637 if (Arg.hasAttribute(Attribute::SwiftSelf) || 638 Arg.hasAttribute(Attribute::SwiftError) || 639 Arg.hasAttribute(Attribute::Nest)) 640 return false; 641 642 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 643 const bool ArgUsed = !Arg.use_empty(); 644 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 645 646 if (!SkipArg) { 647 Info->markPSInputAllocated(PSInputNum); 648 if (ArgUsed) 649 Info->markPSInputEnabled(PSInputNum); 650 } 651 652 ++PSInputNum; 653 654 if (SkipArg) { 655 for (int I = 0, E = VRegs[Idx].size(); I != E; ++I) 656 B.buildUndef(VRegs[Idx][I]); 657 658 ++Idx; 659 continue; 660 } 661 } 662 663 ArgInfo OrigArg(VRegs[Idx], Arg, Idx); 664 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; 665 setArgFlags(OrigArg, OrigArgIdx, DL, F); 666 667 splitToValueTypes(OrigArg, SplitArgs, DL, CC); 668 ++Idx; 669 } 670 671 // At least one interpolation mode must be enabled or else the GPU will 672 // hang. 673 // 674 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 675 // set PSInputAddr, the user wants to enable some bits after the compilation 676 // based on run-time states. Since we can't know what the final PSInputEna 677 // will look like, so we shouldn't do anything here and the user should take 678 // responsibility for the correct programming. 679 // 680 // Otherwise, the following restrictions apply: 681 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 682 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 683 // enabled too. 684 if (CC == CallingConv::AMDGPU_PS) { 685 if ((Info->getPSInputAddr() & 0x7F) == 0 || 686 ((Info->getPSInputAddr() & 0xF) == 0 && 687 Info->isPSInputAllocated(11))) { 688 CCInfo.AllocateReg(AMDGPU::VGPR0); 689 CCInfo.AllocateReg(AMDGPU::VGPR1); 690 Info->markPSInputAllocated(0); 691 Info->markPSInputEnabled(0); 692 } 693 694 if (Subtarget.isAmdPalOS()) { 695 // For isAmdPalOS, the user does not enable some bits after compilation 696 // based on run-time states; the register values being generated here are 697 // the final ones set in hardware. Therefore we need to apply the 698 // workaround to PSInputAddr and PSInputEnable together. (The case where 699 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 700 // set up an input arg for a particular interpolation mode, but nothing 701 // uses that input arg. Really we should have an earlier pass that removes 702 // such an arg.) 703 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 704 if ((PsInputBits & 0x7F) == 0 || 705 ((PsInputBits & 0xF) == 0 && 706 (PsInputBits >> 11 & 1))) 707 Info->markPSInputEnabled( 708 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 709 } 710 } 711 712 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 713 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 714 715 if (!MBB.empty()) 716 B.setInstr(*MBB.begin()); 717 718 if (!IsEntryFunc) { 719 // For the fixed ABI, pass workitem IDs in the last argument register. 720 if (AMDGPUTargetMachine::EnableFixedFunctionABI) 721 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 722 } 723 724 IncomingValueAssigner Assigner(AssignFn); 725 if (!determineAssignments(Assigner, SplitArgs, CCInfo)) 726 return false; 727 728 FormalArgHandler Handler(B, MRI); 729 if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B)) 730 return false; 731 732 uint64_t StackOffset = Assigner.StackOffset; 733 734 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { 735 // Special inputs come after user arguments. 736 TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 737 } 738 739 // Start adding system SGPRs. 740 if (IsEntryFunc) { 741 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); 742 } else { 743 if (!Subtarget.enableFlatScratch()) 744 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 745 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 746 } 747 748 // When we tail call, we need to check if the callee's arguments will fit on 749 // the caller's stack. So, whenever we lower formal arguments, we should keep 750 // track of this information, since we might lower a tail call in this 751 // function later. 752 Info->setBytesInStackArgArea(StackOffset); 753 754 // Move back to the end of the basic block. 755 B.setMBB(MBB); 756 757 return true; 758 } 759 760 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, 761 CCState &CCInfo, 762 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, 763 CallLoweringInfo &Info) const { 764 MachineFunction &MF = MIRBuilder.getMF(); 765 766 // If there's no call site, this doesn't correspond to a call from the IR and 767 // doesn't need implicit inputs. 768 if (!Info.CB) 769 return true; 770 771 const AMDGPUFunctionArgInfo *CalleeArgInfo 772 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 773 774 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 775 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); 776 777 778 // TODO: Unify with private memory register handling. This is complicated by 779 // the fact that at least in kernels, the input argument is not necessarily 780 // in the same location as the input. 781 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 782 AMDGPUFunctionArgInfo::DISPATCH_PTR, 783 AMDGPUFunctionArgInfo::QUEUE_PTR, 784 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 785 AMDGPUFunctionArgInfo::DISPATCH_ID, 786 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 787 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 788 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 789 }; 790 791 static constexpr StringLiteral ImplicitAttrNames[] = { 792 "amdgpu-no-dispatch-ptr", 793 "amdgpu-no-queue-ptr", 794 "amdgpu-no-implicitarg-ptr", 795 "amdgpu-no-dispatch-id", 796 "amdgpu-no-workgroup-id-x", 797 "amdgpu-no-workgroup-id-y", 798 "amdgpu-no-workgroup-id-z" 799 }; 800 801 MachineRegisterInfo &MRI = MF.getRegInfo(); 802 803 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 804 const AMDGPULegalizerInfo *LI 805 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); 806 807 unsigned I = 0; 808 for (auto InputID : InputRegs) { 809 const ArgDescriptor *OutgoingArg; 810 const TargetRegisterClass *ArgRC; 811 LLT ArgTy; 812 813 // If the callee does not use the attribute value, skip copying the value. 814 if (Info.CB->hasFnAttr(ImplicitAttrNames[I++])) 815 continue; 816 817 std::tie(OutgoingArg, ArgRC, ArgTy) = 818 CalleeArgInfo->getPreloadedValue(InputID); 819 if (!OutgoingArg) 820 continue; 821 822 const ArgDescriptor *IncomingArg; 823 const TargetRegisterClass *IncomingArgRC; 824 std::tie(IncomingArg, IncomingArgRC, ArgTy) = 825 CallerArgInfo.getPreloadedValue(InputID); 826 assert(IncomingArgRC == ArgRC); 827 828 Register InputReg = MRI.createGenericVirtualRegister(ArgTy); 829 830 if (IncomingArg) { 831 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); 832 } else { 833 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 834 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); 835 } 836 837 if (OutgoingArg->isRegister()) { 838 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 839 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 840 report_fatal_error("failed to allocate implicit input argument"); 841 } else { 842 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 843 return false; 844 } 845 } 846 847 // Pack workitem IDs into a single register or pass it as is if already 848 // packed. 849 const ArgDescriptor *OutgoingArg; 850 const TargetRegisterClass *ArgRC; 851 LLT ArgTy; 852 853 std::tie(OutgoingArg, ArgRC, ArgTy) = 854 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 855 if (!OutgoingArg) 856 std::tie(OutgoingArg, ArgRC, ArgTy) = 857 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 858 if (!OutgoingArg) 859 std::tie(OutgoingArg, ArgRC, ArgTy) = 860 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 861 if (!OutgoingArg) 862 return false; 863 864 auto WorkitemIDX = 865 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 866 auto WorkitemIDY = 867 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 868 auto WorkitemIDZ = 869 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 870 871 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); 872 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); 873 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); 874 const LLT S32 = LLT::scalar(32); 875 876 const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x"); 877 const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y"); 878 const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z"); 879 880 // If incoming ids are not packed we need to pack them. 881 // FIXME: Should consider known workgroup size to eliminate known 0 cases. 882 Register InputReg; 883 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && 884 NeedWorkItemIDX) { 885 InputReg = MRI.createGenericVirtualRegister(S32); 886 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, 887 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); 888 } 889 890 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && 891 NeedWorkItemIDY) { 892 Register Y = MRI.createGenericVirtualRegister(S32); 893 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), 894 std::get<2>(WorkitemIDY)); 895 896 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); 897 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; 898 } 899 900 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && 901 NeedWorkItemIDZ) { 902 Register Z = MRI.createGenericVirtualRegister(S32); 903 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), 904 std::get<2>(WorkitemIDZ)); 905 906 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); 907 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; 908 } 909 910 if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { 911 InputReg = MRI.createGenericVirtualRegister(S32); 912 913 // Workitem ids are already packed, any of present incoming arguments will 914 // carry all required fields. 915 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 916 IncomingArgX ? *IncomingArgX : 917 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); 918 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, 919 &AMDGPU::VGPR_32RegClass, S32); 920 } 921 922 if (OutgoingArg->isRegister()) { 923 if (InputReg) 924 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 925 926 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 927 report_fatal_error("failed to allocate implicit input argument"); 928 } else { 929 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 930 return false; 931 } 932 933 return true; 934 } 935 936 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 937 /// CC. 938 static std::pair<CCAssignFn *, CCAssignFn *> 939 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { 940 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 941 } 942 943 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 944 bool IsTailCall) { 945 assert(!(IsIndirect && IsTailCall) && "Indirect calls can't be tail calls, " 946 "because the address can be divergent"); 947 return IsTailCall ? AMDGPU::SI_TCRETURN : AMDGPU::G_SI_CALL; 948 } 949 950 // Add operands to call instruction to track the callee. 951 static bool addCallTargetOperands(MachineInstrBuilder &CallInst, 952 MachineIRBuilder &MIRBuilder, 953 AMDGPUCallLowering::CallLoweringInfo &Info) { 954 if (Info.Callee.isReg()) { 955 CallInst.addReg(Info.Callee.getReg()); 956 CallInst.addImm(0); 957 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { 958 // The call lowering lightly assumed we can directly encode a call target in 959 // the instruction, which is not the case. Materialize the address here. 960 const GlobalValue *GV = Info.Callee.getGlobal(); 961 auto Ptr = MIRBuilder.buildGlobalValue( 962 LLT::pointer(GV->getAddressSpace(), 64), GV); 963 CallInst.addReg(Ptr.getReg(0)); 964 CallInst.add(Info.Callee); 965 } else 966 return false; 967 968 return true; 969 } 970 971 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay( 972 CallLoweringInfo &Info, MachineFunction &MF, 973 SmallVectorImpl<ArgInfo> &InArgs) const { 974 const Function &CallerF = MF.getFunction(); 975 CallingConv::ID CalleeCC = Info.CallConv; 976 CallingConv::ID CallerCC = CallerF.getCallingConv(); 977 978 // If the calling conventions match, then everything must be the same. 979 if (CalleeCC == CallerCC) 980 return true; 981 982 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 983 984 // Make sure that the caller and callee preserve all of the same registers. 985 auto TRI = ST.getRegisterInfo(); 986 987 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 988 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 989 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 990 return false; 991 992 // Check if the caller and callee will handle arguments in the same way. 993 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 994 CCAssignFn *CalleeAssignFnFixed; 995 CCAssignFn *CalleeAssignFnVarArg; 996 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) = 997 getAssignFnsForCC(CalleeCC, TLI); 998 999 CCAssignFn *CallerAssignFnFixed; 1000 CCAssignFn *CallerAssignFnVarArg; 1001 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) = 1002 getAssignFnsForCC(CallerCC, TLI); 1003 1004 // FIXME: We are not accounting for potential differences in implicitly passed 1005 // inputs, but only the fixed ABI is supported now anyway. 1006 IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed, 1007 CalleeAssignFnVarArg); 1008 IncomingValueAssigner CallerAssigner(CallerAssignFnFixed, 1009 CallerAssignFnVarArg); 1010 return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner); 1011 } 1012 1013 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable( 1014 CallLoweringInfo &Info, MachineFunction &MF, 1015 SmallVectorImpl<ArgInfo> &OutArgs) const { 1016 // If there are no outgoing arguments, then we are done. 1017 if (OutArgs.empty()) 1018 return true; 1019 1020 const Function &CallerF = MF.getFunction(); 1021 CallingConv::ID CalleeCC = Info.CallConv; 1022 CallingConv::ID CallerCC = CallerF.getCallingConv(); 1023 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1024 1025 CCAssignFn *AssignFnFixed; 1026 CCAssignFn *AssignFnVarArg; 1027 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1028 1029 // We have outgoing arguments. Make sure that we can tail call with them. 1030 SmallVector<CCValAssign, 16> OutLocs; 1031 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext()); 1032 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1033 1034 if (!determineAssignments(Assigner, OutArgs, OutInfo)) { 1035 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); 1036 return false; 1037 } 1038 1039 // Make sure that they can fit on the caller's stack. 1040 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1041 if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) { 1042 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); 1043 return false; 1044 } 1045 1046 // Verify that the parameters in callee-saved registers match. 1047 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1048 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1049 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); 1050 MachineRegisterInfo &MRI = MF.getRegInfo(); 1051 return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs); 1052 } 1053 1054 /// Return true if the calling convention is one that we can guarantee TCO for. 1055 static bool canGuaranteeTCO(CallingConv::ID CC) { 1056 return CC == CallingConv::Fast; 1057 } 1058 1059 /// Return true if we might ever do TCO for calls with this calling convention. 1060 static bool mayTailCallThisCC(CallingConv::ID CC) { 1061 switch (CC) { 1062 case CallingConv::C: 1063 case CallingConv::AMDGPU_Gfx: 1064 return true; 1065 default: 1066 return canGuaranteeTCO(CC); 1067 } 1068 } 1069 1070 bool AMDGPUCallLowering::isEligibleForTailCallOptimization( 1071 MachineIRBuilder &B, CallLoweringInfo &Info, 1072 SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const { 1073 // Must pass all target-independent checks in order to tail call optimize. 1074 if (!Info.IsTailCall) 1075 return false; 1076 1077 // Indirect calls can't be tail calls, because the address can be divergent. 1078 // TODO Check divergence info if the call really is divergent. 1079 if (Info.Callee.isReg()) 1080 return false; 1081 1082 MachineFunction &MF = B.getMF(); 1083 const Function &CallerF = MF.getFunction(); 1084 CallingConv::ID CalleeCC = Info.CallConv; 1085 CallingConv::ID CallerCC = CallerF.getCallingConv(); 1086 1087 const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo(); 1088 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1089 // Kernels aren't callable, and don't have a live in return address so it 1090 // doesn't make sense to do a tail call with entry functions. 1091 if (!CallerPreserved) 1092 return false; 1093 1094 if (!mayTailCallThisCC(CalleeCC)) { 1095 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); 1096 return false; 1097 } 1098 1099 if (any_of(CallerF.args(), [](const Argument &A) { 1100 return A.hasByValAttr() || A.hasSwiftErrorAttr(); 1101 })) { 1102 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval " 1103 "or swifterror arguments\n"); 1104 return false; 1105 } 1106 1107 // If we have -tailcallopt, then we're done. 1108 if (MF.getTarget().Options.GuaranteedTailCallOpt) 1109 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv(); 1110 1111 // Verify that the incoming and outgoing arguments from the callee are 1112 // safe to tail call. 1113 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { 1114 LLVM_DEBUG( 1115 dbgs() 1116 << "... Caller and callee have incompatible calling conventions.\n"); 1117 return false; 1118 } 1119 1120 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) 1121 return false; 1122 1123 LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n"); 1124 return true; 1125 } 1126 1127 // Insert outgoing implicit arguments for a call, by inserting copies to the 1128 // implicit argument registers and adding the necessary implicit uses to the 1129 // call instruction. 1130 void AMDGPUCallLowering::handleImplicitCallArguments( 1131 MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst, 1132 const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo, 1133 ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const { 1134 if (!ST.enableFlatScratch()) { 1135 // Insert copies for the SRD. In the HSA case, this should be an identity 1136 // copy. 1137 auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32), 1138 FuncInfo.getScratchRSrcReg()); 1139 MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 1140 CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit); 1141 } 1142 1143 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { 1144 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); 1145 CallInst.addReg(ArgReg.first, RegState::Implicit); 1146 } 1147 } 1148 1149 bool AMDGPUCallLowering::lowerTailCall( 1150 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 1151 SmallVectorImpl<ArgInfo> &OutArgs) const { 1152 MachineFunction &MF = MIRBuilder.getMF(); 1153 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1154 SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1155 const Function &F = MF.getFunction(); 1156 MachineRegisterInfo &MRI = MF.getRegInfo(); 1157 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1158 1159 // True when we're tail calling, but without -tailcallopt. 1160 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt; 1161 1162 // Find out which ABI gets to decide where things go. 1163 CallingConv::ID CalleeCC = Info.CallConv; 1164 CCAssignFn *AssignFnFixed; 1165 CCAssignFn *AssignFnVarArg; 1166 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1167 1168 MachineInstrBuilder CallSeqStart; 1169 if (!IsSibCall) 1170 CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP); 1171 1172 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true); 1173 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1174 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1175 return false; 1176 1177 // Byte offset for the tail call. When we are sibcalling, this will always 1178 // be 0. 1179 MIB.addImm(0); 1180 1181 // Tell the call which registers are clobbered. 1182 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1183 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); 1184 MIB.addRegMask(Mask); 1185 1186 // FPDiff is the byte offset of the call's argument area from the callee's. 1187 // Stores to callee stack arguments will be placed in FixedStackSlots offset 1188 // by this amount for a tail call. In a sibling call it must be 0 because the 1189 // caller will deallocate the entire stack and the callee still expects its 1190 // arguments to begin at SP+0. 1191 int FPDiff = 0; 1192 1193 // This will be 0 for sibcalls, potentially nonzero for tail calls produced 1194 // by -tailcallopt. For sibcalls, the memory operands for the call are 1195 // already available in the caller's incoming argument space. 1196 unsigned NumBytes = 0; 1197 if (!IsSibCall) { 1198 // We aren't sibcalling, so we need to compute FPDiff. We need to do this 1199 // before handling assignments, because FPDiff must be known for memory 1200 // arguments. 1201 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 1202 SmallVector<CCValAssign, 16> OutLocs; 1203 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); 1204 1205 // FIXME: Not accounting for callee implicit inputs 1206 OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg); 1207 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) 1208 return false; 1209 1210 // The callee will pop the argument stack as a tail call. Thus, we must 1211 // keep it 16-byte aligned. 1212 NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment()); 1213 1214 // FPDiff will be negative if this tail call requires more space than we 1215 // would automatically have in our incoming argument space. Positive if we 1216 // actually shrink the stack. 1217 FPDiff = NumReusableBytes - NumBytes; 1218 1219 // The stack pointer must be 16-byte aligned at all times it's used for a 1220 // memory operation, which in practice means at *all* times and in 1221 // particular across call boundaries. Therefore our own arguments started at 1222 // a 16-byte aligned SP and the delta applied for the tail call should 1223 // satisfy the same constraint. 1224 assert(isAligned(ST.getStackAlignment(), FPDiff) && 1225 "unaligned stack on tail call"); 1226 } 1227 1228 SmallVector<CCValAssign, 16> ArgLocs; 1229 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1230 1231 // We could pass MIB and directly add the implicit uses to the call 1232 // now. However, as an aesthetic choice, place implicit argument operands 1233 // after the ordinary user argument registers. 1234 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1235 1236 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 1237 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1238 // With a fixed ABI, allocate fixed registers before user arguments. 1239 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1240 return false; 1241 } 1242 1243 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1244 1245 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1246 return false; 1247 1248 // Do the actual argument marshalling. 1249 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff); 1250 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1251 return false; 1252 1253 handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs); 1254 1255 // If we have -tailcallopt, we need to adjust the stack. We'll do the call 1256 // sequence start and end here. 1257 if (!IsSibCall) { 1258 MIB->getOperand(1).setImm(FPDiff); 1259 CallSeqStart.addImm(NumBytes).addImm(0); 1260 // End the call sequence *before* emitting the call. Normally, we would 1261 // tidy the frame up after the call. However, here, we've laid out the 1262 // parameters so that when SP is reset, they will be in the correct 1263 // location. 1264 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0); 1265 } 1266 1267 // Now we can add the actual call instruction to the correct basic block. 1268 MIRBuilder.insertInstr(MIB); 1269 1270 // If Callee is a reg, since it is used by a target specific 1271 // instruction, it must have a register class matching the 1272 // constraint of that instruction. 1273 1274 // FIXME: We should define regbankselectable call instructions to handle 1275 // divergent call targets. 1276 if (MIB->getOperand(0).isReg()) { 1277 MIB->getOperand(0).setReg(constrainOperandRegClass( 1278 MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB, 1279 MIB->getDesc(), MIB->getOperand(0), 0)); 1280 } 1281 1282 MF.getFrameInfo().setHasTailCall(); 1283 Info.LoweredTailCall = true; 1284 return true; 1285 } 1286 1287 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 1288 CallLoweringInfo &Info) const { 1289 if (Info.IsVarArg) { 1290 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); 1291 return false; 1292 } 1293 1294 MachineFunction &MF = MIRBuilder.getMF(); 1295 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1296 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1297 1298 const Function &F = MF.getFunction(); 1299 MachineRegisterInfo &MRI = MF.getRegInfo(); 1300 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1301 const DataLayout &DL = F.getParent()->getDataLayout(); 1302 1303 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 1304 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1305 LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n"); 1306 return false; 1307 } 1308 1309 SmallVector<ArgInfo, 8> OutArgs; 1310 for (auto &OrigArg : Info.OrigArgs) 1311 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); 1312 1313 SmallVector<ArgInfo, 8> InArgs; 1314 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) 1315 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); 1316 1317 // If we can lower as a tail call, do that instead. 1318 bool CanTailCallOpt = 1319 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs); 1320 1321 // We must emit a tail call if we have musttail. 1322 if (Info.IsMustTailCall && !CanTailCallOpt) { 1323 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 1324 return false; 1325 } 1326 1327 if (CanTailCallOpt) 1328 return lowerTailCall(MIRBuilder, Info, OutArgs); 1329 1330 // Find out which ABI gets to decide where things go. 1331 CCAssignFn *AssignFnFixed; 1332 CCAssignFn *AssignFnVarArg; 1333 std::tie(AssignFnFixed, AssignFnVarArg) = 1334 getAssignFnsForCC(Info.CallConv, TLI); 1335 1336 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) 1337 .addImm(0) 1338 .addImm(0); 1339 1340 // Create a temporarily-floating call instruction so we can add the implicit 1341 // uses of arg registers. 1342 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 1343 1344 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1345 MIB.addDef(TRI->getReturnAddressReg(MF)); 1346 1347 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1348 return false; 1349 1350 // Tell the call which registers are clobbered. 1351 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 1352 MIB.addRegMask(Mask); 1353 1354 SmallVector<CCValAssign, 16> ArgLocs; 1355 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1356 1357 // We could pass MIB and directly add the implicit uses to the call 1358 // now. However, as an aesthetic choice, place implicit argument operands 1359 // after the ordinary user argument registers. 1360 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1361 1362 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 1363 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1364 // With a fixed ABI, allocate fixed registers before user arguments. 1365 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1366 return false; 1367 } 1368 1369 // Do the actual argument marshalling. 1370 SmallVector<Register, 8> PhysRegs; 1371 1372 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1373 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1374 return false; 1375 1376 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false); 1377 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1378 return false; 1379 1380 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1381 1382 handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs); 1383 1384 // Get a count of how many bytes are to be pushed on the stack. 1385 unsigned NumBytes = CCInfo.getNextStackOffset(); 1386 1387 // If Callee is a reg, since it is used by a target specific 1388 // instruction, it must have a register class matching the 1389 // constraint of that instruction. 1390 1391 // FIXME: We should define regbankselectable call instructions to handle 1392 // divergent call targets. 1393 if (MIB->getOperand(1).isReg()) { 1394 MIB->getOperand(1).setReg(constrainOperandRegClass( 1395 MF, *TRI, MRI, *ST.getInstrInfo(), 1396 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), 1397 1)); 1398 } 1399 1400 // Now we can add the actual call instruction to the correct position. 1401 MIRBuilder.insertInstr(MIB); 1402 1403 // Finally we can copy the returned value back into its virtual-register. In 1404 // symmetry with the arguments, the physical register must be an 1405 // implicit-define of the call instruction. 1406 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1407 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, 1408 Info.IsVarArg); 1409 IncomingValueAssigner Assigner(RetAssignFn); 1410 CallReturnHandler Handler(MIRBuilder, MRI, MIB); 1411 if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder, 1412 Info.CallConv, Info.IsVarArg)) 1413 return false; 1414 } 1415 1416 uint64_t CalleePopBytes = NumBytes; 1417 1418 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN) 1419 .addImm(0) 1420 .addImm(CalleePopBytes); 1421 1422 if (!Info.CanLowerReturn) { 1423 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1424 Info.DemoteRegister, Info.DemoteStackIndex); 1425 } 1426 1427 return true; 1428 } 1429