1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass optimizes atomic operations by using a single lane of a wavefront 11 /// to perform the atomic operation, thus reducing contention on that memory 12 /// location. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPU.h" 17 #include "AMDGPUSubtarget.h" 18 #include "SIDefines.h" 19 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 20 #include "llvm/CodeGen/TargetPassConfig.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/InstVisitor.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 25 #define DEBUG_TYPE "amdgpu-atomic-optimizer" 26 27 using namespace llvm; 28 using namespace llvm::AMDGPU; 29 30 namespace { 31 32 struct ReplacementInfo { 33 Instruction *I; 34 AtomicRMWInst::BinOp Op; 35 unsigned ValIdx; 36 bool ValDivergent; 37 }; 38 39 class AMDGPUAtomicOptimizer : public FunctionPass, 40 public InstVisitor<AMDGPUAtomicOptimizer> { 41 private: 42 SmallVector<ReplacementInfo, 8> ToReplace; 43 const LegacyDivergenceAnalysis *DA; 44 const DataLayout *DL; 45 DominatorTree *DT; 46 const GCNSubtarget *ST; 47 bool IsPixelShader; 48 49 Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V, 50 Value *const Identity) const; 51 Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const; 52 void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx, 53 bool ValDivergent) const; 54 55 public: 56 static char ID; 57 58 AMDGPUAtomicOptimizer() : FunctionPass(ID) {} 59 60 bool runOnFunction(Function &F) override; 61 62 void getAnalysisUsage(AnalysisUsage &AU) const override { 63 AU.addPreserved<DominatorTreeWrapperPass>(); 64 AU.addRequired<LegacyDivergenceAnalysis>(); 65 AU.addRequired<TargetPassConfig>(); 66 } 67 68 void visitAtomicRMWInst(AtomicRMWInst &I); 69 void visitIntrinsicInst(IntrinsicInst &I); 70 }; 71 72 } // namespace 73 74 char AMDGPUAtomicOptimizer::ID = 0; 75 76 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID; 77 78 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) { 79 if (skipFunction(F)) { 80 return false; 81 } 82 83 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 84 DL = &F.getParent()->getDataLayout(); 85 DominatorTreeWrapperPass *const DTW = 86 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 87 DT = DTW ? &DTW->getDomTree() : nullptr; 88 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>(); 89 const TargetMachine &TM = TPC.getTM<TargetMachine>(); 90 ST = &TM.getSubtarget<GCNSubtarget>(F); 91 IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS; 92 93 visit(F); 94 95 const bool Changed = !ToReplace.empty(); 96 97 for (ReplacementInfo &Info : ToReplace) { 98 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent); 99 } 100 101 ToReplace.clear(); 102 103 return Changed; 104 } 105 106 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) { 107 // Early exit for unhandled address space atomic instructions. 108 switch (I.getPointerAddressSpace()) { 109 default: 110 return; 111 case AMDGPUAS::GLOBAL_ADDRESS: 112 case AMDGPUAS::LOCAL_ADDRESS: 113 break; 114 } 115 116 AtomicRMWInst::BinOp Op = I.getOperation(); 117 118 switch (Op) { 119 default: 120 return; 121 case AtomicRMWInst::Add: 122 case AtomicRMWInst::Sub: 123 case AtomicRMWInst::And: 124 case AtomicRMWInst::Or: 125 case AtomicRMWInst::Xor: 126 case AtomicRMWInst::Max: 127 case AtomicRMWInst::Min: 128 case AtomicRMWInst::UMax: 129 case AtomicRMWInst::UMin: 130 break; 131 } 132 133 const unsigned PtrIdx = 0; 134 const unsigned ValIdx = 1; 135 136 // If the pointer operand is divergent, then each lane is doing an atomic 137 // operation on a different address, and we cannot optimize that. 138 if (DA->isDivergentUse(&I.getOperandUse(PtrIdx))) { 139 return; 140 } 141 142 const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx)); 143 144 // If the value operand is divergent, each lane is contributing a different 145 // value to the atomic calculation. We can only optimize divergent values if 146 // we have DPP available on our subtarget, and the atomic operation is 32 147 // bits. 148 if (ValDivergent && 149 (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) { 150 return; 151 } 152 153 // If we get here, we can optimize the atomic using a single wavefront-wide 154 // atomic operation to do the calculation for the entire wavefront, so 155 // remember the instruction so we can come back to it. 156 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; 157 158 ToReplace.push_back(Info); 159 } 160 161 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) { 162 AtomicRMWInst::BinOp Op; 163 164 switch (I.getIntrinsicID()) { 165 default: 166 return; 167 case Intrinsic::amdgcn_buffer_atomic_add: 168 case Intrinsic::amdgcn_struct_buffer_atomic_add: 169 case Intrinsic::amdgcn_raw_buffer_atomic_add: 170 Op = AtomicRMWInst::Add; 171 break; 172 case Intrinsic::amdgcn_buffer_atomic_sub: 173 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 174 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 175 Op = AtomicRMWInst::Sub; 176 break; 177 case Intrinsic::amdgcn_buffer_atomic_and: 178 case Intrinsic::amdgcn_struct_buffer_atomic_and: 179 case Intrinsic::amdgcn_raw_buffer_atomic_and: 180 Op = AtomicRMWInst::And; 181 break; 182 case Intrinsic::amdgcn_buffer_atomic_or: 183 case Intrinsic::amdgcn_struct_buffer_atomic_or: 184 case Intrinsic::amdgcn_raw_buffer_atomic_or: 185 Op = AtomicRMWInst::Or; 186 break; 187 case Intrinsic::amdgcn_buffer_atomic_xor: 188 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 189 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 190 Op = AtomicRMWInst::Xor; 191 break; 192 case Intrinsic::amdgcn_buffer_atomic_smin: 193 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 194 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 195 Op = AtomicRMWInst::Min; 196 break; 197 case Intrinsic::amdgcn_buffer_atomic_umin: 198 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 199 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 200 Op = AtomicRMWInst::UMin; 201 break; 202 case Intrinsic::amdgcn_buffer_atomic_smax: 203 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 204 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 205 Op = AtomicRMWInst::Max; 206 break; 207 case Intrinsic::amdgcn_buffer_atomic_umax: 208 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 209 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 210 Op = AtomicRMWInst::UMax; 211 break; 212 } 213 214 const unsigned ValIdx = 0; 215 216 const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx)); 217 218 // If the value operand is divergent, each lane is contributing a different 219 // value to the atomic calculation. We can only optimize divergent values if 220 // we have DPP available on our subtarget, and the atomic operation is 32 221 // bits. 222 if (ValDivergent && 223 (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) { 224 return; 225 } 226 227 // If any of the other arguments to the intrinsic are divergent, we can't 228 // optimize the operation. 229 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) { 230 if (DA->isDivergentUse(&I.getOperandUse(Idx))) { 231 return; 232 } 233 } 234 235 // If we get here, we can optimize the atomic using a single wavefront-wide 236 // atomic operation to do the calculation for the entire wavefront, so 237 // remember the instruction so we can come back to it. 238 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; 239 240 ToReplace.push_back(Info); 241 } 242 243 // Use the builder to create the non-atomic counterpart of the specified 244 // atomicrmw binary op. 245 static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op, 246 Value *LHS, Value *RHS) { 247 CmpInst::Predicate Pred; 248 249 switch (Op) { 250 default: 251 llvm_unreachable("Unhandled atomic op"); 252 case AtomicRMWInst::Add: 253 return B.CreateBinOp(Instruction::Add, LHS, RHS); 254 case AtomicRMWInst::Sub: 255 return B.CreateBinOp(Instruction::Sub, LHS, RHS); 256 case AtomicRMWInst::And: 257 return B.CreateBinOp(Instruction::And, LHS, RHS); 258 case AtomicRMWInst::Or: 259 return B.CreateBinOp(Instruction::Or, LHS, RHS); 260 case AtomicRMWInst::Xor: 261 return B.CreateBinOp(Instruction::Xor, LHS, RHS); 262 263 case AtomicRMWInst::Max: 264 Pred = CmpInst::ICMP_SGT; 265 break; 266 case AtomicRMWInst::Min: 267 Pred = CmpInst::ICMP_SLT; 268 break; 269 case AtomicRMWInst::UMax: 270 Pred = CmpInst::ICMP_UGT; 271 break; 272 case AtomicRMWInst::UMin: 273 Pred = CmpInst::ICMP_ULT; 274 break; 275 } 276 Value *Cond = B.CreateICmp(Pred, LHS, RHS); 277 return B.CreateSelect(Cond, LHS, RHS); 278 } 279 280 // Use the builder to create an inclusive scan of V across the wavefront, with 281 // all lanes active. 282 Value *AMDGPUAtomicOptimizer::buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, 283 Value *V, Value *const Identity) const { 284 Type *const Ty = V->getType(); 285 Module *M = B.GetInsertBlock()->getModule(); 286 Function *UpdateDPP = 287 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty); 288 Function *PermLaneX16 = 289 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_permlanex16, {}); 290 Function *ReadLane = 291 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {}); 292 293 for (unsigned Idx = 0; Idx < 4; Idx++) { 294 V = buildNonAtomicBinOp( 295 B, Op, V, 296 B.CreateCall(UpdateDPP, 297 {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx), 298 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()})); 299 } 300 if (ST->hasDPPBroadcasts()) { 301 // GFX9 has DPP row broadcast operations. 302 V = buildNonAtomicBinOp( 303 B, Op, V, 304 B.CreateCall(UpdateDPP, 305 {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa), 306 B.getInt32(0xf), B.getFalse()})); 307 V = buildNonAtomicBinOp( 308 B, Op, V, 309 B.CreateCall(UpdateDPP, 310 {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc), 311 B.getInt32(0xf), B.getFalse()})); 312 } else { 313 // On GFX10 all DPP operations are confined to a single row. To get cross- 314 // row operations we have to use permlane or readlane. 315 316 // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes 317 // 48..63). 318 Value *const PermX = 319 B.CreateCall(PermLaneX16, {V, V, B.getInt32(-1), B.getInt32(-1), 320 B.getFalse(), B.getFalse()}); 321 V = buildNonAtomicBinOp( 322 B, Op, V, 323 B.CreateCall(UpdateDPP, 324 {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID), 325 B.getInt32(0xa), B.getInt32(0xf), B.getFalse()})); 326 if (!ST->isWave32()) { 327 // Combine lane 31 into lanes 32..63. 328 Value *const Lane31 = B.CreateCall(ReadLane, {V, B.getInt32(31)}); 329 V = buildNonAtomicBinOp( 330 B, Op, V, 331 B.CreateCall(UpdateDPP, 332 {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID), 333 B.getInt32(0xc), B.getInt32(0xf), B.getFalse()})); 334 } 335 } 336 return V; 337 } 338 339 // Use the builder to create a shift right of V across the wavefront, with all 340 // lanes active, to turn an inclusive scan into an exclusive scan. 341 Value *AMDGPUAtomicOptimizer::buildShiftRight(IRBuilder<> &B, Value *V, 342 Value *const Identity) const { 343 Type *const Ty = V->getType(); 344 Module *M = B.GetInsertBlock()->getModule(); 345 Function *UpdateDPP = 346 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty); 347 Function *ReadLane = 348 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {}); 349 Function *WriteLane = 350 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, {}); 351 352 if (ST->hasDPPWavefrontShifts()) { 353 // GFX9 has DPP wavefront shift operations. 354 V = B.CreateCall(UpdateDPP, 355 {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf), 356 B.getInt32(0xf), B.getFalse()}); 357 } else { 358 // On GFX10 all DPP operations are confined to a single row. To get cross- 359 // row operations we have to use permlane or readlane. 360 Value *Old = V; 361 V = B.CreateCall(UpdateDPP, 362 {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1), 363 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}); 364 365 // Copy the old lane 15 to the new lane 16. 366 V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}), 367 B.getInt32(16), V}); 368 369 if (!ST->isWave32()) { 370 // Copy the old lane 31 to the new lane 32. 371 V = B.CreateCall( 372 WriteLane, 373 {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V}); 374 375 // Copy the old lane 47 to the new lane 48. 376 V = B.CreateCall( 377 WriteLane, 378 {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V}); 379 } 380 } 381 382 return V; 383 } 384 385 static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op, 386 unsigned BitWidth) { 387 switch (Op) { 388 default: 389 llvm_unreachable("Unhandled atomic op"); 390 case AtomicRMWInst::Add: 391 case AtomicRMWInst::Sub: 392 case AtomicRMWInst::Or: 393 case AtomicRMWInst::Xor: 394 case AtomicRMWInst::UMax: 395 return APInt::getMinValue(BitWidth); 396 case AtomicRMWInst::And: 397 case AtomicRMWInst::UMin: 398 return APInt::getMaxValue(BitWidth); 399 case AtomicRMWInst::Max: 400 return APInt::getSignedMinValue(BitWidth); 401 case AtomicRMWInst::Min: 402 return APInt::getSignedMaxValue(BitWidth); 403 } 404 } 405 406 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I, 407 AtomicRMWInst::BinOp Op, 408 unsigned ValIdx, 409 bool ValDivergent) const { 410 // Start building just before the instruction. 411 IRBuilder<> B(&I); 412 413 // If we are in a pixel shader, because of how we have to mask out helper 414 // lane invocations, we need to record the entry and exit BB's. 415 BasicBlock *PixelEntryBB = nullptr; 416 BasicBlock *PixelExitBB = nullptr; 417 418 // If we're optimizing an atomic within a pixel shader, we need to wrap the 419 // entire atomic operation in a helper-lane check. We do not want any helper 420 // lanes that are around only for the purposes of derivatives to take part 421 // in any cross-lane communication, and we use a branch on whether the lane is 422 // live to do this. 423 if (IsPixelShader) { 424 // Record I's original position as the entry block. 425 PixelEntryBB = I.getParent(); 426 427 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {}); 428 Instruction *const NonHelperTerminator = 429 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); 430 431 // Record I's new position as the exit block. 432 PixelExitBB = I.getParent(); 433 434 I.moveBefore(NonHelperTerminator); 435 B.SetInsertPoint(&I); 436 } 437 438 Type *const Ty = I.getType(); 439 const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty); 440 Type *const VecTy = VectorType::get(B.getInt32Ty(), 2); 441 442 // This is the value in the atomic operation we need to combine in order to 443 // reduce the number of atomic operations. 444 Value *const V = I.getOperand(ValIdx); 445 446 // We need to know how many lanes are active within the wavefront, and we do 447 // this by doing a ballot of active lanes. 448 Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize()); 449 CallInst *const Ballot = B.CreateIntrinsic( 450 Intrinsic::amdgcn_icmp, {WaveTy, B.getInt32Ty()}, 451 {B.getInt32(1), B.getInt32(0), B.getInt32(CmpInst::ICMP_NE)}); 452 453 // We need to know how many lanes are active within the wavefront that are 454 // below us. If we counted each lane linearly starting from 0, a lane is 455 // below us only if its associated index was less than ours. We do this by 456 // using the mbcnt intrinsic. 457 Value *Mbcnt; 458 if (ST->isWave32()) { 459 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {}, 460 {Ballot, B.getInt32(0)}); 461 } else { 462 Value *const BitCast = B.CreateBitCast(Ballot, VecTy); 463 Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0)); 464 Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1)); 465 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {}, 466 {ExtractLo, B.getInt32(0)}); 467 Mbcnt = 468 B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt}); 469 } 470 Mbcnt = B.CreateIntCast(Mbcnt, Ty, false); 471 472 Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth)); 473 474 Value *ExclScan = nullptr; 475 Value *NewV = nullptr; 476 477 // If we have a divergent value in each lane, we need to combine the value 478 // using DPP. 479 if (ValDivergent) { 480 // First we need to set all inactive invocations to the identity value, so 481 // that they can correctly contribute to the final result. 482 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity}); 483 484 const AtomicRMWInst::BinOp ScanOp = 485 Op == AtomicRMWInst::Sub ? AtomicRMWInst::Add : Op; 486 NewV = buildScan(B, ScanOp, NewV, Identity); 487 ExclScan = buildShiftRight(B, NewV, Identity); 488 489 // Read the value from the last lane, which has accumlated the values of 490 // each active lane in the wavefront. This will be our new value which we 491 // will provide to the atomic operation. 492 Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1); 493 if (TyBitWidth == 64) { 494 Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty()); 495 Value *const ExtractHi = 496 B.CreateTrunc(B.CreateLShr(NewV, 32), B.getInt32Ty()); 497 CallInst *const ReadLaneLo = B.CreateIntrinsic( 498 Intrinsic::amdgcn_readlane, {}, {ExtractLo, LastLaneIdx}); 499 CallInst *const ReadLaneHi = B.CreateIntrinsic( 500 Intrinsic::amdgcn_readlane, {}, {ExtractHi, LastLaneIdx}); 501 Value *const PartialInsert = B.CreateInsertElement( 502 UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0)); 503 Value *const Insert = 504 B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1)); 505 NewV = B.CreateBitCast(Insert, Ty); 506 } else if (TyBitWidth == 32) { 507 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {}, 508 {NewV, LastLaneIdx}); 509 } else { 510 llvm_unreachable("Unhandled atomic bit width"); 511 } 512 513 // Finally mark the readlanes in the WWM section. 514 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV); 515 } else { 516 switch (Op) { 517 default: 518 llvm_unreachable("Unhandled atomic op"); 519 520 case AtomicRMWInst::Add: 521 case AtomicRMWInst::Sub: { 522 // The new value we will be contributing to the atomic operation is the 523 // old value times the number of active lanes. 524 Value *const Ctpop = B.CreateIntCast( 525 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); 526 NewV = B.CreateMul(V, Ctpop); 527 break; 528 } 529 530 case AtomicRMWInst::And: 531 case AtomicRMWInst::Or: 532 case AtomicRMWInst::Max: 533 case AtomicRMWInst::Min: 534 case AtomicRMWInst::UMax: 535 case AtomicRMWInst::UMin: 536 // These operations with a uniform value are idempotent: doing the atomic 537 // operation multiple times has the same effect as doing it once. 538 NewV = V; 539 break; 540 541 case AtomicRMWInst::Xor: 542 // The new value we will be contributing to the atomic operation is the 543 // old value times the parity of the number of active lanes. 544 Value *const Ctpop = B.CreateIntCast( 545 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); 546 NewV = B.CreateMul(V, B.CreateAnd(Ctpop, 1)); 547 break; 548 } 549 } 550 551 // We only want a single lane to enter our new control flow, and we do this 552 // by checking if there are any active lanes below us. Only one lane will 553 // have 0 active lanes below us, so that will be the only one to progress. 554 Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0)); 555 556 // Store I's original basic block before we split the block. 557 BasicBlock *const EntryBB = I.getParent(); 558 559 // We need to introduce some new control flow to force a single lane to be 560 // active. We do this by splitting I's basic block at I, and introducing the 561 // new block such that: 562 // entry --> single_lane -\ 563 // \------------------> exit 564 Instruction *const SingleLaneTerminator = 565 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); 566 567 // Move the IR builder into single_lane next. 568 B.SetInsertPoint(SingleLaneTerminator); 569 570 // Clone the original atomic operation into single lane, replacing the 571 // original value with our newly created one. 572 Instruction *const NewI = I.clone(); 573 B.Insert(NewI); 574 NewI->setOperand(ValIdx, NewV); 575 576 // Move the IR builder into exit next, and start inserting just before the 577 // original instruction. 578 B.SetInsertPoint(&I); 579 580 const bool NeedResult = !I.use_empty(); 581 if (NeedResult) { 582 // Create a PHI node to get our new atomic result into the exit block. 583 PHINode *const PHI = B.CreatePHI(Ty, 2); 584 PHI->addIncoming(UndefValue::get(Ty), EntryBB); 585 PHI->addIncoming(NewI, SingleLaneTerminator->getParent()); 586 587 // We need to broadcast the value who was the lowest active lane (the first 588 // lane) to all other lanes in the wavefront. We use an intrinsic for this, 589 // but have to handle 64-bit broadcasts with two calls to this intrinsic. 590 Value *BroadcastI = nullptr; 591 592 if (TyBitWidth == 64) { 593 Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty()); 594 Value *const ExtractHi = 595 B.CreateTrunc(B.CreateLShr(PHI, 32), B.getInt32Ty()); 596 CallInst *const ReadFirstLaneLo = 597 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo); 598 CallInst *const ReadFirstLaneHi = 599 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi); 600 Value *const PartialInsert = B.CreateInsertElement( 601 UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0)); 602 Value *const Insert = 603 B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1)); 604 BroadcastI = B.CreateBitCast(Insert, Ty); 605 } else if (TyBitWidth == 32) { 606 607 BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI); 608 } else { 609 llvm_unreachable("Unhandled atomic bit width"); 610 } 611 612 // Now that we have the result of our single atomic operation, we need to 613 // get our individual lane's slice into the result. We use the lane offset 614 // we previously calculated combined with the atomic result value we got 615 // from the first lane, to get our lane's index into the atomic result. 616 Value *LaneOffset = nullptr; 617 if (ValDivergent) { 618 LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, ExclScan); 619 } else { 620 switch (Op) { 621 default: 622 llvm_unreachable("Unhandled atomic op"); 623 case AtomicRMWInst::Add: 624 case AtomicRMWInst::Sub: 625 LaneOffset = B.CreateMul(V, Mbcnt); 626 break; 627 case AtomicRMWInst::And: 628 case AtomicRMWInst::Or: 629 case AtomicRMWInst::Max: 630 case AtomicRMWInst::Min: 631 case AtomicRMWInst::UMax: 632 case AtomicRMWInst::UMin: 633 LaneOffset = B.CreateSelect(Cond, Identity, V); 634 break; 635 case AtomicRMWInst::Xor: 636 LaneOffset = B.CreateMul(V, B.CreateAnd(Mbcnt, 1)); 637 break; 638 } 639 } 640 Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset); 641 642 if (IsPixelShader) { 643 // Need a final PHI to reconverge to above the helper lane branch mask. 644 B.SetInsertPoint(PixelExitBB->getFirstNonPHI()); 645 646 PHINode *const PHI = B.CreatePHI(Ty, 2); 647 PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB); 648 PHI->addIncoming(Result, I.getParent()); 649 I.replaceAllUsesWith(PHI); 650 } else { 651 // Replace the original atomic instruction with the new one. 652 I.replaceAllUsesWith(Result); 653 } 654 } 655 656 // And delete the original. 657 I.eraseFromParent(); 658 } 659 660 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE, 661 "AMDGPU atomic optimizations", false, false) 662 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 663 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 664 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE, 665 "AMDGPU atomic optimizations", false, false) 666 667 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() { 668 return new AMDGPUAtomicOptimizer(); 669 } 670