xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp (revision 6966ac055c3b7a39266fb982493330df7a097997)
1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
12 /// location.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPU.h"
17 #include "AMDGPUSubtarget.h"
18 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
19 #include "llvm/CodeGen/TargetPassConfig.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/InstVisitor.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 
24 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
25 
26 using namespace llvm;
27 
28 namespace {
29 
30 enum DPP_CTRL {
31   DPP_ROW_SR1 = 0x111,
32   DPP_ROW_SR2 = 0x112,
33   DPP_ROW_SR3 = 0x113,
34   DPP_ROW_SR4 = 0x114,
35   DPP_ROW_SR8 = 0x118,
36   DPP_WF_SR1 = 0x138,
37   DPP_ROW_BCAST15 = 0x142,
38   DPP_ROW_BCAST31 = 0x143
39 };
40 
41 struct ReplacementInfo {
42   Instruction *I;
43   AtomicRMWInst::BinOp Op;
44   unsigned ValIdx;
45   bool ValDivergent;
46 };
47 
48 class AMDGPUAtomicOptimizer : public FunctionPass,
49                               public InstVisitor<AMDGPUAtomicOptimizer> {
50 private:
51   SmallVector<ReplacementInfo, 8> ToReplace;
52   const LegacyDivergenceAnalysis *DA;
53   const DataLayout *DL;
54   DominatorTree *DT;
55   bool HasDPP;
56   bool IsPixelShader;
57 
58   void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
59                       bool ValDivergent) const;
60 
61 public:
62   static char ID;
63 
64   AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
65 
66   bool runOnFunction(Function &F) override;
67 
68   void getAnalysisUsage(AnalysisUsage &AU) const override {
69     AU.addPreserved<DominatorTreeWrapperPass>();
70     AU.addRequired<LegacyDivergenceAnalysis>();
71     AU.addRequired<TargetPassConfig>();
72   }
73 
74   void visitAtomicRMWInst(AtomicRMWInst &I);
75   void visitIntrinsicInst(IntrinsicInst &I);
76 };
77 
78 } // namespace
79 
80 char AMDGPUAtomicOptimizer::ID = 0;
81 
82 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
83 
84 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
85   if (skipFunction(F)) {
86     return false;
87   }
88 
89   DA = &getAnalysis<LegacyDivergenceAnalysis>();
90   DL = &F.getParent()->getDataLayout();
91   DominatorTreeWrapperPass *const DTW =
92       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
93   DT = DTW ? &DTW->getDomTree() : nullptr;
94   const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
95   const TargetMachine &TM = TPC.getTM<TargetMachine>();
96   const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
97   HasDPP = ST.hasDPP();
98   IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
99 
100   visit(F);
101 
102   const bool Changed = !ToReplace.empty();
103 
104   for (ReplacementInfo &Info : ToReplace) {
105     optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
106   }
107 
108   ToReplace.clear();
109 
110   return Changed;
111 }
112 
113 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
114   // Early exit for unhandled address space atomic instructions.
115   switch (I.getPointerAddressSpace()) {
116   default:
117     return;
118   case AMDGPUAS::GLOBAL_ADDRESS:
119   case AMDGPUAS::LOCAL_ADDRESS:
120     break;
121   }
122 
123   AtomicRMWInst::BinOp Op = I.getOperation();
124 
125   switch (Op) {
126   default:
127     return;
128   case AtomicRMWInst::Add:
129   case AtomicRMWInst::Sub:
130   case AtomicRMWInst::And:
131   case AtomicRMWInst::Or:
132   case AtomicRMWInst::Xor:
133   case AtomicRMWInst::Max:
134   case AtomicRMWInst::Min:
135   case AtomicRMWInst::UMax:
136   case AtomicRMWInst::UMin:
137     break;
138   }
139 
140   const unsigned PtrIdx = 0;
141   const unsigned ValIdx = 1;
142 
143   // If the pointer operand is divergent, then each lane is doing an atomic
144   // operation on a different address, and we cannot optimize that.
145   if (DA->isDivergent(I.getOperand(PtrIdx))) {
146     return;
147   }
148 
149   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
150 
151   // If the value operand is divergent, each lane is contributing a different
152   // value to the atomic calculation. We can only optimize divergent values if
153   // we have DPP available on our subtarget, and the atomic operation is 32
154   // bits.
155   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
156     return;
157   }
158 
159   // If we get here, we can optimize the atomic using a single wavefront-wide
160   // atomic operation to do the calculation for the entire wavefront, so
161   // remember the instruction so we can come back to it.
162   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
163 
164   ToReplace.push_back(Info);
165 }
166 
167 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
168   AtomicRMWInst::BinOp Op;
169 
170   switch (I.getIntrinsicID()) {
171   default:
172     return;
173   case Intrinsic::amdgcn_buffer_atomic_add:
174   case Intrinsic::amdgcn_struct_buffer_atomic_add:
175   case Intrinsic::amdgcn_raw_buffer_atomic_add:
176     Op = AtomicRMWInst::Add;
177     break;
178   case Intrinsic::amdgcn_buffer_atomic_sub:
179   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
180   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
181     Op = AtomicRMWInst::Sub;
182     break;
183   case Intrinsic::amdgcn_buffer_atomic_and:
184   case Intrinsic::amdgcn_struct_buffer_atomic_and:
185   case Intrinsic::amdgcn_raw_buffer_atomic_and:
186     Op = AtomicRMWInst::And;
187     break;
188   case Intrinsic::amdgcn_buffer_atomic_or:
189   case Intrinsic::amdgcn_struct_buffer_atomic_or:
190   case Intrinsic::amdgcn_raw_buffer_atomic_or:
191     Op = AtomicRMWInst::Or;
192     break;
193   case Intrinsic::amdgcn_buffer_atomic_xor:
194   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
195   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
196     Op = AtomicRMWInst::Xor;
197     break;
198   case Intrinsic::amdgcn_buffer_atomic_smin:
199   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
200   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
201     Op = AtomicRMWInst::Min;
202     break;
203   case Intrinsic::amdgcn_buffer_atomic_umin:
204   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
205   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
206     Op = AtomicRMWInst::UMin;
207     break;
208   case Intrinsic::amdgcn_buffer_atomic_smax:
209   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
210   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
211     Op = AtomicRMWInst::Max;
212     break;
213   case Intrinsic::amdgcn_buffer_atomic_umax:
214   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
215   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
216     Op = AtomicRMWInst::UMax;
217     break;
218   }
219 
220   const unsigned ValIdx = 0;
221 
222   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
223 
224   // If the value operand is divergent, each lane is contributing a different
225   // value to the atomic calculation. We can only optimize divergent values if
226   // we have DPP available on our subtarget, and the atomic operation is 32
227   // bits.
228   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
229     return;
230   }
231 
232   // If any of the other arguments to the intrinsic are divergent, we can't
233   // optimize the operation.
234   for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
235     if (DA->isDivergent(I.getOperand(Idx))) {
236       return;
237     }
238   }
239 
240   // If we get here, we can optimize the atomic using a single wavefront-wide
241   // atomic operation to do the calculation for the entire wavefront, so
242   // remember the instruction so we can come back to it.
243   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
244 
245   ToReplace.push_back(Info);
246 }
247 
248 // Use the builder to create the non-atomic counterpart of the specified
249 // atomicrmw binary op.
250 static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
251                                   Value *LHS, Value *RHS) {
252   CmpInst::Predicate Pred;
253 
254   switch (Op) {
255   default:
256     llvm_unreachable("Unhandled atomic op");
257   case AtomicRMWInst::Add:
258     return B.CreateBinOp(Instruction::Add, LHS, RHS);
259   case AtomicRMWInst::Sub:
260     return B.CreateBinOp(Instruction::Sub, LHS, RHS);
261   case AtomicRMWInst::And:
262     return B.CreateBinOp(Instruction::And, LHS, RHS);
263   case AtomicRMWInst::Or:
264     return B.CreateBinOp(Instruction::Or, LHS, RHS);
265   case AtomicRMWInst::Xor:
266     return B.CreateBinOp(Instruction::Xor, LHS, RHS);
267 
268   case AtomicRMWInst::Max:
269     Pred = CmpInst::ICMP_SGT;
270     break;
271   case AtomicRMWInst::Min:
272     Pred = CmpInst::ICMP_SLT;
273     break;
274   case AtomicRMWInst::UMax:
275     Pred = CmpInst::ICMP_UGT;
276     break;
277   case AtomicRMWInst::UMin:
278     Pred = CmpInst::ICMP_ULT;
279     break;
280   }
281   Value *Cond = B.CreateICmp(Pred, LHS, RHS);
282   return B.CreateSelect(Cond, LHS, RHS);
283 }
284 
285 static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op,
286                                          unsigned BitWidth) {
287   switch (Op) {
288   default:
289     llvm_unreachable("Unhandled atomic op");
290   case AtomicRMWInst::Add:
291   case AtomicRMWInst::Sub:
292   case AtomicRMWInst::Or:
293   case AtomicRMWInst::Xor:
294   case AtomicRMWInst::UMax:
295     return APInt::getMinValue(BitWidth);
296   case AtomicRMWInst::And:
297   case AtomicRMWInst::UMin:
298     return APInt::getMaxValue(BitWidth);
299   case AtomicRMWInst::Max:
300     return APInt::getSignedMinValue(BitWidth);
301   case AtomicRMWInst::Min:
302     return APInt::getSignedMaxValue(BitWidth);
303   }
304 }
305 
306 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
307                                            AtomicRMWInst::BinOp Op,
308                                            unsigned ValIdx,
309                                            bool ValDivergent) const {
310   // Start building just before the instruction.
311   IRBuilder<> B(&I);
312 
313   // If we are in a pixel shader, because of how we have to mask out helper
314   // lane invocations, we need to record the entry and exit BB's.
315   BasicBlock *PixelEntryBB = nullptr;
316   BasicBlock *PixelExitBB = nullptr;
317 
318   // If we're optimizing an atomic within a pixel shader, we need to wrap the
319   // entire atomic operation in a helper-lane check. We do not want any helper
320   // lanes that are around only for the purposes of derivatives to take part
321   // in any cross-lane communication, and we use a branch on whether the lane is
322   // live to do this.
323   if (IsPixelShader) {
324     // Record I's original position as the entry block.
325     PixelEntryBB = I.getParent();
326 
327     Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
328     Instruction *const NonHelperTerminator =
329         SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
330 
331     // Record I's new position as the exit block.
332     PixelExitBB = I.getParent();
333 
334     I.moveBefore(NonHelperTerminator);
335     B.SetInsertPoint(&I);
336   }
337 
338   Type *const Ty = I.getType();
339   const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
340   Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
341 
342   // This is the value in the atomic operation we need to combine in order to
343   // reduce the number of atomic operations.
344   Value *const V = I.getOperand(ValIdx);
345 
346   // We need to know how many lanes are active within the wavefront, and we do
347   // this by doing a ballot of active lanes.
348   CallInst *const Ballot = B.CreateIntrinsic(
349       Intrinsic::amdgcn_icmp, {B.getInt64Ty(), B.getInt32Ty()},
350       {B.getInt32(1), B.getInt32(0), B.getInt32(CmpInst::ICMP_NE)});
351 
352   // We need to know how many lanes are active within the wavefront that are
353   // below us. If we counted each lane linearly starting from 0, a lane is
354   // below us only if its associated index was less than ours. We do this by
355   // using the mbcnt intrinsic.
356   Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
357   Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
358   Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
359   CallInst *const PartialMbcnt = B.CreateIntrinsic(
360       Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
361   Value *const Mbcnt =
362       B.CreateIntCast(B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
363                                         {ExtractHi, PartialMbcnt}),
364                       Ty, false);
365 
366   Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth));
367 
368   Value *ExclScan = nullptr;
369   Value *NewV = nullptr;
370 
371   // If we have a divergent value in each lane, we need to combine the value
372   // using DPP.
373   if (ValDivergent) {
374     // First we need to set all inactive invocations to the identity value, so
375     // that they can correctly contribute to the final result.
376     CallInst *const SetInactive =
377         B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
378 
379     CallInst *const FirstDPP =
380         B.CreateIntrinsic(Intrinsic::amdgcn_update_dpp, Ty,
381                           {Identity, SetInactive, B.getInt32(DPP_WF_SR1),
382                            B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
383     ExclScan = FirstDPP;
384 
385     const unsigned Iters = 7;
386     const unsigned DPPCtrl[Iters] = {
387         DPP_ROW_SR1, DPP_ROW_SR2,     DPP_ROW_SR3,    DPP_ROW_SR4,
388         DPP_ROW_SR8, DPP_ROW_BCAST15, DPP_ROW_BCAST31};
389     const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
390     const unsigned BankMask[Iters] = {0xf, 0xf, 0xf, 0xe, 0xc, 0xf, 0xf};
391 
392     // This loop performs an exclusive scan across the wavefront, with all lanes
393     // active (by using the WWM intrinsic).
394     for (unsigned Idx = 0; Idx < Iters; Idx++) {
395       Value *const UpdateValue = Idx < 3 ? FirstDPP : ExclScan;
396       CallInst *const DPP = B.CreateIntrinsic(
397           Intrinsic::amdgcn_update_dpp, Ty,
398           {Identity, UpdateValue, B.getInt32(DPPCtrl[Idx]),
399            B.getInt32(RowMask[Idx]), B.getInt32(BankMask[Idx]), B.getFalse()});
400 
401       ExclScan = buildNonAtomicBinOp(B, Op, ExclScan, DPP);
402     }
403 
404     NewV = buildNonAtomicBinOp(B, Op, SetInactive, ExclScan);
405 
406     // Read the value from the last lane, which has accumlated the values of
407     // each active lane in the wavefront. This will be our new value which we
408     // will provide to the atomic operation.
409     if (TyBitWidth == 64) {
410       Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
411       Value *const ExtractHi =
412           B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
413       CallInst *const ReadLaneLo = B.CreateIntrinsic(
414           Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
415       CallInst *const ReadLaneHi = B.CreateIntrinsic(
416           Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
417       Value *const PartialInsert = B.CreateInsertElement(
418           UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
419       Value *const Insert =
420           B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
421       NewV = B.CreateBitCast(Insert, Ty);
422     } else if (TyBitWidth == 32) {
423       NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {},
424                                {NewV, B.getInt32(63)});
425     } else {
426       llvm_unreachable("Unhandled atomic bit width");
427     }
428 
429     // Finally mark the readlanes in the WWM section.
430     NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
431   } else {
432     switch (Op) {
433     default:
434       llvm_unreachable("Unhandled atomic op");
435 
436     case AtomicRMWInst::Add:
437     case AtomicRMWInst::Sub: {
438       // The new value we will be contributing to the atomic operation is the
439       // old value times the number of active lanes.
440       Value *const Ctpop = B.CreateIntCast(
441           B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
442       NewV = B.CreateMul(V, Ctpop);
443       break;
444     }
445 
446     case AtomicRMWInst::And:
447     case AtomicRMWInst::Or:
448     case AtomicRMWInst::Max:
449     case AtomicRMWInst::Min:
450     case AtomicRMWInst::UMax:
451     case AtomicRMWInst::UMin:
452       // These operations with a uniform value are idempotent: doing the atomic
453       // operation multiple times has the same effect as doing it once.
454       NewV = V;
455       break;
456 
457     case AtomicRMWInst::Xor:
458       // The new value we will be contributing to the atomic operation is the
459       // old value times the parity of the number of active lanes.
460       Value *const Ctpop = B.CreateIntCast(
461           B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
462       NewV = B.CreateMul(V, B.CreateAnd(Ctpop, 1));
463       break;
464     }
465   }
466 
467   // We only want a single lane to enter our new control flow, and we do this
468   // by checking if there are any active lanes below us. Only one lane will
469   // have 0 active lanes below us, so that will be the only one to progress.
470   Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0));
471 
472   // Store I's original basic block before we split the block.
473   BasicBlock *const EntryBB = I.getParent();
474 
475   // We need to introduce some new control flow to force a single lane to be
476   // active. We do this by splitting I's basic block at I, and introducing the
477   // new block such that:
478   // entry --> single_lane -\
479   //       \------------------> exit
480   Instruction *const SingleLaneTerminator =
481       SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
482 
483   // Move the IR builder into single_lane next.
484   B.SetInsertPoint(SingleLaneTerminator);
485 
486   // Clone the original atomic operation into single lane, replacing the
487   // original value with our newly created one.
488   Instruction *const NewI = I.clone();
489   B.Insert(NewI);
490   NewI->setOperand(ValIdx, NewV);
491 
492   // Move the IR builder into exit next, and start inserting just before the
493   // original instruction.
494   B.SetInsertPoint(&I);
495 
496   // Create a PHI node to get our new atomic result into the exit block.
497   PHINode *const PHI = B.CreatePHI(Ty, 2);
498   PHI->addIncoming(UndefValue::get(Ty), EntryBB);
499   PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
500 
501   // We need to broadcast the value who was the lowest active lane (the first
502   // lane) to all other lanes in the wavefront. We use an intrinsic for this,
503   // but have to handle 64-bit broadcasts with two calls to this intrinsic.
504   Value *BroadcastI = nullptr;
505 
506   if (TyBitWidth == 64) {
507     Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
508     Value *const ExtractHi =
509         B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
510     CallInst *const ReadFirstLaneLo =
511         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
512     CallInst *const ReadFirstLaneHi =
513         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
514     Value *const PartialInsert = B.CreateInsertElement(
515         UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
516     Value *const Insert =
517         B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
518     BroadcastI = B.CreateBitCast(Insert, Ty);
519   } else if (TyBitWidth == 32) {
520 
521     BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
522   } else {
523     llvm_unreachable("Unhandled atomic bit width");
524   }
525 
526   // Now that we have the result of our single atomic operation, we need to
527   // get our individual lane's slice into the result. We use the lane offset we
528   // previously calculated combined with the atomic result value we got from the
529   // first lane, to get our lane's index into the atomic result.
530   Value *LaneOffset = nullptr;
531   if (ValDivergent) {
532     LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, ExclScan);
533   } else {
534     switch (Op) {
535     default:
536       llvm_unreachable("Unhandled atomic op");
537     case AtomicRMWInst::Add:
538     case AtomicRMWInst::Sub:
539       LaneOffset = B.CreateMul(V, Mbcnt);
540       break;
541     case AtomicRMWInst::And:
542     case AtomicRMWInst::Or:
543     case AtomicRMWInst::Max:
544     case AtomicRMWInst::Min:
545     case AtomicRMWInst::UMax:
546     case AtomicRMWInst::UMin:
547       LaneOffset = B.CreateSelect(Cond, Identity, V);
548       break;
549     case AtomicRMWInst::Xor:
550       LaneOffset = B.CreateMul(V, B.CreateAnd(Mbcnt, 1));
551       break;
552     }
553   }
554   Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);
555 
556   if (IsPixelShader) {
557     // Need a final PHI to reconverge to above the helper lane branch mask.
558     B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
559 
560     PHINode *const PHI = B.CreatePHI(Ty, 2);
561     PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
562     PHI->addIncoming(Result, I.getParent());
563     I.replaceAllUsesWith(PHI);
564   } else {
565     // Replace the original atomic instruction with the new one.
566     I.replaceAllUsesWith(Result);
567   }
568 
569   // And delete the original.
570   I.eraseFromParent();
571 }
572 
573 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
574                       "AMDGPU atomic optimizations", false, false)
575 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
576 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
577 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
578                     "AMDGPU atomic optimizations", false, false)
579 
580 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
581   return new AMDGPUAtomicOptimizer();
582 }
583