1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass optimizes atomic operations by using a single lane of a wavefront 11 /// to perform the atomic operation, thus reducing contention on that memory 12 /// location. 13 /// Atomic optimizer uses following strategies to compute scan and reduced 14 /// values 15 /// 1. DPP - 16 /// This is the most efficient implementation for scan. DPP uses Whole Wave 17 /// Mode (WWM) 18 /// 2. Iterative - 19 // An alternative implementation iterates over all active lanes 20 /// of Wavefront using llvm.cttz and performs scan using readlane & writelane 21 /// intrinsics 22 //===----------------------------------------------------------------------===// 23 24 #include "AMDGPU.h" 25 #include "GCNSubtarget.h" 26 #include "llvm/Analysis/DomTreeUpdater.h" 27 #include "llvm/Analysis/UniformityAnalysis.h" 28 #include "llvm/CodeGen/TargetPassConfig.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/InstVisitor.h" 31 #include "llvm/IR/IntrinsicsAMDGPU.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 36 #define DEBUG_TYPE "amdgpu-atomic-optimizer" 37 38 using namespace llvm; 39 using namespace llvm::AMDGPU; 40 41 namespace { 42 43 struct ReplacementInfo { 44 Instruction *I; 45 AtomicRMWInst::BinOp Op; 46 unsigned ValIdx; 47 bool ValDivergent; 48 }; 49 50 class AMDGPUAtomicOptimizer : public FunctionPass { 51 public: 52 static char ID; 53 ScanOptions ScanImpl; 54 AMDGPUAtomicOptimizer(ScanOptions ScanImpl) 55 : FunctionPass(ID), ScanImpl(ScanImpl) {} 56 57 bool runOnFunction(Function &F) override; 58 59 void getAnalysisUsage(AnalysisUsage &AU) const override { 60 AU.addPreserved<DominatorTreeWrapperPass>(); 61 AU.addRequired<UniformityInfoWrapperPass>(); 62 AU.addRequired<TargetPassConfig>(); 63 } 64 }; 65 66 class AMDGPUAtomicOptimizerImpl 67 : public InstVisitor<AMDGPUAtomicOptimizerImpl> { 68 private: 69 SmallVector<ReplacementInfo, 8> ToReplace; 70 const UniformityInfo *UA; 71 const DataLayout *DL; 72 DomTreeUpdater &DTU; 73 const GCNSubtarget *ST; 74 bool IsPixelShader; 75 ScanOptions ScanImpl; 76 77 Value *buildReduction(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V, 78 Value *const Identity) const; 79 Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V, 80 Value *const Identity) const; 81 Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const; 82 83 std::pair<Value *, Value *> 84 buildScanIteratively(IRBuilder<> &B, AtomicRMWInst::BinOp Op, 85 Value *const Identity, Value *V, Instruction &I, 86 BasicBlock *ComputeLoop, BasicBlock *ComputeEnd) const; 87 88 void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx, 89 bool ValDivergent) const; 90 91 public: 92 AMDGPUAtomicOptimizerImpl() = delete; 93 94 AMDGPUAtomicOptimizerImpl(const UniformityInfo *UA, const DataLayout *DL, 95 DomTreeUpdater &DTU, const GCNSubtarget *ST, 96 bool IsPixelShader, ScanOptions ScanImpl) 97 : UA(UA), DL(DL), DTU(DTU), ST(ST), IsPixelShader(IsPixelShader), 98 ScanImpl(ScanImpl) {} 99 100 bool run(Function &F); 101 102 void visitAtomicRMWInst(AtomicRMWInst &I); 103 void visitIntrinsicInst(IntrinsicInst &I); 104 }; 105 106 } // namespace 107 108 char AMDGPUAtomicOptimizer::ID = 0; 109 110 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID; 111 112 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) { 113 if (skipFunction(F)) { 114 return false; 115 } 116 117 const UniformityInfo *UA = 118 &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 119 const DataLayout *DL = &F.getParent()->getDataLayout(); 120 121 DominatorTreeWrapperPass *const DTW = 122 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 123 DomTreeUpdater DTU(DTW ? &DTW->getDomTree() : nullptr, 124 DomTreeUpdater::UpdateStrategy::Lazy); 125 126 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>(); 127 const TargetMachine &TM = TPC.getTM<TargetMachine>(); 128 const GCNSubtarget *ST = &TM.getSubtarget<GCNSubtarget>(F); 129 130 bool IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS; 131 132 return AMDGPUAtomicOptimizerImpl(UA, DL, DTU, ST, IsPixelShader, ScanImpl) 133 .run(F); 134 } 135 136 PreservedAnalyses AMDGPUAtomicOptimizerPass::run(Function &F, 137 FunctionAnalysisManager &AM) { 138 139 const auto *UA = &AM.getResult<UniformityInfoAnalysis>(F); 140 const DataLayout *DL = &F.getParent()->getDataLayout(); 141 142 DomTreeUpdater DTU(&AM.getResult<DominatorTreeAnalysis>(F), 143 DomTreeUpdater::UpdateStrategy::Lazy); 144 const GCNSubtarget *ST = &TM.getSubtarget<GCNSubtarget>(F); 145 146 bool IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS; 147 148 bool IsChanged = 149 AMDGPUAtomicOptimizerImpl(UA, DL, DTU, ST, IsPixelShader, ScanImpl) 150 .run(F); 151 152 if (!IsChanged) { 153 return PreservedAnalyses::all(); 154 } 155 156 PreservedAnalyses PA; 157 PA.preserve<DominatorTreeAnalysis>(); 158 return PA; 159 } 160 161 bool AMDGPUAtomicOptimizerImpl::run(Function &F) { 162 163 // Scan option None disables the Pass 164 if (ScanImpl == ScanOptions::None) { 165 return false; 166 } 167 168 visit(F); 169 170 const bool Changed = !ToReplace.empty(); 171 172 for (ReplacementInfo &Info : ToReplace) { 173 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent); 174 } 175 176 ToReplace.clear(); 177 178 return Changed; 179 } 180 181 void AMDGPUAtomicOptimizerImpl::visitAtomicRMWInst(AtomicRMWInst &I) { 182 // Early exit for unhandled address space atomic instructions. 183 switch (I.getPointerAddressSpace()) { 184 default: 185 return; 186 case AMDGPUAS::GLOBAL_ADDRESS: 187 case AMDGPUAS::LOCAL_ADDRESS: 188 break; 189 } 190 191 AtomicRMWInst::BinOp Op = I.getOperation(); 192 193 switch (Op) { 194 default: 195 return; 196 case AtomicRMWInst::Add: 197 case AtomicRMWInst::Sub: 198 case AtomicRMWInst::And: 199 case AtomicRMWInst::Or: 200 case AtomicRMWInst::Xor: 201 case AtomicRMWInst::Max: 202 case AtomicRMWInst::Min: 203 case AtomicRMWInst::UMax: 204 case AtomicRMWInst::UMin: 205 case AtomicRMWInst::FAdd: 206 case AtomicRMWInst::FSub: 207 case AtomicRMWInst::FMax: 208 case AtomicRMWInst::FMin: 209 break; 210 } 211 212 // Only 32-bit floating point atomic ops are supported. 213 if (AtomicRMWInst::isFPOperation(Op) && !I.getType()->isFloatTy()) { 214 return; 215 } 216 217 const unsigned PtrIdx = 0; 218 const unsigned ValIdx = 1; 219 220 // If the pointer operand is divergent, then each lane is doing an atomic 221 // operation on a different address, and we cannot optimize that. 222 if (UA->isDivergentUse(I.getOperandUse(PtrIdx))) { 223 return; 224 } 225 226 const bool ValDivergent = UA->isDivergentUse(I.getOperandUse(ValIdx)); 227 228 // If the value operand is divergent, each lane is contributing a different 229 // value to the atomic calculation. We can only optimize divergent values if 230 // we have DPP available on our subtarget, and the atomic operation is 32 231 // bits. 232 if (ValDivergent && 233 (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) { 234 return; 235 } 236 237 // If we get here, we can optimize the atomic using a single wavefront-wide 238 // atomic operation to do the calculation for the entire wavefront, so 239 // remember the instruction so we can come back to it. 240 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; 241 242 ToReplace.push_back(Info); 243 } 244 245 void AMDGPUAtomicOptimizerImpl::visitIntrinsicInst(IntrinsicInst &I) { 246 AtomicRMWInst::BinOp Op; 247 248 switch (I.getIntrinsicID()) { 249 default: 250 return; 251 case Intrinsic::amdgcn_buffer_atomic_add: 252 case Intrinsic::amdgcn_struct_buffer_atomic_add: 253 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add: 254 case Intrinsic::amdgcn_raw_buffer_atomic_add: 255 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add: 256 Op = AtomicRMWInst::Add; 257 break; 258 case Intrinsic::amdgcn_buffer_atomic_sub: 259 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 260 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub: 261 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 262 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub: 263 Op = AtomicRMWInst::Sub; 264 break; 265 case Intrinsic::amdgcn_buffer_atomic_and: 266 case Intrinsic::amdgcn_struct_buffer_atomic_and: 267 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and: 268 case Intrinsic::amdgcn_raw_buffer_atomic_and: 269 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and: 270 Op = AtomicRMWInst::And; 271 break; 272 case Intrinsic::amdgcn_buffer_atomic_or: 273 case Intrinsic::amdgcn_struct_buffer_atomic_or: 274 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or: 275 case Intrinsic::amdgcn_raw_buffer_atomic_or: 276 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or: 277 Op = AtomicRMWInst::Or; 278 break; 279 case Intrinsic::amdgcn_buffer_atomic_xor: 280 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 281 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor: 282 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 283 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor: 284 Op = AtomicRMWInst::Xor; 285 break; 286 case Intrinsic::amdgcn_buffer_atomic_smin: 287 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 288 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin: 289 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 290 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin: 291 Op = AtomicRMWInst::Min; 292 break; 293 case Intrinsic::amdgcn_buffer_atomic_umin: 294 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 295 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin: 296 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 297 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin: 298 Op = AtomicRMWInst::UMin; 299 break; 300 case Intrinsic::amdgcn_buffer_atomic_smax: 301 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 302 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax: 303 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 304 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax: 305 Op = AtomicRMWInst::Max; 306 break; 307 case Intrinsic::amdgcn_buffer_atomic_umax: 308 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 309 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax: 310 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 311 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax: 312 Op = AtomicRMWInst::UMax; 313 break; 314 } 315 316 const unsigned ValIdx = 0; 317 318 const bool ValDivergent = UA->isDivergentUse(I.getOperandUse(ValIdx)); 319 320 // If the value operand is divergent, each lane is contributing a different 321 // value to the atomic calculation. We can only optimize divergent values if 322 // we have DPP available on our subtarget, and the atomic operation is 32 323 // bits. 324 if (ValDivergent && 325 (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) { 326 return; 327 } 328 329 // If any of the other arguments to the intrinsic are divergent, we can't 330 // optimize the operation. 331 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) { 332 if (UA->isDivergentUse(I.getOperandUse(Idx))) { 333 return; 334 } 335 } 336 337 // If we get here, we can optimize the atomic using a single wavefront-wide 338 // atomic operation to do the calculation for the entire wavefront, so 339 // remember the instruction so we can come back to it. 340 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; 341 342 ToReplace.push_back(Info); 343 } 344 345 // Use the builder to create the non-atomic counterpart of the specified 346 // atomicrmw binary op. 347 static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op, 348 Value *LHS, Value *RHS) { 349 CmpInst::Predicate Pred; 350 351 switch (Op) { 352 default: 353 llvm_unreachable("Unhandled atomic op"); 354 case AtomicRMWInst::Add: 355 return B.CreateBinOp(Instruction::Add, LHS, RHS); 356 case AtomicRMWInst::FAdd: 357 return B.CreateFAdd(LHS, RHS); 358 case AtomicRMWInst::Sub: 359 return B.CreateBinOp(Instruction::Sub, LHS, RHS); 360 case AtomicRMWInst::FSub: 361 return B.CreateFSub(LHS, RHS); 362 case AtomicRMWInst::And: 363 return B.CreateBinOp(Instruction::And, LHS, RHS); 364 case AtomicRMWInst::Or: 365 return B.CreateBinOp(Instruction::Or, LHS, RHS); 366 case AtomicRMWInst::Xor: 367 return B.CreateBinOp(Instruction::Xor, LHS, RHS); 368 369 case AtomicRMWInst::Max: 370 Pred = CmpInst::ICMP_SGT; 371 break; 372 case AtomicRMWInst::Min: 373 Pred = CmpInst::ICMP_SLT; 374 break; 375 case AtomicRMWInst::UMax: 376 Pred = CmpInst::ICMP_UGT; 377 break; 378 case AtomicRMWInst::UMin: 379 Pred = CmpInst::ICMP_ULT; 380 break; 381 case AtomicRMWInst::FMax: 382 return B.CreateMaxNum(LHS, RHS); 383 case AtomicRMWInst::FMin: 384 return B.CreateMinNum(LHS, RHS); 385 } 386 Value *Cond = B.CreateICmp(Pred, LHS, RHS); 387 return B.CreateSelect(Cond, LHS, RHS); 388 } 389 390 // Use the builder to create a reduction of V across the wavefront, with all 391 // lanes active, returning the same result in all lanes. 392 Value *AMDGPUAtomicOptimizerImpl::buildReduction(IRBuilder<> &B, 393 AtomicRMWInst::BinOp Op, 394 Value *V, 395 Value *const Identity) const { 396 Type *AtomicTy = V->getType(); 397 Type *IntNTy = B.getIntNTy(AtomicTy->getPrimitiveSizeInBits()); 398 Module *M = B.GetInsertBlock()->getModule(); 399 Function *UpdateDPP = 400 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy); 401 402 // Reduce within each row of 16 lanes. 403 for (unsigned Idx = 0; Idx < 4; Idx++) { 404 V = buildNonAtomicBinOp( 405 B, Op, V, 406 B.CreateCall(UpdateDPP, 407 {Identity, V, B.getInt32(DPP::ROW_XMASK0 | 1 << Idx), 408 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()})); 409 } 410 411 // Reduce within each pair of rows (i.e. 32 lanes). 412 assert(ST->hasPermLaneX16()); 413 V = B.CreateBitCast(V, IntNTy); 414 Value *Permlanex16Call = B.CreateIntrinsic( 415 Intrinsic::amdgcn_permlanex16, {}, 416 {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()}); 417 V = buildNonAtomicBinOp(B, Op, B.CreateBitCast(V, AtomicTy), 418 B.CreateBitCast(Permlanex16Call, AtomicTy)); 419 if (ST->isWave32()) { 420 return V; 421 } 422 423 if (ST->hasPermLane64()) { 424 // Reduce across the upper and lower 32 lanes. 425 V = B.CreateBitCast(V, IntNTy); 426 Value *Permlane64Call = 427 B.CreateIntrinsic(Intrinsic::amdgcn_permlane64, {}, V); 428 return buildNonAtomicBinOp(B, Op, B.CreateBitCast(V, AtomicTy), 429 B.CreateBitCast(Permlane64Call, AtomicTy)); 430 } 431 432 // Pick an arbitrary lane from 0..31 and an arbitrary lane from 32..63 and 433 // combine them with a scalar operation. 434 Function *ReadLane = 435 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {}); 436 V = B.CreateBitCast(V, IntNTy); 437 Value *Lane0 = B.CreateCall(ReadLane, {V, B.getInt32(0)}); 438 Value *Lane32 = B.CreateCall(ReadLane, {V, B.getInt32(32)}); 439 return buildNonAtomicBinOp(B, Op, B.CreateBitCast(Lane0, AtomicTy), 440 B.CreateBitCast(Lane32, AtomicTy)); 441 } 442 443 // Use the builder to create an inclusive scan of V across the wavefront, with 444 // all lanes active. 445 Value *AMDGPUAtomicOptimizerImpl::buildScan(IRBuilder<> &B, 446 AtomicRMWInst::BinOp Op, Value *V, 447 Value *Identity) const { 448 Type *AtomicTy = V->getType(); 449 Type *IntNTy = B.getIntNTy(AtomicTy->getPrimitiveSizeInBits()); 450 451 Module *M = B.GetInsertBlock()->getModule(); 452 Function *UpdateDPP = 453 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy); 454 455 for (unsigned Idx = 0; Idx < 4; Idx++) { 456 V = buildNonAtomicBinOp( 457 B, Op, V, 458 B.CreateCall(UpdateDPP, 459 {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx), 460 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()})); 461 } 462 if (ST->hasDPPBroadcasts()) { 463 // GFX9 has DPP row broadcast operations. 464 V = buildNonAtomicBinOp( 465 B, Op, V, 466 B.CreateCall(UpdateDPP, 467 {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa), 468 B.getInt32(0xf), B.getFalse()})); 469 V = buildNonAtomicBinOp( 470 B, Op, V, 471 B.CreateCall(UpdateDPP, 472 {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc), 473 B.getInt32(0xf), B.getFalse()})); 474 } else { 475 // On GFX10 all DPP operations are confined to a single row. To get cross- 476 // row operations we have to use permlane or readlane. 477 478 // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes 479 // 48..63). 480 assert(ST->hasPermLaneX16()); 481 V = B.CreateBitCast(V, IntNTy); 482 Value *PermX = B.CreateIntrinsic( 483 Intrinsic::amdgcn_permlanex16, {}, 484 {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()}); 485 486 Value *UpdateDPPCall = 487 B.CreateCall(UpdateDPP, {Identity, B.CreateBitCast(PermX, AtomicTy), 488 B.getInt32(DPP::QUAD_PERM_ID), B.getInt32(0xa), 489 B.getInt32(0xf), B.getFalse()}); 490 V = buildNonAtomicBinOp(B, Op, B.CreateBitCast(V, AtomicTy), UpdateDPPCall); 491 492 if (!ST->isWave32()) { 493 // Combine lane 31 into lanes 32..63. 494 V = B.CreateBitCast(V, IntNTy); 495 Value *const Lane31 = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {}, 496 {V, B.getInt32(31)}); 497 498 Value *UpdateDPPCall = B.CreateCall( 499 UpdateDPP, {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID), 500 B.getInt32(0xc), B.getInt32(0xf), B.getFalse()}); 501 502 V = buildNonAtomicBinOp(B, Op, B.CreateBitCast(V, AtomicTy), 503 UpdateDPPCall); 504 } 505 } 506 return V; 507 } 508 509 // Use the builder to create a shift right of V across the wavefront, with all 510 // lanes active, to turn an inclusive scan into an exclusive scan. 511 Value *AMDGPUAtomicOptimizerImpl::buildShiftRight(IRBuilder<> &B, Value *V, 512 Value *Identity) const { 513 Type *AtomicTy = V->getType(); 514 Type *IntNTy = B.getIntNTy(AtomicTy->getPrimitiveSizeInBits()); 515 516 Module *M = B.GetInsertBlock()->getModule(); 517 Function *UpdateDPP = 518 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy); 519 if (ST->hasDPPWavefrontShifts()) { 520 // GFX9 has DPP wavefront shift operations. 521 V = B.CreateCall(UpdateDPP, 522 {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf), 523 B.getInt32(0xf), B.getFalse()}); 524 } else { 525 Function *ReadLane = 526 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {}); 527 Function *WriteLane = 528 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, {}); 529 530 // On GFX10 all DPP operations are confined to a single row. To get cross- 531 // row operations we have to use permlane or readlane. 532 Value *Old = V; 533 V = B.CreateCall(UpdateDPP, 534 {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1), 535 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}); 536 537 // Copy the old lane 15 to the new lane 16. 538 V = B.CreateCall( 539 WriteLane, 540 {B.CreateCall(ReadLane, {B.CreateBitCast(Old, IntNTy), B.getInt32(15)}), 541 B.getInt32(16), B.CreateBitCast(V, IntNTy)}); 542 V = B.CreateBitCast(V, AtomicTy); 543 if (!ST->isWave32()) { 544 // Copy the old lane 31 to the new lane 32. 545 V = B.CreateBitCast(V, IntNTy); 546 V = B.CreateCall(WriteLane, 547 {B.CreateCall(ReadLane, {B.CreateBitCast(Old, IntNTy), 548 B.getInt32(31)}), 549 B.getInt32(32), V}); 550 551 // Copy the old lane 47 to the new lane 48. 552 V = B.CreateCall( 553 WriteLane, 554 {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V}); 555 V = B.CreateBitCast(V, AtomicTy); 556 } 557 } 558 559 return V; 560 } 561 562 // Use the builder to create an exclusive scan and compute the final reduced 563 // value using an iterative approach. This provides an alternative 564 // implementation to DPP which uses WMM for scan computations. This API iterate 565 // over active lanes to read, compute and update the value using 566 // readlane and writelane intrinsics. 567 std::pair<Value *, Value *> AMDGPUAtomicOptimizerImpl::buildScanIteratively( 568 IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *const Identity, Value *V, 569 Instruction &I, BasicBlock *ComputeLoop, BasicBlock *ComputeEnd) const { 570 auto *Ty = I.getType(); 571 auto *WaveTy = B.getIntNTy(ST->getWavefrontSize()); 572 auto *EntryBB = I.getParent(); 573 auto NeedResult = !I.use_empty(); 574 575 auto *Ballot = 576 B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue()); 577 578 // Start inserting instructions for ComputeLoop block 579 B.SetInsertPoint(ComputeLoop); 580 // Phi nodes for Accumulator, Scan results destination, and Active Lanes 581 auto *Accumulator = B.CreatePHI(Ty, 2, "Accumulator"); 582 Accumulator->addIncoming(Identity, EntryBB); 583 PHINode *OldValuePhi = nullptr; 584 if (NeedResult) { 585 OldValuePhi = B.CreatePHI(Ty, 2, "OldValuePhi"); 586 OldValuePhi->addIncoming(PoisonValue::get(Ty), EntryBB); 587 } 588 auto *ActiveBits = B.CreatePHI(WaveTy, 2, "ActiveBits"); 589 ActiveBits->addIncoming(Ballot, EntryBB); 590 591 // Use llvm.cttz instrinsic to find the lowest remaining active lane. 592 auto *FF1 = 593 B.CreateIntrinsic(Intrinsic::cttz, WaveTy, {ActiveBits, B.getTrue()}); 594 595 Type *IntNTy = B.getIntNTy(Ty->getPrimitiveSizeInBits()); 596 auto *LaneIdxInt = B.CreateTrunc(FF1, IntNTy); 597 598 // Get the value required for atomic operation 599 V = B.CreateBitCast(V, IntNTy); 600 Value *LaneValue = 601 B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {}, {V, LaneIdxInt}); 602 LaneValue = B.CreateBitCast(LaneValue, Ty); 603 604 // Perform writelane if intermediate scan results are required later in the 605 // kernel computations 606 Value *OldValue = nullptr; 607 if (NeedResult) { 608 OldValue = 609 B.CreateIntrinsic(Intrinsic::amdgcn_writelane, {}, 610 {B.CreateBitCast(Accumulator, IntNTy), LaneIdxInt, 611 B.CreateBitCast(OldValuePhi, IntNTy)}); 612 OldValue = B.CreateBitCast(OldValue, Ty); 613 OldValuePhi->addIncoming(OldValue, ComputeLoop); 614 } 615 616 // Accumulate the results 617 auto *NewAccumulator = buildNonAtomicBinOp(B, Op, Accumulator, LaneValue); 618 Accumulator->addIncoming(NewAccumulator, ComputeLoop); 619 620 // Set bit to zero of current active lane so that for next iteration llvm.cttz 621 // return the next active lane 622 auto *Mask = B.CreateShl(ConstantInt::get(WaveTy, 1), FF1); 623 624 auto *InverseMask = B.CreateXor(Mask, ConstantInt::get(WaveTy, -1)); 625 auto *NewActiveBits = B.CreateAnd(ActiveBits, InverseMask); 626 ActiveBits->addIncoming(NewActiveBits, ComputeLoop); 627 628 // Branch out of the loop when all lanes are processed. 629 auto *IsEnd = B.CreateICmpEQ(NewActiveBits, ConstantInt::get(WaveTy, 0)); 630 B.CreateCondBr(IsEnd, ComputeEnd, ComputeLoop); 631 632 B.SetInsertPoint(ComputeEnd); 633 634 return {OldValue, NewAccumulator}; 635 } 636 637 static Constant *getIdentityValueForAtomicOp(Type *const Ty, 638 AtomicRMWInst::BinOp Op) { 639 LLVMContext &C = Ty->getContext(); 640 const unsigned BitWidth = Ty->getPrimitiveSizeInBits(); 641 switch (Op) { 642 default: 643 llvm_unreachable("Unhandled atomic op"); 644 case AtomicRMWInst::Add: 645 case AtomicRMWInst::Sub: 646 case AtomicRMWInst::Or: 647 case AtomicRMWInst::Xor: 648 case AtomicRMWInst::UMax: 649 return ConstantInt::get(C, APInt::getMinValue(BitWidth)); 650 case AtomicRMWInst::And: 651 case AtomicRMWInst::UMin: 652 return ConstantInt::get(C, APInt::getMaxValue(BitWidth)); 653 case AtomicRMWInst::Max: 654 return ConstantInt::get(C, APInt::getSignedMinValue(BitWidth)); 655 case AtomicRMWInst::Min: 656 return ConstantInt::get(C, APInt::getSignedMaxValue(BitWidth)); 657 case AtomicRMWInst::FAdd: 658 return ConstantFP::get(C, APFloat::getZero(Ty->getFltSemantics(), true)); 659 case AtomicRMWInst::FSub: 660 return ConstantFP::get(C, APFloat::getZero(Ty->getFltSemantics(), false)); 661 case AtomicRMWInst::FMin: 662 return ConstantFP::get(C, APFloat::getInf(Ty->getFltSemantics(), false)); 663 case AtomicRMWInst::FMax: 664 return ConstantFP::get(C, APFloat::getInf(Ty->getFltSemantics(), true)); 665 } 666 } 667 668 static Value *buildMul(IRBuilder<> &B, Value *LHS, Value *RHS) { 669 const ConstantInt *CI = dyn_cast<ConstantInt>(LHS); 670 return (CI && CI->isOne()) ? RHS : B.CreateMul(LHS, RHS); 671 } 672 673 void AMDGPUAtomicOptimizerImpl::optimizeAtomic(Instruction &I, 674 AtomicRMWInst::BinOp Op, 675 unsigned ValIdx, 676 bool ValDivergent) const { 677 // Start building just before the instruction. 678 IRBuilder<> B(&I); 679 680 if (AtomicRMWInst::isFPOperation(Op)) { 681 B.setIsFPConstrained(I.getFunction()->hasFnAttribute(Attribute::StrictFP)); 682 } 683 684 // If we are in a pixel shader, because of how we have to mask out helper 685 // lane invocations, we need to record the entry and exit BB's. 686 BasicBlock *PixelEntryBB = nullptr; 687 BasicBlock *PixelExitBB = nullptr; 688 689 // If we're optimizing an atomic within a pixel shader, we need to wrap the 690 // entire atomic operation in a helper-lane check. We do not want any helper 691 // lanes that are around only for the purposes of derivatives to take part 692 // in any cross-lane communication, and we use a branch on whether the lane is 693 // live to do this. 694 if (IsPixelShader) { 695 // Record I's original position as the entry block. 696 PixelEntryBB = I.getParent(); 697 698 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {}); 699 Instruction *const NonHelperTerminator = 700 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, &DTU, nullptr); 701 702 // Record I's new position as the exit block. 703 PixelExitBB = I.getParent(); 704 705 I.moveBefore(NonHelperTerminator); 706 B.SetInsertPoint(&I); 707 } 708 709 Type *const Ty = I.getType(); 710 Type *Int32Ty = B.getInt32Ty(); 711 Type *IntNTy = B.getIntNTy(Ty->getPrimitiveSizeInBits()); 712 bool isAtomicFloatingPointTy = Ty->isFloatingPointTy(); 713 const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty); 714 auto *const VecTy = FixedVectorType::get(Int32Ty, 2); 715 716 // This is the value in the atomic operation we need to combine in order to 717 // reduce the number of atomic operations. 718 Value *V = I.getOperand(ValIdx); 719 720 // We need to know how many lanes are active within the wavefront, and we do 721 // this by doing a ballot of active lanes. 722 Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize()); 723 CallInst *const Ballot = 724 B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue()); 725 726 // We need to know how many lanes are active within the wavefront that are 727 // below us. If we counted each lane linearly starting from 0, a lane is 728 // below us only if its associated index was less than ours. We do this by 729 // using the mbcnt intrinsic. 730 Value *Mbcnt; 731 if (ST->isWave32()) { 732 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {}, 733 {Ballot, B.getInt32(0)}); 734 } else { 735 Value *const ExtractLo = B.CreateTrunc(Ballot, Int32Ty); 736 Value *const ExtractHi = B.CreateTrunc(B.CreateLShr(Ballot, 32), Int32Ty); 737 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {}, 738 {ExtractLo, B.getInt32(0)}); 739 Mbcnt = 740 B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt}); 741 } 742 743 Function *F = I.getFunction(); 744 LLVMContext &C = F->getContext(); 745 746 // For atomic sub, perform scan with add operation and allow one lane to 747 // subtract the reduced value later. 748 AtomicRMWInst::BinOp ScanOp = Op; 749 if (Op == AtomicRMWInst::Sub) { 750 ScanOp = AtomicRMWInst::Add; 751 } else if (Op == AtomicRMWInst::FSub) { 752 ScanOp = AtomicRMWInst::FAdd; 753 } 754 Value *Identity = getIdentityValueForAtomicOp(Ty, ScanOp); 755 756 Value *ExclScan = nullptr; 757 Value *NewV = nullptr; 758 759 const bool NeedResult = !I.use_empty(); 760 761 BasicBlock *ComputeLoop = nullptr; 762 BasicBlock *ComputeEnd = nullptr; 763 // If we have a divergent value in each lane, we need to combine the value 764 // using DPP. 765 if (ValDivergent) { 766 if (ScanImpl == ScanOptions::DPP) { 767 // First we need to set all inactive invocations to the identity value, so 768 // that they can correctly contribute to the final result. 769 V = B.CreateBitCast(V, IntNTy); 770 Identity = B.CreateBitCast(Identity, IntNTy); 771 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, IntNTy, 772 {V, Identity}); 773 NewV = B.CreateBitCast(NewV, Ty); 774 V = B.CreateBitCast(V, Ty); 775 Identity = B.CreateBitCast(Identity, Ty); 776 if (!NeedResult && ST->hasPermLaneX16()) { 777 // On GFX10 the permlanex16 instruction helps us build a reduction 778 // without too many readlanes and writelanes, which are generally bad 779 // for performance. 780 NewV = buildReduction(B, ScanOp, NewV, Identity); 781 } else { 782 NewV = buildScan(B, ScanOp, NewV, Identity); 783 if (NeedResult) 784 ExclScan = buildShiftRight(B, NewV, Identity); 785 // Read the value from the last lane, which has accumulated the values 786 // of each active lane in the wavefront. This will be our new value 787 // which we will provide to the atomic operation. 788 Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1); 789 assert(TyBitWidth == 32); 790 NewV = B.CreateBitCast(NewV, IntNTy); 791 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {}, 792 {NewV, LastLaneIdx}); 793 NewV = B.CreateBitCast(NewV, Ty); 794 } 795 // Finally mark the readlanes in the WWM section. 796 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, NewV); 797 } else if (ScanImpl == ScanOptions::Iterative) { 798 // Alternative implementation for scan 799 ComputeLoop = BasicBlock::Create(C, "ComputeLoop", F); 800 ComputeEnd = BasicBlock::Create(C, "ComputeEnd", F); 801 std::tie(ExclScan, NewV) = buildScanIteratively(B, ScanOp, Identity, V, I, 802 ComputeLoop, ComputeEnd); 803 } else { 804 llvm_unreachable("Atomic Optimzer is disabled for None strategy"); 805 } 806 } else { 807 switch (Op) { 808 default: 809 llvm_unreachable("Unhandled atomic op"); 810 811 case AtomicRMWInst::Add: 812 case AtomicRMWInst::Sub: { 813 // The new value we will be contributing to the atomic operation is the 814 // old value times the number of active lanes. 815 Value *const Ctpop = B.CreateIntCast( 816 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); 817 NewV = buildMul(B, V, Ctpop); 818 break; 819 } 820 case AtomicRMWInst::FAdd: 821 case AtomicRMWInst::FSub: { 822 Value *const Ctpop = B.CreateIntCast( 823 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Int32Ty, false); 824 Value *const CtpopFP = B.CreateUIToFP(Ctpop, Ty); 825 NewV = B.CreateFMul(V, CtpopFP); 826 break; 827 } 828 case AtomicRMWInst::And: 829 case AtomicRMWInst::Or: 830 case AtomicRMWInst::Max: 831 case AtomicRMWInst::Min: 832 case AtomicRMWInst::UMax: 833 case AtomicRMWInst::UMin: 834 case AtomicRMWInst::FMin: 835 case AtomicRMWInst::FMax: 836 // These operations with a uniform value are idempotent: doing the atomic 837 // operation multiple times has the same effect as doing it once. 838 NewV = V; 839 break; 840 841 case AtomicRMWInst::Xor: 842 // The new value we will be contributing to the atomic operation is the 843 // old value times the parity of the number of active lanes. 844 Value *const Ctpop = B.CreateIntCast( 845 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); 846 NewV = buildMul(B, V, B.CreateAnd(Ctpop, 1)); 847 break; 848 } 849 } 850 851 // We only want a single lane to enter our new control flow, and we do this 852 // by checking if there are any active lanes below us. Only one lane will 853 // have 0 active lanes below us, so that will be the only one to progress. 854 Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getInt32(0)); 855 856 // Store I's original basic block before we split the block. 857 BasicBlock *const EntryBB = I.getParent(); 858 859 // We need to introduce some new control flow to force a single lane to be 860 // active. We do this by splitting I's basic block at I, and introducing the 861 // new block such that: 862 // entry --> single_lane -\ 863 // \------------------> exit 864 Instruction *const SingleLaneTerminator = 865 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, &DTU, nullptr); 866 867 // At this point, we have split the I's block to allow one lane in wavefront 868 // to update the precomputed reduced value. Also, completed the codegen for 869 // new control flow i.e. iterative loop which perform reduction and scan using 870 // ComputeLoop and ComputeEnd. 871 // For the new control flow, we need to move branch instruction i.e. 872 // terminator created during SplitBlockAndInsertIfThen from I's block to 873 // ComputeEnd block. We also need to set up predecessor to next block when 874 // single lane done updating the final reduced value. 875 BasicBlock *Predecessor = nullptr; 876 if (ValDivergent && ScanImpl == ScanOptions::Iterative) { 877 // Move terminator from I's block to ComputeEnd block. 878 Instruction *Terminator = EntryBB->getTerminator(); 879 B.SetInsertPoint(ComputeEnd); 880 Terminator->removeFromParent(); 881 B.Insert(Terminator); 882 883 // Branch to ComputeLoop Block unconditionally from the I's block for 884 // iterative approach. 885 B.SetInsertPoint(EntryBB); 886 B.CreateBr(ComputeLoop); 887 888 // Update the dominator tree for new control flow. 889 DTU.applyUpdates( 890 {{DominatorTree::Insert, EntryBB, ComputeLoop}, 891 {DominatorTree::Insert, ComputeLoop, ComputeEnd}, 892 {DominatorTree::Delete, EntryBB, SingleLaneTerminator->getParent()}}); 893 894 Predecessor = ComputeEnd; 895 } else { 896 Predecessor = EntryBB; 897 } 898 // Move the IR builder into single_lane next. 899 B.SetInsertPoint(SingleLaneTerminator); 900 901 // Clone the original atomic operation into single lane, replacing the 902 // original value with our newly created one. 903 Instruction *const NewI = I.clone(); 904 B.Insert(NewI); 905 NewI->setOperand(ValIdx, NewV); 906 907 // Move the IR builder into exit next, and start inserting just before the 908 // original instruction. 909 B.SetInsertPoint(&I); 910 911 if (NeedResult) { 912 // Create a PHI node to get our new atomic result into the exit block. 913 PHINode *const PHI = B.CreatePHI(Ty, 2); 914 PHI->addIncoming(PoisonValue::get(Ty), Predecessor); 915 PHI->addIncoming(NewI, SingleLaneTerminator->getParent()); 916 917 // We need to broadcast the value who was the lowest active lane (the first 918 // lane) to all other lanes in the wavefront. We use an intrinsic for this, 919 // but have to handle 64-bit broadcasts with two calls to this intrinsic. 920 Value *BroadcastI = nullptr; 921 922 if (TyBitWidth == 64) { 923 Value *const ExtractLo = B.CreateTrunc(PHI, Int32Ty); 924 Value *const ExtractHi = B.CreateTrunc(B.CreateLShr(PHI, 32), Int32Ty); 925 CallInst *const ReadFirstLaneLo = 926 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo); 927 CallInst *const ReadFirstLaneHi = 928 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi); 929 Value *const PartialInsert = B.CreateInsertElement( 930 PoisonValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0)); 931 Value *const Insert = 932 B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1)); 933 BroadcastI = B.CreateBitCast(Insert, Ty); 934 } else if (TyBitWidth == 32) { 935 Value *CastedPhi = B.CreateBitCast(PHI, IntNTy); 936 BroadcastI = 937 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, CastedPhi); 938 BroadcastI = B.CreateBitCast(BroadcastI, Ty); 939 940 } else { 941 llvm_unreachable("Unhandled atomic bit width"); 942 } 943 944 // Now that we have the result of our single atomic operation, we need to 945 // get our individual lane's slice into the result. We use the lane offset 946 // we previously calculated combined with the atomic result value we got 947 // from the first lane, to get our lane's index into the atomic result. 948 Value *LaneOffset = nullptr; 949 if (ValDivergent) { 950 if (ScanImpl == ScanOptions::DPP) { 951 LaneOffset = 952 B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, ExclScan); 953 } else if (ScanImpl == ScanOptions::Iterative) { 954 LaneOffset = ExclScan; 955 } else { 956 llvm_unreachable("Atomic Optimzer is disabled for None strategy"); 957 } 958 } else { 959 Mbcnt = isAtomicFloatingPointTy ? B.CreateUIToFP(Mbcnt, Ty) 960 : B.CreateIntCast(Mbcnt, Ty, false); 961 switch (Op) { 962 default: 963 llvm_unreachable("Unhandled atomic op"); 964 case AtomicRMWInst::Add: 965 case AtomicRMWInst::Sub: 966 LaneOffset = buildMul(B, V, Mbcnt); 967 break; 968 case AtomicRMWInst::And: 969 case AtomicRMWInst::Or: 970 case AtomicRMWInst::Max: 971 case AtomicRMWInst::Min: 972 case AtomicRMWInst::UMax: 973 case AtomicRMWInst::UMin: 974 case AtomicRMWInst::FMin: 975 case AtomicRMWInst::FMax: 976 LaneOffset = B.CreateSelect(Cond, Identity, V); 977 break; 978 case AtomicRMWInst::Xor: 979 LaneOffset = buildMul(B, V, B.CreateAnd(Mbcnt, 1)); 980 break; 981 case AtomicRMWInst::FAdd: 982 case AtomicRMWInst::FSub: { 983 LaneOffset = B.CreateFMul(V, Mbcnt); 984 break; 985 } 986 } 987 } 988 Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset); 989 990 if (IsPixelShader) { 991 // Need a final PHI to reconverge to above the helper lane branch mask. 992 B.SetInsertPoint(PixelExitBB, PixelExitBB->getFirstNonPHIIt()); 993 994 PHINode *const PHI = B.CreatePHI(Ty, 2); 995 PHI->addIncoming(PoisonValue::get(Ty), PixelEntryBB); 996 PHI->addIncoming(Result, I.getParent()); 997 I.replaceAllUsesWith(PHI); 998 } else { 999 // Replace the original atomic instruction with the new one. 1000 I.replaceAllUsesWith(Result); 1001 } 1002 } 1003 1004 // And delete the original. 1005 I.eraseFromParent(); 1006 } 1007 1008 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE, 1009 "AMDGPU atomic optimizations", false, false) 1010 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 1011 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 1012 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE, 1013 "AMDGPU atomic optimizations", false, false) 1014 1015 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass(ScanOptions ScanStrategy) { 1016 return new AMDGPUAtomicOptimizer(ScanStrategy); 1017 } 1018