1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass optimizes atomic operations by using a single lane of a wavefront 11 /// to perform the atomic operation, thus reducing contention on that memory 12 /// location. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPU.h" 17 #include "GCNSubtarget.h" 18 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 19 #include "llvm/CodeGen/TargetPassConfig.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/IR/InstVisitor.h" 22 #include "llvm/IR/IntrinsicsAMDGPU.h" 23 #include "llvm/InitializePasses.h" 24 #include "llvm/Target/TargetMachine.h" 25 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 26 27 #define DEBUG_TYPE "amdgpu-atomic-optimizer" 28 29 using namespace llvm; 30 using namespace llvm::AMDGPU; 31 32 namespace { 33 34 struct ReplacementInfo { 35 Instruction *I; 36 AtomicRMWInst::BinOp Op; 37 unsigned ValIdx; 38 bool ValDivergent; 39 }; 40 41 class AMDGPUAtomicOptimizer : public FunctionPass, 42 public InstVisitor<AMDGPUAtomicOptimizer> { 43 private: 44 SmallVector<ReplacementInfo, 8> ToReplace; 45 const LegacyDivergenceAnalysis *DA; 46 const DataLayout *DL; 47 DominatorTree *DT; 48 const GCNSubtarget *ST; 49 bool IsPixelShader; 50 51 Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V, 52 Value *const Identity) const; 53 Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const; 54 void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx, 55 bool ValDivergent) const; 56 57 public: 58 static char ID; 59 60 AMDGPUAtomicOptimizer() : FunctionPass(ID) {} 61 62 bool runOnFunction(Function &F) override; 63 64 void getAnalysisUsage(AnalysisUsage &AU) const override { 65 AU.addPreserved<DominatorTreeWrapperPass>(); 66 AU.addRequired<LegacyDivergenceAnalysis>(); 67 AU.addRequired<TargetPassConfig>(); 68 } 69 70 void visitAtomicRMWInst(AtomicRMWInst &I); 71 void visitIntrinsicInst(IntrinsicInst &I); 72 }; 73 74 } // namespace 75 76 char AMDGPUAtomicOptimizer::ID = 0; 77 78 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID; 79 80 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) { 81 if (skipFunction(F)) { 82 return false; 83 } 84 85 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 86 DL = &F.getParent()->getDataLayout(); 87 DominatorTreeWrapperPass *const DTW = 88 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 89 DT = DTW ? &DTW->getDomTree() : nullptr; 90 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>(); 91 const TargetMachine &TM = TPC.getTM<TargetMachine>(); 92 ST = &TM.getSubtarget<GCNSubtarget>(F); 93 IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS; 94 95 visit(F); 96 97 const bool Changed = !ToReplace.empty(); 98 99 for (ReplacementInfo &Info : ToReplace) { 100 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent); 101 } 102 103 ToReplace.clear(); 104 105 return Changed; 106 } 107 108 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) { 109 // Early exit for unhandled address space atomic instructions. 110 switch (I.getPointerAddressSpace()) { 111 default: 112 return; 113 case AMDGPUAS::GLOBAL_ADDRESS: 114 case AMDGPUAS::LOCAL_ADDRESS: 115 break; 116 } 117 118 AtomicRMWInst::BinOp Op = I.getOperation(); 119 120 switch (Op) { 121 default: 122 return; 123 case AtomicRMWInst::Add: 124 case AtomicRMWInst::Sub: 125 case AtomicRMWInst::And: 126 case AtomicRMWInst::Or: 127 case AtomicRMWInst::Xor: 128 case AtomicRMWInst::Max: 129 case AtomicRMWInst::Min: 130 case AtomicRMWInst::UMax: 131 case AtomicRMWInst::UMin: 132 break; 133 } 134 135 const unsigned PtrIdx = 0; 136 const unsigned ValIdx = 1; 137 138 // If the pointer operand is divergent, then each lane is doing an atomic 139 // operation on a different address, and we cannot optimize that. 140 if (DA->isDivergentUse(&I.getOperandUse(PtrIdx))) { 141 return; 142 } 143 144 const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx)); 145 146 // If the value operand is divergent, each lane is contributing a different 147 // value to the atomic calculation. We can only optimize divergent values if 148 // we have DPP available on our subtarget, and the atomic operation is 32 149 // bits. 150 if (ValDivergent && 151 (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) { 152 return; 153 } 154 155 // If we get here, we can optimize the atomic using a single wavefront-wide 156 // atomic operation to do the calculation for the entire wavefront, so 157 // remember the instruction so we can come back to it. 158 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; 159 160 ToReplace.push_back(Info); 161 } 162 163 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) { 164 AtomicRMWInst::BinOp Op; 165 166 switch (I.getIntrinsicID()) { 167 default: 168 return; 169 case Intrinsic::amdgcn_buffer_atomic_add: 170 case Intrinsic::amdgcn_struct_buffer_atomic_add: 171 case Intrinsic::amdgcn_raw_buffer_atomic_add: 172 Op = AtomicRMWInst::Add; 173 break; 174 case Intrinsic::amdgcn_buffer_atomic_sub: 175 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 176 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 177 Op = AtomicRMWInst::Sub; 178 break; 179 case Intrinsic::amdgcn_buffer_atomic_and: 180 case Intrinsic::amdgcn_struct_buffer_atomic_and: 181 case Intrinsic::amdgcn_raw_buffer_atomic_and: 182 Op = AtomicRMWInst::And; 183 break; 184 case Intrinsic::amdgcn_buffer_atomic_or: 185 case Intrinsic::amdgcn_struct_buffer_atomic_or: 186 case Intrinsic::amdgcn_raw_buffer_atomic_or: 187 Op = AtomicRMWInst::Or; 188 break; 189 case Intrinsic::amdgcn_buffer_atomic_xor: 190 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 191 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 192 Op = AtomicRMWInst::Xor; 193 break; 194 case Intrinsic::amdgcn_buffer_atomic_smin: 195 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 196 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 197 Op = AtomicRMWInst::Min; 198 break; 199 case Intrinsic::amdgcn_buffer_atomic_umin: 200 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 201 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 202 Op = AtomicRMWInst::UMin; 203 break; 204 case Intrinsic::amdgcn_buffer_atomic_smax: 205 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 206 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 207 Op = AtomicRMWInst::Max; 208 break; 209 case Intrinsic::amdgcn_buffer_atomic_umax: 210 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 211 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 212 Op = AtomicRMWInst::UMax; 213 break; 214 } 215 216 const unsigned ValIdx = 0; 217 218 const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx)); 219 220 // If the value operand is divergent, each lane is contributing a different 221 // value to the atomic calculation. We can only optimize divergent values if 222 // we have DPP available on our subtarget, and the atomic operation is 32 223 // bits. 224 if (ValDivergent && 225 (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) { 226 return; 227 } 228 229 // If any of the other arguments to the intrinsic are divergent, we can't 230 // optimize the operation. 231 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) { 232 if (DA->isDivergentUse(&I.getOperandUse(Idx))) { 233 return; 234 } 235 } 236 237 // If we get here, we can optimize the atomic using a single wavefront-wide 238 // atomic operation to do the calculation for the entire wavefront, so 239 // remember the instruction so we can come back to it. 240 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; 241 242 ToReplace.push_back(Info); 243 } 244 245 // Use the builder to create the non-atomic counterpart of the specified 246 // atomicrmw binary op. 247 static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op, 248 Value *LHS, Value *RHS) { 249 CmpInst::Predicate Pred; 250 251 switch (Op) { 252 default: 253 llvm_unreachable("Unhandled atomic op"); 254 case AtomicRMWInst::Add: 255 return B.CreateBinOp(Instruction::Add, LHS, RHS); 256 case AtomicRMWInst::Sub: 257 return B.CreateBinOp(Instruction::Sub, LHS, RHS); 258 case AtomicRMWInst::And: 259 return B.CreateBinOp(Instruction::And, LHS, RHS); 260 case AtomicRMWInst::Or: 261 return B.CreateBinOp(Instruction::Or, LHS, RHS); 262 case AtomicRMWInst::Xor: 263 return B.CreateBinOp(Instruction::Xor, LHS, RHS); 264 265 case AtomicRMWInst::Max: 266 Pred = CmpInst::ICMP_SGT; 267 break; 268 case AtomicRMWInst::Min: 269 Pred = CmpInst::ICMP_SLT; 270 break; 271 case AtomicRMWInst::UMax: 272 Pred = CmpInst::ICMP_UGT; 273 break; 274 case AtomicRMWInst::UMin: 275 Pred = CmpInst::ICMP_ULT; 276 break; 277 } 278 Value *Cond = B.CreateICmp(Pred, LHS, RHS); 279 return B.CreateSelect(Cond, LHS, RHS); 280 } 281 282 // Use the builder to create an inclusive scan of V across the wavefront, with 283 // all lanes active. 284 Value *AMDGPUAtomicOptimizer::buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, 285 Value *V, Value *const Identity) const { 286 Type *const Ty = V->getType(); 287 Module *M = B.GetInsertBlock()->getModule(); 288 Function *UpdateDPP = 289 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty); 290 Function *PermLaneX16 = 291 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_permlanex16, {}); 292 Function *ReadLane = 293 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {}); 294 295 for (unsigned Idx = 0; Idx < 4; Idx++) { 296 V = buildNonAtomicBinOp( 297 B, Op, V, 298 B.CreateCall(UpdateDPP, 299 {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx), 300 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()})); 301 } 302 if (ST->hasDPPBroadcasts()) { 303 // GFX9 has DPP row broadcast operations. 304 V = buildNonAtomicBinOp( 305 B, Op, V, 306 B.CreateCall(UpdateDPP, 307 {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa), 308 B.getInt32(0xf), B.getFalse()})); 309 V = buildNonAtomicBinOp( 310 B, Op, V, 311 B.CreateCall(UpdateDPP, 312 {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc), 313 B.getInt32(0xf), B.getFalse()})); 314 } else { 315 // On GFX10 all DPP operations are confined to a single row. To get cross- 316 // row operations we have to use permlane or readlane. 317 318 // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes 319 // 48..63). 320 Value *const PermX = 321 B.CreateCall(PermLaneX16, {V, V, B.getInt32(-1), B.getInt32(-1), 322 B.getFalse(), B.getFalse()}); 323 V = buildNonAtomicBinOp( 324 B, Op, V, 325 B.CreateCall(UpdateDPP, 326 {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID), 327 B.getInt32(0xa), B.getInt32(0xf), B.getFalse()})); 328 if (!ST->isWave32()) { 329 // Combine lane 31 into lanes 32..63. 330 Value *const Lane31 = B.CreateCall(ReadLane, {V, B.getInt32(31)}); 331 V = buildNonAtomicBinOp( 332 B, Op, V, 333 B.CreateCall(UpdateDPP, 334 {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID), 335 B.getInt32(0xc), B.getInt32(0xf), B.getFalse()})); 336 } 337 } 338 return V; 339 } 340 341 // Use the builder to create a shift right of V across the wavefront, with all 342 // lanes active, to turn an inclusive scan into an exclusive scan. 343 Value *AMDGPUAtomicOptimizer::buildShiftRight(IRBuilder<> &B, Value *V, 344 Value *const Identity) const { 345 Type *const Ty = V->getType(); 346 Module *M = B.GetInsertBlock()->getModule(); 347 Function *UpdateDPP = 348 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty); 349 Function *ReadLane = 350 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {}); 351 Function *WriteLane = 352 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, {}); 353 354 if (ST->hasDPPWavefrontShifts()) { 355 // GFX9 has DPP wavefront shift operations. 356 V = B.CreateCall(UpdateDPP, 357 {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf), 358 B.getInt32(0xf), B.getFalse()}); 359 } else { 360 // On GFX10 all DPP operations are confined to a single row. To get cross- 361 // row operations we have to use permlane or readlane. 362 Value *Old = V; 363 V = B.CreateCall(UpdateDPP, 364 {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1), 365 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}); 366 367 // Copy the old lane 15 to the new lane 16. 368 V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}), 369 B.getInt32(16), V}); 370 371 if (!ST->isWave32()) { 372 // Copy the old lane 31 to the new lane 32. 373 V = B.CreateCall( 374 WriteLane, 375 {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V}); 376 377 // Copy the old lane 47 to the new lane 48. 378 V = B.CreateCall( 379 WriteLane, 380 {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V}); 381 } 382 } 383 384 return V; 385 } 386 387 static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op, 388 unsigned BitWidth) { 389 switch (Op) { 390 default: 391 llvm_unreachable("Unhandled atomic op"); 392 case AtomicRMWInst::Add: 393 case AtomicRMWInst::Sub: 394 case AtomicRMWInst::Or: 395 case AtomicRMWInst::Xor: 396 case AtomicRMWInst::UMax: 397 return APInt::getMinValue(BitWidth); 398 case AtomicRMWInst::And: 399 case AtomicRMWInst::UMin: 400 return APInt::getMaxValue(BitWidth); 401 case AtomicRMWInst::Max: 402 return APInt::getSignedMinValue(BitWidth); 403 case AtomicRMWInst::Min: 404 return APInt::getSignedMaxValue(BitWidth); 405 } 406 } 407 408 static Value *buildMul(IRBuilder<> &B, Value *LHS, Value *RHS) { 409 const ConstantInt *CI = dyn_cast<ConstantInt>(LHS); 410 return (CI && CI->isOne()) ? RHS : B.CreateMul(LHS, RHS); 411 } 412 413 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I, 414 AtomicRMWInst::BinOp Op, 415 unsigned ValIdx, 416 bool ValDivergent) const { 417 // Start building just before the instruction. 418 IRBuilder<> B(&I); 419 420 // If we are in a pixel shader, because of how we have to mask out helper 421 // lane invocations, we need to record the entry and exit BB's. 422 BasicBlock *PixelEntryBB = nullptr; 423 BasicBlock *PixelExitBB = nullptr; 424 425 // If we're optimizing an atomic within a pixel shader, we need to wrap the 426 // entire atomic operation in a helper-lane check. We do not want any helper 427 // lanes that are around only for the purposes of derivatives to take part 428 // in any cross-lane communication, and we use a branch on whether the lane is 429 // live to do this. 430 if (IsPixelShader) { 431 // Record I's original position as the entry block. 432 PixelEntryBB = I.getParent(); 433 434 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {}); 435 Instruction *const NonHelperTerminator = 436 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); 437 438 // Record I's new position as the exit block. 439 PixelExitBB = I.getParent(); 440 441 I.moveBefore(NonHelperTerminator); 442 B.SetInsertPoint(&I); 443 } 444 445 Type *const Ty = I.getType(); 446 const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty); 447 auto *const VecTy = FixedVectorType::get(B.getInt32Ty(), 2); 448 449 // This is the value in the atomic operation we need to combine in order to 450 // reduce the number of atomic operations. 451 Value *const V = I.getOperand(ValIdx); 452 453 // We need to know how many lanes are active within the wavefront, and we do 454 // this by doing a ballot of active lanes. 455 Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize()); 456 CallInst *const Ballot = 457 B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue()); 458 459 // We need to know how many lanes are active within the wavefront that are 460 // below us. If we counted each lane linearly starting from 0, a lane is 461 // below us only if its associated index was less than ours. We do this by 462 // using the mbcnt intrinsic. 463 Value *Mbcnt; 464 if (ST->isWave32()) { 465 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {}, 466 {Ballot, B.getInt32(0)}); 467 } else { 468 Value *const BitCast = B.CreateBitCast(Ballot, VecTy); 469 Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0)); 470 Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1)); 471 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {}, 472 {ExtractLo, B.getInt32(0)}); 473 Mbcnt = 474 B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt}); 475 } 476 Mbcnt = B.CreateIntCast(Mbcnt, Ty, false); 477 478 Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth)); 479 480 Value *ExclScan = nullptr; 481 Value *NewV = nullptr; 482 483 // If we have a divergent value in each lane, we need to combine the value 484 // using DPP. 485 if (ValDivergent) { 486 // First we need to set all inactive invocations to the identity value, so 487 // that they can correctly contribute to the final result. 488 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity}); 489 490 const AtomicRMWInst::BinOp ScanOp = 491 Op == AtomicRMWInst::Sub ? AtomicRMWInst::Add : Op; 492 NewV = buildScan(B, ScanOp, NewV, Identity); 493 ExclScan = buildShiftRight(B, NewV, Identity); 494 495 // Read the value from the last lane, which has accumlated the values of 496 // each active lane in the wavefront. This will be our new value which we 497 // will provide to the atomic operation. 498 Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1); 499 if (TyBitWidth == 64) { 500 Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty()); 501 Value *const ExtractHi = 502 B.CreateTrunc(B.CreateLShr(NewV, 32), B.getInt32Ty()); 503 CallInst *const ReadLaneLo = B.CreateIntrinsic( 504 Intrinsic::amdgcn_readlane, {}, {ExtractLo, LastLaneIdx}); 505 CallInst *const ReadLaneHi = B.CreateIntrinsic( 506 Intrinsic::amdgcn_readlane, {}, {ExtractHi, LastLaneIdx}); 507 Value *const PartialInsert = B.CreateInsertElement( 508 UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0)); 509 Value *const Insert = 510 B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1)); 511 NewV = B.CreateBitCast(Insert, Ty); 512 } else if (TyBitWidth == 32) { 513 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {}, 514 {NewV, LastLaneIdx}); 515 } else { 516 llvm_unreachable("Unhandled atomic bit width"); 517 } 518 519 // Finally mark the readlanes in the WWM section. 520 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV); 521 } else { 522 switch (Op) { 523 default: 524 llvm_unreachable("Unhandled atomic op"); 525 526 case AtomicRMWInst::Add: 527 case AtomicRMWInst::Sub: { 528 // The new value we will be contributing to the atomic operation is the 529 // old value times the number of active lanes. 530 Value *const Ctpop = B.CreateIntCast( 531 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); 532 NewV = buildMul(B, V, Ctpop); 533 break; 534 } 535 536 case AtomicRMWInst::And: 537 case AtomicRMWInst::Or: 538 case AtomicRMWInst::Max: 539 case AtomicRMWInst::Min: 540 case AtomicRMWInst::UMax: 541 case AtomicRMWInst::UMin: 542 // These operations with a uniform value are idempotent: doing the atomic 543 // operation multiple times has the same effect as doing it once. 544 NewV = V; 545 break; 546 547 case AtomicRMWInst::Xor: 548 // The new value we will be contributing to the atomic operation is the 549 // old value times the parity of the number of active lanes. 550 Value *const Ctpop = B.CreateIntCast( 551 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); 552 NewV = buildMul(B, V, B.CreateAnd(Ctpop, 1)); 553 break; 554 } 555 } 556 557 // We only want a single lane to enter our new control flow, and we do this 558 // by checking if there are any active lanes below us. Only one lane will 559 // have 0 active lanes below us, so that will be the only one to progress. 560 Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0)); 561 562 // Store I's original basic block before we split the block. 563 BasicBlock *const EntryBB = I.getParent(); 564 565 // We need to introduce some new control flow to force a single lane to be 566 // active. We do this by splitting I's basic block at I, and introducing the 567 // new block such that: 568 // entry --> single_lane -\ 569 // \------------------> exit 570 Instruction *const SingleLaneTerminator = 571 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); 572 573 // Move the IR builder into single_lane next. 574 B.SetInsertPoint(SingleLaneTerminator); 575 576 // Clone the original atomic operation into single lane, replacing the 577 // original value with our newly created one. 578 Instruction *const NewI = I.clone(); 579 B.Insert(NewI); 580 NewI->setOperand(ValIdx, NewV); 581 582 // Move the IR builder into exit next, and start inserting just before the 583 // original instruction. 584 B.SetInsertPoint(&I); 585 586 const bool NeedResult = !I.use_empty(); 587 if (NeedResult) { 588 // Create a PHI node to get our new atomic result into the exit block. 589 PHINode *const PHI = B.CreatePHI(Ty, 2); 590 PHI->addIncoming(UndefValue::get(Ty), EntryBB); 591 PHI->addIncoming(NewI, SingleLaneTerminator->getParent()); 592 593 // We need to broadcast the value who was the lowest active lane (the first 594 // lane) to all other lanes in the wavefront. We use an intrinsic for this, 595 // but have to handle 64-bit broadcasts with two calls to this intrinsic. 596 Value *BroadcastI = nullptr; 597 598 if (TyBitWidth == 64) { 599 Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty()); 600 Value *const ExtractHi = 601 B.CreateTrunc(B.CreateLShr(PHI, 32), B.getInt32Ty()); 602 CallInst *const ReadFirstLaneLo = 603 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo); 604 CallInst *const ReadFirstLaneHi = 605 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi); 606 Value *const PartialInsert = B.CreateInsertElement( 607 UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0)); 608 Value *const Insert = 609 B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1)); 610 BroadcastI = B.CreateBitCast(Insert, Ty); 611 } else if (TyBitWidth == 32) { 612 613 BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI); 614 } else { 615 llvm_unreachable("Unhandled atomic bit width"); 616 } 617 618 // Now that we have the result of our single atomic operation, we need to 619 // get our individual lane's slice into the result. We use the lane offset 620 // we previously calculated combined with the atomic result value we got 621 // from the first lane, to get our lane's index into the atomic result. 622 Value *LaneOffset = nullptr; 623 if (ValDivergent) { 624 LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, ExclScan); 625 } else { 626 switch (Op) { 627 default: 628 llvm_unreachable("Unhandled atomic op"); 629 case AtomicRMWInst::Add: 630 case AtomicRMWInst::Sub: 631 LaneOffset = buildMul(B, V, Mbcnt); 632 break; 633 case AtomicRMWInst::And: 634 case AtomicRMWInst::Or: 635 case AtomicRMWInst::Max: 636 case AtomicRMWInst::Min: 637 case AtomicRMWInst::UMax: 638 case AtomicRMWInst::UMin: 639 LaneOffset = B.CreateSelect(Cond, Identity, V); 640 break; 641 case AtomicRMWInst::Xor: 642 LaneOffset = buildMul(B, V, B.CreateAnd(Mbcnt, 1)); 643 break; 644 } 645 } 646 Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset); 647 648 if (IsPixelShader) { 649 // Need a final PHI to reconverge to above the helper lane branch mask. 650 B.SetInsertPoint(PixelExitBB->getFirstNonPHI()); 651 652 PHINode *const PHI = B.CreatePHI(Ty, 2); 653 PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB); 654 PHI->addIncoming(Result, I.getParent()); 655 I.replaceAllUsesWith(PHI); 656 } else { 657 // Replace the original atomic instruction with the new one. 658 I.replaceAllUsesWith(Result); 659 } 660 } 661 662 // And delete the original. 663 I.eraseFromParent(); 664 } 665 666 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE, 667 "AMDGPU atomic optimizations", false, false) 668 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 669 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 670 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE, 671 "AMDGPU atomic optimizations", false, false) 672 673 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() { 674 return new AMDGPUAtomicOptimizer(); 675 } 676