1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass optimizes atomic operations by using a single lane of a wavefront 11 /// to perform the atomic operation, thus reducing contention on that memory 12 /// location. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPU.h" 17 #include "GCNSubtarget.h" 18 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 19 #include "llvm/CodeGen/TargetPassConfig.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/IR/InstVisitor.h" 22 #include "llvm/IR/IntrinsicsAMDGPU.h" 23 #include "llvm/InitializePasses.h" 24 #include "llvm/Target/TargetMachine.h" 25 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 26 27 #define DEBUG_TYPE "amdgpu-atomic-optimizer" 28 29 using namespace llvm; 30 using namespace llvm::AMDGPU; 31 32 namespace { 33 34 struct ReplacementInfo { 35 Instruction *I; 36 AtomicRMWInst::BinOp Op; 37 unsigned ValIdx; 38 bool ValDivergent; 39 }; 40 41 class AMDGPUAtomicOptimizer : public FunctionPass, 42 public InstVisitor<AMDGPUAtomicOptimizer> { 43 private: 44 SmallVector<ReplacementInfo, 8> ToReplace; 45 const LegacyDivergenceAnalysis *DA; 46 const DataLayout *DL; 47 DominatorTree *DT; 48 const GCNSubtarget *ST; 49 bool IsPixelShader; 50 51 Value *buildReduction(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V, 52 Value *const Identity) const; 53 Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V, 54 Value *const Identity) const; 55 Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const; 56 void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx, 57 bool ValDivergent) const; 58 59 public: 60 static char ID; 61 62 AMDGPUAtomicOptimizer() : FunctionPass(ID) {} 63 64 bool runOnFunction(Function &F) override; 65 66 void getAnalysisUsage(AnalysisUsage &AU) const override { 67 AU.addPreserved<DominatorTreeWrapperPass>(); 68 AU.addRequired<LegacyDivergenceAnalysis>(); 69 AU.addRequired<TargetPassConfig>(); 70 } 71 72 void visitAtomicRMWInst(AtomicRMWInst &I); 73 void visitIntrinsicInst(IntrinsicInst &I); 74 }; 75 76 } // namespace 77 78 char AMDGPUAtomicOptimizer::ID = 0; 79 80 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID; 81 82 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) { 83 if (skipFunction(F)) { 84 return false; 85 } 86 87 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 88 DL = &F.getParent()->getDataLayout(); 89 DominatorTreeWrapperPass *const DTW = 90 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 91 DT = DTW ? &DTW->getDomTree() : nullptr; 92 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>(); 93 const TargetMachine &TM = TPC.getTM<TargetMachine>(); 94 ST = &TM.getSubtarget<GCNSubtarget>(F); 95 IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS; 96 97 visit(F); 98 99 const bool Changed = !ToReplace.empty(); 100 101 for (ReplacementInfo &Info : ToReplace) { 102 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent); 103 } 104 105 ToReplace.clear(); 106 107 return Changed; 108 } 109 110 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) { 111 // Early exit for unhandled address space atomic instructions. 112 switch (I.getPointerAddressSpace()) { 113 default: 114 return; 115 case AMDGPUAS::GLOBAL_ADDRESS: 116 case AMDGPUAS::LOCAL_ADDRESS: 117 break; 118 } 119 120 AtomicRMWInst::BinOp Op = I.getOperation(); 121 122 switch (Op) { 123 default: 124 return; 125 case AtomicRMWInst::Add: 126 case AtomicRMWInst::Sub: 127 case AtomicRMWInst::And: 128 case AtomicRMWInst::Or: 129 case AtomicRMWInst::Xor: 130 case AtomicRMWInst::Max: 131 case AtomicRMWInst::Min: 132 case AtomicRMWInst::UMax: 133 case AtomicRMWInst::UMin: 134 break; 135 } 136 137 const unsigned PtrIdx = 0; 138 const unsigned ValIdx = 1; 139 140 // If the pointer operand is divergent, then each lane is doing an atomic 141 // operation on a different address, and we cannot optimize that. 142 if (DA->isDivergentUse(&I.getOperandUse(PtrIdx))) { 143 return; 144 } 145 146 const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx)); 147 148 // If the value operand is divergent, each lane is contributing a different 149 // value to the atomic calculation. We can only optimize divergent values if 150 // we have DPP available on our subtarget, and the atomic operation is 32 151 // bits. 152 if (ValDivergent && 153 (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) { 154 return; 155 } 156 157 // If we get here, we can optimize the atomic using a single wavefront-wide 158 // atomic operation to do the calculation for the entire wavefront, so 159 // remember the instruction so we can come back to it. 160 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; 161 162 ToReplace.push_back(Info); 163 } 164 165 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) { 166 AtomicRMWInst::BinOp Op; 167 168 switch (I.getIntrinsicID()) { 169 default: 170 return; 171 case Intrinsic::amdgcn_buffer_atomic_add: 172 case Intrinsic::amdgcn_struct_buffer_atomic_add: 173 case Intrinsic::amdgcn_raw_buffer_atomic_add: 174 Op = AtomicRMWInst::Add; 175 break; 176 case Intrinsic::amdgcn_buffer_atomic_sub: 177 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 178 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 179 Op = AtomicRMWInst::Sub; 180 break; 181 case Intrinsic::amdgcn_buffer_atomic_and: 182 case Intrinsic::amdgcn_struct_buffer_atomic_and: 183 case Intrinsic::amdgcn_raw_buffer_atomic_and: 184 Op = AtomicRMWInst::And; 185 break; 186 case Intrinsic::amdgcn_buffer_atomic_or: 187 case Intrinsic::amdgcn_struct_buffer_atomic_or: 188 case Intrinsic::amdgcn_raw_buffer_atomic_or: 189 Op = AtomicRMWInst::Or; 190 break; 191 case Intrinsic::amdgcn_buffer_atomic_xor: 192 case Intrinsic::amdgcn_struct_buffer_atomic_xor: 193 case Intrinsic::amdgcn_raw_buffer_atomic_xor: 194 Op = AtomicRMWInst::Xor; 195 break; 196 case Intrinsic::amdgcn_buffer_atomic_smin: 197 case Intrinsic::amdgcn_struct_buffer_atomic_smin: 198 case Intrinsic::amdgcn_raw_buffer_atomic_smin: 199 Op = AtomicRMWInst::Min; 200 break; 201 case Intrinsic::amdgcn_buffer_atomic_umin: 202 case Intrinsic::amdgcn_struct_buffer_atomic_umin: 203 case Intrinsic::amdgcn_raw_buffer_atomic_umin: 204 Op = AtomicRMWInst::UMin; 205 break; 206 case Intrinsic::amdgcn_buffer_atomic_smax: 207 case Intrinsic::amdgcn_struct_buffer_atomic_smax: 208 case Intrinsic::amdgcn_raw_buffer_atomic_smax: 209 Op = AtomicRMWInst::Max; 210 break; 211 case Intrinsic::amdgcn_buffer_atomic_umax: 212 case Intrinsic::amdgcn_struct_buffer_atomic_umax: 213 case Intrinsic::amdgcn_raw_buffer_atomic_umax: 214 Op = AtomicRMWInst::UMax; 215 break; 216 } 217 218 const unsigned ValIdx = 0; 219 220 const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx)); 221 222 // If the value operand is divergent, each lane is contributing a different 223 // value to the atomic calculation. We can only optimize divergent values if 224 // we have DPP available on our subtarget, and the atomic operation is 32 225 // bits. 226 if (ValDivergent && 227 (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) { 228 return; 229 } 230 231 // If any of the other arguments to the intrinsic are divergent, we can't 232 // optimize the operation. 233 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) { 234 if (DA->isDivergentUse(&I.getOperandUse(Idx))) { 235 return; 236 } 237 } 238 239 // If we get here, we can optimize the atomic using a single wavefront-wide 240 // atomic operation to do the calculation for the entire wavefront, so 241 // remember the instruction so we can come back to it. 242 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; 243 244 ToReplace.push_back(Info); 245 } 246 247 // Use the builder to create the non-atomic counterpart of the specified 248 // atomicrmw binary op. 249 static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op, 250 Value *LHS, Value *RHS) { 251 CmpInst::Predicate Pred; 252 253 switch (Op) { 254 default: 255 llvm_unreachable("Unhandled atomic op"); 256 case AtomicRMWInst::Add: 257 return B.CreateBinOp(Instruction::Add, LHS, RHS); 258 case AtomicRMWInst::Sub: 259 return B.CreateBinOp(Instruction::Sub, LHS, RHS); 260 case AtomicRMWInst::And: 261 return B.CreateBinOp(Instruction::And, LHS, RHS); 262 case AtomicRMWInst::Or: 263 return B.CreateBinOp(Instruction::Or, LHS, RHS); 264 case AtomicRMWInst::Xor: 265 return B.CreateBinOp(Instruction::Xor, LHS, RHS); 266 267 case AtomicRMWInst::Max: 268 Pred = CmpInst::ICMP_SGT; 269 break; 270 case AtomicRMWInst::Min: 271 Pred = CmpInst::ICMP_SLT; 272 break; 273 case AtomicRMWInst::UMax: 274 Pred = CmpInst::ICMP_UGT; 275 break; 276 case AtomicRMWInst::UMin: 277 Pred = CmpInst::ICMP_ULT; 278 break; 279 } 280 Value *Cond = B.CreateICmp(Pred, LHS, RHS); 281 return B.CreateSelect(Cond, LHS, RHS); 282 } 283 284 // Use the builder to create a reduction of V across the wavefront, with all 285 // lanes active, returning the same result in all lanes. 286 Value *AMDGPUAtomicOptimizer::buildReduction(IRBuilder<> &B, 287 AtomicRMWInst::BinOp Op, Value *V, 288 Value *const Identity) const { 289 Type *const Ty = V->getType(); 290 Module *M = B.GetInsertBlock()->getModule(); 291 Function *UpdateDPP = 292 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty); 293 294 // Reduce within each row of 16 lanes. 295 for (unsigned Idx = 0; Idx < 4; Idx++) { 296 V = buildNonAtomicBinOp( 297 B, Op, V, 298 B.CreateCall(UpdateDPP, 299 {Identity, V, B.getInt32(DPP::ROW_XMASK0 | 1 << Idx), 300 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()})); 301 } 302 303 // Reduce within each pair of rows (i.e. 32 lanes). 304 assert(ST->hasPermLaneX16()); 305 V = buildNonAtomicBinOp( 306 B, Op, V, 307 B.CreateIntrinsic( 308 Intrinsic::amdgcn_permlanex16, {}, 309 {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()})); 310 311 if (ST->isWave32()) 312 return V; 313 314 if (ST->hasPermLane64()) { 315 // Reduce across the upper and lower 32 lanes. 316 return buildNonAtomicBinOp( 317 B, Op, V, B.CreateIntrinsic(Intrinsic::amdgcn_permlane64, {}, V)); 318 } 319 320 // Pick an arbitrary lane from 0..31 and an arbitrary lane from 32..63 and 321 // combine them with a scalar operation. 322 Function *ReadLane = 323 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {}); 324 Value *const Lane0 = B.CreateCall(ReadLane, {V, B.getInt32(0)}); 325 Value *const Lane32 = B.CreateCall(ReadLane, {V, B.getInt32(32)}); 326 return buildNonAtomicBinOp(B, Op, Lane0, Lane32); 327 } 328 329 // Use the builder to create an inclusive scan of V across the wavefront, with 330 // all lanes active. 331 Value *AMDGPUAtomicOptimizer::buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, 332 Value *V, Value *const Identity) const { 333 Type *const Ty = V->getType(); 334 Module *M = B.GetInsertBlock()->getModule(); 335 Function *UpdateDPP = 336 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty); 337 338 for (unsigned Idx = 0; Idx < 4; Idx++) { 339 V = buildNonAtomicBinOp( 340 B, Op, V, 341 B.CreateCall(UpdateDPP, 342 {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx), 343 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()})); 344 } 345 if (ST->hasDPPBroadcasts()) { 346 // GFX9 has DPP row broadcast operations. 347 V = buildNonAtomicBinOp( 348 B, Op, V, 349 B.CreateCall(UpdateDPP, 350 {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa), 351 B.getInt32(0xf), B.getFalse()})); 352 V = buildNonAtomicBinOp( 353 B, Op, V, 354 B.CreateCall(UpdateDPP, 355 {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc), 356 B.getInt32(0xf), B.getFalse()})); 357 } else { 358 // On GFX10 all DPP operations are confined to a single row. To get cross- 359 // row operations we have to use permlane or readlane. 360 361 // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes 362 // 48..63). 363 assert(ST->hasPermLaneX16()); 364 Value *const PermX = B.CreateIntrinsic( 365 Intrinsic::amdgcn_permlanex16, {}, 366 {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()}); 367 V = buildNonAtomicBinOp( 368 B, Op, V, 369 B.CreateCall(UpdateDPP, 370 {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID), 371 B.getInt32(0xa), B.getInt32(0xf), B.getFalse()})); 372 if (!ST->isWave32()) { 373 // Combine lane 31 into lanes 32..63. 374 Value *const Lane31 = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {}, 375 {V, B.getInt32(31)}); 376 V = buildNonAtomicBinOp( 377 B, Op, V, 378 B.CreateCall(UpdateDPP, 379 {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID), 380 B.getInt32(0xc), B.getInt32(0xf), B.getFalse()})); 381 } 382 } 383 return V; 384 } 385 386 // Use the builder to create a shift right of V across the wavefront, with all 387 // lanes active, to turn an inclusive scan into an exclusive scan. 388 Value *AMDGPUAtomicOptimizer::buildShiftRight(IRBuilder<> &B, Value *V, 389 Value *const Identity) const { 390 Type *const Ty = V->getType(); 391 Module *M = B.GetInsertBlock()->getModule(); 392 Function *UpdateDPP = 393 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty); 394 395 if (ST->hasDPPWavefrontShifts()) { 396 // GFX9 has DPP wavefront shift operations. 397 V = B.CreateCall(UpdateDPP, 398 {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf), 399 B.getInt32(0xf), B.getFalse()}); 400 } else { 401 Function *ReadLane = 402 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {}); 403 Function *WriteLane = 404 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, {}); 405 406 // On GFX10 all DPP operations are confined to a single row. To get cross- 407 // row operations we have to use permlane or readlane. 408 Value *Old = V; 409 V = B.CreateCall(UpdateDPP, 410 {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1), 411 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}); 412 413 // Copy the old lane 15 to the new lane 16. 414 V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}), 415 B.getInt32(16), V}); 416 417 if (!ST->isWave32()) { 418 // Copy the old lane 31 to the new lane 32. 419 V = B.CreateCall( 420 WriteLane, 421 {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V}); 422 423 // Copy the old lane 47 to the new lane 48. 424 V = B.CreateCall( 425 WriteLane, 426 {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V}); 427 } 428 } 429 430 return V; 431 } 432 433 static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op, 434 unsigned BitWidth) { 435 switch (Op) { 436 default: 437 llvm_unreachable("Unhandled atomic op"); 438 case AtomicRMWInst::Add: 439 case AtomicRMWInst::Sub: 440 case AtomicRMWInst::Or: 441 case AtomicRMWInst::Xor: 442 case AtomicRMWInst::UMax: 443 return APInt::getMinValue(BitWidth); 444 case AtomicRMWInst::And: 445 case AtomicRMWInst::UMin: 446 return APInt::getMaxValue(BitWidth); 447 case AtomicRMWInst::Max: 448 return APInt::getSignedMinValue(BitWidth); 449 case AtomicRMWInst::Min: 450 return APInt::getSignedMaxValue(BitWidth); 451 } 452 } 453 454 static Value *buildMul(IRBuilder<> &B, Value *LHS, Value *RHS) { 455 const ConstantInt *CI = dyn_cast<ConstantInt>(LHS); 456 return (CI && CI->isOne()) ? RHS : B.CreateMul(LHS, RHS); 457 } 458 459 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I, 460 AtomicRMWInst::BinOp Op, 461 unsigned ValIdx, 462 bool ValDivergent) const { 463 // Start building just before the instruction. 464 IRBuilder<> B(&I); 465 466 // If we are in a pixel shader, because of how we have to mask out helper 467 // lane invocations, we need to record the entry and exit BB's. 468 BasicBlock *PixelEntryBB = nullptr; 469 BasicBlock *PixelExitBB = nullptr; 470 471 // If we're optimizing an atomic within a pixel shader, we need to wrap the 472 // entire atomic operation in a helper-lane check. We do not want any helper 473 // lanes that are around only for the purposes of derivatives to take part 474 // in any cross-lane communication, and we use a branch on whether the lane is 475 // live to do this. 476 if (IsPixelShader) { 477 // Record I's original position as the entry block. 478 PixelEntryBB = I.getParent(); 479 480 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {}); 481 Instruction *const NonHelperTerminator = 482 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); 483 484 // Record I's new position as the exit block. 485 PixelExitBB = I.getParent(); 486 487 I.moveBefore(NonHelperTerminator); 488 B.SetInsertPoint(&I); 489 } 490 491 Type *const Ty = I.getType(); 492 const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty); 493 auto *const VecTy = FixedVectorType::get(B.getInt32Ty(), 2); 494 495 // This is the value in the atomic operation we need to combine in order to 496 // reduce the number of atomic operations. 497 Value *const V = I.getOperand(ValIdx); 498 499 // We need to know how many lanes are active within the wavefront, and we do 500 // this by doing a ballot of active lanes. 501 Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize()); 502 CallInst *const Ballot = 503 B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue()); 504 505 // We need to know how many lanes are active within the wavefront that are 506 // below us. If we counted each lane linearly starting from 0, a lane is 507 // below us only if its associated index was less than ours. We do this by 508 // using the mbcnt intrinsic. 509 Value *Mbcnt; 510 if (ST->isWave32()) { 511 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {}, 512 {Ballot, B.getInt32(0)}); 513 } else { 514 Value *const BitCast = B.CreateBitCast(Ballot, VecTy); 515 Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0)); 516 Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1)); 517 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {}, 518 {ExtractLo, B.getInt32(0)}); 519 Mbcnt = 520 B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt}); 521 } 522 Mbcnt = B.CreateIntCast(Mbcnt, Ty, false); 523 524 Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth)); 525 526 Value *ExclScan = nullptr; 527 Value *NewV = nullptr; 528 529 const bool NeedResult = !I.use_empty(); 530 531 // If we have a divergent value in each lane, we need to combine the value 532 // using DPP. 533 if (ValDivergent) { 534 // First we need to set all inactive invocations to the identity value, so 535 // that they can correctly contribute to the final result. 536 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity}); 537 538 const AtomicRMWInst::BinOp ScanOp = 539 Op == AtomicRMWInst::Sub ? AtomicRMWInst::Add : Op; 540 if (!NeedResult && ST->hasPermLaneX16()) { 541 // On GFX10 the permlanex16 instruction helps us build a reduction without 542 // too many readlanes and writelanes, which are generally bad for 543 // performance. 544 NewV = buildReduction(B, ScanOp, NewV, Identity); 545 } else { 546 NewV = buildScan(B, ScanOp, NewV, Identity); 547 if (NeedResult) 548 ExclScan = buildShiftRight(B, NewV, Identity); 549 550 // Read the value from the last lane, which has accumulated the values of 551 // each active lane in the wavefront. This will be our new value which we 552 // will provide to the atomic operation. 553 Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1); 554 assert(TyBitWidth == 32); 555 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {}, 556 {NewV, LastLaneIdx}); 557 } 558 559 // Finally mark the readlanes in the WWM section. 560 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, NewV); 561 } else { 562 switch (Op) { 563 default: 564 llvm_unreachable("Unhandled atomic op"); 565 566 case AtomicRMWInst::Add: 567 case AtomicRMWInst::Sub: { 568 // The new value we will be contributing to the atomic operation is the 569 // old value times the number of active lanes. 570 Value *const Ctpop = B.CreateIntCast( 571 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); 572 NewV = buildMul(B, V, Ctpop); 573 break; 574 } 575 576 case AtomicRMWInst::And: 577 case AtomicRMWInst::Or: 578 case AtomicRMWInst::Max: 579 case AtomicRMWInst::Min: 580 case AtomicRMWInst::UMax: 581 case AtomicRMWInst::UMin: 582 // These operations with a uniform value are idempotent: doing the atomic 583 // operation multiple times has the same effect as doing it once. 584 NewV = V; 585 break; 586 587 case AtomicRMWInst::Xor: 588 // The new value we will be contributing to the atomic operation is the 589 // old value times the parity of the number of active lanes. 590 Value *const Ctpop = B.CreateIntCast( 591 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false); 592 NewV = buildMul(B, V, B.CreateAnd(Ctpop, 1)); 593 break; 594 } 595 } 596 597 // We only want a single lane to enter our new control flow, and we do this 598 // by checking if there are any active lanes below us. Only one lane will 599 // have 0 active lanes below us, so that will be the only one to progress. 600 Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0)); 601 602 // Store I's original basic block before we split the block. 603 BasicBlock *const EntryBB = I.getParent(); 604 605 // We need to introduce some new control flow to force a single lane to be 606 // active. We do this by splitting I's basic block at I, and introducing the 607 // new block such that: 608 // entry --> single_lane -\ 609 // \------------------> exit 610 Instruction *const SingleLaneTerminator = 611 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); 612 613 // Move the IR builder into single_lane next. 614 B.SetInsertPoint(SingleLaneTerminator); 615 616 // Clone the original atomic operation into single lane, replacing the 617 // original value with our newly created one. 618 Instruction *const NewI = I.clone(); 619 B.Insert(NewI); 620 NewI->setOperand(ValIdx, NewV); 621 622 // Move the IR builder into exit next, and start inserting just before the 623 // original instruction. 624 B.SetInsertPoint(&I); 625 626 if (NeedResult) { 627 // Create a PHI node to get our new atomic result into the exit block. 628 PHINode *const PHI = B.CreatePHI(Ty, 2); 629 PHI->addIncoming(PoisonValue::get(Ty), EntryBB); 630 PHI->addIncoming(NewI, SingleLaneTerminator->getParent()); 631 632 // We need to broadcast the value who was the lowest active lane (the first 633 // lane) to all other lanes in the wavefront. We use an intrinsic for this, 634 // but have to handle 64-bit broadcasts with two calls to this intrinsic. 635 Value *BroadcastI = nullptr; 636 637 if (TyBitWidth == 64) { 638 Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty()); 639 Value *const ExtractHi = 640 B.CreateTrunc(B.CreateLShr(PHI, 32), B.getInt32Ty()); 641 CallInst *const ReadFirstLaneLo = 642 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo); 643 CallInst *const ReadFirstLaneHi = 644 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi); 645 Value *const PartialInsert = B.CreateInsertElement( 646 PoisonValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0)); 647 Value *const Insert = 648 B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1)); 649 BroadcastI = B.CreateBitCast(Insert, Ty); 650 } else if (TyBitWidth == 32) { 651 652 BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI); 653 } else { 654 llvm_unreachable("Unhandled atomic bit width"); 655 } 656 657 // Now that we have the result of our single atomic operation, we need to 658 // get our individual lane's slice into the result. We use the lane offset 659 // we previously calculated combined with the atomic result value we got 660 // from the first lane, to get our lane's index into the atomic result. 661 Value *LaneOffset = nullptr; 662 if (ValDivergent) { 663 LaneOffset = 664 B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, ExclScan); 665 } else { 666 switch (Op) { 667 default: 668 llvm_unreachable("Unhandled atomic op"); 669 case AtomicRMWInst::Add: 670 case AtomicRMWInst::Sub: 671 LaneOffset = buildMul(B, V, Mbcnt); 672 break; 673 case AtomicRMWInst::And: 674 case AtomicRMWInst::Or: 675 case AtomicRMWInst::Max: 676 case AtomicRMWInst::Min: 677 case AtomicRMWInst::UMax: 678 case AtomicRMWInst::UMin: 679 LaneOffset = B.CreateSelect(Cond, Identity, V); 680 break; 681 case AtomicRMWInst::Xor: 682 LaneOffset = buildMul(B, V, B.CreateAnd(Mbcnt, 1)); 683 break; 684 } 685 } 686 Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset); 687 688 if (IsPixelShader) { 689 // Need a final PHI to reconverge to above the helper lane branch mask. 690 B.SetInsertPoint(PixelExitBB->getFirstNonPHI()); 691 692 PHINode *const PHI = B.CreatePHI(Ty, 2); 693 PHI->addIncoming(PoisonValue::get(Ty), PixelEntryBB); 694 PHI->addIncoming(Result, I.getParent()); 695 I.replaceAllUsesWith(PHI); 696 } else { 697 // Replace the original atomic instruction with the new one. 698 I.replaceAllUsesWith(Result); 699 } 700 } 701 702 // And delete the original. 703 I.eraseFromParent(); 704 } 705 706 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE, 707 "AMDGPU atomic optimizations", false, false) 708 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 709 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 710 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE, 711 "AMDGPU atomic optimizations", false, false) 712 713 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() { 714 return new AMDGPUAtomicOptimizer(); 715 } 716