10b57cec5SDimitry Andric //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric /// \file
100b57cec5SDimitry Andric /// This pass optimizes atomic operations by using a single lane of a wavefront
110b57cec5SDimitry Andric /// to perform the atomic operation, thus reducing contention on that memory
120b57cec5SDimitry Andric /// location.
1306c3fb27SDimitry Andric /// Atomic optimizer uses following strategies to compute scan and reduced
1406c3fb27SDimitry Andric /// values
1506c3fb27SDimitry Andric /// 1. DPP -
1606c3fb27SDimitry Andric /// This is the most efficient implementation for scan. DPP uses Whole Wave
1706c3fb27SDimitry Andric /// Mode (WWM)
1806c3fb27SDimitry Andric /// 2. Iterative -
1906c3fb27SDimitry Andric // An alternative implementation iterates over all active lanes
2006c3fb27SDimitry Andric /// of Wavefront using llvm.cttz and performs scan using readlane & writelane
2106c3fb27SDimitry Andric /// intrinsics
220b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
230b57cec5SDimitry Andric
240b57cec5SDimitry Andric #include "AMDGPU.h"
25e8d8bef9SDimitry Andric #include "GCNSubtarget.h"
2606c3fb27SDimitry Andric #include "llvm/Analysis/DomTreeUpdater.h"
2706c3fb27SDimitry Andric #include "llvm/Analysis/UniformityAnalysis.h"
280b57cec5SDimitry Andric #include "llvm/CodeGen/TargetPassConfig.h"
290b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h"
300b57cec5SDimitry Andric #include "llvm/IR/InstVisitor.h"
31e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h"
32480093f4SDimitry Andric #include "llvm/InitializePasses.h"
33e8d8bef9SDimitry Andric #include "llvm/Target/TargetMachine.h"
340b57cec5SDimitry Andric #include "llvm/Transforms/Utils/BasicBlockUtils.h"
350b57cec5SDimitry Andric
360b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-atomic-optimizer"
370b57cec5SDimitry Andric
380b57cec5SDimitry Andric using namespace llvm;
398bcb0991SDimitry Andric using namespace llvm::AMDGPU;
400b57cec5SDimitry Andric
410b57cec5SDimitry Andric namespace {
420b57cec5SDimitry Andric
430b57cec5SDimitry Andric struct ReplacementInfo {
440b57cec5SDimitry Andric Instruction *I;
450b57cec5SDimitry Andric AtomicRMWInst::BinOp Op;
460b57cec5SDimitry Andric unsigned ValIdx;
470b57cec5SDimitry Andric bool ValDivergent;
480b57cec5SDimitry Andric };
490b57cec5SDimitry Andric
5006c3fb27SDimitry Andric class AMDGPUAtomicOptimizer : public FunctionPass {
5106c3fb27SDimitry Andric public:
5206c3fb27SDimitry Andric static char ID;
5306c3fb27SDimitry Andric ScanOptions ScanImpl;
AMDGPUAtomicOptimizer(ScanOptions ScanImpl)5406c3fb27SDimitry Andric AMDGPUAtomicOptimizer(ScanOptions ScanImpl)
5506c3fb27SDimitry Andric : FunctionPass(ID), ScanImpl(ScanImpl) {}
5606c3fb27SDimitry Andric
5706c3fb27SDimitry Andric bool runOnFunction(Function &F) override;
5806c3fb27SDimitry Andric
getAnalysisUsage(AnalysisUsage & AU) const5906c3fb27SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override {
6006c3fb27SDimitry Andric AU.addPreserved<DominatorTreeWrapperPass>();
6106c3fb27SDimitry Andric AU.addRequired<UniformityInfoWrapperPass>();
6206c3fb27SDimitry Andric AU.addRequired<TargetPassConfig>();
6306c3fb27SDimitry Andric }
6406c3fb27SDimitry Andric };
6506c3fb27SDimitry Andric
6606c3fb27SDimitry Andric class AMDGPUAtomicOptimizerImpl
6706c3fb27SDimitry Andric : public InstVisitor<AMDGPUAtomicOptimizerImpl> {
680b57cec5SDimitry Andric private:
690b57cec5SDimitry Andric SmallVector<ReplacementInfo, 8> ToReplace;
7006c3fb27SDimitry Andric const UniformityInfo *UA;
710b57cec5SDimitry Andric const DataLayout *DL;
7206c3fb27SDimitry Andric DomTreeUpdater &DTU;
738bcb0991SDimitry Andric const GCNSubtarget *ST;
740b57cec5SDimitry Andric bool IsPixelShader;
7506c3fb27SDimitry Andric ScanOptions ScanImpl;
760b57cec5SDimitry Andric
77fe6060f1SDimitry Andric Value *buildReduction(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
78fe6060f1SDimitry Andric Value *const Identity) const;
798bcb0991SDimitry Andric Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
808bcb0991SDimitry Andric Value *const Identity) const;
818bcb0991SDimitry Andric Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const;
8206c3fb27SDimitry Andric
8306c3fb27SDimitry Andric std::pair<Value *, Value *>
8406c3fb27SDimitry Andric buildScanIteratively(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
8506c3fb27SDimitry Andric Value *const Identity, Value *V, Instruction &I,
8606c3fb27SDimitry Andric BasicBlock *ComputeLoop, BasicBlock *ComputeEnd) const;
8706c3fb27SDimitry Andric
880b57cec5SDimitry Andric void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
890b57cec5SDimitry Andric bool ValDivergent) const;
900b57cec5SDimitry Andric
910b57cec5SDimitry Andric public:
9206c3fb27SDimitry Andric AMDGPUAtomicOptimizerImpl() = delete;
930b57cec5SDimitry Andric
AMDGPUAtomicOptimizerImpl(const UniformityInfo * UA,const DataLayout * DL,DomTreeUpdater & DTU,const GCNSubtarget * ST,bool IsPixelShader,ScanOptions ScanImpl)9406c3fb27SDimitry Andric AMDGPUAtomicOptimizerImpl(const UniformityInfo *UA, const DataLayout *DL,
9506c3fb27SDimitry Andric DomTreeUpdater &DTU, const GCNSubtarget *ST,
9606c3fb27SDimitry Andric bool IsPixelShader, ScanOptions ScanImpl)
9706c3fb27SDimitry Andric : UA(UA), DL(DL), DTU(DTU), ST(ST), IsPixelShader(IsPixelShader),
9806c3fb27SDimitry Andric ScanImpl(ScanImpl) {}
990b57cec5SDimitry Andric
10006c3fb27SDimitry Andric bool run(Function &F);
1010b57cec5SDimitry Andric
1020b57cec5SDimitry Andric void visitAtomicRMWInst(AtomicRMWInst &I);
1030b57cec5SDimitry Andric void visitIntrinsicInst(IntrinsicInst &I);
1040b57cec5SDimitry Andric };
1050b57cec5SDimitry Andric
1060b57cec5SDimitry Andric } // namespace
1070b57cec5SDimitry Andric
1080b57cec5SDimitry Andric char AMDGPUAtomicOptimizer::ID = 0;
1090b57cec5SDimitry Andric
1100b57cec5SDimitry Andric char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
1110b57cec5SDimitry Andric
runOnFunction(Function & F)1120b57cec5SDimitry Andric bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
1130b57cec5SDimitry Andric if (skipFunction(F)) {
1140b57cec5SDimitry Andric return false;
1150b57cec5SDimitry Andric }
1160b57cec5SDimitry Andric
11706c3fb27SDimitry Andric const UniformityInfo *UA =
11806c3fb27SDimitry Andric &getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
119*0fca6ea1SDimitry Andric const DataLayout *DL = &F.getDataLayout();
12006c3fb27SDimitry Andric
1210b57cec5SDimitry Andric DominatorTreeWrapperPass *const DTW =
1220b57cec5SDimitry Andric getAnalysisIfAvailable<DominatorTreeWrapperPass>();
12306c3fb27SDimitry Andric DomTreeUpdater DTU(DTW ? &DTW->getDomTree() : nullptr,
12406c3fb27SDimitry Andric DomTreeUpdater::UpdateStrategy::Lazy);
12506c3fb27SDimitry Andric
1260b57cec5SDimitry Andric const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
1270b57cec5SDimitry Andric const TargetMachine &TM = TPC.getTM<TargetMachine>();
12806c3fb27SDimitry Andric const GCNSubtarget *ST = &TM.getSubtarget<GCNSubtarget>(F);
12906c3fb27SDimitry Andric
13006c3fb27SDimitry Andric bool IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
13106c3fb27SDimitry Andric
13206c3fb27SDimitry Andric return AMDGPUAtomicOptimizerImpl(UA, DL, DTU, ST, IsPixelShader, ScanImpl)
13306c3fb27SDimitry Andric .run(F);
13406c3fb27SDimitry Andric }
13506c3fb27SDimitry Andric
run(Function & F,FunctionAnalysisManager & AM)13606c3fb27SDimitry Andric PreservedAnalyses AMDGPUAtomicOptimizerPass::run(Function &F,
13706c3fb27SDimitry Andric FunctionAnalysisManager &AM) {
13806c3fb27SDimitry Andric
13906c3fb27SDimitry Andric const auto *UA = &AM.getResult<UniformityInfoAnalysis>(F);
140*0fca6ea1SDimitry Andric const DataLayout *DL = &F.getDataLayout();
14106c3fb27SDimitry Andric
14206c3fb27SDimitry Andric DomTreeUpdater DTU(&AM.getResult<DominatorTreeAnalysis>(F),
14306c3fb27SDimitry Andric DomTreeUpdater::UpdateStrategy::Lazy);
14406c3fb27SDimitry Andric const GCNSubtarget *ST = &TM.getSubtarget<GCNSubtarget>(F);
14506c3fb27SDimitry Andric
14606c3fb27SDimitry Andric bool IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
14706c3fb27SDimitry Andric
14806c3fb27SDimitry Andric bool IsChanged =
14906c3fb27SDimitry Andric AMDGPUAtomicOptimizerImpl(UA, DL, DTU, ST, IsPixelShader, ScanImpl)
15006c3fb27SDimitry Andric .run(F);
15106c3fb27SDimitry Andric
15206c3fb27SDimitry Andric if (!IsChanged) {
15306c3fb27SDimitry Andric return PreservedAnalyses::all();
15406c3fb27SDimitry Andric }
15506c3fb27SDimitry Andric
15606c3fb27SDimitry Andric PreservedAnalyses PA;
15706c3fb27SDimitry Andric PA.preserve<DominatorTreeAnalysis>();
15806c3fb27SDimitry Andric return PA;
15906c3fb27SDimitry Andric }
16006c3fb27SDimitry Andric
run(Function & F)16106c3fb27SDimitry Andric bool AMDGPUAtomicOptimizerImpl::run(Function &F) {
16206c3fb27SDimitry Andric
16306c3fb27SDimitry Andric // Scan option None disables the Pass
16406c3fb27SDimitry Andric if (ScanImpl == ScanOptions::None) {
16506c3fb27SDimitry Andric return false;
16606c3fb27SDimitry Andric }
1670b57cec5SDimitry Andric
1680b57cec5SDimitry Andric visit(F);
1690b57cec5SDimitry Andric
1700b57cec5SDimitry Andric const bool Changed = !ToReplace.empty();
1710b57cec5SDimitry Andric
1720b57cec5SDimitry Andric for (ReplacementInfo &Info : ToReplace) {
1730b57cec5SDimitry Andric optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
1740b57cec5SDimitry Andric }
1750b57cec5SDimitry Andric
1760b57cec5SDimitry Andric ToReplace.clear();
1770b57cec5SDimitry Andric
1780b57cec5SDimitry Andric return Changed;
1790b57cec5SDimitry Andric }
1800b57cec5SDimitry Andric
isLegalCrossLaneType(Type * Ty)181*0fca6ea1SDimitry Andric static bool isLegalCrossLaneType(Type *Ty) {
182*0fca6ea1SDimitry Andric switch (Ty->getTypeID()) {
183*0fca6ea1SDimitry Andric case Type::FloatTyID:
184*0fca6ea1SDimitry Andric case Type::DoubleTyID:
185*0fca6ea1SDimitry Andric return true;
186*0fca6ea1SDimitry Andric case Type::IntegerTyID: {
187*0fca6ea1SDimitry Andric unsigned Size = Ty->getIntegerBitWidth();
188*0fca6ea1SDimitry Andric return (Size == 32 || Size == 64);
189*0fca6ea1SDimitry Andric }
190*0fca6ea1SDimitry Andric default:
191*0fca6ea1SDimitry Andric return false;
192*0fca6ea1SDimitry Andric }
193*0fca6ea1SDimitry Andric }
194*0fca6ea1SDimitry Andric
visitAtomicRMWInst(AtomicRMWInst & I)19506c3fb27SDimitry Andric void AMDGPUAtomicOptimizerImpl::visitAtomicRMWInst(AtomicRMWInst &I) {
1960b57cec5SDimitry Andric // Early exit for unhandled address space atomic instructions.
1970b57cec5SDimitry Andric switch (I.getPointerAddressSpace()) {
1980b57cec5SDimitry Andric default:
1990b57cec5SDimitry Andric return;
2000b57cec5SDimitry Andric case AMDGPUAS::GLOBAL_ADDRESS:
2010b57cec5SDimitry Andric case AMDGPUAS::LOCAL_ADDRESS:
2020b57cec5SDimitry Andric break;
2030b57cec5SDimitry Andric }
2040b57cec5SDimitry Andric
2050b57cec5SDimitry Andric AtomicRMWInst::BinOp Op = I.getOperation();
2060b57cec5SDimitry Andric
2070b57cec5SDimitry Andric switch (Op) {
2080b57cec5SDimitry Andric default:
2090b57cec5SDimitry Andric return;
2100b57cec5SDimitry Andric case AtomicRMWInst::Add:
2110b57cec5SDimitry Andric case AtomicRMWInst::Sub:
2120b57cec5SDimitry Andric case AtomicRMWInst::And:
2130b57cec5SDimitry Andric case AtomicRMWInst::Or:
2140b57cec5SDimitry Andric case AtomicRMWInst::Xor:
2150b57cec5SDimitry Andric case AtomicRMWInst::Max:
2160b57cec5SDimitry Andric case AtomicRMWInst::Min:
2170b57cec5SDimitry Andric case AtomicRMWInst::UMax:
2180b57cec5SDimitry Andric case AtomicRMWInst::UMin:
2195f757f3fSDimitry Andric case AtomicRMWInst::FAdd:
2205f757f3fSDimitry Andric case AtomicRMWInst::FSub:
2215f757f3fSDimitry Andric case AtomicRMWInst::FMax:
2225f757f3fSDimitry Andric case AtomicRMWInst::FMin:
2230b57cec5SDimitry Andric break;
2240b57cec5SDimitry Andric }
2250b57cec5SDimitry Andric
226*0fca6ea1SDimitry Andric // Only 32 and 64 bit floating point atomic ops are supported.
227*0fca6ea1SDimitry Andric if (AtomicRMWInst::isFPOperation(Op) &&
228*0fca6ea1SDimitry Andric !(I.getType()->isFloatTy() || I.getType()->isDoubleTy())) {
2295f757f3fSDimitry Andric return;
2305f757f3fSDimitry Andric }
2315f757f3fSDimitry Andric
2320b57cec5SDimitry Andric const unsigned PtrIdx = 0;
2330b57cec5SDimitry Andric const unsigned ValIdx = 1;
2340b57cec5SDimitry Andric
2350b57cec5SDimitry Andric // If the pointer operand is divergent, then each lane is doing an atomic
2360b57cec5SDimitry Andric // operation on a different address, and we cannot optimize that.
23706c3fb27SDimitry Andric if (UA->isDivergentUse(I.getOperandUse(PtrIdx))) {
2380b57cec5SDimitry Andric return;
2390b57cec5SDimitry Andric }
2400b57cec5SDimitry Andric
241*0fca6ea1SDimitry Andric bool ValDivergent = UA->isDivergentUse(I.getOperandUse(ValIdx));
2420b57cec5SDimitry Andric
2430b57cec5SDimitry Andric // If the value operand is divergent, each lane is contributing a different
2440b57cec5SDimitry Andric // value to the atomic calculation. We can only optimize divergent values if
245*0fca6ea1SDimitry Andric // we have DPP available on our subtarget (for DPP strategy), and the atomic
246*0fca6ea1SDimitry Andric // operation is 32 or 64 bits.
247*0fca6ea1SDimitry Andric if (ValDivergent) {
248*0fca6ea1SDimitry Andric if (ScanImpl == ScanOptions::DPP && !ST->hasDPP())
249*0fca6ea1SDimitry Andric return;
250*0fca6ea1SDimitry Andric
251*0fca6ea1SDimitry Andric if (!isLegalCrossLaneType(I.getType()))
2520b57cec5SDimitry Andric return;
2530b57cec5SDimitry Andric }
2540b57cec5SDimitry Andric
2550b57cec5SDimitry Andric // If we get here, we can optimize the atomic using a single wavefront-wide
2560b57cec5SDimitry Andric // atomic operation to do the calculation for the entire wavefront, so
2570b57cec5SDimitry Andric // remember the instruction so we can come back to it.
2580b57cec5SDimitry Andric const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
2590b57cec5SDimitry Andric
2600b57cec5SDimitry Andric ToReplace.push_back(Info);
2610b57cec5SDimitry Andric }
2620b57cec5SDimitry Andric
visitIntrinsicInst(IntrinsicInst & I)26306c3fb27SDimitry Andric void AMDGPUAtomicOptimizerImpl::visitIntrinsicInst(IntrinsicInst &I) {
2640b57cec5SDimitry Andric AtomicRMWInst::BinOp Op;
2650b57cec5SDimitry Andric
2660b57cec5SDimitry Andric switch (I.getIntrinsicID()) {
2670b57cec5SDimitry Andric default:
2680b57cec5SDimitry Andric return;
2690b57cec5SDimitry Andric case Intrinsic::amdgcn_struct_buffer_atomic_add:
27006c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
2710b57cec5SDimitry Andric case Intrinsic::amdgcn_raw_buffer_atomic_add:
27206c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
2730b57cec5SDimitry Andric Op = AtomicRMWInst::Add;
2740b57cec5SDimitry Andric break;
2750b57cec5SDimitry Andric case Intrinsic::amdgcn_struct_buffer_atomic_sub:
27606c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
2770b57cec5SDimitry Andric case Intrinsic::amdgcn_raw_buffer_atomic_sub:
27806c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
2790b57cec5SDimitry Andric Op = AtomicRMWInst::Sub;
2800b57cec5SDimitry Andric break;
2810b57cec5SDimitry Andric case Intrinsic::amdgcn_struct_buffer_atomic_and:
28206c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
2830b57cec5SDimitry Andric case Intrinsic::amdgcn_raw_buffer_atomic_and:
28406c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
2850b57cec5SDimitry Andric Op = AtomicRMWInst::And;
2860b57cec5SDimitry Andric break;
2870b57cec5SDimitry Andric case Intrinsic::amdgcn_struct_buffer_atomic_or:
28806c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
2890b57cec5SDimitry Andric case Intrinsic::amdgcn_raw_buffer_atomic_or:
29006c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
2910b57cec5SDimitry Andric Op = AtomicRMWInst::Or;
2920b57cec5SDimitry Andric break;
2930b57cec5SDimitry Andric case Intrinsic::amdgcn_struct_buffer_atomic_xor:
29406c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
2950b57cec5SDimitry Andric case Intrinsic::amdgcn_raw_buffer_atomic_xor:
29606c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
2970b57cec5SDimitry Andric Op = AtomicRMWInst::Xor;
2980b57cec5SDimitry Andric break;
2990b57cec5SDimitry Andric case Intrinsic::amdgcn_struct_buffer_atomic_smin:
30006c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
3010b57cec5SDimitry Andric case Intrinsic::amdgcn_raw_buffer_atomic_smin:
30206c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
3030b57cec5SDimitry Andric Op = AtomicRMWInst::Min;
3040b57cec5SDimitry Andric break;
3050b57cec5SDimitry Andric case Intrinsic::amdgcn_struct_buffer_atomic_umin:
30606c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
3070b57cec5SDimitry Andric case Intrinsic::amdgcn_raw_buffer_atomic_umin:
30806c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
3090b57cec5SDimitry Andric Op = AtomicRMWInst::UMin;
3100b57cec5SDimitry Andric break;
3110b57cec5SDimitry Andric case Intrinsic::amdgcn_struct_buffer_atomic_smax:
31206c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
3130b57cec5SDimitry Andric case Intrinsic::amdgcn_raw_buffer_atomic_smax:
31406c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
3150b57cec5SDimitry Andric Op = AtomicRMWInst::Max;
3160b57cec5SDimitry Andric break;
3170b57cec5SDimitry Andric case Intrinsic::amdgcn_struct_buffer_atomic_umax:
31806c3fb27SDimitry Andric case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
3190b57cec5SDimitry Andric case Intrinsic::amdgcn_raw_buffer_atomic_umax:
32006c3fb27SDimitry Andric case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
3210b57cec5SDimitry Andric Op = AtomicRMWInst::UMax;
3220b57cec5SDimitry Andric break;
3230b57cec5SDimitry Andric }
3240b57cec5SDimitry Andric
3250b57cec5SDimitry Andric const unsigned ValIdx = 0;
3260b57cec5SDimitry Andric
32706c3fb27SDimitry Andric const bool ValDivergent = UA->isDivergentUse(I.getOperandUse(ValIdx));
3280b57cec5SDimitry Andric
3290b57cec5SDimitry Andric // If the value operand is divergent, each lane is contributing a different
3300b57cec5SDimitry Andric // value to the atomic calculation. We can only optimize divergent values if
331*0fca6ea1SDimitry Andric // we have DPP available on our subtarget (for DPP strategy), and the atomic
332*0fca6ea1SDimitry Andric // operation is 32 or 64 bits.
333*0fca6ea1SDimitry Andric if (ValDivergent) {
334*0fca6ea1SDimitry Andric if (ScanImpl == ScanOptions::DPP && !ST->hasDPP())
335*0fca6ea1SDimitry Andric return;
336*0fca6ea1SDimitry Andric
337*0fca6ea1SDimitry Andric if (!isLegalCrossLaneType(I.getType()))
3380b57cec5SDimitry Andric return;
3390b57cec5SDimitry Andric }
3400b57cec5SDimitry Andric
3410b57cec5SDimitry Andric // If any of the other arguments to the intrinsic are divergent, we can't
3420b57cec5SDimitry Andric // optimize the operation.
3430b57cec5SDimitry Andric for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
34406c3fb27SDimitry Andric if (UA->isDivergentUse(I.getOperandUse(Idx))) {
3450b57cec5SDimitry Andric return;
3460b57cec5SDimitry Andric }
3470b57cec5SDimitry Andric }
3480b57cec5SDimitry Andric
3490b57cec5SDimitry Andric // If we get here, we can optimize the atomic using a single wavefront-wide
3500b57cec5SDimitry Andric // atomic operation to do the calculation for the entire wavefront, so
3510b57cec5SDimitry Andric // remember the instruction so we can come back to it.
3520b57cec5SDimitry Andric const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
3530b57cec5SDimitry Andric
3540b57cec5SDimitry Andric ToReplace.push_back(Info);
3550b57cec5SDimitry Andric }
3560b57cec5SDimitry Andric
3570b57cec5SDimitry Andric // Use the builder to create the non-atomic counterpart of the specified
3580b57cec5SDimitry Andric // atomicrmw binary op.
buildNonAtomicBinOp(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * LHS,Value * RHS)3590b57cec5SDimitry Andric static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
3600b57cec5SDimitry Andric Value *LHS, Value *RHS) {
3610b57cec5SDimitry Andric CmpInst::Predicate Pred;
3620b57cec5SDimitry Andric
3630b57cec5SDimitry Andric switch (Op) {
3640b57cec5SDimitry Andric default:
3650b57cec5SDimitry Andric llvm_unreachable("Unhandled atomic op");
3660b57cec5SDimitry Andric case AtomicRMWInst::Add:
3670b57cec5SDimitry Andric return B.CreateBinOp(Instruction::Add, LHS, RHS);
3685f757f3fSDimitry Andric case AtomicRMWInst::FAdd:
3695f757f3fSDimitry Andric return B.CreateFAdd(LHS, RHS);
3700b57cec5SDimitry Andric case AtomicRMWInst::Sub:
3710b57cec5SDimitry Andric return B.CreateBinOp(Instruction::Sub, LHS, RHS);
3725f757f3fSDimitry Andric case AtomicRMWInst::FSub:
3735f757f3fSDimitry Andric return B.CreateFSub(LHS, RHS);
3740b57cec5SDimitry Andric case AtomicRMWInst::And:
3750b57cec5SDimitry Andric return B.CreateBinOp(Instruction::And, LHS, RHS);
3760b57cec5SDimitry Andric case AtomicRMWInst::Or:
3770b57cec5SDimitry Andric return B.CreateBinOp(Instruction::Or, LHS, RHS);
3780b57cec5SDimitry Andric case AtomicRMWInst::Xor:
3790b57cec5SDimitry Andric return B.CreateBinOp(Instruction::Xor, LHS, RHS);
3800b57cec5SDimitry Andric
3810b57cec5SDimitry Andric case AtomicRMWInst::Max:
3820b57cec5SDimitry Andric Pred = CmpInst::ICMP_SGT;
3830b57cec5SDimitry Andric break;
3840b57cec5SDimitry Andric case AtomicRMWInst::Min:
3850b57cec5SDimitry Andric Pred = CmpInst::ICMP_SLT;
3860b57cec5SDimitry Andric break;
3870b57cec5SDimitry Andric case AtomicRMWInst::UMax:
3880b57cec5SDimitry Andric Pred = CmpInst::ICMP_UGT;
3890b57cec5SDimitry Andric break;
3900b57cec5SDimitry Andric case AtomicRMWInst::UMin:
3910b57cec5SDimitry Andric Pred = CmpInst::ICMP_ULT;
3920b57cec5SDimitry Andric break;
3935f757f3fSDimitry Andric case AtomicRMWInst::FMax:
3945f757f3fSDimitry Andric return B.CreateMaxNum(LHS, RHS);
3955f757f3fSDimitry Andric case AtomicRMWInst::FMin:
3965f757f3fSDimitry Andric return B.CreateMinNum(LHS, RHS);
3970b57cec5SDimitry Andric }
3980b57cec5SDimitry Andric Value *Cond = B.CreateICmp(Pred, LHS, RHS);
3990b57cec5SDimitry Andric return B.CreateSelect(Cond, LHS, RHS);
4000b57cec5SDimitry Andric }
4010b57cec5SDimitry Andric
402fe6060f1SDimitry Andric // Use the builder to create a reduction of V across the wavefront, with all
403fe6060f1SDimitry Andric // lanes active, returning the same result in all lanes.
buildReduction(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * V,Value * const Identity) const40406c3fb27SDimitry Andric Value *AMDGPUAtomicOptimizerImpl::buildReduction(IRBuilder<> &B,
40506c3fb27SDimitry Andric AtomicRMWInst::BinOp Op,
40606c3fb27SDimitry Andric Value *V,
407fe6060f1SDimitry Andric Value *const Identity) const {
4085f757f3fSDimitry Andric Type *AtomicTy = V->getType();
409fe6060f1SDimitry Andric Module *M = B.GetInsertBlock()->getModule();
410fe6060f1SDimitry Andric Function *UpdateDPP =
4115f757f3fSDimitry Andric Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
412fe6060f1SDimitry Andric
413fe6060f1SDimitry Andric // Reduce within each row of 16 lanes.
414fe6060f1SDimitry Andric for (unsigned Idx = 0; Idx < 4; Idx++) {
415fe6060f1SDimitry Andric V = buildNonAtomicBinOp(
416fe6060f1SDimitry Andric B, Op, V,
417fe6060f1SDimitry Andric B.CreateCall(UpdateDPP,
418fe6060f1SDimitry Andric {Identity, V, B.getInt32(DPP::ROW_XMASK0 | 1 << Idx),
419fe6060f1SDimitry Andric B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
420fe6060f1SDimitry Andric }
421fe6060f1SDimitry Andric
422fe6060f1SDimitry Andric // Reduce within each pair of rows (i.e. 32 lanes).
423fe6060f1SDimitry Andric assert(ST->hasPermLaneX16());
4245f757f3fSDimitry Andric Value *Permlanex16Call = B.CreateIntrinsic(
425*0fca6ea1SDimitry Andric V->getType(), Intrinsic::amdgcn_permlanex16,
4265f757f3fSDimitry Andric {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()});
427*0fca6ea1SDimitry Andric V = buildNonAtomicBinOp(B, Op, V, Permlanex16Call);
4285f757f3fSDimitry Andric if (ST->isWave32()) {
429fe6060f1SDimitry Andric return V;
4305f757f3fSDimitry Andric }
431fe6060f1SDimitry Andric
43281ad6265SDimitry Andric if (ST->hasPermLane64()) {
43381ad6265SDimitry Andric // Reduce across the upper and lower 32 lanes.
4345f757f3fSDimitry Andric Value *Permlane64Call =
435*0fca6ea1SDimitry Andric B.CreateIntrinsic(V->getType(), Intrinsic::amdgcn_permlane64, V);
436*0fca6ea1SDimitry Andric return buildNonAtomicBinOp(B, Op, V, Permlane64Call);
43781ad6265SDimitry Andric }
43881ad6265SDimitry Andric
439fe6060f1SDimitry Andric // Pick an arbitrary lane from 0..31 and an arbitrary lane from 32..63 and
440fe6060f1SDimitry Andric // combine them with a scalar operation.
441fe6060f1SDimitry Andric Function *ReadLane =
442*0fca6ea1SDimitry Andric Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, AtomicTy);
4435f757f3fSDimitry Andric Value *Lane0 = B.CreateCall(ReadLane, {V, B.getInt32(0)});
4445f757f3fSDimitry Andric Value *Lane32 = B.CreateCall(ReadLane, {V, B.getInt32(32)});
445*0fca6ea1SDimitry Andric return buildNonAtomicBinOp(B, Op, Lane0, Lane32);
446fe6060f1SDimitry Andric }
447fe6060f1SDimitry Andric
4488bcb0991SDimitry Andric // Use the builder to create an inclusive scan of V across the wavefront, with
4498bcb0991SDimitry Andric // all lanes active.
buildScan(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * V,Value * Identity) const45006c3fb27SDimitry Andric Value *AMDGPUAtomicOptimizerImpl::buildScan(IRBuilder<> &B,
45106c3fb27SDimitry Andric AtomicRMWInst::BinOp Op, Value *V,
4525f757f3fSDimitry Andric Value *Identity) const {
4535f757f3fSDimitry Andric Type *AtomicTy = V->getType();
4548bcb0991SDimitry Andric Module *M = B.GetInsertBlock()->getModule();
4558bcb0991SDimitry Andric Function *UpdateDPP =
4565f757f3fSDimitry Andric Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
4578bcb0991SDimitry Andric
4588bcb0991SDimitry Andric for (unsigned Idx = 0; Idx < 4; Idx++) {
4598bcb0991SDimitry Andric V = buildNonAtomicBinOp(
4608bcb0991SDimitry Andric B, Op, V,
4618bcb0991SDimitry Andric B.CreateCall(UpdateDPP,
4628bcb0991SDimitry Andric {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx),
4638bcb0991SDimitry Andric B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
4648bcb0991SDimitry Andric }
4658bcb0991SDimitry Andric if (ST->hasDPPBroadcasts()) {
4668bcb0991SDimitry Andric // GFX9 has DPP row broadcast operations.
4678bcb0991SDimitry Andric V = buildNonAtomicBinOp(
4688bcb0991SDimitry Andric B, Op, V,
4698bcb0991SDimitry Andric B.CreateCall(UpdateDPP,
4708bcb0991SDimitry Andric {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa),
4718bcb0991SDimitry Andric B.getInt32(0xf), B.getFalse()}));
4728bcb0991SDimitry Andric V = buildNonAtomicBinOp(
4738bcb0991SDimitry Andric B, Op, V,
4748bcb0991SDimitry Andric B.CreateCall(UpdateDPP,
4758bcb0991SDimitry Andric {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc),
4768bcb0991SDimitry Andric B.getInt32(0xf), B.getFalse()}));
4778bcb0991SDimitry Andric } else {
4788bcb0991SDimitry Andric // On GFX10 all DPP operations are confined to a single row. To get cross-
4798bcb0991SDimitry Andric // row operations we have to use permlane or readlane.
4808bcb0991SDimitry Andric
4818bcb0991SDimitry Andric // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes
4828bcb0991SDimitry Andric // 48..63).
483fe6060f1SDimitry Andric assert(ST->hasPermLaneX16());
4845f757f3fSDimitry Andric Value *PermX = B.CreateIntrinsic(
485*0fca6ea1SDimitry Andric V->getType(), Intrinsic::amdgcn_permlanex16,
486fe6060f1SDimitry Andric {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()});
4875f757f3fSDimitry Andric
488*0fca6ea1SDimitry Andric Value *UpdateDPPCall = B.CreateCall(
489*0fca6ea1SDimitry Andric UpdateDPP, {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID),
490*0fca6ea1SDimitry Andric B.getInt32(0xa), B.getInt32(0xf), B.getFalse()});
491*0fca6ea1SDimitry Andric V = buildNonAtomicBinOp(B, Op, V, UpdateDPPCall);
4925f757f3fSDimitry Andric
4938bcb0991SDimitry Andric if (!ST->isWave32()) {
4948bcb0991SDimitry Andric // Combine lane 31 into lanes 32..63.
495*0fca6ea1SDimitry Andric Value *const Lane31 = B.CreateIntrinsic(
496*0fca6ea1SDimitry Andric V->getType(), Intrinsic::amdgcn_readlane, {V, B.getInt32(31)});
4975f757f3fSDimitry Andric
4985f757f3fSDimitry Andric Value *UpdateDPPCall = B.CreateCall(
4995f757f3fSDimitry Andric UpdateDPP, {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID),
5005f757f3fSDimitry Andric B.getInt32(0xc), B.getInt32(0xf), B.getFalse()});
5015f757f3fSDimitry Andric
502*0fca6ea1SDimitry Andric V = buildNonAtomicBinOp(B, Op, V, UpdateDPPCall);
5038bcb0991SDimitry Andric }
5048bcb0991SDimitry Andric }
5058bcb0991SDimitry Andric return V;
5068bcb0991SDimitry Andric }
5078bcb0991SDimitry Andric
5088bcb0991SDimitry Andric // Use the builder to create a shift right of V across the wavefront, with all
5098bcb0991SDimitry Andric // lanes active, to turn an inclusive scan into an exclusive scan.
buildShiftRight(IRBuilder<> & B,Value * V,Value * Identity) const51006c3fb27SDimitry Andric Value *AMDGPUAtomicOptimizerImpl::buildShiftRight(IRBuilder<> &B, Value *V,
5115f757f3fSDimitry Andric Value *Identity) const {
5125f757f3fSDimitry Andric Type *AtomicTy = V->getType();
5138bcb0991SDimitry Andric Module *M = B.GetInsertBlock()->getModule();
5148bcb0991SDimitry Andric Function *UpdateDPP =
5155f757f3fSDimitry Andric Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, AtomicTy);
5168bcb0991SDimitry Andric if (ST->hasDPPWavefrontShifts()) {
5178bcb0991SDimitry Andric // GFX9 has DPP wavefront shift operations.
5188bcb0991SDimitry Andric V = B.CreateCall(UpdateDPP,
5198bcb0991SDimitry Andric {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf),
5208bcb0991SDimitry Andric B.getInt32(0xf), B.getFalse()});
5218bcb0991SDimitry Andric } else {
522fe6060f1SDimitry Andric Function *ReadLane =
523*0fca6ea1SDimitry Andric Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, AtomicTy);
524fe6060f1SDimitry Andric Function *WriteLane =
525*0fca6ea1SDimitry Andric Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, AtomicTy);
526fe6060f1SDimitry Andric
5278bcb0991SDimitry Andric // On GFX10 all DPP operations are confined to a single row. To get cross-
5288bcb0991SDimitry Andric // row operations we have to use permlane or readlane.
5298bcb0991SDimitry Andric Value *Old = V;
5308bcb0991SDimitry Andric V = B.CreateCall(UpdateDPP,
5318bcb0991SDimitry Andric {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1),
5328bcb0991SDimitry Andric B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
5338bcb0991SDimitry Andric
5348bcb0991SDimitry Andric // Copy the old lane 15 to the new lane 16.
535*0fca6ea1SDimitry Andric V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}),
536*0fca6ea1SDimitry Andric B.getInt32(16), V});
537*0fca6ea1SDimitry Andric
5385f757f3fSDimitry Andric if (!ST->isWave32()) {
5395f757f3fSDimitry Andric // Copy the old lane 31 to the new lane 32.
540*0fca6ea1SDimitry Andric V = B.CreateCall(
541*0fca6ea1SDimitry Andric WriteLane,
542*0fca6ea1SDimitry Andric {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V});
5438bcb0991SDimitry Andric
5448bcb0991SDimitry Andric // Copy the old lane 47 to the new lane 48.
5458bcb0991SDimitry Andric V = B.CreateCall(
5468bcb0991SDimitry Andric WriteLane,
5478bcb0991SDimitry Andric {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V});
5488bcb0991SDimitry Andric }
5498bcb0991SDimitry Andric }
5508bcb0991SDimitry Andric
5518bcb0991SDimitry Andric return V;
5528bcb0991SDimitry Andric }
5538bcb0991SDimitry Andric
55406c3fb27SDimitry Andric // Use the builder to create an exclusive scan and compute the final reduced
55506c3fb27SDimitry Andric // value using an iterative approach. This provides an alternative
55606c3fb27SDimitry Andric // implementation to DPP which uses WMM for scan computations. This API iterate
55706c3fb27SDimitry Andric // over active lanes to read, compute and update the value using
55806c3fb27SDimitry Andric // readlane and writelane intrinsics.
buildScanIteratively(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * const Identity,Value * V,Instruction & I,BasicBlock * ComputeLoop,BasicBlock * ComputeEnd) const55906c3fb27SDimitry Andric std::pair<Value *, Value *> AMDGPUAtomicOptimizerImpl::buildScanIteratively(
56006c3fb27SDimitry Andric IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *const Identity, Value *V,
56106c3fb27SDimitry Andric Instruction &I, BasicBlock *ComputeLoop, BasicBlock *ComputeEnd) const {
56206c3fb27SDimitry Andric auto *Ty = I.getType();
56306c3fb27SDimitry Andric auto *WaveTy = B.getIntNTy(ST->getWavefrontSize());
56406c3fb27SDimitry Andric auto *EntryBB = I.getParent();
56506c3fb27SDimitry Andric auto NeedResult = !I.use_empty();
56606c3fb27SDimitry Andric
56706c3fb27SDimitry Andric auto *Ballot =
56806c3fb27SDimitry Andric B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue());
56906c3fb27SDimitry Andric
57006c3fb27SDimitry Andric // Start inserting instructions for ComputeLoop block
57106c3fb27SDimitry Andric B.SetInsertPoint(ComputeLoop);
57206c3fb27SDimitry Andric // Phi nodes for Accumulator, Scan results destination, and Active Lanes
57306c3fb27SDimitry Andric auto *Accumulator = B.CreatePHI(Ty, 2, "Accumulator");
57406c3fb27SDimitry Andric Accumulator->addIncoming(Identity, EntryBB);
57506c3fb27SDimitry Andric PHINode *OldValuePhi = nullptr;
57606c3fb27SDimitry Andric if (NeedResult) {
57706c3fb27SDimitry Andric OldValuePhi = B.CreatePHI(Ty, 2, "OldValuePhi");
57806c3fb27SDimitry Andric OldValuePhi->addIncoming(PoisonValue::get(Ty), EntryBB);
57906c3fb27SDimitry Andric }
58006c3fb27SDimitry Andric auto *ActiveBits = B.CreatePHI(WaveTy, 2, "ActiveBits");
58106c3fb27SDimitry Andric ActiveBits->addIncoming(Ballot, EntryBB);
58206c3fb27SDimitry Andric
58306c3fb27SDimitry Andric // Use llvm.cttz instrinsic to find the lowest remaining active lane.
58406c3fb27SDimitry Andric auto *FF1 =
58506c3fb27SDimitry Andric B.CreateIntrinsic(Intrinsic::cttz, WaveTy, {ActiveBits, B.getTrue()});
5865f757f3fSDimitry Andric
587*0fca6ea1SDimitry Andric auto *LaneIdxInt = B.CreateTrunc(FF1, B.getInt32Ty());
58806c3fb27SDimitry Andric
58906c3fb27SDimitry Andric // Get the value required for atomic operation
590*0fca6ea1SDimitry Andric Value *LaneValue = B.CreateIntrinsic(V->getType(), Intrinsic::amdgcn_readlane,
591*0fca6ea1SDimitry Andric {V, LaneIdxInt});
59206c3fb27SDimitry Andric
59306c3fb27SDimitry Andric // Perform writelane if intermediate scan results are required later in the
59406c3fb27SDimitry Andric // kernel computations
59506c3fb27SDimitry Andric Value *OldValue = nullptr;
59606c3fb27SDimitry Andric if (NeedResult) {
597*0fca6ea1SDimitry Andric OldValue = B.CreateIntrinsic(V->getType(), Intrinsic::amdgcn_writelane,
598*0fca6ea1SDimitry Andric {Accumulator, LaneIdxInt, OldValuePhi});
59906c3fb27SDimitry Andric OldValuePhi->addIncoming(OldValue, ComputeLoop);
60006c3fb27SDimitry Andric }
60106c3fb27SDimitry Andric
60206c3fb27SDimitry Andric // Accumulate the results
60306c3fb27SDimitry Andric auto *NewAccumulator = buildNonAtomicBinOp(B, Op, Accumulator, LaneValue);
60406c3fb27SDimitry Andric Accumulator->addIncoming(NewAccumulator, ComputeLoop);
60506c3fb27SDimitry Andric
60606c3fb27SDimitry Andric // Set bit to zero of current active lane so that for next iteration llvm.cttz
60706c3fb27SDimitry Andric // return the next active lane
60806c3fb27SDimitry Andric auto *Mask = B.CreateShl(ConstantInt::get(WaveTy, 1), FF1);
60906c3fb27SDimitry Andric
61006c3fb27SDimitry Andric auto *InverseMask = B.CreateXor(Mask, ConstantInt::get(WaveTy, -1));
61106c3fb27SDimitry Andric auto *NewActiveBits = B.CreateAnd(ActiveBits, InverseMask);
61206c3fb27SDimitry Andric ActiveBits->addIncoming(NewActiveBits, ComputeLoop);
61306c3fb27SDimitry Andric
61406c3fb27SDimitry Andric // Branch out of the loop when all lanes are processed.
61506c3fb27SDimitry Andric auto *IsEnd = B.CreateICmpEQ(NewActiveBits, ConstantInt::get(WaveTy, 0));
61606c3fb27SDimitry Andric B.CreateCondBr(IsEnd, ComputeEnd, ComputeLoop);
61706c3fb27SDimitry Andric
61806c3fb27SDimitry Andric B.SetInsertPoint(ComputeEnd);
61906c3fb27SDimitry Andric
62006c3fb27SDimitry Andric return {OldValue, NewAccumulator};
62106c3fb27SDimitry Andric }
62206c3fb27SDimitry Andric
getIdentityValueForAtomicOp(Type * const Ty,AtomicRMWInst::BinOp Op)6235f757f3fSDimitry Andric static Constant *getIdentityValueForAtomicOp(Type *const Ty,
6245f757f3fSDimitry Andric AtomicRMWInst::BinOp Op) {
6255f757f3fSDimitry Andric LLVMContext &C = Ty->getContext();
6265f757f3fSDimitry Andric const unsigned BitWidth = Ty->getPrimitiveSizeInBits();
6270b57cec5SDimitry Andric switch (Op) {
6280b57cec5SDimitry Andric default:
6290b57cec5SDimitry Andric llvm_unreachable("Unhandled atomic op");
6300b57cec5SDimitry Andric case AtomicRMWInst::Add:
6310b57cec5SDimitry Andric case AtomicRMWInst::Sub:
6320b57cec5SDimitry Andric case AtomicRMWInst::Or:
6330b57cec5SDimitry Andric case AtomicRMWInst::Xor:
6340b57cec5SDimitry Andric case AtomicRMWInst::UMax:
6355f757f3fSDimitry Andric return ConstantInt::get(C, APInt::getMinValue(BitWidth));
6360b57cec5SDimitry Andric case AtomicRMWInst::And:
6370b57cec5SDimitry Andric case AtomicRMWInst::UMin:
6385f757f3fSDimitry Andric return ConstantInt::get(C, APInt::getMaxValue(BitWidth));
6390b57cec5SDimitry Andric case AtomicRMWInst::Max:
6405f757f3fSDimitry Andric return ConstantInt::get(C, APInt::getSignedMinValue(BitWidth));
6410b57cec5SDimitry Andric case AtomicRMWInst::Min:
6425f757f3fSDimitry Andric return ConstantInt::get(C, APInt::getSignedMaxValue(BitWidth));
6435f757f3fSDimitry Andric case AtomicRMWInst::FAdd:
6445f757f3fSDimitry Andric return ConstantFP::get(C, APFloat::getZero(Ty->getFltSemantics(), true));
6455f757f3fSDimitry Andric case AtomicRMWInst::FSub:
6465f757f3fSDimitry Andric return ConstantFP::get(C, APFloat::getZero(Ty->getFltSemantics(), false));
6475f757f3fSDimitry Andric case AtomicRMWInst::FMin:
6485f757f3fSDimitry Andric case AtomicRMWInst::FMax:
649*0fca6ea1SDimitry Andric // FIXME: atomicrmw fmax/fmin behave like llvm.maxnum/minnum so NaN is the
650*0fca6ea1SDimitry Andric // closest thing they have to an identity, but it still does not preserve
651*0fca6ea1SDimitry Andric // the difference between quiet and signaling NaNs or NaNs with different
652*0fca6ea1SDimitry Andric // payloads.
653*0fca6ea1SDimitry Andric return ConstantFP::get(C, APFloat::getNaN(Ty->getFltSemantics()));
6540b57cec5SDimitry Andric }
6550b57cec5SDimitry Andric }
6560b57cec5SDimitry Andric
buildMul(IRBuilder<> & B,Value * LHS,Value * RHS)657e8d8bef9SDimitry Andric static Value *buildMul(IRBuilder<> &B, Value *LHS, Value *RHS) {
658e8d8bef9SDimitry Andric const ConstantInt *CI = dyn_cast<ConstantInt>(LHS);
659e8d8bef9SDimitry Andric return (CI && CI->isOne()) ? RHS : B.CreateMul(LHS, RHS);
660e8d8bef9SDimitry Andric }
661e8d8bef9SDimitry Andric
optimizeAtomic(Instruction & I,AtomicRMWInst::BinOp Op,unsigned ValIdx,bool ValDivergent) const66206c3fb27SDimitry Andric void AMDGPUAtomicOptimizerImpl::optimizeAtomic(Instruction &I,
6630b57cec5SDimitry Andric AtomicRMWInst::BinOp Op,
6640b57cec5SDimitry Andric unsigned ValIdx,
6650b57cec5SDimitry Andric bool ValDivergent) const {
6660b57cec5SDimitry Andric // Start building just before the instruction.
6670b57cec5SDimitry Andric IRBuilder<> B(&I);
6680b57cec5SDimitry Andric
6695f757f3fSDimitry Andric if (AtomicRMWInst::isFPOperation(Op)) {
6705f757f3fSDimitry Andric B.setIsFPConstrained(I.getFunction()->hasFnAttribute(Attribute::StrictFP));
6715f757f3fSDimitry Andric }
6725f757f3fSDimitry Andric
6730b57cec5SDimitry Andric // If we are in a pixel shader, because of how we have to mask out helper
6740b57cec5SDimitry Andric // lane invocations, we need to record the entry and exit BB's.
6750b57cec5SDimitry Andric BasicBlock *PixelEntryBB = nullptr;
6760b57cec5SDimitry Andric BasicBlock *PixelExitBB = nullptr;
6770b57cec5SDimitry Andric
6780b57cec5SDimitry Andric // If we're optimizing an atomic within a pixel shader, we need to wrap the
6790b57cec5SDimitry Andric // entire atomic operation in a helper-lane check. We do not want any helper
6800b57cec5SDimitry Andric // lanes that are around only for the purposes of derivatives to take part
6810b57cec5SDimitry Andric // in any cross-lane communication, and we use a branch on whether the lane is
6820b57cec5SDimitry Andric // live to do this.
6830b57cec5SDimitry Andric if (IsPixelShader) {
6840b57cec5SDimitry Andric // Record I's original position as the entry block.
6850b57cec5SDimitry Andric PixelEntryBB = I.getParent();
6860b57cec5SDimitry Andric
6870b57cec5SDimitry Andric Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
6880b57cec5SDimitry Andric Instruction *const NonHelperTerminator =
68906c3fb27SDimitry Andric SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, &DTU, nullptr);
6900b57cec5SDimitry Andric
6910b57cec5SDimitry Andric // Record I's new position as the exit block.
6920b57cec5SDimitry Andric PixelExitBB = I.getParent();
6930b57cec5SDimitry Andric
6940b57cec5SDimitry Andric I.moveBefore(NonHelperTerminator);
6950b57cec5SDimitry Andric B.SetInsertPoint(&I);
6960b57cec5SDimitry Andric }
6970b57cec5SDimitry Andric
6980b57cec5SDimitry Andric Type *const Ty = I.getType();
6995f757f3fSDimitry Andric Type *Int32Ty = B.getInt32Ty();
7005f757f3fSDimitry Andric bool isAtomicFloatingPointTy = Ty->isFloatingPointTy();
701*0fca6ea1SDimitry Andric [[maybe_unused]] const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
7020b57cec5SDimitry Andric
7030b57cec5SDimitry Andric // This is the value in the atomic operation we need to combine in order to
7040b57cec5SDimitry Andric // reduce the number of atomic operations.
7055f757f3fSDimitry Andric Value *V = I.getOperand(ValIdx);
7060b57cec5SDimitry Andric
7070b57cec5SDimitry Andric // We need to know how many lanes are active within the wavefront, and we do
7080b57cec5SDimitry Andric // this by doing a ballot of active lanes.
7098bcb0991SDimitry Andric Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize());
7105ffd83dbSDimitry Andric CallInst *const Ballot =
7115ffd83dbSDimitry Andric B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue());
7120b57cec5SDimitry Andric
7130b57cec5SDimitry Andric // We need to know how many lanes are active within the wavefront that are
7140b57cec5SDimitry Andric // below us. If we counted each lane linearly starting from 0, a lane is
7150b57cec5SDimitry Andric // below us only if its associated index was less than ours. We do this by
7160b57cec5SDimitry Andric // using the mbcnt intrinsic.
7178bcb0991SDimitry Andric Value *Mbcnt;
7188bcb0991SDimitry Andric if (ST->isWave32()) {
7198bcb0991SDimitry Andric Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
7208bcb0991SDimitry Andric {Ballot, B.getInt32(0)});
7218bcb0991SDimitry Andric } else {
7225f757f3fSDimitry Andric Value *const ExtractLo = B.CreateTrunc(Ballot, Int32Ty);
7235f757f3fSDimitry Andric Value *const ExtractHi = B.CreateTrunc(B.CreateLShr(Ballot, 32), Int32Ty);
7248bcb0991SDimitry Andric Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
7258bcb0991SDimitry Andric {ExtractLo, B.getInt32(0)});
7268bcb0991SDimitry Andric Mbcnt =
7278bcb0991SDimitry Andric B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt});
7288bcb0991SDimitry Andric }
7290b57cec5SDimitry Andric
7305f757f3fSDimitry Andric Function *F = I.getFunction();
7315f757f3fSDimitry Andric LLVMContext &C = F->getContext();
7325f757f3fSDimitry Andric
7335f757f3fSDimitry Andric // For atomic sub, perform scan with add operation and allow one lane to
7345f757f3fSDimitry Andric // subtract the reduced value later.
7355f757f3fSDimitry Andric AtomicRMWInst::BinOp ScanOp = Op;
7365f757f3fSDimitry Andric if (Op == AtomicRMWInst::Sub) {
7375f757f3fSDimitry Andric ScanOp = AtomicRMWInst::Add;
7385f757f3fSDimitry Andric } else if (Op == AtomicRMWInst::FSub) {
7395f757f3fSDimitry Andric ScanOp = AtomicRMWInst::FAdd;
7405f757f3fSDimitry Andric }
7415f757f3fSDimitry Andric Value *Identity = getIdentityValueForAtomicOp(Ty, ScanOp);
7420b57cec5SDimitry Andric
7430b57cec5SDimitry Andric Value *ExclScan = nullptr;
7440b57cec5SDimitry Andric Value *NewV = nullptr;
7450b57cec5SDimitry Andric
746fe6060f1SDimitry Andric const bool NeedResult = !I.use_empty();
747fe6060f1SDimitry Andric
74806c3fb27SDimitry Andric BasicBlock *ComputeLoop = nullptr;
74906c3fb27SDimitry Andric BasicBlock *ComputeEnd = nullptr;
7500b57cec5SDimitry Andric // If we have a divergent value in each lane, we need to combine the value
7510b57cec5SDimitry Andric // using DPP.
7520b57cec5SDimitry Andric if (ValDivergent) {
75306c3fb27SDimitry Andric if (ScanImpl == ScanOptions::DPP) {
7540b57cec5SDimitry Andric // First we need to set all inactive invocations to the identity value, so
7550b57cec5SDimitry Andric // that they can correctly contribute to the final result.
756*0fca6ea1SDimitry Andric NewV =
757*0fca6ea1SDimitry Andric B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
758fe6060f1SDimitry Andric if (!NeedResult && ST->hasPermLaneX16()) {
75906c3fb27SDimitry Andric // On GFX10 the permlanex16 instruction helps us build a reduction
76006c3fb27SDimitry Andric // without too many readlanes and writelanes, which are generally bad
76106c3fb27SDimitry Andric // for performance.
762fe6060f1SDimitry Andric NewV = buildReduction(B, ScanOp, NewV, Identity);
763fe6060f1SDimitry Andric } else {
7648bcb0991SDimitry Andric NewV = buildScan(B, ScanOp, NewV, Identity);
765fe6060f1SDimitry Andric if (NeedResult)
7668bcb0991SDimitry Andric ExclScan = buildShiftRight(B, NewV, Identity);
76706c3fb27SDimitry Andric // Read the value from the last lane, which has accumulated the values
76806c3fb27SDimitry Andric // of each active lane in the wavefront. This will be our new value
76906c3fb27SDimitry Andric // which we will provide to the atomic operation.
7708bcb0991SDimitry Andric Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1);
771*0fca6ea1SDimitry Andric NewV = B.CreateIntrinsic(Ty, Intrinsic::amdgcn_readlane,
7728bcb0991SDimitry Andric {NewV, LastLaneIdx});
7730b57cec5SDimitry Andric }
7740b57cec5SDimitry Andric // Finally mark the readlanes in the WWM section.
775fe6060f1SDimitry Andric NewV = B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, NewV);
77606c3fb27SDimitry Andric } else if (ScanImpl == ScanOptions::Iterative) {
77706c3fb27SDimitry Andric // Alternative implementation for scan
77806c3fb27SDimitry Andric ComputeLoop = BasicBlock::Create(C, "ComputeLoop", F);
77906c3fb27SDimitry Andric ComputeEnd = BasicBlock::Create(C, "ComputeEnd", F);
78006c3fb27SDimitry Andric std::tie(ExclScan, NewV) = buildScanIteratively(B, ScanOp, Identity, V, I,
78106c3fb27SDimitry Andric ComputeLoop, ComputeEnd);
78206c3fb27SDimitry Andric } else {
78306c3fb27SDimitry Andric llvm_unreachable("Atomic Optimzer is disabled for None strategy");
78406c3fb27SDimitry Andric }
7850b57cec5SDimitry Andric } else {
7860b57cec5SDimitry Andric switch (Op) {
7870b57cec5SDimitry Andric default:
7880b57cec5SDimitry Andric llvm_unreachable("Unhandled atomic op");
7890b57cec5SDimitry Andric
7900b57cec5SDimitry Andric case AtomicRMWInst::Add:
7910b57cec5SDimitry Andric case AtomicRMWInst::Sub: {
7920b57cec5SDimitry Andric // The new value we will be contributing to the atomic operation is the
7930b57cec5SDimitry Andric // old value times the number of active lanes.
7940b57cec5SDimitry Andric Value *const Ctpop = B.CreateIntCast(
7950b57cec5SDimitry Andric B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
796e8d8bef9SDimitry Andric NewV = buildMul(B, V, Ctpop);
7970b57cec5SDimitry Andric break;
7980b57cec5SDimitry Andric }
7995f757f3fSDimitry Andric case AtomicRMWInst::FAdd:
8005f757f3fSDimitry Andric case AtomicRMWInst::FSub: {
8015f757f3fSDimitry Andric Value *const Ctpop = B.CreateIntCast(
8025f757f3fSDimitry Andric B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Int32Ty, false);
8035f757f3fSDimitry Andric Value *const CtpopFP = B.CreateUIToFP(Ctpop, Ty);
8045f757f3fSDimitry Andric NewV = B.CreateFMul(V, CtpopFP);
8055f757f3fSDimitry Andric break;
8065f757f3fSDimitry Andric }
8070b57cec5SDimitry Andric case AtomicRMWInst::And:
8080b57cec5SDimitry Andric case AtomicRMWInst::Or:
8090b57cec5SDimitry Andric case AtomicRMWInst::Max:
8100b57cec5SDimitry Andric case AtomicRMWInst::Min:
8110b57cec5SDimitry Andric case AtomicRMWInst::UMax:
8120b57cec5SDimitry Andric case AtomicRMWInst::UMin:
8135f757f3fSDimitry Andric case AtomicRMWInst::FMin:
8145f757f3fSDimitry Andric case AtomicRMWInst::FMax:
8150b57cec5SDimitry Andric // These operations with a uniform value are idempotent: doing the atomic
8160b57cec5SDimitry Andric // operation multiple times has the same effect as doing it once.
8170b57cec5SDimitry Andric NewV = V;
8180b57cec5SDimitry Andric break;
8190b57cec5SDimitry Andric
8200b57cec5SDimitry Andric case AtomicRMWInst::Xor:
8210b57cec5SDimitry Andric // The new value we will be contributing to the atomic operation is the
8220b57cec5SDimitry Andric // old value times the parity of the number of active lanes.
8230b57cec5SDimitry Andric Value *const Ctpop = B.CreateIntCast(
8240b57cec5SDimitry Andric B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
825e8d8bef9SDimitry Andric NewV = buildMul(B, V, B.CreateAnd(Ctpop, 1));
8260b57cec5SDimitry Andric break;
8270b57cec5SDimitry Andric }
8280b57cec5SDimitry Andric }
8290b57cec5SDimitry Andric
8300b57cec5SDimitry Andric // We only want a single lane to enter our new control flow, and we do this
8310b57cec5SDimitry Andric // by checking if there are any active lanes below us. Only one lane will
8320b57cec5SDimitry Andric // have 0 active lanes below us, so that will be the only one to progress.
8335f757f3fSDimitry Andric Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getInt32(0));
8340b57cec5SDimitry Andric
8350b57cec5SDimitry Andric // Store I's original basic block before we split the block.
836*0fca6ea1SDimitry Andric BasicBlock *const OriginalBB = I.getParent();
8370b57cec5SDimitry Andric
8380b57cec5SDimitry Andric // We need to introduce some new control flow to force a single lane to be
8390b57cec5SDimitry Andric // active. We do this by splitting I's basic block at I, and introducing the
8400b57cec5SDimitry Andric // new block such that:
8410b57cec5SDimitry Andric // entry --> single_lane -\
8420b57cec5SDimitry Andric // \------------------> exit
8430b57cec5SDimitry Andric Instruction *const SingleLaneTerminator =
84406c3fb27SDimitry Andric SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, &DTU, nullptr);
8450b57cec5SDimitry Andric
84606c3fb27SDimitry Andric // At this point, we have split the I's block to allow one lane in wavefront
84706c3fb27SDimitry Andric // to update the precomputed reduced value. Also, completed the codegen for
84806c3fb27SDimitry Andric // new control flow i.e. iterative loop which perform reduction and scan using
84906c3fb27SDimitry Andric // ComputeLoop and ComputeEnd.
85006c3fb27SDimitry Andric // For the new control flow, we need to move branch instruction i.e.
85106c3fb27SDimitry Andric // terminator created during SplitBlockAndInsertIfThen from I's block to
85206c3fb27SDimitry Andric // ComputeEnd block. We also need to set up predecessor to next block when
85306c3fb27SDimitry Andric // single lane done updating the final reduced value.
85406c3fb27SDimitry Andric BasicBlock *Predecessor = nullptr;
85506c3fb27SDimitry Andric if (ValDivergent && ScanImpl == ScanOptions::Iterative) {
85606c3fb27SDimitry Andric // Move terminator from I's block to ComputeEnd block.
857*0fca6ea1SDimitry Andric //
858*0fca6ea1SDimitry Andric // OriginalBB is known to have a branch as terminator because
859*0fca6ea1SDimitry Andric // SplitBlockAndInsertIfThen will have inserted one.
860*0fca6ea1SDimitry Andric BranchInst *Terminator = cast<BranchInst>(OriginalBB->getTerminator());
86106c3fb27SDimitry Andric B.SetInsertPoint(ComputeEnd);
86206c3fb27SDimitry Andric Terminator->removeFromParent();
86306c3fb27SDimitry Andric B.Insert(Terminator);
86406c3fb27SDimitry Andric
86506c3fb27SDimitry Andric // Branch to ComputeLoop Block unconditionally from the I's block for
86606c3fb27SDimitry Andric // iterative approach.
867*0fca6ea1SDimitry Andric B.SetInsertPoint(OriginalBB);
86806c3fb27SDimitry Andric B.CreateBr(ComputeLoop);
86906c3fb27SDimitry Andric
87006c3fb27SDimitry Andric // Update the dominator tree for new control flow.
871*0fca6ea1SDimitry Andric SmallVector<DominatorTree::UpdateType, 6> DomTreeUpdates(
872*0fca6ea1SDimitry Andric {{DominatorTree::Insert, OriginalBB, ComputeLoop},
873*0fca6ea1SDimitry Andric {DominatorTree::Insert, ComputeLoop, ComputeEnd}});
874*0fca6ea1SDimitry Andric
875*0fca6ea1SDimitry Andric // We're moving the terminator from EntryBB to ComputeEnd, make sure we move
876*0fca6ea1SDimitry Andric // the DT edges as well.
877*0fca6ea1SDimitry Andric for (auto *Succ : Terminator->successors()) {
878*0fca6ea1SDimitry Andric DomTreeUpdates.push_back({DominatorTree::Insert, ComputeEnd, Succ});
879*0fca6ea1SDimitry Andric DomTreeUpdates.push_back({DominatorTree::Delete, OriginalBB, Succ});
880*0fca6ea1SDimitry Andric }
881*0fca6ea1SDimitry Andric
882*0fca6ea1SDimitry Andric DTU.applyUpdates(DomTreeUpdates);
88306c3fb27SDimitry Andric
88406c3fb27SDimitry Andric Predecessor = ComputeEnd;
88506c3fb27SDimitry Andric } else {
886*0fca6ea1SDimitry Andric Predecessor = OriginalBB;
88706c3fb27SDimitry Andric }
8880b57cec5SDimitry Andric // Move the IR builder into single_lane next.
8890b57cec5SDimitry Andric B.SetInsertPoint(SingleLaneTerminator);
8900b57cec5SDimitry Andric
8910b57cec5SDimitry Andric // Clone the original atomic operation into single lane, replacing the
8920b57cec5SDimitry Andric // original value with our newly created one.
8930b57cec5SDimitry Andric Instruction *const NewI = I.clone();
8940b57cec5SDimitry Andric B.Insert(NewI);
8950b57cec5SDimitry Andric NewI->setOperand(ValIdx, NewV);
8960b57cec5SDimitry Andric
8970b57cec5SDimitry Andric // Move the IR builder into exit next, and start inserting just before the
8980b57cec5SDimitry Andric // original instruction.
8990b57cec5SDimitry Andric B.SetInsertPoint(&I);
9000b57cec5SDimitry Andric
9018bcb0991SDimitry Andric if (NeedResult) {
9020b57cec5SDimitry Andric // Create a PHI node to get our new atomic result into the exit block.
9030b57cec5SDimitry Andric PHINode *const PHI = B.CreatePHI(Ty, 2);
90406c3fb27SDimitry Andric PHI->addIncoming(PoisonValue::get(Ty), Predecessor);
9050b57cec5SDimitry Andric PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
9060b57cec5SDimitry Andric
9070b57cec5SDimitry Andric // We need to broadcast the value who was the lowest active lane (the first
9080b57cec5SDimitry Andric // lane) to all other lanes in the wavefront. We use an intrinsic for this,
9090b57cec5SDimitry Andric // but have to handle 64-bit broadcasts with two calls to this intrinsic.
9100b57cec5SDimitry Andric Value *BroadcastI = nullptr;
911*0fca6ea1SDimitry Andric BroadcastI = B.CreateIntrinsic(Ty, Intrinsic::amdgcn_readfirstlane, PHI);
9120b57cec5SDimitry Andric
9130b57cec5SDimitry Andric // Now that we have the result of our single atomic operation, we need to
9148bcb0991SDimitry Andric // get our individual lane's slice into the result. We use the lane offset
9158bcb0991SDimitry Andric // we previously calculated combined with the atomic result value we got
9168bcb0991SDimitry Andric // from the first lane, to get our lane's index into the atomic result.
9170b57cec5SDimitry Andric Value *LaneOffset = nullptr;
9180b57cec5SDimitry Andric if (ValDivergent) {
91906c3fb27SDimitry Andric if (ScanImpl == ScanOptions::DPP) {
920fe6060f1SDimitry Andric LaneOffset =
921fe6060f1SDimitry Andric B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, ExclScan);
92206c3fb27SDimitry Andric } else if (ScanImpl == ScanOptions::Iterative) {
92306c3fb27SDimitry Andric LaneOffset = ExclScan;
92406c3fb27SDimitry Andric } else {
92506c3fb27SDimitry Andric llvm_unreachable("Atomic Optimzer is disabled for None strategy");
92606c3fb27SDimitry Andric }
9270b57cec5SDimitry Andric } else {
9285f757f3fSDimitry Andric Mbcnt = isAtomicFloatingPointTy ? B.CreateUIToFP(Mbcnt, Ty)
9295f757f3fSDimitry Andric : B.CreateIntCast(Mbcnt, Ty, false);
9300b57cec5SDimitry Andric switch (Op) {
9310b57cec5SDimitry Andric default:
9320b57cec5SDimitry Andric llvm_unreachable("Unhandled atomic op");
9330b57cec5SDimitry Andric case AtomicRMWInst::Add:
9340b57cec5SDimitry Andric case AtomicRMWInst::Sub:
935e8d8bef9SDimitry Andric LaneOffset = buildMul(B, V, Mbcnt);
9360b57cec5SDimitry Andric break;
9370b57cec5SDimitry Andric case AtomicRMWInst::And:
9380b57cec5SDimitry Andric case AtomicRMWInst::Or:
9390b57cec5SDimitry Andric case AtomicRMWInst::Max:
9400b57cec5SDimitry Andric case AtomicRMWInst::Min:
9410b57cec5SDimitry Andric case AtomicRMWInst::UMax:
9420b57cec5SDimitry Andric case AtomicRMWInst::UMin:
9435f757f3fSDimitry Andric case AtomicRMWInst::FMin:
9445f757f3fSDimitry Andric case AtomicRMWInst::FMax:
9450b57cec5SDimitry Andric LaneOffset = B.CreateSelect(Cond, Identity, V);
9460b57cec5SDimitry Andric break;
9470b57cec5SDimitry Andric case AtomicRMWInst::Xor:
948e8d8bef9SDimitry Andric LaneOffset = buildMul(B, V, B.CreateAnd(Mbcnt, 1));
9490b57cec5SDimitry Andric break;
9505f757f3fSDimitry Andric case AtomicRMWInst::FAdd:
9515f757f3fSDimitry Andric case AtomicRMWInst::FSub: {
9525f757f3fSDimitry Andric LaneOffset = B.CreateFMul(V, Mbcnt);
9535f757f3fSDimitry Andric break;
9545f757f3fSDimitry Andric }
9550b57cec5SDimitry Andric }
9560b57cec5SDimitry Andric }
957*0fca6ea1SDimitry Andric Value *Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);
958*0fca6ea1SDimitry Andric if (isAtomicFloatingPointTy) {
959*0fca6ea1SDimitry Andric // For fadd/fsub the first active lane of LaneOffset should be the
960*0fca6ea1SDimitry Andric // identity (-0.0 for fadd or +0.0 for fsub) but the value we calculated
961*0fca6ea1SDimitry Andric // is V * +0.0 which might have the wrong sign or might be nan (if V is
962*0fca6ea1SDimitry Andric // inf or nan).
963*0fca6ea1SDimitry Andric //
964*0fca6ea1SDimitry Andric // For all floating point ops if the in-memory value was a nan then the
965*0fca6ea1SDimitry Andric // binop we just built might have quieted it or changed its payload.
966*0fca6ea1SDimitry Andric //
967*0fca6ea1SDimitry Andric // Correct all these problems by using BroadcastI as the result in the
968*0fca6ea1SDimitry Andric // first active lane.
969*0fca6ea1SDimitry Andric Result = B.CreateSelect(Cond, BroadcastI, Result);
970*0fca6ea1SDimitry Andric }
9710b57cec5SDimitry Andric
9720b57cec5SDimitry Andric if (IsPixelShader) {
9730b57cec5SDimitry Andric // Need a final PHI to reconverge to above the helper lane branch mask.
9745f757f3fSDimitry Andric B.SetInsertPoint(PixelExitBB, PixelExitBB->getFirstNonPHIIt());
9750b57cec5SDimitry Andric
9760b57cec5SDimitry Andric PHINode *const PHI = B.CreatePHI(Ty, 2);
977bdd1243dSDimitry Andric PHI->addIncoming(PoisonValue::get(Ty), PixelEntryBB);
9780b57cec5SDimitry Andric PHI->addIncoming(Result, I.getParent());
9790b57cec5SDimitry Andric I.replaceAllUsesWith(PHI);
9800b57cec5SDimitry Andric } else {
9810b57cec5SDimitry Andric // Replace the original atomic instruction with the new one.
9820b57cec5SDimitry Andric I.replaceAllUsesWith(Result);
9830b57cec5SDimitry Andric }
9848bcb0991SDimitry Andric }
9850b57cec5SDimitry Andric
9860b57cec5SDimitry Andric // And delete the original.
9870b57cec5SDimitry Andric I.eraseFromParent();
9880b57cec5SDimitry Andric }
9890b57cec5SDimitry Andric
9900b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
9910b57cec5SDimitry Andric "AMDGPU atomic optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)99206c3fb27SDimitry Andric INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
9930b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
9940b57cec5SDimitry Andric INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
9950b57cec5SDimitry Andric "AMDGPU atomic optimizations", false, false)
9960b57cec5SDimitry Andric
99706c3fb27SDimitry Andric FunctionPass *llvm::createAMDGPUAtomicOptimizerPass(ScanOptions ScanStrategy) {
99806c3fb27SDimitry Andric return new AMDGPUAtomicOptimizer(ScanStrategy);
9990b57cec5SDimitry Andric }
1000