1 //===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/AArch64FixupKinds.h" 10 #include "MCTargetDesc/AArch64MCExpr.h" 11 #include "MCTargetDesc/AArch64MCTargetDesc.h" 12 #include "Utils/AArch64BaseInfo.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/BinaryFormat/MachO.h" 15 #include "llvm/MC/MCAsmBackend.h" 16 #include "llvm/MC/MCAssembler.h" 17 #include "llvm/MC/MCContext.h" 18 #include "llvm/MC/MCDirectives.h" 19 #include "llvm/MC/MCELFObjectWriter.h" 20 #include "llvm/MC/MCFixupKindInfo.h" 21 #include "llvm/MC/MCObjectWriter.h" 22 #include "llvm/MC/MCRegisterInfo.h" 23 #include "llvm/MC/MCSectionELF.h" 24 #include "llvm/MC/MCSectionMachO.h" 25 #include "llvm/MC/MCTargetOptions.h" 26 #include "llvm/MC/MCValue.h" 27 #include "llvm/Support/EndianStream.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/TargetRegistry.h" 30 using namespace llvm; 31 32 namespace { 33 34 class AArch64AsmBackend : public MCAsmBackend { 35 static const unsigned PCRelFlagVal = 36 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel; 37 protected: 38 Triple TheTriple; 39 40 public: 41 AArch64AsmBackend(const Target &T, const Triple &TT, bool IsLittleEndian) 42 : MCAsmBackend(IsLittleEndian ? support::little : support::big), 43 TheTriple(TT) {} 44 45 unsigned getNumFixupKinds() const override { 46 return AArch64::NumTargetFixupKinds; 47 } 48 49 Optional<MCFixupKind> getFixupKind(StringRef Name) const override; 50 51 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override { 52 const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = { 53 // This table *must* be in the order that the fixup_* kinds are defined 54 // in AArch64FixupKinds.h. 55 // 56 // Name Offset (bits) Size (bits) Flags 57 {"fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal}, 58 {"fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal}, 59 {"fixup_aarch64_add_imm12", 10, 12, 0}, 60 {"fixup_aarch64_ldst_imm12_scale1", 10, 12, 0}, 61 {"fixup_aarch64_ldst_imm12_scale2", 10, 12, 0}, 62 {"fixup_aarch64_ldst_imm12_scale4", 10, 12, 0}, 63 {"fixup_aarch64_ldst_imm12_scale8", 10, 12, 0}, 64 {"fixup_aarch64_ldst_imm12_scale16", 10, 12, 0}, 65 {"fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal}, 66 {"fixup_aarch64_movw", 5, 16, 0}, 67 {"fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal}, 68 {"fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal}, 69 {"fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal}, 70 {"fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal}, 71 {"fixup_aarch64_tlsdesc_call", 0, 0, 0}}; 72 73 // Fixup kinds from .reloc directive are like R_AARCH64_NONE. They do not 74 // require any extra processing. 75 if (Kind >= FirstLiteralRelocationKind) 76 return MCAsmBackend::getFixupKindInfo(FK_NONE); 77 78 if (Kind < FirstTargetFixupKind) 79 return MCAsmBackend::getFixupKindInfo(Kind); 80 81 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && 82 "Invalid kind!"); 83 return Infos[Kind - FirstTargetFixupKind]; 84 } 85 86 void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, 87 const MCValue &Target, MutableArrayRef<char> Data, 88 uint64_t Value, bool IsResolved, 89 const MCSubtargetInfo *STI) const override; 90 91 bool mayNeedRelaxation(const MCInst &Inst, 92 const MCSubtargetInfo &STI) const override; 93 bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, 94 const MCRelaxableFragment *DF, 95 const MCAsmLayout &Layout) const override; 96 void relaxInstruction(MCInst &Inst, 97 const MCSubtargetInfo &STI) const override; 98 bool writeNopData(raw_ostream &OS, uint64_t Count) const override; 99 100 void HandleAssemblerFlag(MCAssemblerFlag Flag) {} 101 102 unsigned getPointerSize() const { return 8; } 103 104 unsigned getFixupKindContainereSizeInBytes(unsigned Kind) const; 105 106 bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup, 107 const MCValue &Target) override; 108 }; 109 110 } // end anonymous namespace 111 112 /// The number of bytes the fixup may change. 113 static unsigned getFixupKindNumBytes(unsigned Kind) { 114 switch (Kind) { 115 default: 116 llvm_unreachable("Unknown fixup kind!"); 117 118 case AArch64::fixup_aarch64_tlsdesc_call: 119 return 0; 120 121 case FK_Data_1: 122 return 1; 123 124 case FK_Data_2: 125 case FK_SecRel_2: 126 return 2; 127 128 case AArch64::fixup_aarch64_movw: 129 case AArch64::fixup_aarch64_pcrel_branch14: 130 case AArch64::fixup_aarch64_add_imm12: 131 case AArch64::fixup_aarch64_ldst_imm12_scale1: 132 case AArch64::fixup_aarch64_ldst_imm12_scale2: 133 case AArch64::fixup_aarch64_ldst_imm12_scale4: 134 case AArch64::fixup_aarch64_ldst_imm12_scale8: 135 case AArch64::fixup_aarch64_ldst_imm12_scale16: 136 case AArch64::fixup_aarch64_ldr_pcrel_imm19: 137 case AArch64::fixup_aarch64_pcrel_branch19: 138 return 3; 139 140 case AArch64::fixup_aarch64_pcrel_adr_imm21: 141 case AArch64::fixup_aarch64_pcrel_adrp_imm21: 142 case AArch64::fixup_aarch64_pcrel_branch26: 143 case AArch64::fixup_aarch64_pcrel_call26: 144 case FK_Data_4: 145 case FK_SecRel_4: 146 return 4; 147 148 case FK_Data_8: 149 return 8; 150 } 151 } 152 153 static unsigned AdrImmBits(unsigned Value) { 154 unsigned lo2 = Value & 0x3; 155 unsigned hi19 = (Value & 0x1ffffc) >> 2; 156 return (hi19 << 5) | (lo2 << 29); 157 } 158 159 static bool valueFitsIntoFixupKind(unsigned Kind, uint64_t Value) { 160 unsigned NumBits; 161 switch(Kind) { 162 case FK_Data_1: NumBits = 8; break; 163 case FK_Data_2: NumBits = 16; break; 164 case FK_Data_4: NumBits = 32; break; 165 case FK_Data_8: NumBits = 64; break; 166 default: return true; 167 } 168 return isUIntN(NumBits, Value) || 169 isIntN(NumBits, static_cast<int64_t>(Value)); 170 } 171 172 static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target, 173 uint64_t Value, MCContext &Ctx, 174 const Triple &TheTriple, bool IsResolved) { 175 int64_t SignedValue = static_cast<int64_t>(Value); 176 switch (Fixup.getTargetKind()) { 177 default: 178 llvm_unreachable("Unknown fixup kind!"); 179 case AArch64::fixup_aarch64_pcrel_adr_imm21: 180 if (SignedValue > 2097151 || SignedValue < -2097152) 181 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 182 return AdrImmBits(Value & 0x1fffffULL); 183 case AArch64::fixup_aarch64_pcrel_adrp_imm21: 184 assert(!IsResolved); 185 if (TheTriple.isOSBinFormatCOFF()) 186 return AdrImmBits(Value & 0x1fffffULL); 187 return AdrImmBits((Value & 0x1fffff000ULL) >> 12); 188 case AArch64::fixup_aarch64_ldr_pcrel_imm19: 189 case AArch64::fixup_aarch64_pcrel_branch19: 190 // Signed 21-bit immediate 191 if (SignedValue > 2097151 || SignedValue < -2097152) 192 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 193 if (Value & 0x3) 194 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned"); 195 // Low two bits are not encoded. 196 return (Value >> 2) & 0x7ffff; 197 case AArch64::fixup_aarch64_add_imm12: 198 case AArch64::fixup_aarch64_ldst_imm12_scale1: 199 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 200 Value &= 0xfff; 201 // Unsigned 12-bit immediate 202 if (Value >= 0x1000) 203 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 204 return Value; 205 case AArch64::fixup_aarch64_ldst_imm12_scale2: 206 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 207 Value &= 0xfff; 208 // Unsigned 12-bit immediate which gets multiplied by 2 209 if (Value >= 0x2000) 210 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 211 if (Value & 0x1) 212 Ctx.reportError(Fixup.getLoc(), "fixup must be 2-byte aligned"); 213 return Value >> 1; 214 case AArch64::fixup_aarch64_ldst_imm12_scale4: 215 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 216 Value &= 0xfff; 217 // Unsigned 12-bit immediate which gets multiplied by 4 218 if (Value >= 0x4000) 219 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 220 if (Value & 0x3) 221 Ctx.reportError(Fixup.getLoc(), "fixup must be 4-byte aligned"); 222 return Value >> 2; 223 case AArch64::fixup_aarch64_ldst_imm12_scale8: 224 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 225 Value &= 0xfff; 226 // Unsigned 12-bit immediate which gets multiplied by 8 227 if (Value >= 0x8000) 228 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 229 if (Value & 0x7) 230 Ctx.reportError(Fixup.getLoc(), "fixup must be 8-byte aligned"); 231 return Value >> 3; 232 case AArch64::fixup_aarch64_ldst_imm12_scale16: 233 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 234 Value &= 0xfff; 235 // Unsigned 12-bit immediate which gets multiplied by 16 236 if (Value >= 0x10000) 237 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 238 if (Value & 0xf) 239 Ctx.reportError(Fixup.getLoc(), "fixup must be 16-byte aligned"); 240 return Value >> 4; 241 case AArch64::fixup_aarch64_movw: { 242 AArch64MCExpr::VariantKind RefKind = 243 static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind()); 244 if (AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_ABS && 245 AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_SABS) { 246 if (!RefKind) { 247 // The fixup is an expression 248 if (SignedValue > 0xFFFF || SignedValue < -0xFFFF) 249 Ctx.reportError(Fixup.getLoc(), 250 "fixup value out of range [-0xFFFF, 0xFFFF]"); 251 252 // Invert the negative immediate because it will feed into a MOVN. 253 if (SignedValue < 0) 254 SignedValue = ~SignedValue; 255 Value = static_cast<uint64_t>(SignedValue); 256 } else 257 // VK_GOTTPREL, VK_TPREL, VK_DTPREL are movw fixups, but they can't 258 // ever be resolved in the assembler. 259 Ctx.reportError(Fixup.getLoc(), 260 "relocation for a thread-local variable points to an " 261 "absolute symbol"); 262 return Value; 263 } 264 265 if (!IsResolved) { 266 // FIXME: Figure out when this can actually happen, and verify our 267 // behavior. 268 Ctx.reportError(Fixup.getLoc(), "unresolved movw fixup not yet " 269 "implemented"); 270 return Value; 271 } 272 273 if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) { 274 switch (AArch64MCExpr::getAddressFrag(RefKind)) { 275 case AArch64MCExpr::VK_G0: 276 break; 277 case AArch64MCExpr::VK_G1: 278 SignedValue = SignedValue >> 16; 279 break; 280 case AArch64MCExpr::VK_G2: 281 SignedValue = SignedValue >> 32; 282 break; 283 case AArch64MCExpr::VK_G3: 284 SignedValue = SignedValue >> 48; 285 break; 286 default: 287 llvm_unreachable("Variant kind doesn't correspond to fixup"); 288 } 289 290 } else { 291 switch (AArch64MCExpr::getAddressFrag(RefKind)) { 292 case AArch64MCExpr::VK_G0: 293 break; 294 case AArch64MCExpr::VK_G1: 295 Value = Value >> 16; 296 break; 297 case AArch64MCExpr::VK_G2: 298 Value = Value >> 32; 299 break; 300 case AArch64MCExpr::VK_G3: 301 Value = Value >> 48; 302 break; 303 default: 304 llvm_unreachable("Variant kind doesn't correspond to fixup"); 305 } 306 } 307 308 if (RefKind & AArch64MCExpr::VK_NC) { 309 Value &= 0xFFFF; 310 } 311 else if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) { 312 if (SignedValue > 0xFFFF || SignedValue < -0xFFFF) 313 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 314 315 // Invert the negative immediate because it will feed into a MOVN. 316 if (SignedValue < 0) 317 SignedValue = ~SignedValue; 318 Value = static_cast<uint64_t>(SignedValue); 319 } 320 else if (Value > 0xFFFF) { 321 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 322 } 323 return Value; 324 } 325 case AArch64::fixup_aarch64_pcrel_branch14: 326 // Signed 16-bit immediate 327 if (SignedValue > 32767 || SignedValue < -32768) 328 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 329 // Low two bits are not encoded (4-byte alignment assumed). 330 if (Value & 0x3) 331 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned"); 332 return (Value >> 2) & 0x3fff; 333 case AArch64::fixup_aarch64_pcrel_branch26: 334 case AArch64::fixup_aarch64_pcrel_call26: 335 // Signed 28-bit immediate 336 if (SignedValue > 134217727 || SignedValue < -134217728) 337 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 338 // Low two bits are not encoded (4-byte alignment assumed). 339 if (Value & 0x3) 340 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned"); 341 return (Value >> 2) & 0x3ffffff; 342 case FK_Data_1: 343 case FK_Data_2: 344 case FK_Data_4: 345 case FK_Data_8: 346 if (!valueFitsIntoFixupKind(Fixup.getTargetKind(), Value)) 347 Ctx.reportError(Fixup.getLoc(), "fixup value too large for data type!"); 348 LLVM_FALLTHROUGH; 349 case FK_SecRel_2: 350 case FK_SecRel_4: 351 return Value; 352 } 353 } 354 355 Optional<MCFixupKind> AArch64AsmBackend::getFixupKind(StringRef Name) const { 356 if (!TheTriple.isOSBinFormatELF()) 357 return None; 358 359 unsigned Type = llvm::StringSwitch<unsigned>(Name) 360 #define ELF_RELOC(X, Y) .Case(#X, Y) 361 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def" 362 #undef ELF_RELOC 363 .Default(-1u); 364 if (Type == -1u) 365 return None; 366 return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type); 367 } 368 369 /// getFixupKindContainereSizeInBytes - The number of bytes of the 370 /// container involved in big endian or 0 if the item is little endian 371 unsigned AArch64AsmBackend::getFixupKindContainereSizeInBytes(unsigned Kind) const { 372 if (Endian == support::little) 373 return 0; 374 375 switch (Kind) { 376 default: 377 llvm_unreachable("Unknown fixup kind!"); 378 379 case FK_Data_1: 380 return 1; 381 case FK_Data_2: 382 return 2; 383 case FK_Data_4: 384 return 4; 385 case FK_Data_8: 386 return 8; 387 388 case AArch64::fixup_aarch64_tlsdesc_call: 389 case AArch64::fixup_aarch64_movw: 390 case AArch64::fixup_aarch64_pcrel_branch14: 391 case AArch64::fixup_aarch64_add_imm12: 392 case AArch64::fixup_aarch64_ldst_imm12_scale1: 393 case AArch64::fixup_aarch64_ldst_imm12_scale2: 394 case AArch64::fixup_aarch64_ldst_imm12_scale4: 395 case AArch64::fixup_aarch64_ldst_imm12_scale8: 396 case AArch64::fixup_aarch64_ldst_imm12_scale16: 397 case AArch64::fixup_aarch64_ldr_pcrel_imm19: 398 case AArch64::fixup_aarch64_pcrel_branch19: 399 case AArch64::fixup_aarch64_pcrel_adr_imm21: 400 case AArch64::fixup_aarch64_pcrel_adrp_imm21: 401 case AArch64::fixup_aarch64_pcrel_branch26: 402 case AArch64::fixup_aarch64_pcrel_call26: 403 // Instructions are always little endian 404 return 0; 405 } 406 } 407 408 void AArch64AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, 409 const MCValue &Target, 410 MutableArrayRef<char> Data, uint64_t Value, 411 bool IsResolved, 412 const MCSubtargetInfo *STI) const { 413 if (!Value) 414 return; // Doesn't change encoding. 415 unsigned Kind = Fixup.getKind(); 416 if (Kind >= FirstLiteralRelocationKind) 417 return; 418 unsigned NumBytes = getFixupKindNumBytes(Kind); 419 MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind()); 420 MCContext &Ctx = Asm.getContext(); 421 int64_t SignedValue = static_cast<int64_t>(Value); 422 // Apply any target-specific value adjustments. 423 Value = adjustFixupValue(Fixup, Target, Value, Ctx, TheTriple, IsResolved); 424 425 // Shift the value into position. 426 Value <<= Info.TargetOffset; 427 428 unsigned Offset = Fixup.getOffset(); 429 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!"); 430 431 // Used to point to big endian bytes. 432 unsigned FulleSizeInBytes = getFixupKindContainereSizeInBytes(Fixup.getKind()); 433 434 // For each byte of the fragment that the fixup touches, mask in the 435 // bits from the fixup value. 436 if (FulleSizeInBytes == 0) { 437 // Handle as little-endian 438 for (unsigned i = 0; i != NumBytes; ++i) { 439 Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff); 440 } 441 } else { 442 // Handle as big-endian 443 assert((Offset + FulleSizeInBytes) <= Data.size() && "Invalid fixup size!"); 444 assert(NumBytes <= FulleSizeInBytes && "Invalid fixup size!"); 445 for (unsigned i = 0; i != NumBytes; ++i) { 446 unsigned Idx = FulleSizeInBytes - 1 - i; 447 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff); 448 } 449 } 450 451 // FIXME: getFixupKindInfo() and getFixupKindNumBytes() could be fixed to 452 // handle this more cleanly. This may affect the output of -show-mc-encoding. 453 AArch64MCExpr::VariantKind RefKind = 454 static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind()); 455 if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS || 456 (!RefKind && Fixup.getTargetKind() == AArch64::fixup_aarch64_movw)) { 457 // If the immediate is negative, generate MOVN else MOVZ. 458 // (Bit 30 = 0) ==> MOVN, (Bit 30 = 1) ==> MOVZ. 459 if (SignedValue < 0) 460 Data[Offset + 3] &= ~(1 << 6); 461 else 462 Data[Offset + 3] |= (1 << 6); 463 } 464 } 465 466 bool AArch64AsmBackend::mayNeedRelaxation(const MCInst &Inst, 467 const MCSubtargetInfo &STI) const { 468 return false; 469 } 470 471 bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, 472 uint64_t Value, 473 const MCRelaxableFragment *DF, 474 const MCAsmLayout &Layout) const { 475 // FIXME: This isn't correct for AArch64. Just moving the "generic" logic 476 // into the targets for now. 477 // 478 // Relax if the value is too big for a (signed) i8. 479 return int64_t(Value) != int64_t(int8_t(Value)); 480 } 481 482 void AArch64AsmBackend::relaxInstruction(MCInst &Inst, 483 const MCSubtargetInfo &STI) const { 484 llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented"); 485 } 486 487 bool AArch64AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const { 488 // If the count is not 4-byte aligned, we must be writing data into the text 489 // section (otherwise we have unaligned instructions, and thus have far 490 // bigger problems), so just write zeros instead. 491 OS.write_zeros(Count % 4); 492 493 // We are properly aligned, so write NOPs as requested. 494 Count /= 4; 495 for (uint64_t i = 0; i != Count; ++i) 496 support::endian::write<uint32_t>(OS, 0xd503201f, Endian); 497 return true; 498 } 499 500 bool AArch64AsmBackend::shouldForceRelocation(const MCAssembler &Asm, 501 const MCFixup &Fixup, 502 const MCValue &Target) { 503 unsigned Kind = Fixup.getKind(); 504 if (Kind >= FirstLiteralRelocationKind) 505 return true; 506 507 // The ADRP instruction adds some multiple of 0x1000 to the current PC & 508 // ~0xfff. This means that the required offset to reach a symbol can vary by 509 // up to one step depending on where the ADRP is in memory. For example: 510 // 511 // ADRP x0, there 512 // there: 513 // 514 // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and 515 // we'll need that as an offset. At any other address "there" will be in the 516 // same page as the ADRP and the instruction should encode 0x0. Assuming the 517 // section isn't 0x1000-aligned, we therefore need to delegate this decision 518 // to the linker -- a relocation! 519 if (Kind == AArch64::fixup_aarch64_pcrel_adrp_imm21) 520 return true; 521 522 AArch64MCExpr::VariantKind RefKind = 523 static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind()); 524 AArch64MCExpr::VariantKind SymLoc = AArch64MCExpr::getSymbolLoc(RefKind); 525 // LDR GOT relocations need a relocation 526 if (Kind == AArch64::fixup_aarch64_ldr_pcrel_imm19 && 527 SymLoc == AArch64MCExpr::VK_GOT) 528 return true; 529 return false; 530 } 531 532 namespace { 533 534 namespace CU { 535 536 /// Compact unwind encoding values. 537 enum CompactUnwindEncodings { 538 /// A "frameless" leaf function, where no non-volatile registers are 539 /// saved. The return remains in LR throughout the function. 540 UNWIND_ARM64_MODE_FRAMELESS = 0x02000000, 541 542 /// No compact unwind encoding available. Instead the low 23-bits of 543 /// the compact unwind encoding is the offset of the DWARF FDE in the 544 /// __eh_frame section. This mode is never used in object files. It is only 545 /// generated by the linker in final linked images, which have only DWARF info 546 /// for a function. 547 UNWIND_ARM64_MODE_DWARF = 0x03000000, 548 549 /// This is a standard arm64 prologue where FP/LR are immediately 550 /// pushed on the stack, then SP is copied to FP. If there are any 551 /// non-volatile register saved, they are copied into the stack fame in pairs 552 /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the 553 /// five X pairs and four D pairs can be saved, but the memory layout must be 554 /// in register number order. 555 UNWIND_ARM64_MODE_FRAME = 0x04000000, 556 557 /// Frame register pair encodings. 558 UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001, 559 UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002, 560 UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004, 561 UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008, 562 UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010, 563 UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100, 564 UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200, 565 UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400, 566 UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800 567 }; 568 569 } // end CU namespace 570 571 // FIXME: This should be in a separate file. 572 class DarwinAArch64AsmBackend : public AArch64AsmBackend { 573 const MCRegisterInfo &MRI; 574 575 /// Encode compact unwind stack adjustment for frameless functions. 576 /// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h. 577 /// The stack size always needs to be 16 byte aligned. 578 uint32_t encodeStackAdjustment(uint32_t StackSize) const { 579 return (StackSize / 16) << 12; 580 } 581 582 public: 583 DarwinAArch64AsmBackend(const Target &T, const Triple &TT, 584 const MCRegisterInfo &MRI) 585 : AArch64AsmBackend(T, TT, /*IsLittleEndian*/ true), MRI(MRI) {} 586 587 std::unique_ptr<MCObjectTargetWriter> 588 createObjectTargetWriter() const override { 589 uint32_t CPUType = cantFail(MachO::getCPUType(TheTriple)); 590 uint32_t CPUSubType = cantFail(MachO::getCPUSubType(TheTriple)); 591 return createAArch64MachObjectWriter(CPUType, CPUSubType, 592 TheTriple.isArch32Bit()); 593 } 594 595 /// Generate the compact unwind encoding from the CFI directives. 596 uint32_t generateCompactUnwindEncoding( 597 ArrayRef<MCCFIInstruction> Instrs) const override { 598 if (Instrs.empty()) 599 return CU::UNWIND_ARM64_MODE_FRAMELESS; 600 601 bool HasFP = false; 602 unsigned StackSize = 0; 603 604 uint32_t CompactUnwindEncoding = 0; 605 for (size_t i = 0, e = Instrs.size(); i != e; ++i) { 606 const MCCFIInstruction &Inst = Instrs[i]; 607 608 switch (Inst.getOperation()) { 609 default: 610 // Cannot handle this directive: bail out. 611 return CU::UNWIND_ARM64_MODE_DWARF; 612 case MCCFIInstruction::OpDefCfa: { 613 // Defines a frame pointer. 614 unsigned XReg = 615 getXRegFromWReg(*MRI.getLLVMRegNum(Inst.getRegister(), true)); 616 617 // Other CFA registers than FP are not supported by compact unwind. 618 // Fallback on DWARF. 619 // FIXME: When opt-remarks are supported in MC, add a remark to notify 620 // the user. 621 if (XReg != AArch64::FP) 622 return CU::UNWIND_ARM64_MODE_DWARF; 623 624 assert(XReg == AArch64::FP && "Invalid frame pointer!"); 625 assert(i + 2 < e && "Insufficient CFI instructions to define a frame!"); 626 627 const MCCFIInstruction &LRPush = Instrs[++i]; 628 assert(LRPush.getOperation() == MCCFIInstruction::OpOffset && 629 "Link register not pushed!"); 630 const MCCFIInstruction &FPPush = Instrs[++i]; 631 assert(FPPush.getOperation() == MCCFIInstruction::OpOffset && 632 "Frame pointer not pushed!"); 633 634 unsigned LRReg = *MRI.getLLVMRegNum(LRPush.getRegister(), true); 635 unsigned FPReg = *MRI.getLLVMRegNum(FPPush.getRegister(), true); 636 637 LRReg = getXRegFromWReg(LRReg); 638 FPReg = getXRegFromWReg(FPReg); 639 640 assert(LRReg == AArch64::LR && FPReg == AArch64::FP && 641 "Pushing invalid registers for frame!"); 642 643 // Indicate that the function has a frame. 644 CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAME; 645 HasFP = true; 646 break; 647 } 648 case MCCFIInstruction::OpDefCfaOffset: { 649 assert(StackSize == 0 && "We already have the CFA offset!"); 650 StackSize = std::abs(Inst.getOffset()); 651 break; 652 } 653 case MCCFIInstruction::OpOffset: { 654 // Registers are saved in pairs. We expect there to be two consecutive 655 // `.cfi_offset' instructions with the appropriate registers specified. 656 unsigned Reg1 = *MRI.getLLVMRegNum(Inst.getRegister(), true); 657 if (i + 1 == e) 658 return CU::UNWIND_ARM64_MODE_DWARF; 659 660 const MCCFIInstruction &Inst2 = Instrs[++i]; 661 if (Inst2.getOperation() != MCCFIInstruction::OpOffset) 662 return CU::UNWIND_ARM64_MODE_DWARF; 663 unsigned Reg2 = *MRI.getLLVMRegNum(Inst2.getRegister(), true); 664 665 // N.B. The encodings must be in register number order, and the X 666 // registers before the D registers. 667 668 // X19/X20 pair = 0x00000001, 669 // X21/X22 pair = 0x00000002, 670 // X23/X24 pair = 0x00000004, 671 // X25/X26 pair = 0x00000008, 672 // X27/X28 pair = 0x00000010 673 Reg1 = getXRegFromWReg(Reg1); 674 Reg2 = getXRegFromWReg(Reg2); 675 676 if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 && 677 (CompactUnwindEncoding & 0xF1E) == 0) 678 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X19_X20_PAIR; 679 else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 && 680 (CompactUnwindEncoding & 0xF1C) == 0) 681 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X21_X22_PAIR; 682 else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 && 683 (CompactUnwindEncoding & 0xF18) == 0) 684 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X23_X24_PAIR; 685 else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 && 686 (CompactUnwindEncoding & 0xF10) == 0) 687 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X25_X26_PAIR; 688 else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 && 689 (CompactUnwindEncoding & 0xF00) == 0) 690 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X27_X28_PAIR; 691 else { 692 Reg1 = getDRegFromBReg(Reg1); 693 Reg2 = getDRegFromBReg(Reg2); 694 695 // D8/D9 pair = 0x00000100, 696 // D10/D11 pair = 0x00000200, 697 // D12/D13 pair = 0x00000400, 698 // D14/D15 pair = 0x00000800 699 if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 && 700 (CompactUnwindEncoding & 0xE00) == 0) 701 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D8_D9_PAIR; 702 else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 && 703 (CompactUnwindEncoding & 0xC00) == 0) 704 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D10_D11_PAIR; 705 else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 && 706 (CompactUnwindEncoding & 0x800) == 0) 707 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D12_D13_PAIR; 708 else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15) 709 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D14_D15_PAIR; 710 else 711 // A pair was pushed which we cannot handle. 712 return CU::UNWIND_ARM64_MODE_DWARF; 713 } 714 715 break; 716 } 717 } 718 } 719 720 if (!HasFP) { 721 // With compact unwind info we can only represent stack adjustments of up 722 // to 65520 bytes. 723 if (StackSize > 65520) 724 return CU::UNWIND_ARM64_MODE_DWARF; 725 726 CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAMELESS; 727 CompactUnwindEncoding |= encodeStackAdjustment(StackSize); 728 } 729 730 return CompactUnwindEncoding; 731 } 732 }; 733 734 } // end anonymous namespace 735 736 namespace { 737 738 class ELFAArch64AsmBackend : public AArch64AsmBackend { 739 public: 740 uint8_t OSABI; 741 bool IsILP32; 742 743 ELFAArch64AsmBackend(const Target &T, const Triple &TT, uint8_t OSABI, 744 bool IsLittleEndian, bool IsILP32) 745 : AArch64AsmBackend(T, TT, IsLittleEndian), OSABI(OSABI), 746 IsILP32(IsILP32) {} 747 748 std::unique_ptr<MCObjectTargetWriter> 749 createObjectTargetWriter() const override { 750 return createAArch64ELFObjectWriter(OSABI, IsILP32); 751 } 752 }; 753 754 } 755 756 namespace { 757 class COFFAArch64AsmBackend : public AArch64AsmBackend { 758 public: 759 COFFAArch64AsmBackend(const Target &T, const Triple &TheTriple) 760 : AArch64AsmBackend(T, TheTriple, /*IsLittleEndian*/ true) {} 761 762 std::unique_ptr<MCObjectTargetWriter> 763 createObjectTargetWriter() const override { 764 return createAArch64WinCOFFObjectWriter(); 765 } 766 }; 767 } 768 769 MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T, 770 const MCSubtargetInfo &STI, 771 const MCRegisterInfo &MRI, 772 const MCTargetOptions &Options) { 773 const Triple &TheTriple = STI.getTargetTriple(); 774 if (TheTriple.isOSBinFormatMachO()) { 775 return new DarwinAArch64AsmBackend(T, TheTriple, MRI); 776 } 777 778 if (TheTriple.isOSBinFormatCOFF()) 779 return new COFFAArch64AsmBackend(T, TheTriple); 780 781 assert(TheTriple.isOSBinFormatELF() && "Invalid target"); 782 783 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); 784 bool IsILP32 = Options.getABIName() == "ilp32"; 785 return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/true, 786 IsILP32); 787 } 788 789 MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T, 790 const MCSubtargetInfo &STI, 791 const MCRegisterInfo &MRI, 792 const MCTargetOptions &Options) { 793 const Triple &TheTriple = STI.getTargetTriple(); 794 assert(TheTriple.isOSBinFormatELF() && 795 "Big endian is only supported for ELF targets!"); 796 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); 797 bool IsILP32 = Options.getABIName() == "ilp32"; 798 return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/false, 799 IsILP32); 800 } 801