1 //===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/AArch64FixupKinds.h" 10 #include "MCTargetDesc/AArch64MCExpr.h" 11 #include "MCTargetDesc/AArch64MCTargetDesc.h" 12 #include "Utils/AArch64BaseInfo.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/BinaryFormat/MachO.h" 15 #include "llvm/MC/MCAsmBackend.h" 16 #include "llvm/MC/MCAssembler.h" 17 #include "llvm/MC/MCContext.h" 18 #include "llvm/MC/MCDirectives.h" 19 #include "llvm/MC/MCELFObjectWriter.h" 20 #include "llvm/MC/MCFixupKindInfo.h" 21 #include "llvm/MC/MCObjectWriter.h" 22 #include "llvm/MC/MCRegisterInfo.h" 23 #include "llvm/MC/MCSectionELF.h" 24 #include "llvm/MC/MCSectionMachO.h" 25 #include "llvm/MC/MCTargetOptions.h" 26 #include "llvm/MC/MCValue.h" 27 #include "llvm/Support/EndianStream.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/TargetRegistry.h" 30 using namespace llvm; 31 32 namespace { 33 34 class AArch64AsmBackend : public MCAsmBackend { 35 static const unsigned PCRelFlagVal = 36 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel; 37 protected: 38 Triple TheTriple; 39 40 public: 41 AArch64AsmBackend(const Target &T, const Triple &TT, bool IsLittleEndian) 42 : MCAsmBackend(IsLittleEndian ? support::little : support::big), 43 TheTriple(TT) {} 44 45 unsigned getNumFixupKinds() const override { 46 return AArch64::NumTargetFixupKinds; 47 } 48 49 Optional<MCFixupKind> getFixupKind(StringRef Name) const override; 50 51 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override { 52 const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = { 53 // This table *must* be in the order that the fixup_* kinds are defined 54 // in AArch64FixupKinds.h. 55 // 56 // Name Offset (bits) Size (bits) Flags 57 {"fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal}, 58 {"fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal}, 59 {"fixup_aarch64_add_imm12", 10, 12, 0}, 60 {"fixup_aarch64_ldst_imm12_scale1", 10, 12, 0}, 61 {"fixup_aarch64_ldst_imm12_scale2", 10, 12, 0}, 62 {"fixup_aarch64_ldst_imm12_scale4", 10, 12, 0}, 63 {"fixup_aarch64_ldst_imm12_scale8", 10, 12, 0}, 64 {"fixup_aarch64_ldst_imm12_scale16", 10, 12, 0}, 65 {"fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal}, 66 {"fixup_aarch64_movw", 5, 16, 0}, 67 {"fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal}, 68 {"fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal}, 69 {"fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal}, 70 {"fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal}, 71 {"fixup_aarch64_tlsdesc_call", 0, 0, 0}}; 72 73 // Fixup kinds from .reloc directive are like R_AARCH64_NONE. They do not 74 // require any extra processing. 75 if (Kind >= FirstLiteralRelocationKind) 76 return MCAsmBackend::getFixupKindInfo(FK_NONE); 77 78 if (Kind < FirstTargetFixupKind) 79 return MCAsmBackend::getFixupKindInfo(Kind); 80 81 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && 82 "Invalid kind!"); 83 return Infos[Kind - FirstTargetFixupKind]; 84 } 85 86 void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, 87 const MCValue &Target, MutableArrayRef<char> Data, 88 uint64_t Value, bool IsResolved, 89 const MCSubtargetInfo *STI) const override; 90 91 bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, 92 const MCRelaxableFragment *DF, 93 const MCAsmLayout &Layout) const override; 94 void relaxInstruction(MCInst &Inst, 95 const MCSubtargetInfo &STI) const override; 96 bool writeNopData(raw_ostream &OS, uint64_t Count) const override; 97 98 void HandleAssemblerFlag(MCAssemblerFlag Flag) {} 99 100 unsigned getPointerSize() const { return 8; } 101 102 unsigned getFixupKindContainereSizeInBytes(unsigned Kind) const; 103 104 bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup, 105 const MCValue &Target) override; 106 }; 107 108 } // end anonymous namespace 109 110 /// The number of bytes the fixup may change. 111 static unsigned getFixupKindNumBytes(unsigned Kind) { 112 switch (Kind) { 113 default: 114 llvm_unreachable("Unknown fixup kind!"); 115 116 case AArch64::fixup_aarch64_tlsdesc_call: 117 return 0; 118 119 case FK_Data_1: 120 return 1; 121 122 case FK_Data_2: 123 case FK_SecRel_2: 124 return 2; 125 126 case AArch64::fixup_aarch64_movw: 127 case AArch64::fixup_aarch64_pcrel_branch14: 128 case AArch64::fixup_aarch64_add_imm12: 129 case AArch64::fixup_aarch64_ldst_imm12_scale1: 130 case AArch64::fixup_aarch64_ldst_imm12_scale2: 131 case AArch64::fixup_aarch64_ldst_imm12_scale4: 132 case AArch64::fixup_aarch64_ldst_imm12_scale8: 133 case AArch64::fixup_aarch64_ldst_imm12_scale16: 134 case AArch64::fixup_aarch64_ldr_pcrel_imm19: 135 case AArch64::fixup_aarch64_pcrel_branch19: 136 return 3; 137 138 case AArch64::fixup_aarch64_pcrel_adr_imm21: 139 case AArch64::fixup_aarch64_pcrel_adrp_imm21: 140 case AArch64::fixup_aarch64_pcrel_branch26: 141 case AArch64::fixup_aarch64_pcrel_call26: 142 case FK_Data_4: 143 case FK_SecRel_4: 144 return 4; 145 146 case FK_Data_8: 147 return 8; 148 } 149 } 150 151 static unsigned AdrImmBits(unsigned Value) { 152 unsigned lo2 = Value & 0x3; 153 unsigned hi19 = (Value & 0x1ffffc) >> 2; 154 return (hi19 << 5) | (lo2 << 29); 155 } 156 157 static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target, 158 uint64_t Value, MCContext &Ctx, 159 const Triple &TheTriple, bool IsResolved) { 160 int64_t SignedValue = static_cast<int64_t>(Value); 161 switch (Fixup.getTargetKind()) { 162 default: 163 llvm_unreachable("Unknown fixup kind!"); 164 case AArch64::fixup_aarch64_pcrel_adr_imm21: 165 if (SignedValue > 2097151 || SignedValue < -2097152) 166 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 167 return AdrImmBits(Value & 0x1fffffULL); 168 case AArch64::fixup_aarch64_pcrel_adrp_imm21: 169 assert(!IsResolved); 170 if (TheTriple.isOSBinFormatCOFF()) 171 return AdrImmBits(Value & 0x1fffffULL); 172 return AdrImmBits((Value & 0x1fffff000ULL) >> 12); 173 case AArch64::fixup_aarch64_ldr_pcrel_imm19: 174 case AArch64::fixup_aarch64_pcrel_branch19: 175 // Signed 21-bit immediate 176 if (SignedValue > 2097151 || SignedValue < -2097152) 177 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 178 if (Value & 0x3) 179 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned"); 180 // Low two bits are not encoded. 181 return (Value >> 2) & 0x7ffff; 182 case AArch64::fixup_aarch64_add_imm12: 183 case AArch64::fixup_aarch64_ldst_imm12_scale1: 184 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 185 Value &= 0xfff; 186 // Unsigned 12-bit immediate 187 if (Value >= 0x1000) 188 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 189 return Value; 190 case AArch64::fixup_aarch64_ldst_imm12_scale2: 191 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 192 Value &= 0xfff; 193 // Unsigned 12-bit immediate which gets multiplied by 2 194 if (Value >= 0x2000) 195 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 196 if (Value & 0x1) 197 Ctx.reportError(Fixup.getLoc(), "fixup must be 2-byte aligned"); 198 return Value >> 1; 199 case AArch64::fixup_aarch64_ldst_imm12_scale4: 200 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 201 Value &= 0xfff; 202 // Unsigned 12-bit immediate which gets multiplied by 4 203 if (Value >= 0x4000) 204 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 205 if (Value & 0x3) 206 Ctx.reportError(Fixup.getLoc(), "fixup must be 4-byte aligned"); 207 return Value >> 2; 208 case AArch64::fixup_aarch64_ldst_imm12_scale8: 209 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 210 Value &= 0xfff; 211 // Unsigned 12-bit immediate which gets multiplied by 8 212 if (Value >= 0x8000) 213 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 214 if (Value & 0x7) 215 Ctx.reportError(Fixup.getLoc(), "fixup must be 8-byte aligned"); 216 return Value >> 3; 217 case AArch64::fixup_aarch64_ldst_imm12_scale16: 218 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 219 Value &= 0xfff; 220 // Unsigned 12-bit immediate which gets multiplied by 16 221 if (Value >= 0x10000) 222 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 223 if (Value & 0xf) 224 Ctx.reportError(Fixup.getLoc(), "fixup must be 16-byte aligned"); 225 return Value >> 4; 226 case AArch64::fixup_aarch64_movw: { 227 AArch64MCExpr::VariantKind RefKind = 228 static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind()); 229 if (AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_ABS && 230 AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_SABS) { 231 if (!RefKind) { 232 // The fixup is an expression 233 if (SignedValue > 0xFFFF || SignedValue < -0xFFFF) 234 Ctx.reportError(Fixup.getLoc(), 235 "fixup value out of range [-0xFFFF, 0xFFFF]"); 236 237 // Invert the negative immediate because it will feed into a MOVN. 238 if (SignedValue < 0) 239 SignedValue = ~SignedValue; 240 Value = static_cast<uint64_t>(SignedValue); 241 } else 242 // VK_GOTTPREL, VK_TPREL, VK_DTPREL are movw fixups, but they can't 243 // ever be resolved in the assembler. 244 Ctx.reportError(Fixup.getLoc(), 245 "relocation for a thread-local variable points to an " 246 "absolute symbol"); 247 return Value; 248 } 249 250 if (!IsResolved) { 251 // FIXME: Figure out when this can actually happen, and verify our 252 // behavior. 253 Ctx.reportError(Fixup.getLoc(), "unresolved movw fixup not yet " 254 "implemented"); 255 return Value; 256 } 257 258 if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) { 259 switch (AArch64MCExpr::getAddressFrag(RefKind)) { 260 case AArch64MCExpr::VK_G0: 261 break; 262 case AArch64MCExpr::VK_G1: 263 SignedValue = SignedValue >> 16; 264 break; 265 case AArch64MCExpr::VK_G2: 266 SignedValue = SignedValue >> 32; 267 break; 268 case AArch64MCExpr::VK_G3: 269 SignedValue = SignedValue >> 48; 270 break; 271 default: 272 llvm_unreachable("Variant kind doesn't correspond to fixup"); 273 } 274 275 } else { 276 switch (AArch64MCExpr::getAddressFrag(RefKind)) { 277 case AArch64MCExpr::VK_G0: 278 break; 279 case AArch64MCExpr::VK_G1: 280 Value = Value >> 16; 281 break; 282 case AArch64MCExpr::VK_G2: 283 Value = Value >> 32; 284 break; 285 case AArch64MCExpr::VK_G3: 286 Value = Value >> 48; 287 break; 288 default: 289 llvm_unreachable("Variant kind doesn't correspond to fixup"); 290 } 291 } 292 293 if (RefKind & AArch64MCExpr::VK_NC) { 294 Value &= 0xFFFF; 295 } 296 else if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) { 297 if (SignedValue > 0xFFFF || SignedValue < -0xFFFF) 298 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 299 300 // Invert the negative immediate because it will feed into a MOVN. 301 if (SignedValue < 0) 302 SignedValue = ~SignedValue; 303 Value = static_cast<uint64_t>(SignedValue); 304 } 305 else if (Value > 0xFFFF) { 306 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 307 } 308 return Value; 309 } 310 case AArch64::fixup_aarch64_pcrel_branch14: 311 // Signed 16-bit immediate 312 if (SignedValue > 32767 || SignedValue < -32768) 313 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 314 // Low two bits are not encoded (4-byte alignment assumed). 315 if (Value & 0x3) 316 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned"); 317 return (Value >> 2) & 0x3fff; 318 case AArch64::fixup_aarch64_pcrel_branch26: 319 case AArch64::fixup_aarch64_pcrel_call26: 320 // Signed 28-bit immediate 321 if (SignedValue > 134217727 || SignedValue < -134217728) 322 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 323 // Low two bits are not encoded (4-byte alignment assumed). 324 if (Value & 0x3) 325 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned"); 326 return (Value >> 2) & 0x3ffffff; 327 case FK_Data_1: 328 case FK_Data_2: 329 case FK_Data_4: 330 case FK_Data_8: 331 case FK_SecRel_2: 332 case FK_SecRel_4: 333 return Value; 334 } 335 } 336 337 Optional<MCFixupKind> AArch64AsmBackend::getFixupKind(StringRef Name) const { 338 if (!TheTriple.isOSBinFormatELF()) 339 return None; 340 341 unsigned Type = llvm::StringSwitch<unsigned>(Name) 342 #define ELF_RELOC(X, Y) .Case(#X, Y) 343 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def" 344 #undef ELF_RELOC 345 .Default(-1u); 346 if (Type == -1u) 347 return None; 348 return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type); 349 } 350 351 /// getFixupKindContainereSizeInBytes - The number of bytes of the 352 /// container involved in big endian or 0 if the item is little endian 353 unsigned AArch64AsmBackend::getFixupKindContainereSizeInBytes(unsigned Kind) const { 354 if (Endian == support::little) 355 return 0; 356 357 switch (Kind) { 358 default: 359 llvm_unreachable("Unknown fixup kind!"); 360 361 case FK_Data_1: 362 return 1; 363 case FK_Data_2: 364 return 2; 365 case FK_Data_4: 366 return 4; 367 case FK_Data_8: 368 return 8; 369 370 case AArch64::fixup_aarch64_tlsdesc_call: 371 case AArch64::fixup_aarch64_movw: 372 case AArch64::fixup_aarch64_pcrel_branch14: 373 case AArch64::fixup_aarch64_add_imm12: 374 case AArch64::fixup_aarch64_ldst_imm12_scale1: 375 case AArch64::fixup_aarch64_ldst_imm12_scale2: 376 case AArch64::fixup_aarch64_ldst_imm12_scale4: 377 case AArch64::fixup_aarch64_ldst_imm12_scale8: 378 case AArch64::fixup_aarch64_ldst_imm12_scale16: 379 case AArch64::fixup_aarch64_ldr_pcrel_imm19: 380 case AArch64::fixup_aarch64_pcrel_branch19: 381 case AArch64::fixup_aarch64_pcrel_adr_imm21: 382 case AArch64::fixup_aarch64_pcrel_adrp_imm21: 383 case AArch64::fixup_aarch64_pcrel_branch26: 384 case AArch64::fixup_aarch64_pcrel_call26: 385 // Instructions are always little endian 386 return 0; 387 } 388 } 389 390 void AArch64AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, 391 const MCValue &Target, 392 MutableArrayRef<char> Data, uint64_t Value, 393 bool IsResolved, 394 const MCSubtargetInfo *STI) const { 395 if (!Value) 396 return; // Doesn't change encoding. 397 unsigned Kind = Fixup.getKind(); 398 if (Kind >= FirstLiteralRelocationKind) 399 return; 400 unsigned NumBytes = getFixupKindNumBytes(Kind); 401 MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind()); 402 MCContext &Ctx = Asm.getContext(); 403 int64_t SignedValue = static_cast<int64_t>(Value); 404 // Apply any target-specific value adjustments. 405 Value = adjustFixupValue(Fixup, Target, Value, Ctx, TheTriple, IsResolved); 406 407 // Shift the value into position. 408 Value <<= Info.TargetOffset; 409 410 unsigned Offset = Fixup.getOffset(); 411 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!"); 412 413 // Used to point to big endian bytes. 414 unsigned FulleSizeInBytes = getFixupKindContainereSizeInBytes(Fixup.getKind()); 415 416 // For each byte of the fragment that the fixup touches, mask in the 417 // bits from the fixup value. 418 if (FulleSizeInBytes == 0) { 419 // Handle as little-endian 420 for (unsigned i = 0; i != NumBytes; ++i) { 421 Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff); 422 } 423 } else { 424 // Handle as big-endian 425 assert((Offset + FulleSizeInBytes) <= Data.size() && "Invalid fixup size!"); 426 assert(NumBytes <= FulleSizeInBytes && "Invalid fixup size!"); 427 for (unsigned i = 0; i != NumBytes; ++i) { 428 unsigned Idx = FulleSizeInBytes - 1 - i; 429 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff); 430 } 431 } 432 433 // FIXME: getFixupKindInfo() and getFixupKindNumBytes() could be fixed to 434 // handle this more cleanly. This may affect the output of -show-mc-encoding. 435 AArch64MCExpr::VariantKind RefKind = 436 static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind()); 437 if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS || 438 (!RefKind && Fixup.getTargetKind() == AArch64::fixup_aarch64_movw)) { 439 // If the immediate is negative, generate MOVN else MOVZ. 440 // (Bit 30 = 0) ==> MOVN, (Bit 30 = 1) ==> MOVZ. 441 if (SignedValue < 0) 442 Data[Offset + 3] &= ~(1 << 6); 443 else 444 Data[Offset + 3] |= (1 << 6); 445 } 446 } 447 448 bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, 449 uint64_t Value, 450 const MCRelaxableFragment *DF, 451 const MCAsmLayout &Layout) const { 452 // FIXME: This isn't correct for AArch64. Just moving the "generic" logic 453 // into the targets for now. 454 // 455 // Relax if the value is too big for a (signed) i8. 456 return int64_t(Value) != int64_t(int8_t(Value)); 457 } 458 459 void AArch64AsmBackend::relaxInstruction(MCInst &Inst, 460 const MCSubtargetInfo &STI) const { 461 llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented"); 462 } 463 464 bool AArch64AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const { 465 // If the count is not 4-byte aligned, we must be writing data into the text 466 // section (otherwise we have unaligned instructions, and thus have far 467 // bigger problems), so just write zeros instead. 468 OS.write_zeros(Count % 4); 469 470 // We are properly aligned, so write NOPs as requested. 471 Count /= 4; 472 for (uint64_t i = 0; i != Count; ++i) 473 support::endian::write<uint32_t>(OS, 0xd503201f, Endian); 474 return true; 475 } 476 477 bool AArch64AsmBackend::shouldForceRelocation(const MCAssembler &Asm, 478 const MCFixup &Fixup, 479 const MCValue &Target) { 480 unsigned Kind = Fixup.getKind(); 481 if (Kind >= FirstLiteralRelocationKind) 482 return true; 483 484 // The ADRP instruction adds some multiple of 0x1000 to the current PC & 485 // ~0xfff. This means that the required offset to reach a symbol can vary by 486 // up to one step depending on where the ADRP is in memory. For example: 487 // 488 // ADRP x0, there 489 // there: 490 // 491 // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and 492 // we'll need that as an offset. At any other address "there" will be in the 493 // same page as the ADRP and the instruction should encode 0x0. Assuming the 494 // section isn't 0x1000-aligned, we therefore need to delegate this decision 495 // to the linker -- a relocation! 496 if (Kind == AArch64::fixup_aarch64_pcrel_adrp_imm21) 497 return true; 498 499 AArch64MCExpr::VariantKind RefKind = 500 static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind()); 501 AArch64MCExpr::VariantKind SymLoc = AArch64MCExpr::getSymbolLoc(RefKind); 502 // LDR GOT relocations need a relocation 503 if (Kind == AArch64::fixup_aarch64_ldr_pcrel_imm19 && 504 SymLoc == AArch64MCExpr::VK_GOT) 505 return true; 506 return false; 507 } 508 509 namespace { 510 511 namespace CU { 512 513 /// Compact unwind encoding values. 514 enum CompactUnwindEncodings { 515 /// A "frameless" leaf function, where no non-volatile registers are 516 /// saved. The return remains in LR throughout the function. 517 UNWIND_ARM64_MODE_FRAMELESS = 0x02000000, 518 519 /// No compact unwind encoding available. Instead the low 23-bits of 520 /// the compact unwind encoding is the offset of the DWARF FDE in the 521 /// __eh_frame section. This mode is never used in object files. It is only 522 /// generated by the linker in final linked images, which have only DWARF info 523 /// for a function. 524 UNWIND_ARM64_MODE_DWARF = 0x03000000, 525 526 /// This is a standard arm64 prologue where FP/LR are immediately 527 /// pushed on the stack, then SP is copied to FP. If there are any 528 /// non-volatile register saved, they are copied into the stack fame in pairs 529 /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the 530 /// five X pairs and four D pairs can be saved, but the memory layout must be 531 /// in register number order. 532 UNWIND_ARM64_MODE_FRAME = 0x04000000, 533 534 /// Frame register pair encodings. 535 UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001, 536 UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002, 537 UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004, 538 UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008, 539 UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010, 540 UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100, 541 UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200, 542 UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400, 543 UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800 544 }; 545 546 } // end CU namespace 547 548 // FIXME: This should be in a separate file. 549 class DarwinAArch64AsmBackend : public AArch64AsmBackend { 550 const MCRegisterInfo &MRI; 551 552 /// Encode compact unwind stack adjustment for frameless functions. 553 /// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h. 554 /// The stack size always needs to be 16 byte aligned. 555 uint32_t encodeStackAdjustment(uint32_t StackSize) const { 556 return (StackSize / 16) << 12; 557 } 558 559 public: 560 DarwinAArch64AsmBackend(const Target &T, const Triple &TT, 561 const MCRegisterInfo &MRI) 562 : AArch64AsmBackend(T, TT, /*IsLittleEndian*/ true), MRI(MRI) {} 563 564 std::unique_ptr<MCObjectTargetWriter> 565 createObjectTargetWriter() const override { 566 uint32_t CPUType = cantFail(MachO::getCPUType(TheTriple)); 567 uint32_t CPUSubType = cantFail(MachO::getCPUSubType(TheTriple)); 568 return createAArch64MachObjectWriter(CPUType, CPUSubType, 569 TheTriple.isArch32Bit()); 570 } 571 572 /// Generate the compact unwind encoding from the CFI directives. 573 uint32_t generateCompactUnwindEncoding( 574 ArrayRef<MCCFIInstruction> Instrs) const override { 575 if (Instrs.empty()) 576 return CU::UNWIND_ARM64_MODE_FRAMELESS; 577 578 bool HasFP = false; 579 unsigned StackSize = 0; 580 581 uint32_t CompactUnwindEncoding = 0; 582 for (size_t i = 0, e = Instrs.size(); i != e; ++i) { 583 const MCCFIInstruction &Inst = Instrs[i]; 584 585 switch (Inst.getOperation()) { 586 default: 587 // Cannot handle this directive: bail out. 588 return CU::UNWIND_ARM64_MODE_DWARF; 589 case MCCFIInstruction::OpDefCfa: { 590 // Defines a frame pointer. 591 unsigned XReg = 592 getXRegFromWReg(*MRI.getLLVMRegNum(Inst.getRegister(), true)); 593 594 // Other CFA registers than FP are not supported by compact unwind. 595 // Fallback on DWARF. 596 // FIXME: When opt-remarks are supported in MC, add a remark to notify 597 // the user. 598 if (XReg != AArch64::FP) 599 return CU::UNWIND_ARM64_MODE_DWARF; 600 601 assert(XReg == AArch64::FP && "Invalid frame pointer!"); 602 assert(i + 2 < e && "Insufficient CFI instructions to define a frame!"); 603 604 const MCCFIInstruction &LRPush = Instrs[++i]; 605 assert(LRPush.getOperation() == MCCFIInstruction::OpOffset && 606 "Link register not pushed!"); 607 const MCCFIInstruction &FPPush = Instrs[++i]; 608 assert(FPPush.getOperation() == MCCFIInstruction::OpOffset && 609 "Frame pointer not pushed!"); 610 611 unsigned LRReg = *MRI.getLLVMRegNum(LRPush.getRegister(), true); 612 unsigned FPReg = *MRI.getLLVMRegNum(FPPush.getRegister(), true); 613 614 LRReg = getXRegFromWReg(LRReg); 615 FPReg = getXRegFromWReg(FPReg); 616 617 assert(LRReg == AArch64::LR && FPReg == AArch64::FP && 618 "Pushing invalid registers for frame!"); 619 620 // Indicate that the function has a frame. 621 CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAME; 622 HasFP = true; 623 break; 624 } 625 case MCCFIInstruction::OpDefCfaOffset: { 626 assert(StackSize == 0 && "We already have the CFA offset!"); 627 StackSize = std::abs(Inst.getOffset()); 628 break; 629 } 630 case MCCFIInstruction::OpOffset: { 631 // Registers are saved in pairs. We expect there to be two consecutive 632 // `.cfi_offset' instructions with the appropriate registers specified. 633 unsigned Reg1 = *MRI.getLLVMRegNum(Inst.getRegister(), true); 634 if (i + 1 == e) 635 return CU::UNWIND_ARM64_MODE_DWARF; 636 637 const MCCFIInstruction &Inst2 = Instrs[++i]; 638 if (Inst2.getOperation() != MCCFIInstruction::OpOffset) 639 return CU::UNWIND_ARM64_MODE_DWARF; 640 unsigned Reg2 = *MRI.getLLVMRegNum(Inst2.getRegister(), true); 641 642 // N.B. The encodings must be in register number order, and the X 643 // registers before the D registers. 644 645 // X19/X20 pair = 0x00000001, 646 // X21/X22 pair = 0x00000002, 647 // X23/X24 pair = 0x00000004, 648 // X25/X26 pair = 0x00000008, 649 // X27/X28 pair = 0x00000010 650 Reg1 = getXRegFromWReg(Reg1); 651 Reg2 = getXRegFromWReg(Reg2); 652 653 if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 && 654 (CompactUnwindEncoding & 0xF1E) == 0) 655 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X19_X20_PAIR; 656 else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 && 657 (CompactUnwindEncoding & 0xF1C) == 0) 658 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X21_X22_PAIR; 659 else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 && 660 (CompactUnwindEncoding & 0xF18) == 0) 661 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X23_X24_PAIR; 662 else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 && 663 (CompactUnwindEncoding & 0xF10) == 0) 664 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X25_X26_PAIR; 665 else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 && 666 (CompactUnwindEncoding & 0xF00) == 0) 667 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X27_X28_PAIR; 668 else { 669 Reg1 = getDRegFromBReg(Reg1); 670 Reg2 = getDRegFromBReg(Reg2); 671 672 // D8/D9 pair = 0x00000100, 673 // D10/D11 pair = 0x00000200, 674 // D12/D13 pair = 0x00000400, 675 // D14/D15 pair = 0x00000800 676 if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 && 677 (CompactUnwindEncoding & 0xE00) == 0) 678 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D8_D9_PAIR; 679 else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 && 680 (CompactUnwindEncoding & 0xC00) == 0) 681 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D10_D11_PAIR; 682 else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 && 683 (CompactUnwindEncoding & 0x800) == 0) 684 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D12_D13_PAIR; 685 else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15) 686 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D14_D15_PAIR; 687 else 688 // A pair was pushed which we cannot handle. 689 return CU::UNWIND_ARM64_MODE_DWARF; 690 } 691 692 break; 693 } 694 } 695 } 696 697 if (!HasFP) { 698 // With compact unwind info we can only represent stack adjustments of up 699 // to 65520 bytes. 700 if (StackSize > 65520) 701 return CU::UNWIND_ARM64_MODE_DWARF; 702 703 CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAMELESS; 704 CompactUnwindEncoding |= encodeStackAdjustment(StackSize); 705 } 706 707 return CompactUnwindEncoding; 708 } 709 }; 710 711 } // end anonymous namespace 712 713 namespace { 714 715 class ELFAArch64AsmBackend : public AArch64AsmBackend { 716 public: 717 uint8_t OSABI; 718 bool IsILP32; 719 720 ELFAArch64AsmBackend(const Target &T, const Triple &TT, uint8_t OSABI, 721 bool IsLittleEndian, bool IsILP32) 722 : AArch64AsmBackend(T, TT, IsLittleEndian), OSABI(OSABI), 723 IsILP32(IsILP32) {} 724 725 std::unique_ptr<MCObjectTargetWriter> 726 createObjectTargetWriter() const override { 727 return createAArch64ELFObjectWriter(OSABI, IsILP32); 728 } 729 }; 730 731 } 732 733 namespace { 734 class COFFAArch64AsmBackend : public AArch64AsmBackend { 735 public: 736 COFFAArch64AsmBackend(const Target &T, const Triple &TheTriple) 737 : AArch64AsmBackend(T, TheTriple, /*IsLittleEndian*/ true) {} 738 739 std::unique_ptr<MCObjectTargetWriter> 740 createObjectTargetWriter() const override { 741 return createAArch64WinCOFFObjectWriter(); 742 } 743 }; 744 } 745 746 MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T, 747 const MCSubtargetInfo &STI, 748 const MCRegisterInfo &MRI, 749 const MCTargetOptions &Options) { 750 const Triple &TheTriple = STI.getTargetTriple(); 751 if (TheTriple.isOSBinFormatMachO()) { 752 return new DarwinAArch64AsmBackend(T, TheTriple, MRI); 753 } 754 755 if (TheTriple.isOSBinFormatCOFF()) 756 return new COFFAArch64AsmBackend(T, TheTriple); 757 758 assert(TheTriple.isOSBinFormatELF() && "Invalid target"); 759 760 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); 761 bool IsILP32 = STI.getTargetTriple().getEnvironment() == Triple::GNUILP32; 762 return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/true, 763 IsILP32); 764 } 765 766 MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T, 767 const MCSubtargetInfo &STI, 768 const MCRegisterInfo &MRI, 769 const MCTargetOptions &Options) { 770 const Triple &TheTriple = STI.getTargetTriple(); 771 assert(TheTriple.isOSBinFormatELF() && 772 "Big endian is only supported for ELF targets!"); 773 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); 774 bool IsILP32 = STI.getTargetTriple().getEnvironment() == Triple::GNUILP32; 775 return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/false, 776 IsILP32); 777 } 778