1 //===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/AArch64FixupKinds.h" 10 #include "MCTargetDesc/AArch64MCExpr.h" 11 #include "MCTargetDesc/AArch64MCTargetDesc.h" 12 #include "Utils/AArch64BaseInfo.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/BinaryFormat/MachO.h" 15 #include "llvm/MC/MCAsmBackend.h" 16 #include "llvm/MC/MCAssembler.h" 17 #include "llvm/MC/MCContext.h" 18 #include "llvm/MC/MCDirectives.h" 19 #include "llvm/MC/MCELFObjectWriter.h" 20 #include "llvm/MC/MCFixupKindInfo.h" 21 #include "llvm/MC/MCObjectWriter.h" 22 #include "llvm/MC/MCRegisterInfo.h" 23 #include "llvm/MC/MCSectionELF.h" 24 #include "llvm/MC/MCSectionMachO.h" 25 #include "llvm/MC/MCSubtargetInfo.h" 26 #include "llvm/MC/MCTargetOptions.h" 27 #include "llvm/MC/MCValue.h" 28 #include "llvm/MC/TargetRegistry.h" 29 #include "llvm/Support/ErrorHandling.h" 30 using namespace llvm; 31 32 namespace { 33 34 class AArch64AsmBackend : public MCAsmBackend { 35 static const unsigned PCRelFlagVal = 36 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel; 37 protected: 38 Triple TheTriple; 39 40 public: 41 AArch64AsmBackend(const Target &T, const Triple &TT, bool IsLittleEndian) 42 : MCAsmBackend(IsLittleEndian ? support::little : support::big), 43 TheTriple(TT) {} 44 45 unsigned getNumFixupKinds() const override { 46 return AArch64::NumTargetFixupKinds; 47 } 48 49 std::optional<MCFixupKind> getFixupKind(StringRef Name) const override; 50 51 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override { 52 const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = { 53 // This table *must* be in the order that the fixup_* kinds are defined 54 // in AArch64FixupKinds.h. 55 // 56 // Name Offset (bits) Size (bits) Flags 57 {"fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal}, 58 {"fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal}, 59 {"fixup_aarch64_add_imm12", 10, 12, 0}, 60 {"fixup_aarch64_ldst_imm12_scale1", 10, 12, 0}, 61 {"fixup_aarch64_ldst_imm12_scale2", 10, 12, 0}, 62 {"fixup_aarch64_ldst_imm12_scale4", 10, 12, 0}, 63 {"fixup_aarch64_ldst_imm12_scale8", 10, 12, 0}, 64 {"fixup_aarch64_ldst_imm12_scale16", 10, 12, 0}, 65 {"fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal}, 66 {"fixup_aarch64_movw", 5, 16, 0}, 67 {"fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal}, 68 {"fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal}, 69 {"fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal}, 70 {"fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal}}; 71 72 // Fixup kinds from .reloc directive are like R_AARCH64_NONE. They do not 73 // require any extra processing. 74 if (Kind >= FirstLiteralRelocationKind) 75 return MCAsmBackend::getFixupKindInfo(FK_NONE); 76 77 if (Kind < FirstTargetFixupKind) 78 return MCAsmBackend::getFixupKindInfo(Kind); 79 80 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && 81 "Invalid kind!"); 82 return Infos[Kind - FirstTargetFixupKind]; 83 } 84 85 void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, 86 const MCValue &Target, MutableArrayRef<char> Data, 87 uint64_t Value, bool IsResolved, 88 const MCSubtargetInfo *STI) const override; 89 90 bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, 91 const MCRelaxableFragment *DF, 92 const MCAsmLayout &Layout) const override; 93 void relaxInstruction(MCInst &Inst, 94 const MCSubtargetInfo &STI) const override; 95 bool writeNopData(raw_ostream &OS, uint64_t Count, 96 const MCSubtargetInfo *STI) const override; 97 98 unsigned getFixupKindContainereSizeInBytes(unsigned Kind) const; 99 100 bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup, 101 const MCValue &Target) override; 102 }; 103 104 } // end anonymous namespace 105 106 /// The number of bytes the fixup may change. 107 static unsigned getFixupKindNumBytes(unsigned Kind) { 108 switch (Kind) { 109 default: 110 llvm_unreachable("Unknown fixup kind!"); 111 112 case FK_Data_1: 113 return 1; 114 115 case FK_Data_2: 116 case FK_SecRel_2: 117 return 2; 118 119 case AArch64::fixup_aarch64_movw: 120 case AArch64::fixup_aarch64_pcrel_branch14: 121 case AArch64::fixup_aarch64_add_imm12: 122 case AArch64::fixup_aarch64_ldst_imm12_scale1: 123 case AArch64::fixup_aarch64_ldst_imm12_scale2: 124 case AArch64::fixup_aarch64_ldst_imm12_scale4: 125 case AArch64::fixup_aarch64_ldst_imm12_scale8: 126 case AArch64::fixup_aarch64_ldst_imm12_scale16: 127 case AArch64::fixup_aarch64_ldr_pcrel_imm19: 128 case AArch64::fixup_aarch64_pcrel_branch19: 129 return 3; 130 131 case AArch64::fixup_aarch64_pcrel_adr_imm21: 132 case AArch64::fixup_aarch64_pcrel_adrp_imm21: 133 case AArch64::fixup_aarch64_pcrel_branch26: 134 case AArch64::fixup_aarch64_pcrel_call26: 135 case FK_Data_4: 136 case FK_SecRel_4: 137 return 4; 138 139 case FK_Data_8: 140 return 8; 141 } 142 } 143 144 static unsigned AdrImmBits(unsigned Value) { 145 unsigned lo2 = Value & 0x3; 146 unsigned hi19 = (Value & 0x1ffffc) >> 2; 147 return (hi19 << 5) | (lo2 << 29); 148 } 149 150 static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target, 151 uint64_t Value, MCContext &Ctx, 152 const Triple &TheTriple, bool IsResolved) { 153 int64_t SignedValue = static_cast<int64_t>(Value); 154 switch (Fixup.getTargetKind()) { 155 default: 156 llvm_unreachable("Unknown fixup kind!"); 157 case AArch64::fixup_aarch64_pcrel_adr_imm21: 158 if (SignedValue > 2097151 || SignedValue < -2097152) 159 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 160 return AdrImmBits(Value & 0x1fffffULL); 161 case AArch64::fixup_aarch64_pcrel_adrp_imm21: 162 assert(!IsResolved); 163 if (TheTriple.isOSBinFormatCOFF()) { 164 if (!isInt<21>(SignedValue)) 165 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 166 return AdrImmBits(Value & 0x1fffffULL); 167 } 168 return AdrImmBits((Value & 0x1fffff000ULL) >> 12); 169 case AArch64::fixup_aarch64_ldr_pcrel_imm19: 170 case AArch64::fixup_aarch64_pcrel_branch19: 171 // Signed 21-bit immediate 172 if (SignedValue > 2097151 || SignedValue < -2097152) 173 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 174 if (Value & 0x3) 175 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned"); 176 // Low two bits are not encoded. 177 return (Value >> 2) & 0x7ffff; 178 case AArch64::fixup_aarch64_add_imm12: 179 case AArch64::fixup_aarch64_ldst_imm12_scale1: 180 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 181 Value &= 0xfff; 182 // Unsigned 12-bit immediate 183 if (Value >= 0x1000) 184 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 185 return Value; 186 case AArch64::fixup_aarch64_ldst_imm12_scale2: 187 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 188 Value &= 0xfff; 189 // Unsigned 12-bit immediate which gets multiplied by 2 190 if (Value >= 0x2000) 191 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 192 if (Value & 0x1) 193 Ctx.reportError(Fixup.getLoc(), "fixup must be 2-byte aligned"); 194 return Value >> 1; 195 case AArch64::fixup_aarch64_ldst_imm12_scale4: 196 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 197 Value &= 0xfff; 198 // Unsigned 12-bit immediate which gets multiplied by 4 199 if (Value >= 0x4000) 200 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 201 if (Value & 0x3) 202 Ctx.reportError(Fixup.getLoc(), "fixup must be 4-byte aligned"); 203 return Value >> 2; 204 case AArch64::fixup_aarch64_ldst_imm12_scale8: 205 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 206 Value &= 0xfff; 207 // Unsigned 12-bit immediate which gets multiplied by 8 208 if (Value >= 0x8000) 209 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 210 if (Value & 0x7) 211 Ctx.reportError(Fixup.getLoc(), "fixup must be 8-byte aligned"); 212 return Value >> 3; 213 case AArch64::fixup_aarch64_ldst_imm12_scale16: 214 if (TheTriple.isOSBinFormatCOFF() && !IsResolved) 215 Value &= 0xfff; 216 // Unsigned 12-bit immediate which gets multiplied by 16 217 if (Value >= 0x10000) 218 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 219 if (Value & 0xf) 220 Ctx.reportError(Fixup.getLoc(), "fixup must be 16-byte aligned"); 221 return Value >> 4; 222 case AArch64::fixup_aarch64_movw: { 223 AArch64MCExpr::VariantKind RefKind = 224 static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind()); 225 if (AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_ABS && 226 AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_SABS) { 227 if (!RefKind) { 228 // The fixup is an expression 229 if (SignedValue > 0xFFFF || SignedValue < -0xFFFF) 230 Ctx.reportError(Fixup.getLoc(), 231 "fixup value out of range [-0xFFFF, 0xFFFF]"); 232 233 // Invert the negative immediate because it will feed into a MOVN. 234 if (SignedValue < 0) 235 SignedValue = ~SignedValue; 236 Value = static_cast<uint64_t>(SignedValue); 237 } else 238 // VK_GOTTPREL, VK_TPREL, VK_DTPREL are movw fixups, but they can't 239 // ever be resolved in the assembler. 240 Ctx.reportError(Fixup.getLoc(), 241 "relocation for a thread-local variable points to an " 242 "absolute symbol"); 243 return Value; 244 } 245 246 if (!IsResolved) { 247 // FIXME: Figure out when this can actually happen, and verify our 248 // behavior. 249 Ctx.reportError(Fixup.getLoc(), "unresolved movw fixup not yet " 250 "implemented"); 251 return Value; 252 } 253 254 if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) { 255 switch (AArch64MCExpr::getAddressFrag(RefKind)) { 256 case AArch64MCExpr::VK_G0: 257 break; 258 case AArch64MCExpr::VK_G1: 259 SignedValue = SignedValue >> 16; 260 break; 261 case AArch64MCExpr::VK_G2: 262 SignedValue = SignedValue >> 32; 263 break; 264 case AArch64MCExpr::VK_G3: 265 SignedValue = SignedValue >> 48; 266 break; 267 default: 268 llvm_unreachable("Variant kind doesn't correspond to fixup"); 269 } 270 271 } else { 272 switch (AArch64MCExpr::getAddressFrag(RefKind)) { 273 case AArch64MCExpr::VK_G0: 274 break; 275 case AArch64MCExpr::VK_G1: 276 Value = Value >> 16; 277 break; 278 case AArch64MCExpr::VK_G2: 279 Value = Value >> 32; 280 break; 281 case AArch64MCExpr::VK_G3: 282 Value = Value >> 48; 283 break; 284 default: 285 llvm_unreachable("Variant kind doesn't correspond to fixup"); 286 } 287 } 288 289 if (RefKind & AArch64MCExpr::VK_NC) { 290 Value &= 0xFFFF; 291 } 292 else if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) { 293 if (SignedValue > 0xFFFF || SignedValue < -0xFFFF) 294 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 295 296 // Invert the negative immediate because it will feed into a MOVN. 297 if (SignedValue < 0) 298 SignedValue = ~SignedValue; 299 Value = static_cast<uint64_t>(SignedValue); 300 } 301 else if (Value > 0xFFFF) { 302 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 303 } 304 return Value; 305 } 306 case AArch64::fixup_aarch64_pcrel_branch14: 307 // Signed 16-bit immediate 308 if (SignedValue > 32767 || SignedValue < -32768) 309 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 310 // Low two bits are not encoded (4-byte alignment assumed). 311 if (Value & 0x3) 312 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned"); 313 return (Value >> 2) & 0x3fff; 314 case AArch64::fixup_aarch64_pcrel_branch26: 315 case AArch64::fixup_aarch64_pcrel_call26: 316 // Signed 28-bit immediate 317 if (SignedValue > 134217727 || SignedValue < -134217728) 318 Ctx.reportError(Fixup.getLoc(), "fixup value out of range"); 319 // Low two bits are not encoded (4-byte alignment assumed). 320 if (Value & 0x3) 321 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned"); 322 return (Value >> 2) & 0x3ffffff; 323 case FK_Data_1: 324 case FK_Data_2: 325 case FK_Data_4: 326 case FK_Data_8: 327 case FK_SecRel_2: 328 case FK_SecRel_4: 329 return Value; 330 } 331 } 332 333 std::optional<MCFixupKind> 334 AArch64AsmBackend::getFixupKind(StringRef Name) const { 335 if (!TheTriple.isOSBinFormatELF()) 336 return std::nullopt; 337 338 unsigned Type = llvm::StringSwitch<unsigned>(Name) 339 #define ELF_RELOC(X, Y) .Case(#X, Y) 340 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def" 341 #undef ELF_RELOC 342 .Case("BFD_RELOC_NONE", ELF::R_AARCH64_NONE) 343 .Case("BFD_RELOC_16", ELF::R_AARCH64_ABS16) 344 .Case("BFD_RELOC_32", ELF::R_AARCH64_ABS32) 345 .Case("BFD_RELOC_64", ELF::R_AARCH64_ABS64) 346 .Default(-1u); 347 if (Type == -1u) 348 return std::nullopt; 349 return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type); 350 } 351 352 /// getFixupKindContainereSizeInBytes - The number of bytes of the 353 /// container involved in big endian or 0 if the item is little endian 354 unsigned AArch64AsmBackend::getFixupKindContainereSizeInBytes(unsigned Kind) const { 355 if (Endian == support::little) 356 return 0; 357 358 switch (Kind) { 359 default: 360 llvm_unreachable("Unknown fixup kind!"); 361 362 case FK_Data_1: 363 return 1; 364 case FK_Data_2: 365 return 2; 366 case FK_Data_4: 367 return 4; 368 case FK_Data_8: 369 return 8; 370 371 case AArch64::fixup_aarch64_movw: 372 case AArch64::fixup_aarch64_pcrel_branch14: 373 case AArch64::fixup_aarch64_add_imm12: 374 case AArch64::fixup_aarch64_ldst_imm12_scale1: 375 case AArch64::fixup_aarch64_ldst_imm12_scale2: 376 case AArch64::fixup_aarch64_ldst_imm12_scale4: 377 case AArch64::fixup_aarch64_ldst_imm12_scale8: 378 case AArch64::fixup_aarch64_ldst_imm12_scale16: 379 case AArch64::fixup_aarch64_ldr_pcrel_imm19: 380 case AArch64::fixup_aarch64_pcrel_branch19: 381 case AArch64::fixup_aarch64_pcrel_adr_imm21: 382 case AArch64::fixup_aarch64_pcrel_adrp_imm21: 383 case AArch64::fixup_aarch64_pcrel_branch26: 384 case AArch64::fixup_aarch64_pcrel_call26: 385 // Instructions are always little endian 386 return 0; 387 } 388 } 389 390 void AArch64AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, 391 const MCValue &Target, 392 MutableArrayRef<char> Data, uint64_t Value, 393 bool IsResolved, 394 const MCSubtargetInfo *STI) const { 395 if (!Value) 396 return; // Doesn't change encoding. 397 unsigned Kind = Fixup.getKind(); 398 if (Kind >= FirstLiteralRelocationKind) 399 return; 400 unsigned NumBytes = getFixupKindNumBytes(Kind); 401 MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind()); 402 MCContext &Ctx = Asm.getContext(); 403 int64_t SignedValue = static_cast<int64_t>(Value); 404 // Apply any target-specific value adjustments. 405 Value = adjustFixupValue(Fixup, Target, Value, Ctx, TheTriple, IsResolved); 406 407 // Shift the value into position. 408 Value <<= Info.TargetOffset; 409 410 unsigned Offset = Fixup.getOffset(); 411 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!"); 412 413 // Used to point to big endian bytes. 414 unsigned FulleSizeInBytes = getFixupKindContainereSizeInBytes(Fixup.getKind()); 415 416 // For each byte of the fragment that the fixup touches, mask in the 417 // bits from the fixup value. 418 if (FulleSizeInBytes == 0) { 419 // Handle as little-endian 420 for (unsigned i = 0; i != NumBytes; ++i) { 421 Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff); 422 } 423 } else { 424 // Handle as big-endian 425 assert((Offset + FulleSizeInBytes) <= Data.size() && "Invalid fixup size!"); 426 assert(NumBytes <= FulleSizeInBytes && "Invalid fixup size!"); 427 for (unsigned i = 0; i != NumBytes; ++i) { 428 unsigned Idx = FulleSizeInBytes - 1 - i; 429 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff); 430 } 431 } 432 433 // FIXME: getFixupKindInfo() and getFixupKindNumBytes() could be fixed to 434 // handle this more cleanly. This may affect the output of -show-mc-encoding. 435 AArch64MCExpr::VariantKind RefKind = 436 static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind()); 437 if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS || 438 (!RefKind && Fixup.getTargetKind() == AArch64::fixup_aarch64_movw)) { 439 // If the immediate is negative, generate MOVN else MOVZ. 440 // (Bit 30 = 0) ==> MOVN, (Bit 30 = 1) ==> MOVZ. 441 if (SignedValue < 0) 442 Data[Offset + 3] &= ~(1 << 6); 443 else 444 Data[Offset + 3] |= (1 << 6); 445 } 446 } 447 448 bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, 449 uint64_t Value, 450 const MCRelaxableFragment *DF, 451 const MCAsmLayout &Layout) const { 452 // FIXME: This isn't correct for AArch64. Just moving the "generic" logic 453 // into the targets for now. 454 // 455 // Relax if the value is too big for a (signed) i8. 456 return int64_t(Value) != int64_t(int8_t(Value)); 457 } 458 459 void AArch64AsmBackend::relaxInstruction(MCInst &Inst, 460 const MCSubtargetInfo &STI) const { 461 llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented"); 462 } 463 464 bool AArch64AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count, 465 const MCSubtargetInfo *STI) const { 466 // If the count is not 4-byte aligned, we must be writing data into the text 467 // section (otherwise we have unaligned instructions, and thus have far 468 // bigger problems), so just write zeros instead. 469 OS.write_zeros(Count % 4); 470 471 // We are properly aligned, so write NOPs as requested. 472 Count /= 4; 473 for (uint64_t i = 0; i != Count; ++i) 474 OS.write("\x1f\x20\x03\xd5", 4); 475 return true; 476 } 477 478 bool AArch64AsmBackend::shouldForceRelocation(const MCAssembler &Asm, 479 const MCFixup &Fixup, 480 const MCValue &Target) { 481 unsigned Kind = Fixup.getKind(); 482 if (Kind >= FirstLiteralRelocationKind) 483 return true; 484 485 // The ADRP instruction adds some multiple of 0x1000 to the current PC & 486 // ~0xfff. This means that the required offset to reach a symbol can vary by 487 // up to one step depending on where the ADRP is in memory. For example: 488 // 489 // ADRP x0, there 490 // there: 491 // 492 // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and 493 // we'll need that as an offset. At any other address "there" will be in the 494 // same page as the ADRP and the instruction should encode 0x0. Assuming the 495 // section isn't 0x1000-aligned, we therefore need to delegate this decision 496 // to the linker -- a relocation! 497 if (Kind == AArch64::fixup_aarch64_pcrel_adrp_imm21) 498 return true; 499 500 return false; 501 } 502 503 namespace { 504 505 namespace CU { 506 507 /// Compact unwind encoding values. 508 enum CompactUnwindEncodings { 509 /// A "frameless" leaf function, where no non-volatile registers are 510 /// saved. The return remains in LR throughout the function. 511 UNWIND_ARM64_MODE_FRAMELESS = 0x02000000, 512 513 /// No compact unwind encoding available. Instead the low 23-bits of 514 /// the compact unwind encoding is the offset of the DWARF FDE in the 515 /// __eh_frame section. This mode is never used in object files. It is only 516 /// generated by the linker in final linked images, which have only DWARF info 517 /// for a function. 518 UNWIND_ARM64_MODE_DWARF = 0x03000000, 519 520 /// This is a standard arm64 prologue where FP/LR are immediately 521 /// pushed on the stack, then SP is copied to FP. If there are any 522 /// non-volatile register saved, they are copied into the stack fame in pairs 523 /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the 524 /// five X pairs and four D pairs can be saved, but the memory layout must be 525 /// in register number order. 526 UNWIND_ARM64_MODE_FRAME = 0x04000000, 527 528 /// Frame register pair encodings. 529 UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001, 530 UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002, 531 UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004, 532 UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008, 533 UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010, 534 UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100, 535 UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200, 536 UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400, 537 UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800 538 }; 539 540 } // end CU namespace 541 542 // FIXME: This should be in a separate file. 543 class DarwinAArch64AsmBackend : public AArch64AsmBackend { 544 const MCRegisterInfo &MRI; 545 546 /// Encode compact unwind stack adjustment for frameless functions. 547 /// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h. 548 /// The stack size always needs to be 16 byte aligned. 549 uint32_t encodeStackAdjustment(uint32_t StackSize) const { 550 return (StackSize / 16) << 12; 551 } 552 553 public: 554 DarwinAArch64AsmBackend(const Target &T, const Triple &TT, 555 const MCRegisterInfo &MRI) 556 : AArch64AsmBackend(T, TT, /*IsLittleEndian*/ true), MRI(MRI) {} 557 558 std::unique_ptr<MCObjectTargetWriter> 559 createObjectTargetWriter() const override { 560 uint32_t CPUType = cantFail(MachO::getCPUType(TheTriple)); 561 uint32_t CPUSubType = cantFail(MachO::getCPUSubType(TheTriple)); 562 return createAArch64MachObjectWriter(CPUType, CPUSubType, 563 TheTriple.isArch32Bit()); 564 } 565 566 /// Generate the compact unwind encoding from the CFI directives. 567 uint32_t generateCompactUnwindEncoding( 568 ArrayRef<MCCFIInstruction> Instrs) const override { 569 if (Instrs.empty()) 570 return CU::UNWIND_ARM64_MODE_FRAMELESS; 571 572 bool HasFP = false; 573 unsigned StackSize = 0; 574 575 uint32_t CompactUnwindEncoding = 0; 576 int CurOffset = 0; 577 for (size_t i = 0, e = Instrs.size(); i != e; ++i) { 578 const MCCFIInstruction &Inst = Instrs[i]; 579 580 switch (Inst.getOperation()) { 581 default: 582 // Cannot handle this directive: bail out. 583 return CU::UNWIND_ARM64_MODE_DWARF; 584 case MCCFIInstruction::OpDefCfa: { 585 // Defines a frame pointer. 586 unsigned XReg = 587 getXRegFromWReg(*MRI.getLLVMRegNum(Inst.getRegister(), true)); 588 589 // Other CFA registers than FP are not supported by compact unwind. 590 // Fallback on DWARF. 591 // FIXME: When opt-remarks are supported in MC, add a remark to notify 592 // the user. 593 if (XReg != AArch64::FP) 594 return CU::UNWIND_ARM64_MODE_DWARF; 595 596 if (i + 2 >= e) 597 return CU::UNWIND_ARM64_MODE_DWARF; 598 599 const MCCFIInstruction &LRPush = Instrs[++i]; 600 if (LRPush.getOperation() != MCCFIInstruction::OpOffset) 601 return CU::UNWIND_ARM64_MODE_DWARF; 602 const MCCFIInstruction &FPPush = Instrs[++i]; 603 if (FPPush.getOperation() != MCCFIInstruction::OpOffset) 604 return CU::UNWIND_ARM64_MODE_DWARF; 605 606 if (FPPush.getOffset() + 8 != LRPush.getOffset()) 607 return CU::UNWIND_ARM64_MODE_DWARF; 608 CurOffset = FPPush.getOffset(); 609 610 unsigned LRReg = *MRI.getLLVMRegNum(LRPush.getRegister(), true); 611 unsigned FPReg = *MRI.getLLVMRegNum(FPPush.getRegister(), true); 612 613 LRReg = getXRegFromWReg(LRReg); 614 FPReg = getXRegFromWReg(FPReg); 615 616 if (LRReg != AArch64::LR || FPReg != AArch64::FP) 617 return CU::UNWIND_ARM64_MODE_DWARF; 618 619 // Indicate that the function has a frame. 620 CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAME; 621 HasFP = true; 622 break; 623 } 624 case MCCFIInstruction::OpDefCfaOffset: { 625 if (StackSize != 0) 626 return CU::UNWIND_ARM64_MODE_DWARF; 627 StackSize = std::abs(Inst.getOffset()); 628 break; 629 } 630 case MCCFIInstruction::OpOffset: { 631 // Registers are saved in pairs. We expect there to be two consecutive 632 // `.cfi_offset' instructions with the appropriate registers specified. 633 unsigned Reg1 = *MRI.getLLVMRegNum(Inst.getRegister(), true); 634 if (i + 1 == e) 635 return CU::UNWIND_ARM64_MODE_DWARF; 636 637 if (CurOffset != 0 && Inst.getOffset() != CurOffset - 8) 638 return CU::UNWIND_ARM64_MODE_DWARF; 639 CurOffset = Inst.getOffset(); 640 641 const MCCFIInstruction &Inst2 = Instrs[++i]; 642 if (Inst2.getOperation() != MCCFIInstruction::OpOffset) 643 return CU::UNWIND_ARM64_MODE_DWARF; 644 unsigned Reg2 = *MRI.getLLVMRegNum(Inst2.getRegister(), true); 645 646 if (Inst2.getOffset() != CurOffset - 8) 647 return CU::UNWIND_ARM64_MODE_DWARF; 648 CurOffset = Inst2.getOffset(); 649 650 // N.B. The encodings must be in register number order, and the X 651 // registers before the D registers. 652 653 // X19/X20 pair = 0x00000001, 654 // X21/X22 pair = 0x00000002, 655 // X23/X24 pair = 0x00000004, 656 // X25/X26 pair = 0x00000008, 657 // X27/X28 pair = 0x00000010 658 Reg1 = getXRegFromWReg(Reg1); 659 Reg2 = getXRegFromWReg(Reg2); 660 661 if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 && 662 (CompactUnwindEncoding & 0xF1E) == 0) 663 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X19_X20_PAIR; 664 else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 && 665 (CompactUnwindEncoding & 0xF1C) == 0) 666 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X21_X22_PAIR; 667 else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 && 668 (CompactUnwindEncoding & 0xF18) == 0) 669 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X23_X24_PAIR; 670 else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 && 671 (CompactUnwindEncoding & 0xF10) == 0) 672 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X25_X26_PAIR; 673 else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 && 674 (CompactUnwindEncoding & 0xF00) == 0) 675 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X27_X28_PAIR; 676 else { 677 Reg1 = getDRegFromBReg(Reg1); 678 Reg2 = getDRegFromBReg(Reg2); 679 680 // D8/D9 pair = 0x00000100, 681 // D10/D11 pair = 0x00000200, 682 // D12/D13 pair = 0x00000400, 683 // D14/D15 pair = 0x00000800 684 if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 && 685 (CompactUnwindEncoding & 0xE00) == 0) 686 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D8_D9_PAIR; 687 else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 && 688 (CompactUnwindEncoding & 0xC00) == 0) 689 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D10_D11_PAIR; 690 else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 && 691 (CompactUnwindEncoding & 0x800) == 0) 692 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D12_D13_PAIR; 693 else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15) 694 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D14_D15_PAIR; 695 else 696 // A pair was pushed which we cannot handle. 697 return CU::UNWIND_ARM64_MODE_DWARF; 698 } 699 700 break; 701 } 702 } 703 } 704 705 if (!HasFP) { 706 // With compact unwind info we can only represent stack adjustments of up 707 // to 65520 bytes. 708 if (StackSize > 65520) 709 return CU::UNWIND_ARM64_MODE_DWARF; 710 711 CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAMELESS; 712 CompactUnwindEncoding |= encodeStackAdjustment(StackSize); 713 } 714 715 return CompactUnwindEncoding; 716 } 717 }; 718 719 } // end anonymous namespace 720 721 namespace { 722 723 class ELFAArch64AsmBackend : public AArch64AsmBackend { 724 public: 725 uint8_t OSABI; 726 bool IsILP32; 727 728 ELFAArch64AsmBackend(const Target &T, const Triple &TT, uint8_t OSABI, 729 bool IsLittleEndian, bool IsILP32) 730 : AArch64AsmBackend(T, TT, IsLittleEndian), OSABI(OSABI), 731 IsILP32(IsILP32) {} 732 733 std::unique_ptr<MCObjectTargetWriter> 734 createObjectTargetWriter() const override { 735 return createAArch64ELFObjectWriter(OSABI, IsILP32); 736 } 737 }; 738 739 } 740 741 namespace { 742 class COFFAArch64AsmBackend : public AArch64AsmBackend { 743 public: 744 COFFAArch64AsmBackend(const Target &T, const Triple &TheTriple) 745 : AArch64AsmBackend(T, TheTriple, /*IsLittleEndian*/ true) {} 746 747 std::unique_ptr<MCObjectTargetWriter> 748 createObjectTargetWriter() const override { 749 return createAArch64WinCOFFObjectWriter(TheTriple); 750 } 751 }; 752 } 753 754 MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T, 755 const MCSubtargetInfo &STI, 756 const MCRegisterInfo &MRI, 757 const MCTargetOptions &Options) { 758 const Triple &TheTriple = STI.getTargetTriple(); 759 if (TheTriple.isOSBinFormatMachO()) { 760 return new DarwinAArch64AsmBackend(T, TheTriple, MRI); 761 } 762 763 if (TheTriple.isOSBinFormatCOFF()) 764 return new COFFAArch64AsmBackend(T, TheTriple); 765 766 assert(TheTriple.isOSBinFormatELF() && "Invalid target"); 767 768 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); 769 bool IsILP32 = STI.getTargetTriple().getEnvironment() == Triple::GNUILP32; 770 return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/true, 771 IsILP32); 772 } 773 774 MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T, 775 const MCSubtargetInfo &STI, 776 const MCRegisterInfo &MRI, 777 const MCTargetOptions &Options) { 778 const Triple &TheTriple = STI.getTargetTriple(); 779 assert(TheTriple.isOSBinFormatELF() && 780 "Big endian is only supported for ELF targets!"); 781 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); 782 bool IsILP32 = STI.getTargetTriple().getEnvironment() == Triple::GNUILP32; 783 return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/false, 784 IsILP32); 785 } 786