1 //=== lib/CodeGen/GlobalISel/AArch64PreLegalizerCombiner.cpp --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass does combining of machine instructions at the generic MI level, 10 // before the legalizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AArch64GlobalISelUtils.h" 15 #include "AArch64TargetMachine.h" 16 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 17 #include "llvm/CodeGen/GlobalISel/Combiner.h" 18 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" 19 #include "llvm/CodeGen/GlobalISel/CombinerInfo.h" 20 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" 21 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" 22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetPassConfig.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/Support/Debug.h" 30 31 #define DEBUG_TYPE "aarch64-prelegalizer-combiner" 32 33 using namespace llvm; 34 using namespace MIPatternMatch; 35 36 /// Return true if a G_FCONSTANT instruction is known to be better-represented 37 /// as a G_CONSTANT. 38 static bool matchFConstantToConstant(MachineInstr &MI, 39 MachineRegisterInfo &MRI) { 40 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT); 41 Register DstReg = MI.getOperand(0).getReg(); 42 const unsigned DstSize = MRI.getType(DstReg).getSizeInBits(); 43 if (DstSize != 32 && DstSize != 64) 44 return false; 45 46 // When we're storing a value, it doesn't matter what register bank it's on. 47 // Since not all floating point constants can be materialized using a fmov, 48 // it makes more sense to just use a GPR. 49 return all_of(MRI.use_nodbg_instructions(DstReg), 50 [](const MachineInstr &Use) { return Use.mayStore(); }); 51 } 52 53 /// Change a G_FCONSTANT into a G_CONSTANT. 54 static void applyFConstantToConstant(MachineInstr &MI) { 55 assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT); 56 MachineIRBuilder MIB(MI); 57 const APFloat &ImmValAPF = MI.getOperand(1).getFPImm()->getValueAPF(); 58 MIB.buildConstant(MI.getOperand(0).getReg(), ImmValAPF.bitcastToAPInt()); 59 MI.eraseFromParent(); 60 } 61 62 /// Try to match a G_ICMP of a G_TRUNC with zero, in which the truncated bits 63 /// are sign bits. In this case, we can transform the G_ICMP to directly compare 64 /// the wide value with a zero. 65 static bool matchICmpRedundantTrunc(MachineInstr &MI, MachineRegisterInfo &MRI, 66 GISelKnownBits *KB, Register &MatchInfo) { 67 assert(MI.getOpcode() == TargetOpcode::G_ICMP && KB); 68 69 auto Pred = (CmpInst::Predicate)MI.getOperand(1).getPredicate(); 70 if (!ICmpInst::isEquality(Pred)) 71 return false; 72 73 Register LHS = MI.getOperand(2).getReg(); 74 LLT LHSTy = MRI.getType(LHS); 75 if (!LHSTy.isScalar()) 76 return false; 77 78 Register RHS = MI.getOperand(3).getReg(); 79 Register WideReg; 80 81 if (!mi_match(LHS, MRI, m_GTrunc(m_Reg(WideReg))) || 82 !mi_match(RHS, MRI, m_SpecificICst(0))) 83 return false; 84 85 LLT WideTy = MRI.getType(WideReg); 86 if (KB->computeNumSignBits(WideReg) <= 87 WideTy.getSizeInBits() - LHSTy.getSizeInBits()) 88 return false; 89 90 MatchInfo = WideReg; 91 return true; 92 } 93 94 static bool applyICmpRedundantTrunc(MachineInstr &MI, MachineRegisterInfo &MRI, 95 MachineIRBuilder &Builder, 96 GISelChangeObserver &Observer, 97 Register &WideReg) { 98 assert(MI.getOpcode() == TargetOpcode::G_ICMP); 99 100 LLT WideTy = MRI.getType(WideReg); 101 // We're going to directly use the wide register as the LHS, and then use an 102 // equivalent size zero for RHS. 103 Builder.setInstrAndDebugLoc(MI); 104 auto WideZero = Builder.buildConstant(WideTy, 0); 105 Observer.changingInstr(MI); 106 MI.getOperand(2).setReg(WideReg); 107 MI.getOperand(3).setReg(WideZero.getReg(0)); 108 Observer.changedInstr(MI); 109 return true; 110 } 111 112 /// \returns true if it is possible to fold a constant into a G_GLOBAL_VALUE. 113 /// 114 /// e.g. 115 /// 116 /// %g = G_GLOBAL_VALUE @x -> %g = G_GLOBAL_VALUE @x + cst 117 static bool matchFoldGlobalOffset(MachineInstr &MI, MachineRegisterInfo &MRI, 118 std::pair<uint64_t, uint64_t> &MatchInfo) { 119 assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE); 120 MachineFunction &MF = *MI.getMF(); 121 auto &GlobalOp = MI.getOperand(1); 122 auto *GV = GlobalOp.getGlobal(); 123 if (GV->isThreadLocal()) 124 return false; 125 126 // Don't allow anything that could represent offsets etc. 127 if (MF.getSubtarget<AArch64Subtarget>().ClassifyGlobalReference( 128 GV, MF.getTarget()) != AArch64II::MO_NO_FLAG) 129 return false; 130 131 // Look for a G_GLOBAL_VALUE only used by G_PTR_ADDs against constants: 132 // 133 // %g = G_GLOBAL_VALUE @x 134 // %ptr1 = G_PTR_ADD %g, cst1 135 // %ptr2 = G_PTR_ADD %g, cst2 136 // ... 137 // %ptrN = G_PTR_ADD %g, cstN 138 // 139 // Identify the *smallest* constant. We want to be able to form this: 140 // 141 // %offset_g = G_GLOBAL_VALUE @x + min_cst 142 // %g = G_PTR_ADD %offset_g, -min_cst 143 // %ptr1 = G_PTR_ADD %g, cst1 144 // ... 145 Register Dst = MI.getOperand(0).getReg(); 146 uint64_t MinOffset = -1ull; 147 for (auto &UseInstr : MRI.use_nodbg_instructions(Dst)) { 148 if (UseInstr.getOpcode() != TargetOpcode::G_PTR_ADD) 149 return false; 150 auto Cst = getIConstantVRegValWithLookThrough( 151 UseInstr.getOperand(2).getReg(), MRI); 152 if (!Cst) 153 return false; 154 MinOffset = std::min(MinOffset, Cst->Value.getZExtValue()); 155 } 156 157 // Require that the new offset is larger than the existing one to avoid 158 // infinite loops. 159 uint64_t CurrOffset = GlobalOp.getOffset(); 160 uint64_t NewOffset = MinOffset + CurrOffset; 161 if (NewOffset <= CurrOffset) 162 return false; 163 164 // Check whether folding this offset is legal. It must not go out of bounds of 165 // the referenced object to avoid violating the code model, and must be 166 // smaller than 2^20 because this is the largest offset expressible in all 167 // object formats. (The IMAGE_REL_ARM64_PAGEBASE_REL21 relocation in COFF 168 // stores an immediate signed 21 bit offset.) 169 // 170 // This check also prevents us from folding negative offsets, which will end 171 // up being treated in the same way as large positive ones. They could also 172 // cause code model violations, and aren't really common enough to matter. 173 if (NewOffset >= (1 << 20)) 174 return false; 175 176 Type *T = GV->getValueType(); 177 if (!T->isSized() || 178 NewOffset > GV->getParent()->getDataLayout().getTypeAllocSize(T)) 179 return false; 180 MatchInfo = std::make_pair(NewOffset, MinOffset); 181 return true; 182 } 183 184 static bool applyFoldGlobalOffset(MachineInstr &MI, MachineRegisterInfo &MRI, 185 MachineIRBuilder &B, 186 GISelChangeObserver &Observer, 187 std::pair<uint64_t, uint64_t> &MatchInfo) { 188 // Change: 189 // 190 // %g = G_GLOBAL_VALUE @x 191 // %ptr1 = G_PTR_ADD %g, cst1 192 // %ptr2 = G_PTR_ADD %g, cst2 193 // ... 194 // %ptrN = G_PTR_ADD %g, cstN 195 // 196 // To: 197 // 198 // %offset_g = G_GLOBAL_VALUE @x + min_cst 199 // %g = G_PTR_ADD %offset_g, -min_cst 200 // %ptr1 = G_PTR_ADD %g, cst1 201 // ... 202 // %ptrN = G_PTR_ADD %g, cstN 203 // 204 // Then, the original G_PTR_ADDs should be folded later on so that they look 205 // like this: 206 // 207 // %ptrN = G_PTR_ADD %offset_g, cstN - min_cst 208 uint64_t Offset, MinOffset; 209 std::tie(Offset, MinOffset) = MatchInfo; 210 B.setInstrAndDebugLoc(MI); 211 Observer.changingInstr(MI); 212 auto &GlobalOp = MI.getOperand(1); 213 auto *GV = GlobalOp.getGlobal(); 214 GlobalOp.ChangeToGA(GV, Offset, GlobalOp.getTargetFlags()); 215 Register Dst = MI.getOperand(0).getReg(); 216 Register NewGVDst = MRI.cloneVirtualRegister(Dst); 217 MI.getOperand(0).setReg(NewGVDst); 218 Observer.changedInstr(MI); 219 B.buildPtrAdd( 220 Dst, NewGVDst, 221 B.buildConstant(LLT::scalar(64), -static_cast<int64_t>(MinOffset))); 222 return true; 223 } 224 225 static bool tryToSimplifyUADDO(MachineInstr &MI, MachineIRBuilder &B, 226 CombinerHelper &Helper, 227 GISelChangeObserver &Observer) { 228 // Try simplify G_UADDO with 8 or 16 bit operands to wide G_ADD and TBNZ if 229 // result is only used in the no-overflow case. It is restricted to cases 230 // where we know that the high-bits of the operands are 0. If there's an 231 // overflow, then the the 9th or 17th bit must be set, which can be checked 232 // using TBNZ. 233 // 234 // Change (for UADDOs on 8 and 16 bits): 235 // 236 // %z0 = G_ASSERT_ZEXT _ 237 // %op0 = G_TRUNC %z0 238 // %z1 = G_ASSERT_ZEXT _ 239 // %op1 = G_TRUNC %z1 240 // %val, %cond = G_UADDO %op0, %op1 241 // G_BRCOND %cond, %error.bb 242 // 243 // error.bb: 244 // (no successors and no uses of %val) 245 // 246 // To: 247 // 248 // %z0 = G_ASSERT_ZEXT _ 249 // %z1 = G_ASSERT_ZEXT _ 250 // %add = G_ADD %z0, %z1 251 // %val = G_TRUNC %add 252 // %bit = G_AND %add, 1 << scalar-size-in-bits(%op1) 253 // %cond = G_ICMP NE, %bit, 0 254 // G_BRCOND %cond, %error.bb 255 256 auto &MRI = *B.getMRI(); 257 258 MachineOperand *DefOp0 = MRI.getOneDef(MI.getOperand(2).getReg()); 259 MachineOperand *DefOp1 = MRI.getOneDef(MI.getOperand(3).getReg()); 260 Register Op0Wide; 261 Register Op1Wide; 262 if (!mi_match(DefOp0->getParent(), MRI, m_GTrunc(m_Reg(Op0Wide))) || 263 !mi_match(DefOp1->getParent(), MRI, m_GTrunc(m_Reg(Op1Wide)))) 264 return false; 265 LLT WideTy0 = MRI.getType(Op0Wide); 266 LLT WideTy1 = MRI.getType(Op1Wide); 267 Register ResVal = MI.getOperand(0).getReg(); 268 LLT OpTy = MRI.getType(ResVal); 269 MachineInstr *Op0WideDef = MRI.getVRegDef(Op0Wide); 270 MachineInstr *Op1WideDef = MRI.getVRegDef(Op1Wide); 271 272 unsigned OpTySize = OpTy.getScalarSizeInBits(); 273 // First check that the G_TRUNC feeding the G_UADDO are no-ops, because the 274 // inputs have been zero-extended. 275 if (Op0WideDef->getOpcode() != TargetOpcode::G_ASSERT_ZEXT || 276 Op1WideDef->getOpcode() != TargetOpcode::G_ASSERT_ZEXT || 277 OpTySize != Op0WideDef->getOperand(2).getImm() || 278 OpTySize != Op1WideDef->getOperand(2).getImm()) 279 return false; 280 281 // Only scalar UADDO with either 8 or 16 bit operands are handled. 282 if (!WideTy0.isScalar() || !WideTy1.isScalar() || WideTy0 != WideTy1 || 283 OpTySize >= WideTy0.getScalarSizeInBits() || 284 (OpTySize != 8 && OpTySize != 16)) 285 return false; 286 287 // The overflow-status result must be used by a branch only. 288 Register ResStatus = MI.getOperand(1).getReg(); 289 if (!MRI.hasOneNonDBGUse(ResStatus)) 290 return false; 291 MachineInstr *CondUser = &*MRI.use_instr_nodbg_begin(ResStatus); 292 if (CondUser->getOpcode() != TargetOpcode::G_BRCOND) 293 return false; 294 295 // Make sure the computed result is only used in the no-overflow blocks. 296 MachineBasicBlock *CurrentMBB = MI.getParent(); 297 MachineBasicBlock *FailMBB = CondUser->getOperand(1).getMBB(); 298 if (!FailMBB->succ_empty() || CondUser->getParent() != CurrentMBB) 299 return false; 300 if (any_of(MRI.use_nodbg_instructions(ResVal), 301 [&MI, FailMBB, CurrentMBB](MachineInstr &I) { 302 return &MI != &I && 303 (I.getParent() == FailMBB || I.getParent() == CurrentMBB); 304 })) 305 return false; 306 307 // Remove G_ADDO. 308 B.setInstrAndDebugLoc(*MI.getNextNode()); 309 MI.eraseFromParent(); 310 311 // Emit wide add. 312 Register AddDst = MRI.cloneVirtualRegister(Op0Wide); 313 B.buildInstr(TargetOpcode::G_ADD, {AddDst}, {Op0Wide, Op1Wide}); 314 315 // Emit check of the 9th or 17th bit and update users (the branch). This will 316 // later be folded to TBNZ. 317 Register CondBit = MRI.cloneVirtualRegister(Op0Wide); 318 B.buildAnd( 319 CondBit, AddDst, 320 B.buildConstant(LLT::scalar(32), OpTySize == 8 ? 1 << 8 : 1 << 16)); 321 B.buildICmp(CmpInst::ICMP_NE, ResStatus, CondBit, 322 B.buildConstant(LLT::scalar(32), 0)); 323 324 // Update ZEXts users of the result value. Because all uses are in the 325 // no-overflow case, we know that the top bits are 0 and we can ignore ZExts. 326 B.buildZExtOrTrunc(ResVal, AddDst); 327 for (MachineOperand &U : make_early_inc_range(MRI.use_operands(ResVal))) { 328 Register WideReg; 329 if (mi_match(U.getParent(), MRI, m_GZExt(m_Reg(WideReg)))) { 330 auto OldR = U.getParent()->getOperand(0).getReg(); 331 Observer.erasingInstr(*U.getParent()); 332 U.getParent()->eraseFromParent(); 333 Helper.replaceRegWith(MRI, OldR, AddDst); 334 } 335 } 336 337 return true; 338 } 339 340 class AArch64PreLegalizerCombinerHelperState { 341 protected: 342 CombinerHelper &Helper; 343 344 public: 345 AArch64PreLegalizerCombinerHelperState(CombinerHelper &Helper) 346 : Helper(Helper) {} 347 }; 348 349 #define AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS 350 #include "AArch64GenPreLegalizeGICombiner.inc" 351 #undef AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS 352 353 namespace { 354 #define AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H 355 #include "AArch64GenPreLegalizeGICombiner.inc" 356 #undef AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H 357 358 class AArch64PreLegalizerCombinerInfo : public CombinerInfo { 359 GISelKnownBits *KB; 360 MachineDominatorTree *MDT; 361 AArch64GenPreLegalizerCombinerHelperRuleConfig GeneratedRuleCfg; 362 363 public: 364 AArch64PreLegalizerCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize, 365 GISelKnownBits *KB, MachineDominatorTree *MDT) 366 : CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false, 367 /*LegalizerInfo*/ nullptr, EnableOpt, OptSize, MinSize), 368 KB(KB), MDT(MDT) { 369 if (!GeneratedRuleCfg.parseCommandLineOption()) 370 report_fatal_error("Invalid rule identifier"); 371 } 372 373 bool combine(GISelChangeObserver &Observer, MachineInstr &MI, 374 MachineIRBuilder &B) const override; 375 }; 376 377 bool AArch64PreLegalizerCombinerInfo::combine(GISelChangeObserver &Observer, 378 MachineInstr &MI, 379 MachineIRBuilder &B) const { 380 CombinerHelper Helper(Observer, B, KB, MDT); 381 AArch64GenPreLegalizerCombinerHelper Generated(GeneratedRuleCfg, Helper); 382 383 if (Generated.tryCombineAll(Observer, MI, B)) 384 return true; 385 386 unsigned Opc = MI.getOpcode(); 387 switch (Opc) { 388 case TargetOpcode::G_CONCAT_VECTORS: 389 return Helper.tryCombineConcatVectors(MI); 390 case TargetOpcode::G_SHUFFLE_VECTOR: 391 return Helper.tryCombineShuffleVector(MI); 392 case TargetOpcode::G_UADDO: 393 return tryToSimplifyUADDO(MI, B, Helper, Observer); 394 case TargetOpcode::G_MEMCPY_INLINE: 395 return Helper.tryEmitMemcpyInline(MI); 396 case TargetOpcode::G_MEMCPY: 397 case TargetOpcode::G_MEMMOVE: 398 case TargetOpcode::G_MEMSET: { 399 // If we're at -O0 set a maxlen of 32 to inline, otherwise let the other 400 // heuristics decide. 401 unsigned MaxLen = EnableOpt ? 0 : 32; 402 // Try to inline memcpy type calls if optimizations are enabled. 403 if (Helper.tryCombineMemCpyFamily(MI, MaxLen)) 404 return true; 405 if (Opc == TargetOpcode::G_MEMSET) 406 return llvm::AArch64GISelUtils::tryEmitBZero(MI, B, EnableMinSize); 407 return false; 408 } 409 } 410 411 return false; 412 } 413 414 #define AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP 415 #include "AArch64GenPreLegalizeGICombiner.inc" 416 #undef AARCH64PRELEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP 417 418 // Pass boilerplate 419 // ================ 420 421 class AArch64PreLegalizerCombiner : public MachineFunctionPass { 422 public: 423 static char ID; 424 425 AArch64PreLegalizerCombiner(); 426 427 StringRef getPassName() const override { return "AArch64PreLegalizerCombiner"; } 428 429 bool runOnMachineFunction(MachineFunction &MF) override; 430 431 void getAnalysisUsage(AnalysisUsage &AU) const override; 432 }; 433 } // end anonymous namespace 434 435 void AArch64PreLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const { 436 AU.addRequired<TargetPassConfig>(); 437 AU.setPreservesCFG(); 438 getSelectionDAGFallbackAnalysisUsage(AU); 439 AU.addRequired<GISelKnownBitsAnalysis>(); 440 AU.addPreserved<GISelKnownBitsAnalysis>(); 441 AU.addRequired<MachineDominatorTree>(); 442 AU.addPreserved<MachineDominatorTree>(); 443 AU.addRequired<GISelCSEAnalysisWrapperPass>(); 444 AU.addPreserved<GISelCSEAnalysisWrapperPass>(); 445 MachineFunctionPass::getAnalysisUsage(AU); 446 } 447 448 AArch64PreLegalizerCombiner::AArch64PreLegalizerCombiner() 449 : MachineFunctionPass(ID) { 450 initializeAArch64PreLegalizerCombinerPass(*PassRegistry::getPassRegistry()); 451 } 452 453 bool AArch64PreLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) { 454 if (MF.getProperties().hasProperty( 455 MachineFunctionProperties::Property::FailedISel)) 456 return false; 457 auto &TPC = getAnalysis<TargetPassConfig>(); 458 459 // Enable CSE. 460 GISelCSEAnalysisWrapper &Wrapper = 461 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper(); 462 auto *CSEInfo = &Wrapper.get(TPC.getCSEConfig()); 463 464 const Function &F = MF.getFunction(); 465 bool EnableOpt = 466 MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F); 467 GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF); 468 MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>(); 469 AArch64PreLegalizerCombinerInfo PCInfo(EnableOpt, F.hasOptSize(), 470 F.hasMinSize(), KB, MDT); 471 Combiner C(PCInfo, &TPC); 472 return C.combineMachineInstrs(MF, CSEInfo); 473 } 474 475 char AArch64PreLegalizerCombiner::ID = 0; 476 INITIALIZE_PASS_BEGIN(AArch64PreLegalizerCombiner, DEBUG_TYPE, 477 "Combine AArch64 machine instrs before legalization", 478 false, false) 479 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 480 INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis) 481 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass) 482 INITIALIZE_PASS_END(AArch64PreLegalizerCombiner, DEBUG_TYPE, 483 "Combine AArch64 machine instrs before legalization", false, 484 false) 485 486 487 namespace llvm { 488 FunctionPass *createAArch64PreLegalizerCombiner() { 489 return new AArch64PreLegalizerCombiner(); 490 } 491 } // end namespace llvm 492