xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/GISel/AArch64PostLegalizerLowering.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //=== AArch64PostLegalizerLowering.cpp --------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Post-legalization lowering for instructions.
11 ///
12 /// This is used to offload pattern matching from the selector.
13 ///
14 /// For example, this combiner will notice that a G_SHUFFLE_VECTOR is actually
15 /// a G_ZIP, G_UZP, etc.
16 ///
17 /// General optimization combines should be handled by either the
18 /// AArch64PostLegalizerCombiner or the AArch64PreLegalizerCombiner.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #include "AArch64ExpandImm.h"
23 #include "AArch64GlobalISelUtils.h"
24 #include "AArch64PerfectShuffle.h"
25 #include "AArch64Subtarget.h"
26 #include "AArch64TargetMachine.h"
27 #include "GISel/AArch64LegalizerInfo.h"
28 #include "MCTargetDesc/AArch64MCTargetDesc.h"
29 #include "TargetInfo/AArch64TargetInfo.h"
30 #include "Utils/AArch64BaseInfo.h"
31 #include "llvm/CodeGen/GlobalISel/Combiner.h"
32 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
33 #include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
34 #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h"
35 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
36 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
37 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
38 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
39 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
40 #include "llvm/CodeGen/GlobalISel/Utils.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetPassConfig.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include <optional>
52 
53 #define GET_GICOMBINER_DEPS
54 #include "AArch64GenPostLegalizeGILowering.inc"
55 #undef GET_GICOMBINER_DEPS
56 
57 #define DEBUG_TYPE "aarch64-postlegalizer-lowering"
58 
59 using namespace llvm;
60 using namespace MIPatternMatch;
61 using namespace AArch64GISelUtils;
62 
63 namespace {
64 
65 #define GET_GICOMBINER_TYPES
66 #include "AArch64GenPostLegalizeGILowering.inc"
67 #undef GET_GICOMBINER_TYPES
68 
69 /// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR.
70 ///
71 /// Used for matching target-supported shuffles before codegen.
72 struct ShuffleVectorPseudo {
73   unsigned Opc;                 ///< Opcode for the instruction. (E.g. G_ZIP1)
74   Register Dst;                 ///< Destination register.
75   SmallVector<SrcOp, 2> SrcOps; ///< Source registers.
76   ShuffleVectorPseudo(unsigned Opc, Register Dst,
77                       std::initializer_list<SrcOp> SrcOps)
78       : Opc(Opc), Dst(Dst), SrcOps(SrcOps){};
79   ShuffleVectorPseudo() = default;
80 };
81 
82 /// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector
83 /// sources of the shuffle are different.
84 std::optional<std::pair<bool, uint64_t>> getExtMask(ArrayRef<int> M,
85                                                     unsigned NumElts) {
86   // Look for the first non-undef element.
87   auto FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
88   if (FirstRealElt == M.end())
89     return std::nullopt;
90 
91   // Use APInt to handle overflow when calculating expected element.
92   unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
93   APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
94 
95   // The following shuffle indices must be the successive elements after the
96   // first real element.
97   if (any_of(
98           make_range(std::next(FirstRealElt), M.end()),
99           [&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; }))
100     return std::nullopt;
101 
102   // The index of an EXT is the first element if it is not UNDEF.
103   // Watch out for the beginning UNDEFs. The EXT index should be the expected
104   // value of the first element.  E.g.
105   // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
106   // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
107   // ExpectedElt is the last mask index plus 1.
108   uint64_t Imm = ExpectedElt.getZExtValue();
109   bool ReverseExt = false;
110 
111   // There are two difference cases requiring to reverse input vectors.
112   // For example, for vector <4 x i32> we have the following cases,
113   // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
114   // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
115   // For both cases, we finally use mask <5, 6, 7, 0>, which requires
116   // to reverse two input vectors.
117   if (Imm < NumElts)
118     ReverseExt = true;
119   else
120     Imm -= NumElts;
121   return std::make_pair(ReverseExt, Imm);
122 }
123 
124 /// Helper function for matchINS.
125 ///
126 /// \returns a value when \p M is an ins mask for \p NumInputElements.
127 ///
128 /// First element of the returned pair is true when the produced
129 /// G_INSERT_VECTOR_ELT destination should be the LHS of the G_SHUFFLE_VECTOR.
130 ///
131 /// Second element is the destination lane for the G_INSERT_VECTOR_ELT.
132 std::optional<std::pair<bool, int>> isINSMask(ArrayRef<int> M,
133                                               int NumInputElements) {
134   if (M.size() != static_cast<size_t>(NumInputElements))
135     return std::nullopt;
136   int NumLHSMatch = 0, NumRHSMatch = 0;
137   int LastLHSMismatch = -1, LastRHSMismatch = -1;
138   for (int Idx = 0; Idx < NumInputElements; ++Idx) {
139     if (M[Idx] == -1) {
140       ++NumLHSMatch;
141       ++NumRHSMatch;
142       continue;
143     }
144     M[Idx] == Idx ? ++NumLHSMatch : LastLHSMismatch = Idx;
145     M[Idx] == Idx + NumInputElements ? ++NumRHSMatch : LastRHSMismatch = Idx;
146   }
147   const int NumNeededToMatch = NumInputElements - 1;
148   if (NumLHSMatch == NumNeededToMatch)
149     return std::make_pair(true, LastLHSMismatch);
150   if (NumRHSMatch == NumNeededToMatch)
151     return std::make_pair(false, LastRHSMismatch);
152   return std::nullopt;
153 }
154 
155 /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a
156 /// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc.
157 bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI,
158               ShuffleVectorPseudo &MatchInfo) {
159   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
160   ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
161   Register Dst = MI.getOperand(0).getReg();
162   Register Src = MI.getOperand(1).getReg();
163   LLT Ty = MRI.getType(Dst);
164   unsigned EltSize = Ty.getScalarSizeInBits();
165 
166   // Element size for a rev cannot be 64.
167   if (EltSize == 64)
168     return false;
169 
170   unsigned NumElts = Ty.getNumElements();
171 
172   // Try to produce a G_REV instruction
173   for (unsigned LaneSize : {64U, 32U, 16U}) {
174     if (isREVMask(ShuffleMask, EltSize, NumElts, LaneSize)) {
175       unsigned Opcode;
176       if (LaneSize == 64U)
177         Opcode = AArch64::G_REV64;
178       else if (LaneSize == 32U)
179         Opcode = AArch64::G_REV32;
180       else
181         Opcode = AArch64::G_REV16;
182 
183       MatchInfo = ShuffleVectorPseudo(Opcode, Dst, {Src});
184       return true;
185     }
186   }
187 
188   return false;
189 }
190 
191 /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
192 /// a G_TRN1 or G_TRN2 instruction.
193 bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI,
194               ShuffleVectorPseudo &MatchInfo) {
195   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
196   unsigned WhichResult;
197   ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
198   Register Dst = MI.getOperand(0).getReg();
199   unsigned NumElts = MRI.getType(Dst).getNumElements();
200   if (!isTRNMask(ShuffleMask, NumElts, WhichResult))
201     return false;
202   unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2;
203   Register V1 = MI.getOperand(1).getReg();
204   Register V2 = MI.getOperand(2).getReg();
205   MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
206   return true;
207 }
208 
209 /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
210 /// a G_UZP1 or G_UZP2 instruction.
211 ///
212 /// \param [in] MI - The shuffle vector instruction.
213 /// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success.
214 bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI,
215               ShuffleVectorPseudo &MatchInfo) {
216   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
217   unsigned WhichResult;
218   ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
219   Register Dst = MI.getOperand(0).getReg();
220   unsigned NumElts = MRI.getType(Dst).getNumElements();
221   if (!isUZPMask(ShuffleMask, NumElts, WhichResult))
222     return false;
223   unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2;
224   Register V1 = MI.getOperand(1).getReg();
225   Register V2 = MI.getOperand(2).getReg();
226   MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
227   return true;
228 }
229 
230 bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI,
231               ShuffleVectorPseudo &MatchInfo) {
232   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
233   unsigned WhichResult;
234   ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
235   Register Dst = MI.getOperand(0).getReg();
236   unsigned NumElts = MRI.getType(Dst).getNumElements();
237   if (!isZIPMask(ShuffleMask, NumElts, WhichResult))
238     return false;
239   unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2;
240   Register V1 = MI.getOperand(1).getReg();
241   Register V2 = MI.getOperand(2).getReg();
242   MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
243   return true;
244 }
245 
246 /// Helper function for matchDup.
247 bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI,
248                                  MachineRegisterInfo &MRI,
249                                  ShuffleVectorPseudo &MatchInfo) {
250   if (Lane != 0)
251     return false;
252 
253   // Try to match a vector splat operation into a dup instruction.
254   // We're looking for this pattern:
255   //
256   // %scalar:gpr(s64) = COPY $x0
257   // %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
258   // %cst0:gpr(s32) = G_CONSTANT i32 0
259   // %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
260   // %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
261   // %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef,
262   // %zerovec(<2 x s32>)
263   //
264   // ...into:
265   // %splat = G_DUP %scalar
266 
267   // Begin matching the insert.
268   auto *InsMI = getOpcodeDef(TargetOpcode::G_INSERT_VECTOR_ELT,
269                              MI.getOperand(1).getReg(), MRI);
270   if (!InsMI)
271     return false;
272   // Match the undef vector operand.
273   if (!getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(),
274                     MRI))
275     return false;
276 
277   // Match the index constant 0.
278   if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ZeroInt()))
279     return false;
280 
281   MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(),
282                                   {InsMI->getOperand(2).getReg()});
283   return true;
284 }
285 
286 /// Helper function for matchDup.
287 bool matchDupFromBuildVector(int Lane, MachineInstr &MI,
288                              MachineRegisterInfo &MRI,
289                              ShuffleVectorPseudo &MatchInfo) {
290   assert(Lane >= 0 && "Expected positive lane?");
291   // Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the
292   // lane's definition directly.
293   auto *BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR,
294                                   MI.getOperand(1).getReg(), MRI);
295   if (!BuildVecMI)
296     return false;
297   Register Reg = BuildVecMI->getOperand(Lane + 1).getReg();
298   MatchInfo =
299       ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {Reg});
300   return true;
301 }
302 
303 bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI,
304               ShuffleVectorPseudo &MatchInfo) {
305   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
306   auto MaybeLane = getSplatIndex(MI);
307   if (!MaybeLane)
308     return false;
309   int Lane = *MaybeLane;
310   // If this is undef splat, generate it via "just" vdup, if possible.
311   if (Lane < 0)
312     Lane = 0;
313   if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo))
314     return true;
315   if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo))
316     return true;
317   return false;
318 }
319 
320 // Check if an EXT instruction can handle the shuffle mask when the vector
321 // sources of the shuffle are the same.
322 bool isSingletonExtMask(ArrayRef<int> M, LLT Ty) {
323   unsigned NumElts = Ty.getNumElements();
324 
325   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
326   if (M[0] < 0)
327     return false;
328 
329   // If this is a VEXT shuffle, the immediate value is the index of the first
330   // element.  The other shuffle indices must be the successive elements after
331   // the first one.
332   unsigned ExpectedElt = M[0];
333   for (unsigned I = 1; I < NumElts; ++I) {
334     // Increment the expected index.  If it wraps around, just follow it
335     // back to index zero and keep going.
336     ++ExpectedElt;
337     if (ExpectedElt == NumElts)
338       ExpectedElt = 0;
339 
340     if (M[I] < 0)
341       continue; // Ignore UNDEF indices.
342     if (ExpectedElt != static_cast<unsigned>(M[I]))
343       return false;
344   }
345 
346   return true;
347 }
348 
349 bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI,
350               ShuffleVectorPseudo &MatchInfo) {
351   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
352   Register Dst = MI.getOperand(0).getReg();
353   LLT DstTy = MRI.getType(Dst);
354   Register V1 = MI.getOperand(1).getReg();
355   Register V2 = MI.getOperand(2).getReg();
356   auto Mask = MI.getOperand(3).getShuffleMask();
357   uint64_t Imm;
358   auto ExtInfo = getExtMask(Mask, DstTy.getNumElements());
359   uint64_t ExtFactor = MRI.getType(V1).getScalarSizeInBits() / 8;
360 
361   if (!ExtInfo) {
362     if (!getOpcodeDef<GImplicitDef>(V2, MRI) ||
363         !isSingletonExtMask(Mask, DstTy))
364       return false;
365 
366     Imm = Mask[0] * ExtFactor;
367     MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V1, Imm});
368     return true;
369   }
370   bool ReverseExt;
371   std::tie(ReverseExt, Imm) = *ExtInfo;
372   if (ReverseExt)
373     std::swap(V1, V2);
374   Imm *= ExtFactor;
375   MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm});
376   return true;
377 }
378 
379 /// Replace a G_SHUFFLE_VECTOR instruction with a pseudo.
380 /// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR.
381 void applyShuffleVectorPseudo(MachineInstr &MI,
382                               ShuffleVectorPseudo &MatchInfo) {
383   MachineIRBuilder MIRBuilder(MI);
384   MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, MatchInfo.SrcOps);
385   MI.eraseFromParent();
386 }
387 
388 /// Replace a G_SHUFFLE_VECTOR instruction with G_EXT.
389 /// Special-cased because the constant operand must be emitted as a G_CONSTANT
390 /// for the imported tablegen patterns to work.
391 void applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) {
392   MachineIRBuilder MIRBuilder(MI);
393   if (MatchInfo.SrcOps[2].getImm() == 0)
394     MIRBuilder.buildCopy(MatchInfo.Dst, MatchInfo.SrcOps[0]);
395   else {
396     // Tablegen patterns expect an i32 G_CONSTANT as the final op.
397     auto Cst =
398         MIRBuilder.buildConstant(LLT::scalar(32), MatchInfo.SrcOps[2].getImm());
399     MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst},
400                           {MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst});
401   }
402   MI.eraseFromParent();
403 }
404 
405 bool matchNonConstInsert(MachineInstr &MI, MachineRegisterInfo &MRI) {
406   assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT);
407 
408   auto ValAndVReg =
409       getIConstantVRegValWithLookThrough(MI.getOperand(3).getReg(), MRI);
410   return !ValAndVReg;
411 }
412 
413 void applyNonConstInsert(MachineInstr &MI, MachineRegisterInfo &MRI,
414                          MachineIRBuilder &Builder) {
415   auto &Insert = cast<GInsertVectorElement>(MI);
416   Builder.setInstrAndDebugLoc(Insert);
417 
418   Register Offset = Insert.getIndexReg();
419   LLT VecTy = MRI.getType(Insert.getReg(0));
420   LLT EltTy = MRI.getType(Insert.getElementReg());
421   LLT IdxTy = MRI.getType(Insert.getIndexReg());
422 
423   // Create a stack slot and store the vector into it
424   MachineFunction &MF = Builder.getMF();
425   Align Alignment(
426       std::min<uint64_t>(VecTy.getSizeInBytes().getKnownMinValue(), 16));
427   int FrameIdx = MF.getFrameInfo().CreateStackObject(VecTy.getSizeInBytes(),
428                                                      Alignment, false);
429   LLT FramePtrTy = LLT::pointer(0, 64);
430   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
431   auto StackTemp = Builder.buildFrameIndex(FramePtrTy, FrameIdx);
432 
433   Builder.buildStore(Insert.getOperand(1), StackTemp, PtrInfo, Align(8));
434 
435   // Get the pointer to the element, and be sure not to hit undefined behavior
436   // if the index is out of bounds.
437   assert(isPowerOf2_64(VecTy.getNumElements()) &&
438          "Expected a power-2 vector size");
439   auto Mask = Builder.buildConstant(IdxTy, VecTy.getNumElements() - 1);
440   Register And = Builder.buildAnd(IdxTy, Offset, Mask).getReg(0);
441   auto EltSize = Builder.buildConstant(IdxTy, EltTy.getSizeInBytes());
442   Register Mul = Builder.buildMul(IdxTy, And, EltSize).getReg(0);
443   Register EltPtr =
444       Builder.buildPtrAdd(MRI.getType(StackTemp.getReg(0)), StackTemp, Mul)
445           .getReg(0);
446 
447   // Write the inserted element
448   Builder.buildStore(Insert.getElementReg(), EltPtr, PtrInfo, Align(1));
449   // Reload the whole vector.
450   Builder.buildLoad(Insert.getReg(0), StackTemp, PtrInfo, Align(8));
451   Insert.eraseFromParent();
452 }
453 
454 /// Match a G_SHUFFLE_VECTOR with a mask which corresponds to a
455 /// G_INSERT_VECTOR_ELT and G_EXTRACT_VECTOR_ELT pair.
456 ///
457 /// e.g.
458 ///   %shuf = G_SHUFFLE_VECTOR %left, %right, shufflemask(0, 0)
459 ///
460 /// Can be represented as
461 ///
462 ///   %extract = G_EXTRACT_VECTOR_ELT %left, 0
463 ///   %ins = G_INSERT_VECTOR_ELT %left, %extract, 1
464 ///
465 bool matchINS(MachineInstr &MI, MachineRegisterInfo &MRI,
466               std::tuple<Register, int, Register, int> &MatchInfo) {
467   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
468   ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
469   Register Dst = MI.getOperand(0).getReg();
470   int NumElts = MRI.getType(Dst).getNumElements();
471   auto DstIsLeftAndDstLane = isINSMask(ShuffleMask, NumElts);
472   if (!DstIsLeftAndDstLane)
473     return false;
474   bool DstIsLeft;
475   int DstLane;
476   std::tie(DstIsLeft, DstLane) = *DstIsLeftAndDstLane;
477   Register Left = MI.getOperand(1).getReg();
478   Register Right = MI.getOperand(2).getReg();
479   Register DstVec = DstIsLeft ? Left : Right;
480   Register SrcVec = Left;
481 
482   int SrcLane = ShuffleMask[DstLane];
483   if (SrcLane >= NumElts) {
484     SrcVec = Right;
485     SrcLane -= NumElts;
486   }
487 
488   MatchInfo = std::make_tuple(DstVec, DstLane, SrcVec, SrcLane);
489   return true;
490 }
491 
492 void applyINS(MachineInstr &MI, MachineRegisterInfo &MRI,
493               MachineIRBuilder &Builder,
494               std::tuple<Register, int, Register, int> &MatchInfo) {
495   Builder.setInstrAndDebugLoc(MI);
496   Register Dst = MI.getOperand(0).getReg();
497   auto ScalarTy = MRI.getType(Dst).getElementType();
498   Register DstVec, SrcVec;
499   int DstLane, SrcLane;
500   std::tie(DstVec, DstLane, SrcVec, SrcLane) = MatchInfo;
501   auto SrcCst = Builder.buildConstant(LLT::scalar(64), SrcLane);
502   auto Extract = Builder.buildExtractVectorElement(ScalarTy, SrcVec, SrcCst);
503   auto DstCst = Builder.buildConstant(LLT::scalar(64), DstLane);
504   Builder.buildInsertVectorElement(Dst, DstVec, Extract, DstCst);
505   MI.eraseFromParent();
506 }
507 
508 /// isVShiftRImm - Check if this is a valid vector for the immediate
509 /// operand of a vector shift right operation. The value must be in the range:
510 ///   1 <= Value <= ElementBits for a right shift.
511 bool isVShiftRImm(Register Reg, MachineRegisterInfo &MRI, LLT Ty,
512                   int64_t &Cnt) {
513   assert(Ty.isVector() && "vector shift count is not a vector type");
514   MachineInstr *MI = MRI.getVRegDef(Reg);
515   auto Cst = getAArch64VectorSplatScalar(*MI, MRI);
516   if (!Cst)
517     return false;
518   Cnt = *Cst;
519   int64_t ElementBits = Ty.getScalarSizeInBits();
520   return Cnt >= 1 && Cnt <= ElementBits;
521 }
522 
523 /// Match a vector G_ASHR or G_LSHR with a valid immediate shift.
524 bool matchVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
525                        int64_t &Imm) {
526   assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
527          MI.getOpcode() == TargetOpcode::G_LSHR);
528   LLT Ty = MRI.getType(MI.getOperand(1).getReg());
529   if (!Ty.isVector())
530     return false;
531   return isVShiftRImm(MI.getOperand(2).getReg(), MRI, Ty, Imm);
532 }
533 
534 void applyVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
535                        int64_t &Imm) {
536   unsigned Opc = MI.getOpcode();
537   assert(Opc == TargetOpcode::G_ASHR || Opc == TargetOpcode::G_LSHR);
538   unsigned NewOpc =
539       Opc == TargetOpcode::G_ASHR ? AArch64::G_VASHR : AArch64::G_VLSHR;
540   MachineIRBuilder MIB(MI);
541   auto ImmDef = MIB.buildConstant(LLT::scalar(32), Imm);
542   MIB.buildInstr(NewOpc, {MI.getOperand(0)}, {MI.getOperand(1), ImmDef});
543   MI.eraseFromParent();
544 }
545 
546 /// Determine if it is possible to modify the \p RHS and predicate \p P of a
547 /// G_ICMP instruction such that the right-hand side is an arithmetic immediate.
548 ///
549 /// \returns A pair containing the updated immediate and predicate which may
550 /// be used to optimize the instruction.
551 ///
552 /// \note This assumes that the comparison has been legalized.
553 std::optional<std::pair<uint64_t, CmpInst::Predicate>>
554 tryAdjustICmpImmAndPred(Register RHS, CmpInst::Predicate P,
555                         const MachineRegisterInfo &MRI) {
556   const auto &Ty = MRI.getType(RHS);
557   if (Ty.isVector())
558     return std::nullopt;
559   unsigned Size = Ty.getSizeInBits();
560   assert((Size == 32 || Size == 64) && "Expected 32 or 64 bit compare only?");
561 
562   // If the RHS is not a constant, or the RHS is already a valid arithmetic
563   // immediate, then there is nothing to change.
564   auto ValAndVReg = getIConstantVRegValWithLookThrough(RHS, MRI);
565   if (!ValAndVReg)
566     return std::nullopt;
567   uint64_t OriginalC = ValAndVReg->Value.getZExtValue();
568   uint64_t C = OriginalC;
569   if (isLegalArithImmed(C))
570     return std::nullopt;
571 
572   // We have a non-arithmetic immediate. Check if adjusting the immediate and
573   // adjusting the predicate will result in a legal arithmetic immediate.
574   switch (P) {
575   default:
576     return std::nullopt;
577   case CmpInst::ICMP_SLT:
578   case CmpInst::ICMP_SGE:
579     // Check for
580     //
581     // x slt c => x sle c - 1
582     // x sge c => x sgt c - 1
583     //
584     // When c is not the smallest possible negative number.
585     if ((Size == 64 && static_cast<int64_t>(C) == INT64_MIN) ||
586         (Size == 32 && static_cast<int32_t>(C) == INT32_MIN))
587       return std::nullopt;
588     P = (P == CmpInst::ICMP_SLT) ? CmpInst::ICMP_SLE : CmpInst::ICMP_SGT;
589     C -= 1;
590     break;
591   case CmpInst::ICMP_ULT:
592   case CmpInst::ICMP_UGE:
593     // Check for
594     //
595     // x ult c => x ule c - 1
596     // x uge c => x ugt c - 1
597     //
598     // When c is not zero.
599     if (C == 0)
600       return std::nullopt;
601     P = (P == CmpInst::ICMP_ULT) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
602     C -= 1;
603     break;
604   case CmpInst::ICMP_SLE:
605   case CmpInst::ICMP_SGT:
606     // Check for
607     //
608     // x sle c => x slt c + 1
609     // x sgt c => s sge c + 1
610     //
611     // When c is not the largest possible signed integer.
612     if ((Size == 32 && static_cast<int32_t>(C) == INT32_MAX) ||
613         (Size == 64 && static_cast<int64_t>(C) == INT64_MAX))
614       return std::nullopt;
615     P = (P == CmpInst::ICMP_SLE) ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGE;
616     C += 1;
617     break;
618   case CmpInst::ICMP_ULE:
619   case CmpInst::ICMP_UGT:
620     // Check for
621     //
622     // x ule c => x ult c + 1
623     // x ugt c => s uge c + 1
624     //
625     // When c is not the largest possible unsigned integer.
626     if ((Size == 32 && static_cast<uint32_t>(C) == UINT32_MAX) ||
627         (Size == 64 && C == UINT64_MAX))
628       return std::nullopt;
629     P = (P == CmpInst::ICMP_ULE) ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
630     C += 1;
631     break;
632   }
633 
634   // Check if the new constant is valid, and return the updated constant and
635   // predicate if it is.
636   if (Size == 32)
637     C = static_cast<uint32_t>(C);
638   if (isLegalArithImmed(C))
639     return {{C, P}};
640 
641   auto IsMaterializableInSingleInstruction = [=](uint64_t Imm) {
642     SmallVector<AArch64_IMM::ImmInsnModel> Insn;
643     AArch64_IMM::expandMOVImm(Imm, 32, Insn);
644     return Insn.size() == 1;
645   };
646 
647   if (!IsMaterializableInSingleInstruction(OriginalC) &&
648       IsMaterializableInSingleInstruction(C))
649     return {{C, P}};
650 
651   return std::nullopt;
652 }
653 
654 /// Determine whether or not it is possible to update the RHS and predicate of
655 /// a G_ICMP instruction such that the RHS will be selected as an arithmetic
656 /// immediate.
657 ///
658 /// \p MI - The G_ICMP instruction
659 /// \p MatchInfo - The new RHS immediate and predicate on success
660 ///
661 /// See tryAdjustICmpImmAndPred for valid transformations.
662 bool matchAdjustICmpImmAndPred(
663     MachineInstr &MI, const MachineRegisterInfo &MRI,
664     std::pair<uint64_t, CmpInst::Predicate> &MatchInfo) {
665   assert(MI.getOpcode() == TargetOpcode::G_ICMP);
666   Register RHS = MI.getOperand(3).getReg();
667   auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
668   if (auto MaybeNewImmAndPred = tryAdjustICmpImmAndPred(RHS, Pred, MRI)) {
669     MatchInfo = *MaybeNewImmAndPred;
670     return true;
671   }
672   return false;
673 }
674 
675 void applyAdjustICmpImmAndPred(
676     MachineInstr &MI, std::pair<uint64_t, CmpInst::Predicate> &MatchInfo,
677     MachineIRBuilder &MIB, GISelChangeObserver &Observer) {
678   MIB.setInstrAndDebugLoc(MI);
679   MachineOperand &RHS = MI.getOperand(3);
680   MachineRegisterInfo &MRI = *MIB.getMRI();
681   auto Cst = MIB.buildConstant(MRI.cloneVirtualRegister(RHS.getReg()),
682                                MatchInfo.first);
683   Observer.changingInstr(MI);
684   RHS.setReg(Cst->getOperand(0).getReg());
685   MI.getOperand(1).setPredicate(MatchInfo.second);
686   Observer.changedInstr(MI);
687 }
688 
689 bool matchDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
690                   std::pair<unsigned, int> &MatchInfo) {
691   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
692   Register Src1Reg = MI.getOperand(1).getReg();
693   const LLT SrcTy = MRI.getType(Src1Reg);
694   const LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
695 
696   auto LaneIdx = getSplatIndex(MI);
697   if (!LaneIdx)
698     return false;
699 
700   // The lane idx should be within the first source vector.
701   if (*LaneIdx >= SrcTy.getNumElements())
702     return false;
703 
704   if (DstTy != SrcTy)
705     return false;
706 
707   LLT ScalarTy = SrcTy.getElementType();
708   unsigned ScalarSize = ScalarTy.getSizeInBits();
709 
710   unsigned Opc = 0;
711   switch (SrcTy.getNumElements()) {
712   case 2:
713     if (ScalarSize == 64)
714       Opc = AArch64::G_DUPLANE64;
715     else if (ScalarSize == 32)
716       Opc = AArch64::G_DUPLANE32;
717     break;
718   case 4:
719     if (ScalarSize == 32)
720       Opc = AArch64::G_DUPLANE32;
721     else if (ScalarSize == 16)
722       Opc = AArch64::G_DUPLANE16;
723     break;
724   case 8:
725     if (ScalarSize == 8)
726       Opc = AArch64::G_DUPLANE8;
727     else if (ScalarSize == 16)
728       Opc = AArch64::G_DUPLANE16;
729     break;
730   case 16:
731     if (ScalarSize == 8)
732       Opc = AArch64::G_DUPLANE8;
733     break;
734   default:
735     break;
736   }
737   if (!Opc)
738     return false;
739 
740   MatchInfo.first = Opc;
741   MatchInfo.second = *LaneIdx;
742   return true;
743 }
744 
745 void applyDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
746                   MachineIRBuilder &B, std::pair<unsigned, int> &MatchInfo) {
747   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
748   Register Src1Reg = MI.getOperand(1).getReg();
749   const LLT SrcTy = MRI.getType(Src1Reg);
750 
751   B.setInstrAndDebugLoc(MI);
752   auto Lane = B.buildConstant(LLT::scalar(64), MatchInfo.second);
753 
754   Register DupSrc = MI.getOperand(1).getReg();
755   // For types like <2 x s32>, we can use G_DUPLANE32, with a <4 x s32> source.
756   // To do this, we can use a G_CONCAT_VECTORS to do the widening.
757   if (SrcTy.getSizeInBits() == 64) {
758     auto Undef = B.buildUndef(SrcTy);
759     DupSrc = B.buildConcatVectors(SrcTy.multiplyElements(2),
760                                   {Src1Reg, Undef.getReg(0)})
761                  .getReg(0);
762   }
763   B.buildInstr(MatchInfo.first, {MI.getOperand(0).getReg()}, {DupSrc, Lane});
764   MI.eraseFromParent();
765 }
766 
767 bool matchScalarizeVectorUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI) {
768   auto &Unmerge = cast<GUnmerge>(MI);
769   Register Src1Reg = Unmerge.getReg(Unmerge.getNumOperands() - 1);
770   const LLT SrcTy = MRI.getType(Src1Reg);
771   if (SrcTy.getSizeInBits() != 128 && SrcTy.getSizeInBits() != 64)
772     return false;
773   return SrcTy.isVector() && !SrcTy.isScalable() &&
774          Unmerge.getNumOperands() == (unsigned)SrcTy.getNumElements() + 1;
775 }
776 
777 void applyScalarizeVectorUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI,
778                                  MachineIRBuilder &B) {
779   auto &Unmerge = cast<GUnmerge>(MI);
780   Register Src1Reg = Unmerge.getReg(Unmerge.getNumOperands() - 1);
781   const LLT SrcTy = MRI.getType(Src1Reg);
782   assert((SrcTy.isVector() && !SrcTy.isScalable()) &&
783          "Expected a fixed length vector");
784 
785   for (int I = 0; I < SrcTy.getNumElements(); ++I)
786     B.buildExtractVectorElementConstant(Unmerge.getReg(I), Src1Reg, I);
787   MI.eraseFromParent();
788 }
789 
790 bool matchBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI) {
791   assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
792   auto Splat = getAArch64VectorSplat(MI, MRI);
793   if (!Splat)
794     return false;
795   if (Splat->isReg())
796     return true;
797   // Later, during selection, we'll try to match imported patterns using
798   // immAllOnesV and immAllZerosV. These require G_BUILD_VECTOR. Don't lower
799   // G_BUILD_VECTORs which could match those patterns.
800   int64_t Cst = Splat->getCst();
801   return (Cst != 0 && Cst != -1);
802 }
803 
804 void applyBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI,
805                            MachineIRBuilder &B) {
806   B.setInstrAndDebugLoc(MI);
807   B.buildInstr(AArch64::G_DUP, {MI.getOperand(0).getReg()},
808                {MI.getOperand(1).getReg()});
809   MI.eraseFromParent();
810 }
811 
812 /// \returns how many instructions would be saved by folding a G_ICMP's shift
813 /// and/or extension operations.
814 unsigned getCmpOperandFoldingProfit(Register CmpOp, MachineRegisterInfo &MRI) {
815   // No instructions to save if there's more than one use or no uses.
816   if (!MRI.hasOneNonDBGUse(CmpOp))
817     return 0;
818 
819   // FIXME: This is duplicated with the selector. (See: selectShiftedRegister)
820   auto IsSupportedExtend = [&](const MachineInstr &MI) {
821     if (MI.getOpcode() == TargetOpcode::G_SEXT_INREG)
822       return true;
823     if (MI.getOpcode() != TargetOpcode::G_AND)
824       return false;
825     auto ValAndVReg =
826         getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
827     if (!ValAndVReg)
828       return false;
829     uint64_t Mask = ValAndVReg->Value.getZExtValue();
830     return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
831   };
832 
833   MachineInstr *Def = getDefIgnoringCopies(CmpOp, MRI);
834   if (IsSupportedExtend(*Def))
835     return 1;
836 
837   unsigned Opc = Def->getOpcode();
838   if (Opc != TargetOpcode::G_SHL && Opc != TargetOpcode::G_ASHR &&
839       Opc != TargetOpcode::G_LSHR)
840     return 0;
841 
842   auto MaybeShiftAmt =
843       getIConstantVRegValWithLookThrough(Def->getOperand(2).getReg(), MRI);
844   if (!MaybeShiftAmt)
845     return 0;
846   uint64_t ShiftAmt = MaybeShiftAmt->Value.getZExtValue();
847   MachineInstr *ShiftLHS =
848       getDefIgnoringCopies(Def->getOperand(1).getReg(), MRI);
849 
850   // Check if we can fold an extend and a shift.
851   // FIXME: This is duplicated with the selector. (See:
852   // selectArithExtendedRegister)
853   if (IsSupportedExtend(*ShiftLHS))
854     return (ShiftAmt <= 4) ? 2 : 1;
855 
856   LLT Ty = MRI.getType(Def->getOperand(0).getReg());
857   if (Ty.isVector())
858     return 0;
859   unsigned ShiftSize = Ty.getSizeInBits();
860   if ((ShiftSize == 32 && ShiftAmt <= 31) ||
861       (ShiftSize == 64 && ShiftAmt <= 63))
862     return 1;
863   return 0;
864 }
865 
866 /// \returns true if it would be profitable to swap the LHS and RHS of a G_ICMP
867 /// instruction \p MI.
868 bool trySwapICmpOperands(MachineInstr &MI, MachineRegisterInfo &MRI) {
869   assert(MI.getOpcode() == TargetOpcode::G_ICMP);
870   // Swap the operands if it would introduce a profitable folding opportunity.
871   // (e.g. a shift + extend).
872   //
873   //  For example:
874   //    lsl     w13, w11, #1
875   //    cmp     w13, w12
876   // can be turned into:
877   //    cmp     w12, w11, lsl #1
878 
879   // Don't swap if there's a constant on the RHS, because we know we can fold
880   // that.
881   Register RHS = MI.getOperand(3).getReg();
882   auto RHSCst = getIConstantVRegValWithLookThrough(RHS, MRI);
883   if (RHSCst && isLegalArithImmed(RHSCst->Value.getSExtValue()))
884     return false;
885 
886   Register LHS = MI.getOperand(2).getReg();
887   auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
888   auto GetRegForProfit = [&](Register Reg) {
889     MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
890     return isCMN(Def, Pred, MRI) ? Def->getOperand(2).getReg() : Reg;
891   };
892 
893   // Don't have a constant on the RHS. If we swap the LHS and RHS of the
894   // compare, would we be able to fold more instructions?
895   Register TheLHS = GetRegForProfit(LHS);
896   Register TheRHS = GetRegForProfit(RHS);
897 
898   // If the LHS is more likely to give us a folding opportunity, then swap the
899   // LHS and RHS.
900   return (getCmpOperandFoldingProfit(TheLHS, MRI) >
901           getCmpOperandFoldingProfit(TheRHS, MRI));
902 }
903 
904 void applySwapICmpOperands(MachineInstr &MI, GISelChangeObserver &Observer) {
905   auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
906   Register LHS = MI.getOperand(2).getReg();
907   Register RHS = MI.getOperand(3).getReg();
908   Observer.changedInstr(MI);
909   MI.getOperand(1).setPredicate(CmpInst::getSwappedPredicate(Pred));
910   MI.getOperand(2).setReg(RHS);
911   MI.getOperand(3).setReg(LHS);
912   Observer.changedInstr(MI);
913 }
914 
915 /// \returns a function which builds a vector floating point compare instruction
916 /// for a condition code \p CC.
917 /// \param [in] IsZero - True if the comparison is against 0.
918 /// \param [in] NoNans - True if the target has NoNansFPMath.
919 std::function<Register(MachineIRBuilder &)>
920 getVectorFCMP(AArch64CC::CondCode CC, Register LHS, Register RHS, bool IsZero,
921               bool NoNans, MachineRegisterInfo &MRI) {
922   LLT DstTy = MRI.getType(LHS);
923   assert(DstTy.isVector() && "Expected vector types only?");
924   assert(DstTy == MRI.getType(RHS) && "Src and Dst types must match!");
925   switch (CC) {
926   default:
927     llvm_unreachable("Unexpected condition code!");
928   case AArch64CC::NE:
929     return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
930       auto FCmp = IsZero
931                       ? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS})
932                       : MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS});
933       return MIB.buildNot(DstTy, FCmp).getReg(0);
934     };
935   case AArch64CC::EQ:
936     return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
937       return IsZero
938                  ? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS}).getReg(0)
939                  : MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS})
940                        .getReg(0);
941     };
942   case AArch64CC::GE:
943     return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
944       return IsZero
945                  ? MIB.buildInstr(AArch64::G_FCMGEZ, {DstTy}, {LHS}).getReg(0)
946                  : MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {LHS, RHS})
947                        .getReg(0);
948     };
949   case AArch64CC::GT:
950     return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
951       return IsZero
952                  ? MIB.buildInstr(AArch64::G_FCMGTZ, {DstTy}, {LHS}).getReg(0)
953                  : MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {LHS, RHS})
954                        .getReg(0);
955     };
956   case AArch64CC::LS:
957     return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
958       return IsZero
959                  ? MIB.buildInstr(AArch64::G_FCMLEZ, {DstTy}, {LHS}).getReg(0)
960                  : MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {RHS, LHS})
961                        .getReg(0);
962     };
963   case AArch64CC::MI:
964     return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
965       return IsZero
966                  ? MIB.buildInstr(AArch64::G_FCMLTZ, {DstTy}, {LHS}).getReg(0)
967                  : MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {RHS, LHS})
968                        .getReg(0);
969     };
970   }
971 }
972 
973 /// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo.
974 bool matchLowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI,
975                           MachineIRBuilder &MIB) {
976   assert(MI.getOpcode() == TargetOpcode::G_FCMP);
977   const auto &ST = MI.getMF()->getSubtarget<AArch64Subtarget>();
978 
979   Register Dst = MI.getOperand(0).getReg();
980   LLT DstTy = MRI.getType(Dst);
981   if (!DstTy.isVector() || !ST.hasNEON())
982     return false;
983   Register LHS = MI.getOperand(2).getReg();
984   unsigned EltSize = MRI.getType(LHS).getScalarSizeInBits();
985   if (EltSize == 16 && !ST.hasFullFP16())
986     return false;
987   if (EltSize != 16 && EltSize != 32 && EltSize != 64)
988     return false;
989 
990   return true;
991 }
992 
993 /// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo.
994 void applyLowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI,
995                           MachineIRBuilder &MIB) {
996   assert(MI.getOpcode() == TargetOpcode::G_FCMP);
997   const auto &ST = MI.getMF()->getSubtarget<AArch64Subtarget>();
998 
999   const auto &CmpMI = cast<GFCmp>(MI);
1000 
1001   Register Dst = CmpMI.getReg(0);
1002   CmpInst::Predicate Pred = CmpMI.getCond();
1003   Register LHS = CmpMI.getLHSReg();
1004   Register RHS = CmpMI.getRHSReg();
1005 
1006   LLT DstTy = MRI.getType(Dst);
1007 
1008   auto Splat = getAArch64VectorSplat(*MRI.getVRegDef(RHS), MRI);
1009 
1010   // Compares against 0 have special target-specific pseudos.
1011   bool IsZero = Splat && Splat->isCst() && Splat->getCst() == 0;
1012 
1013   bool Invert = false;
1014   AArch64CC::CondCode CC, CC2 = AArch64CC::AL;
1015   if ((Pred == CmpInst::Predicate::FCMP_ORD ||
1016        Pred == CmpInst::Predicate::FCMP_UNO) &&
1017       IsZero) {
1018     // The special case "fcmp ord %a, 0" is the canonical check that LHS isn't
1019     // NaN, so equivalent to a == a and doesn't need the two comparisons an
1020     // "ord" normally would.
1021     // Similarly, "fcmp uno %a, 0" is the canonical check that LHS is NaN and is
1022     // thus equivalent to a != a.
1023     RHS = LHS;
1024     IsZero = false;
1025     CC = Pred == CmpInst::Predicate::FCMP_ORD ? AArch64CC::EQ : AArch64CC::NE;
1026   } else
1027     changeVectorFCMPPredToAArch64CC(Pred, CC, CC2, Invert);
1028 
1029   // Instead of having an apply function, just build here to simplify things.
1030   MIB.setInstrAndDebugLoc(MI);
1031 
1032   const bool NoNans =
1033       ST.getTargetLowering()->getTargetMachine().Options.NoNaNsFPMath;
1034 
1035   auto Cmp = getVectorFCMP(CC, LHS, RHS, IsZero, NoNans, MRI);
1036   Register CmpRes;
1037   if (CC2 == AArch64CC::AL)
1038     CmpRes = Cmp(MIB);
1039   else {
1040     auto Cmp2 = getVectorFCMP(CC2, LHS, RHS, IsZero, NoNans, MRI);
1041     auto Cmp2Dst = Cmp2(MIB);
1042     auto Cmp1Dst = Cmp(MIB);
1043     CmpRes = MIB.buildOr(DstTy, Cmp1Dst, Cmp2Dst).getReg(0);
1044   }
1045   if (Invert)
1046     CmpRes = MIB.buildNot(DstTy, CmpRes).getReg(0);
1047   MRI.replaceRegWith(Dst, CmpRes);
1048   MI.eraseFromParent();
1049 }
1050 
1051 bool matchFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI,
1052                          Register &SrcReg) {
1053   assert(MI.getOpcode() == TargetOpcode::G_STORE);
1054   Register DstReg = MI.getOperand(0).getReg();
1055   if (MRI.getType(DstReg).isVector())
1056     return false;
1057   // Match a store of a truncate.
1058   if (!mi_match(DstReg, MRI, m_GTrunc(m_Reg(SrcReg))))
1059     return false;
1060   // Only form truncstores for value types of max 64b.
1061   return MRI.getType(SrcReg).getSizeInBits() <= 64;
1062 }
1063 
1064 void applyFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI,
1065                          MachineIRBuilder &B, GISelChangeObserver &Observer,
1066                          Register &SrcReg) {
1067   assert(MI.getOpcode() == TargetOpcode::G_STORE);
1068   Observer.changingInstr(MI);
1069   MI.getOperand(0).setReg(SrcReg);
1070   Observer.changedInstr(MI);
1071 }
1072 
1073 // Lower vector G_SEXT_INREG back to shifts for selection. We allowed them to
1074 // form in the first place for combine opportunities, so any remaining ones
1075 // at this stage need be lowered back.
1076 bool matchVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI) {
1077   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
1078   Register DstReg = MI.getOperand(0).getReg();
1079   LLT DstTy = MRI.getType(DstReg);
1080   return DstTy.isVector();
1081 }
1082 
1083 void applyVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI,
1084                           MachineIRBuilder &B, GISelChangeObserver &Observer) {
1085   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
1086   B.setInstrAndDebugLoc(MI);
1087   LegalizerHelper Helper(*MI.getMF(), Observer, B);
1088   Helper.lower(MI, 0, /* Unused hint type */ LLT());
1089 }
1090 
1091 /// Combine <N x t>, unused = unmerge(G_EXT <2*N x t> v, undef, N)
1092 ///           => unused, <N x t> = unmerge v
1093 bool matchUnmergeExtToUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI,
1094                               Register &MatchInfo) {
1095   auto &Unmerge = cast<GUnmerge>(MI);
1096   if (Unmerge.getNumDefs() != 2)
1097     return false;
1098   if (!MRI.use_nodbg_empty(Unmerge.getReg(1)))
1099     return false;
1100 
1101   LLT DstTy = MRI.getType(Unmerge.getReg(0));
1102   if (!DstTy.isVector())
1103     return false;
1104 
1105   MachineInstr *Ext = getOpcodeDef(AArch64::G_EXT, Unmerge.getSourceReg(), MRI);
1106   if (!Ext)
1107     return false;
1108 
1109   Register ExtSrc1 = Ext->getOperand(1).getReg();
1110   Register ExtSrc2 = Ext->getOperand(2).getReg();
1111   auto LowestVal =
1112       getIConstantVRegValWithLookThrough(Ext->getOperand(3).getReg(), MRI);
1113   if (!LowestVal || LowestVal->Value.getZExtValue() != DstTy.getSizeInBytes())
1114     return false;
1115 
1116   if (!getOpcodeDef<GImplicitDef>(ExtSrc2, MRI))
1117     return false;
1118 
1119   MatchInfo = ExtSrc1;
1120   return true;
1121 }
1122 
1123 void applyUnmergeExtToUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI,
1124                               MachineIRBuilder &B,
1125                               GISelChangeObserver &Observer, Register &SrcReg) {
1126   Observer.changingInstr(MI);
1127   // Swap dst registers.
1128   Register Dst1 = MI.getOperand(0).getReg();
1129   MI.getOperand(0).setReg(MI.getOperand(1).getReg());
1130   MI.getOperand(1).setReg(Dst1);
1131   MI.getOperand(2).setReg(SrcReg);
1132   Observer.changedInstr(MI);
1133 }
1134 
1135 // Match mul({z/s}ext , {z/s}ext) => {u/s}mull OR
1136 // Match v2s64 mul instructions, which will then be scalarised later on
1137 // Doing these two matches in one function to ensure that the order of matching
1138 // will always be the same.
1139 // Try lowering MUL to MULL before trying to scalarize if needed.
1140 bool matchExtMulToMULL(MachineInstr &MI, MachineRegisterInfo &MRI) {
1141   // Get the instructions that defined the source operand
1142   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1143   MachineInstr *I1 = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
1144   MachineInstr *I2 = getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI);
1145 
1146   if (DstTy.isVector()) {
1147     // If the source operands were EXTENDED before, then {U/S}MULL can be used
1148     unsigned I1Opc = I1->getOpcode();
1149     unsigned I2Opc = I2->getOpcode();
1150     if (((I1Opc == TargetOpcode::G_ZEXT && I2Opc == TargetOpcode::G_ZEXT) ||
1151          (I1Opc == TargetOpcode::G_SEXT && I2Opc == TargetOpcode::G_SEXT)) &&
1152         (MRI.getType(I1->getOperand(0).getReg()).getScalarSizeInBits() ==
1153          MRI.getType(I1->getOperand(1).getReg()).getScalarSizeInBits() * 2) &&
1154         (MRI.getType(I2->getOperand(0).getReg()).getScalarSizeInBits() ==
1155          MRI.getType(I2->getOperand(1).getReg()).getScalarSizeInBits() * 2)) {
1156       return true;
1157     }
1158     // If result type is v2s64, scalarise the instruction
1159     else if (DstTy == LLT::fixed_vector(2, 64)) {
1160       return true;
1161     }
1162   }
1163   return false;
1164 }
1165 
1166 void applyExtMulToMULL(MachineInstr &MI, MachineRegisterInfo &MRI,
1167                        MachineIRBuilder &B, GISelChangeObserver &Observer) {
1168   assert(MI.getOpcode() == TargetOpcode::G_MUL &&
1169          "Expected a G_MUL instruction");
1170 
1171   // Get the instructions that defined the source operand
1172   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1173   MachineInstr *I1 = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
1174   MachineInstr *I2 = getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI);
1175 
1176   // If the source operands were EXTENDED before, then {U/S}MULL can be used
1177   unsigned I1Opc = I1->getOpcode();
1178   unsigned I2Opc = I2->getOpcode();
1179   if (((I1Opc == TargetOpcode::G_ZEXT && I2Opc == TargetOpcode::G_ZEXT) ||
1180        (I1Opc == TargetOpcode::G_SEXT && I2Opc == TargetOpcode::G_SEXT)) &&
1181       (MRI.getType(I1->getOperand(0).getReg()).getScalarSizeInBits() ==
1182        MRI.getType(I1->getOperand(1).getReg()).getScalarSizeInBits() * 2) &&
1183       (MRI.getType(I2->getOperand(0).getReg()).getScalarSizeInBits() ==
1184        MRI.getType(I2->getOperand(1).getReg()).getScalarSizeInBits() * 2)) {
1185 
1186     B.setInstrAndDebugLoc(MI);
1187     B.buildInstr(I1->getOpcode() == TargetOpcode::G_ZEXT ? AArch64::G_UMULL
1188                                                          : AArch64::G_SMULL,
1189                  {MI.getOperand(0).getReg()},
1190                  {I1->getOperand(1).getReg(), I2->getOperand(1).getReg()});
1191     MI.eraseFromParent();
1192   }
1193   // If result type is v2s64, scalarise the instruction
1194   else if (DstTy == LLT::fixed_vector(2, 64)) {
1195     LegalizerHelper Helper(*MI.getMF(), Observer, B);
1196     B.setInstrAndDebugLoc(MI);
1197     Helper.fewerElementsVector(
1198         MI, 0,
1199         DstTy.changeElementCount(
1200             DstTy.getElementCount().divideCoefficientBy(2)));
1201   }
1202 }
1203 
1204 class AArch64PostLegalizerLoweringImpl : public Combiner {
1205 protected:
1206   // TODO: Make CombinerHelper methods const.
1207   mutable CombinerHelper Helper;
1208   const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig;
1209   const AArch64Subtarget &STI;
1210 
1211 public:
1212   AArch64PostLegalizerLoweringImpl(
1213       MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
1214       GISelCSEInfo *CSEInfo,
1215       const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig,
1216       const AArch64Subtarget &STI);
1217 
1218   static const char *getName() { return "AArch6400PreLegalizerCombiner"; }
1219 
1220   bool tryCombineAll(MachineInstr &I) const override;
1221 
1222 private:
1223 #define GET_GICOMBINER_CLASS_MEMBERS
1224 #include "AArch64GenPostLegalizeGILowering.inc"
1225 #undef GET_GICOMBINER_CLASS_MEMBERS
1226 };
1227 
1228 #define GET_GICOMBINER_IMPL
1229 #include "AArch64GenPostLegalizeGILowering.inc"
1230 #undef GET_GICOMBINER_IMPL
1231 
1232 AArch64PostLegalizerLoweringImpl::AArch64PostLegalizerLoweringImpl(
1233     MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
1234     GISelCSEInfo *CSEInfo,
1235     const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig,
1236     const AArch64Subtarget &STI)
1237     : Combiner(MF, CInfo, TPC, /*KB*/ nullptr, CSEInfo),
1238       Helper(Observer, B, /*IsPreLegalize*/ true), RuleConfig(RuleConfig),
1239       STI(STI),
1240 #define GET_GICOMBINER_CONSTRUCTOR_INITS
1241 #include "AArch64GenPostLegalizeGILowering.inc"
1242 #undef GET_GICOMBINER_CONSTRUCTOR_INITS
1243 {
1244 }
1245 
1246 class AArch64PostLegalizerLowering : public MachineFunctionPass {
1247 public:
1248   static char ID;
1249 
1250   AArch64PostLegalizerLowering();
1251 
1252   StringRef getPassName() const override {
1253     return "AArch64PostLegalizerLowering";
1254   }
1255 
1256   bool runOnMachineFunction(MachineFunction &MF) override;
1257   void getAnalysisUsage(AnalysisUsage &AU) const override;
1258 
1259 private:
1260   AArch64PostLegalizerLoweringImplRuleConfig RuleConfig;
1261 };
1262 } // end anonymous namespace
1263 
1264 void AArch64PostLegalizerLowering::getAnalysisUsage(AnalysisUsage &AU) const {
1265   AU.addRequired<TargetPassConfig>();
1266   AU.setPreservesCFG();
1267   getSelectionDAGFallbackAnalysisUsage(AU);
1268   MachineFunctionPass::getAnalysisUsage(AU);
1269 }
1270 
1271 AArch64PostLegalizerLowering::AArch64PostLegalizerLowering()
1272     : MachineFunctionPass(ID) {
1273   initializeAArch64PostLegalizerLoweringPass(*PassRegistry::getPassRegistry());
1274 
1275   if (!RuleConfig.parseCommandLineOption())
1276     report_fatal_error("Invalid rule identifier");
1277 }
1278 
1279 bool AArch64PostLegalizerLowering::runOnMachineFunction(MachineFunction &MF) {
1280   if (MF.getProperties().hasProperty(
1281           MachineFunctionProperties::Property::FailedISel))
1282     return false;
1283   assert(MF.getProperties().hasProperty(
1284              MachineFunctionProperties::Property::Legalized) &&
1285          "Expected a legalized function?");
1286   auto *TPC = &getAnalysis<TargetPassConfig>();
1287   const Function &F = MF.getFunction();
1288 
1289   const AArch64Subtarget &ST = MF.getSubtarget<AArch64Subtarget>();
1290   CombinerInfo CInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
1291                      /*LegalizerInfo*/ nullptr, /*OptEnabled=*/true,
1292                      F.hasOptSize(), F.hasMinSize());
1293   AArch64PostLegalizerLoweringImpl Impl(MF, CInfo, TPC, /*CSEInfo*/ nullptr,
1294                                         RuleConfig, ST);
1295   return Impl.combineMachineInstrs();
1296 }
1297 
1298 char AArch64PostLegalizerLowering::ID = 0;
1299 INITIALIZE_PASS_BEGIN(AArch64PostLegalizerLowering, DEBUG_TYPE,
1300                       "Lower AArch64 MachineInstrs after legalization", false,
1301                       false)
1302 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1303 INITIALIZE_PASS_END(AArch64PostLegalizerLowering, DEBUG_TYPE,
1304                     "Lower AArch64 MachineInstrs after legalization", false,
1305                     false)
1306 
1307 namespace llvm {
1308 FunctionPass *createAArch64PostLegalizerLowering() {
1309   return new AArch64PostLegalizerLowering();
1310 }
1311 } // end namespace llvm
1312