xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/GISel/AArch64LegalizerInfo.cpp (revision 9f44a47fd07924afc035991af15d84e6585dea4f)
1 //===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for
10 /// AArch64.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13 
14 #include "AArch64LegalizerInfo.h"
15 #include "AArch64RegisterBankInfo.h"
16 #include "AArch64Subtarget.h"
17 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/TargetOpcodes.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/IntrinsicsAArch64.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/MathExtras.h"
31 #include <initializer_list>
32 
33 #define DEBUG_TYPE "aarch64-legalinfo"
34 
35 using namespace llvm;
36 using namespace LegalizeActions;
37 using namespace LegalizeMutations;
38 using namespace LegalityPredicates;
39 using namespace MIPatternMatch;
40 
41 AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST)
42     : ST(&ST) {
43   using namespace TargetOpcode;
44   const LLT p0 = LLT::pointer(0, 64);
45   const LLT s8 = LLT::scalar(8);
46   const LLT s16 = LLT::scalar(16);
47   const LLT s32 = LLT::scalar(32);
48   const LLT s64 = LLT::scalar(64);
49   const LLT s128 = LLT::scalar(128);
50   const LLT v16s8 = LLT::fixed_vector(16, 8);
51   const LLT v8s8 = LLT::fixed_vector(8, 8);
52   const LLT v4s8 = LLT::fixed_vector(4, 8);
53   const LLT v8s16 = LLT::fixed_vector(8, 16);
54   const LLT v4s16 = LLT::fixed_vector(4, 16);
55   const LLT v2s16 = LLT::fixed_vector(2, 16);
56   const LLT v2s32 = LLT::fixed_vector(2, 32);
57   const LLT v4s32 = LLT::fixed_vector(4, 32);
58   const LLT v2s64 = LLT::fixed_vector(2, 64);
59   const LLT v2p0 = LLT::fixed_vector(2, p0);
60 
61   std::initializer_list<LLT> PackedVectorAllTypeList = {/* Begin 128bit types */
62                                                         v16s8, v8s16, v4s32,
63                                                         v2s64, v2p0,
64                                                         /* End 128bit types */
65                                                         /* Begin 64bit types */
66                                                         v8s8, v4s16, v2s32};
67 
68   const TargetMachine &TM = ST.getTargetLowering()->getTargetMachine();
69 
70   // FIXME: support subtargets which have neon/fp-armv8 disabled.
71   if (!ST.hasNEON() || !ST.hasFPARMv8()) {
72     getLegacyLegalizerInfo().computeTables();
73     return;
74   }
75 
76   // Some instructions only support s16 if the subtarget has full 16-bit FP
77   // support.
78   const bool HasFP16 = ST.hasFullFP16();
79   const LLT &MinFPScalar = HasFP16 ? s16 : s32;
80 
81   getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
82       .legalFor({p0, s8, s16, s32, s64})
83       .legalFor(PackedVectorAllTypeList)
84       .widenScalarToNextPow2(0)
85       .clampScalar(0, s8, s64)
86       .fewerElementsIf(
87           [=](const LegalityQuery &Query) {
88             return Query.Types[0].isVector() &&
89                    (Query.Types[0].getElementType() != s64 ||
90                     Query.Types[0].getNumElements() != 2);
91           },
92           [=](const LegalityQuery &Query) {
93             LLT EltTy = Query.Types[0].getElementType();
94             if (EltTy == s64)
95               return std::make_pair(0, LLT::fixed_vector(2, 64));
96             return std::make_pair(0, EltTy);
97           });
98 
99   getActionDefinitionsBuilder(G_PHI)
100       .legalFor({p0, s16, s32, s64})
101       .legalFor(PackedVectorAllTypeList)
102       .widenScalarToNextPow2(0)
103       .clampScalar(0, s16, s64)
104       // Maximum: sN * k = 128
105       .clampMaxNumElements(0, s8, 16)
106       .clampMaxNumElements(0, s16, 8)
107       .clampMaxNumElements(0, s32, 4)
108       .clampMaxNumElements(0, s64, 2)
109       .clampMaxNumElements(0, p0, 2);
110 
111   getActionDefinitionsBuilder(G_BSWAP)
112       .legalFor({s32, s64, v4s32, v2s32, v2s64})
113       .widenScalarToNextPow2(0)
114       .clampScalar(0, s32, s64);
115 
116   getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
117       .legalFor({s32, s64, v2s32, v4s32, v4s16, v8s16, v16s8, v8s8})
118       .scalarizeIf(
119           [=](const LegalityQuery &Query) {
120             return Query.Opcode == G_MUL && Query.Types[0] == v2s64;
121           },
122           0)
123       .legalFor({v2s64})
124       .widenScalarToNextPow2(0)
125       .clampScalar(0, s32, s64)
126       .clampNumElements(0, v2s32, v4s32)
127       .clampNumElements(0, v2s64, v2s64)
128       .moreElementsToNextPow2(0);
129 
130   getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR})
131       .customIf([=](const LegalityQuery &Query) {
132         const auto &SrcTy = Query.Types[0];
133         const auto &AmtTy = Query.Types[1];
134         return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
135                AmtTy.getSizeInBits() == 32;
136       })
137       .legalFor({
138           {s32, s32},
139           {s32, s64},
140           {s64, s64},
141           {v8s8, v8s8},
142           {v16s8, v16s8},
143           {v4s16, v4s16},
144           {v8s16, v8s16},
145           {v2s32, v2s32},
146           {v4s32, v4s32},
147           {v2s64, v2s64},
148       })
149       .widenScalarToNextPow2(0)
150       .clampScalar(1, s32, s64)
151       .clampScalar(0, s32, s64)
152       .clampNumElements(0, v2s32, v4s32)
153       .clampNumElements(0, v2s64, v2s64)
154       .moreElementsToNextPow2(0)
155       .minScalarSameAs(1, 0);
156 
157   getActionDefinitionsBuilder(G_PTR_ADD)
158       .legalFor({{p0, s64}, {v2p0, v2s64}})
159       .clampScalar(1, s64, s64);
160 
161   getActionDefinitionsBuilder(G_PTRMASK).legalFor({{p0, s64}});
162 
163   getActionDefinitionsBuilder({G_SDIV, G_UDIV})
164       .legalFor({s32, s64})
165       .libcallFor({s128})
166       .clampScalar(0, s32, s64)
167       .widenScalarToNextPow2(0)
168       .scalarize(0);
169 
170   getActionDefinitionsBuilder({G_SREM, G_UREM, G_SDIVREM, G_UDIVREM})
171       .lowerFor({s8, s16, s32, s64, v2s64, v4s32, v2s32})
172       .widenScalarOrEltToNextPow2(0)
173       .clampScalarOrElt(0, s32, s64)
174       .clampNumElements(0, v2s32, v4s32)
175       .clampNumElements(0, v2s64, v2s64)
176       .moreElementsToNextPow2(0);
177 
178 
179   getActionDefinitionsBuilder({G_SMULO, G_UMULO})
180       .widenScalarToNextPow2(0, /*Min = */ 32)
181       .clampScalar(0, s32, s64)
182       .lower();
183 
184   getActionDefinitionsBuilder({G_SMULH, G_UMULH})
185       .legalFor({s64, v8s16, v16s8, v4s32})
186       .lower();
187 
188   getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
189       .legalFor({v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
190       .clampNumElements(0, v8s8, v16s8)
191       .clampNumElements(0, v4s16, v8s16)
192       .clampNumElements(0, v2s32, v4s32)
193       // FIXME: This sholdn't be needed as v2s64 types are going to
194       // be expanded anyway, but G_ICMP doesn't support splitting vectors yet
195       .clampNumElements(0, v2s64, v2s64)
196       .lower();
197 
198   getActionDefinitionsBuilder(
199       {G_SADDE, G_SSUBE, G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO, G_USUBO})
200       .legalFor({{s32, s32}, {s64, s32}})
201       .clampScalar(0, s32, s64)
202        .clampScalar(1, s32, s64)
203       .widenScalarToNextPow2(0);
204 
205   getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FNEG})
206       .legalFor({MinFPScalar, s32, s64, v2s64, v4s32, v2s32})
207       .clampScalar(0, MinFPScalar, s64)
208       .clampNumElements(0, v2s32, v4s32)
209       .clampNumElements(0, v2s64, v2s64);
210 
211   getActionDefinitionsBuilder(G_FREM).libcallFor({s32, s64});
212 
213   getActionDefinitionsBuilder({G_FCEIL, G_FABS, G_FSQRT, G_FFLOOR, G_FRINT,
214                                G_FMA, G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND,
215                                G_FNEARBYINT, G_INTRINSIC_LRINT})
216       // If we don't have full FP16 support, then scalarize the elements of
217       // vectors containing fp16 types.
218       .fewerElementsIf(
219           [=, &ST](const LegalityQuery &Query) {
220             const auto &Ty = Query.Types[0];
221             return Ty.isVector() && Ty.getElementType() == s16 &&
222                    !ST.hasFullFP16();
223           },
224           [=](const LegalityQuery &Query) { return std::make_pair(0, s16); })
225       // If we don't have full FP16 support, then widen s16 to s32 if we
226       // encounter it.
227       .widenScalarIf(
228           [=, &ST](const LegalityQuery &Query) {
229             return Query.Types[0] == s16 && !ST.hasFullFP16();
230           },
231           [=](const LegalityQuery &Query) { return std::make_pair(0, s32); })
232       .legalFor({s16, s32, s64, v2s32, v4s32, v2s64, v2s16, v4s16, v8s16});
233 
234   getActionDefinitionsBuilder(
235       {G_FCOS, G_FSIN, G_FLOG10, G_FLOG, G_FLOG2, G_FEXP, G_FEXP2, G_FPOW})
236       // We need a call for these, so we always need to scalarize.
237       .scalarize(0)
238       // Regardless of FP16 support, widen 16-bit elements to 32-bits.
239       .minScalar(0, s32)
240       .libcallFor({s32, s64, v2s32, v4s32, v2s64});
241 
242   getActionDefinitionsBuilder(G_INSERT)
243       .legalIf(all(typeInSet(0, {s32, s64, p0}),
244                    typeInSet(1, {s8, s16, s32}), smallerThan(1, 0)))
245       .widenScalarToNextPow2(0)
246       .clampScalar(0, s32, s64)
247       .widenScalarToNextPow2(1)
248       .minScalar(1, s8)
249       .maxScalarIf(typeInSet(0, {s32}), 1, s16)
250       .maxScalarIf(typeInSet(0, {s64, p0}), 1, s32);
251 
252   getActionDefinitionsBuilder(G_EXTRACT)
253       .legalIf(all(typeInSet(0, {s16, s32, s64, p0}),
254                    typeInSet(1, {s32, s64, s128, p0}), smallerThan(0, 1)))
255       .widenScalarToNextPow2(1)
256       .clampScalar(1, s32, s128)
257       .widenScalarToNextPow2(0)
258       .minScalar(0, s16)
259       .maxScalarIf(typeInSet(1, {s32}), 0, s16)
260       .maxScalarIf(typeInSet(1, {s64, p0}), 0, s32)
261       .maxScalarIf(typeInSet(1, {s128}), 0, s64);
262 
263 
264   for (unsigned Op : {G_SEXTLOAD, G_ZEXTLOAD}) {
265     auto &Actions =  getActionDefinitionsBuilder(Op);
266 
267     if (Op == G_SEXTLOAD)
268       Actions.lowerIf(atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Unordered));
269 
270     // Atomics have zero extending behavior.
271     Actions
272       .legalForTypesWithMemDesc({{s32, p0, s8, 8},
273                                  {s32, p0, s16, 8},
274                                  {s32, p0, s32, 8},
275                                  {s64, p0, s8, 2},
276                                  {s64, p0, s16, 2},
277                                  {s64, p0, s32, 4},
278                                  {s64, p0, s64, 8},
279                                  {p0, p0, s64, 8},
280                                  {v2s32, p0, s64, 8}})
281       .widenScalarToNextPow2(0)
282       .clampScalar(0, s32, s64)
283       // TODO: We could support sum-of-pow2's but the lowering code doesn't know
284       //       how to do that yet.
285       .unsupportedIfMemSizeNotPow2()
286       // Lower anything left over into G_*EXT and G_LOAD
287       .lower();
288   }
289 
290   auto IsPtrVecPred = [=](const LegalityQuery &Query) {
291     const LLT &ValTy = Query.Types[0];
292     if (!ValTy.isVector())
293       return false;
294     const LLT EltTy = ValTy.getElementType();
295     return EltTy.isPointer() && EltTy.getAddressSpace() == 0;
296   };
297 
298   getActionDefinitionsBuilder(G_LOAD)
299       .customIf([=](const LegalityQuery &Query) {
300         return Query.Types[0] == s128 &&
301                Query.MMODescrs[0].Ordering != AtomicOrdering::NotAtomic;
302       })
303       .legalForTypesWithMemDesc({{s8, p0, s8, 8},
304                                  {s16, p0, s16, 8},
305                                  {s32, p0, s32, 8},
306                                  {s64, p0, s64, 8},
307                                  {p0, p0, s64, 8},
308                                  {s128, p0, s128, 8},
309                                  {v8s8, p0, s64, 8},
310                                  {v16s8, p0, s128, 8},
311                                  {v4s16, p0, s64, 8},
312                                  {v8s16, p0, s128, 8},
313                                  {v2s32, p0, s64, 8},
314                                  {v4s32, p0, s128, 8},
315                                  {v2s64, p0, s128, 8}})
316       // These extends are also legal
317       .legalForTypesWithMemDesc({{s32, p0, s8, 8}, {s32, p0, s16, 8}})
318       .widenScalarToNextPow2(0, /* MinSize = */8)
319       .lowerIfMemSizeNotByteSizePow2()
320       .clampScalar(0, s8, s64)
321       .narrowScalarIf([=](const LegalityQuery &Query) {
322         // Clamp extending load results to 32-bits.
323         return Query.Types[0].isScalar() &&
324           Query.Types[0] != Query.MMODescrs[0].MemoryTy &&
325           Query.Types[0].getSizeInBits() > 32;
326         },
327         changeTo(0, s32))
328       .clampMaxNumElements(0, s8, 16)
329       .clampMaxNumElements(0, s16, 8)
330       .clampMaxNumElements(0, s32, 4)
331       .clampMaxNumElements(0, s64, 2)
332       .clampMaxNumElements(0, p0, 2)
333       .customIf(IsPtrVecPred)
334       .scalarizeIf(typeIs(0, v2s16), 0);
335 
336   getActionDefinitionsBuilder(G_STORE)
337       .customIf([=](const LegalityQuery &Query) {
338         return Query.Types[0] == s128 &&
339                Query.MMODescrs[0].Ordering != AtomicOrdering::NotAtomic;
340       })
341       .legalForTypesWithMemDesc({{s8, p0, s8, 8},
342                                  {s16, p0, s8, 8}, // truncstorei8 from s16
343                                  {s32, p0, s8, 8}, // truncstorei8 from s32
344                                  {s64, p0, s8, 8}, // truncstorei8 from s64
345                                  {s16, p0, s16, 8},
346                                  {s32, p0, s16, 8}, // truncstorei16 from s32
347                                  {s64, p0, s16, 8}, // truncstorei16 from s64
348                                  {s32, p0, s8, 8},
349                                  {s32, p0, s16, 8},
350                                  {s32, p0, s32, 8},
351                                  {s64, p0, s64, 8},
352                                  {s64, p0, s32, 8}, // truncstorei32 from s64
353                                  {p0, p0, s64, 8},
354                                  {s128, p0, s128, 8},
355                                  {v16s8, p0, s128, 8},
356                                  {v8s8, p0, s64, 8},
357                                  {v4s16, p0, s64, 8},
358                                  {v8s16, p0, s128, 8},
359                                  {v2s32, p0, s64, 8},
360                                  {v4s32, p0, s128, 8},
361                                  {v2s64, p0, s128, 8}})
362       .clampScalar(0, s8, s64)
363       .lowerIf([=](const LegalityQuery &Query) {
364         return Query.Types[0].isScalar() &&
365                Query.Types[0] != Query.MMODescrs[0].MemoryTy;
366       })
367       // Maximum: sN * k = 128
368       .clampMaxNumElements(0, s8, 16)
369       .clampMaxNumElements(0, s16, 8)
370       .clampMaxNumElements(0, s32, 4)
371       .clampMaxNumElements(0, s64, 2)
372       .clampMaxNumElements(0, p0, 2)
373       .lowerIfMemSizeNotPow2()
374       .customIf(IsPtrVecPred)
375       .scalarizeIf(typeIs(0, v2s16), 0);
376 
377   // Constants
378   getActionDefinitionsBuilder(G_CONSTANT)
379       .legalFor({p0, s8, s16, s32, s64})
380       .widenScalarToNextPow2(0)
381       .clampScalar(0, s8, s64);
382   getActionDefinitionsBuilder(G_FCONSTANT)
383       .legalIf([=](const LegalityQuery &Query) {
384         const auto &Ty = Query.Types[0];
385         if (HasFP16 && Ty == s16)
386           return true;
387         return Ty == s32 || Ty == s64 || Ty == s128;
388       })
389       .clampScalar(0, MinFPScalar, s128);
390 
391   getActionDefinitionsBuilder({G_ICMP, G_FCMP})
392       .legalFor({{s32, s32},
393                  {s32, s64},
394                  {s32, p0},
395                  {v4s32, v4s32},
396                  {v2s32, v2s32},
397                  {v2s64, v2s64},
398                  {v2s64, v2p0},
399                  {v4s16, v4s16},
400                  {v8s16, v8s16},
401                  {v8s8, v8s8},
402                  {v16s8, v16s8}})
403       .widenScalarOrEltToNextPow2(1)
404       .clampScalar(1, s32, s64)
405       .clampScalar(0, s32, s32)
406       .minScalarEltSameAsIf(
407           [=](const LegalityQuery &Query) {
408             const LLT &Ty = Query.Types[0];
409             const LLT &SrcTy = Query.Types[1];
410             return Ty.isVector() && !SrcTy.getElementType().isPointer() &&
411                    Ty.getElementType() != SrcTy.getElementType();
412           },
413           0, 1)
414       .minScalarOrEltIf(
415           [=](const LegalityQuery &Query) { return Query.Types[1] == v2s16; },
416           1, s32)
417       .minScalarOrEltIf(
418           [=](const LegalityQuery &Query) { return Query.Types[1] == v2p0; }, 0,
419           s64)
420       .clampNumElements(0, v2s32, v4s32);
421 
422   // Extensions
423   auto ExtLegalFunc = [=](const LegalityQuery &Query) {
424     unsigned DstSize = Query.Types[0].getSizeInBits();
425 
426     if (DstSize == 128 && !Query.Types[0].isVector())
427       return false; // Extending to a scalar s128 needs narrowing.
428 
429     // Make sure that we have something that will fit in a register, and
430     // make sure it's a power of 2.
431     if (DstSize < 8 || DstSize > 128 || !isPowerOf2_32(DstSize))
432       return false;
433 
434     const LLT &SrcTy = Query.Types[1];
435 
436     // Make sure we fit in a register otherwise. Don't bother checking that
437     // the source type is below 128 bits. We shouldn't be allowing anything
438     // through which is wider than the destination in the first place.
439     unsigned SrcSize = SrcTy.getSizeInBits();
440     if (SrcSize < 8 || !isPowerOf2_32(SrcSize))
441       return false;
442 
443     return true;
444   };
445   getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
446       .legalIf(ExtLegalFunc)
447       .clampScalar(0, s64, s64); // Just for s128, others are handled above.
448 
449   getActionDefinitionsBuilder(G_TRUNC)
450       .minScalarOrEltIf(
451           [=](const LegalityQuery &Query) { return Query.Types[0].isVector(); },
452           0, s8)
453       .customIf([=](const LegalityQuery &Query) {
454         LLT DstTy = Query.Types[0];
455         LLT SrcTy = Query.Types[1];
456         return DstTy == v8s8 && SrcTy.getSizeInBits() > 128;
457       })
458       .alwaysLegal();
459 
460   getActionDefinitionsBuilder(G_SEXT_INREG).legalFor({s32, s64}).lower();
461 
462   // FP conversions
463   getActionDefinitionsBuilder(G_FPTRUNC)
464       .legalFor(
465           {{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}})
466       .clampMaxNumElements(0, s32, 2);
467   getActionDefinitionsBuilder(G_FPEXT)
468       .legalFor(
469           {{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}})
470       .clampMaxNumElements(0, s64, 2);
471 
472   // Conversions
473   getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
474       .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
475       .widenScalarToNextPow2(0)
476       .clampScalar(0, s32, s64)
477       .widenScalarToNextPow2(1)
478       .clampScalar(1, s32, s64);
479 
480   getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
481       .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
482       .clampScalar(1, s32, s64)
483       .minScalarSameAs(1, 0)
484       .clampScalar(0, s32, s64)
485       .widenScalarToNextPow2(0);
486 
487   // Control-flow
488   getActionDefinitionsBuilder(G_BRCOND)
489     .legalFor({s32})
490     .clampScalar(0, s32, s32);
491   getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
492 
493   getActionDefinitionsBuilder(G_SELECT)
494       .legalFor({{s32, s32}, {s64, s32}, {p0, s32}})
495       .widenScalarToNextPow2(0)
496       .clampScalar(0, s32, s64)
497       .clampScalar(1, s32, s32)
498       .minScalarEltSameAsIf(all(isVector(0), isVector(1)), 1, 0)
499       .lowerIf(isVector(0));
500 
501   // Pointer-handling
502   getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
503 
504   if (TM.getCodeModel() == CodeModel::Small)
505     getActionDefinitionsBuilder(G_GLOBAL_VALUE).custom();
506   else
507     getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
508 
509   getActionDefinitionsBuilder(G_PTRTOINT)
510       .legalForCartesianProduct({s8, s16, s32, s64}, {p0})
511       .legalFor({{v2s64, v2p0}})
512       .maxScalar(0, s64)
513       .widenScalarToNextPow2(0, /*Min*/ 8);
514 
515   getActionDefinitionsBuilder(G_INTTOPTR)
516       .unsupportedIf([&](const LegalityQuery &Query) {
517         return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits();
518       })
519       .legalFor({{p0, s64}, {v2p0, v2s64}});
520 
521   // Casts for 32 and 64-bit width type are just copies.
522   // Same for 128-bit width type, except they are on the FPR bank.
523   getActionDefinitionsBuilder(G_BITCAST)
524       // FIXME: This is wrong since G_BITCAST is not allowed to change the
525       // number of bits but it's what the previous code described and fixing
526       // it breaks tests.
527       .legalForCartesianProduct({s8, s16, s32, s64, s128, v16s8, v8s8, v4s8,
528                                  v8s16, v4s16, v2s16, v4s32, v2s32, v2s64,
529                                  v2p0});
530 
531   getActionDefinitionsBuilder(G_VASTART).legalFor({p0});
532 
533   // va_list must be a pointer, but most sized types are pretty easy to handle
534   // as the destination.
535   getActionDefinitionsBuilder(G_VAARG)
536       .customForCartesianProduct({s8, s16, s32, s64, p0}, {p0})
537       .clampScalar(0, s8, s64)
538       .widenScalarToNextPow2(0, /*Min*/ 8);
539 
540   getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
541       .lowerIf(
542           all(typeInSet(0, {s8, s16, s32, s64, s128}), typeIs(2, p0)));
543 
544   getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG)
545       .customIf([](const LegalityQuery &Query) {
546         return Query.Types[0].getSizeInBits() == 128;
547       })
548       .clampScalar(0, s32, s64)
549       .legalIf(all(typeInSet(0, {s32, s64}), typeIs(1, p0)));
550 
551   getActionDefinitionsBuilder(
552       {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND,
553        G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX,
554        G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX})
555       .clampScalar(0, s32, s64)
556       .legalIf(all(typeInSet(0, {s32, s64}), typeIs(1, p0)));
557 
558   getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({p0});
559 
560   // Merge/Unmerge
561   for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
562     unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
563     unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
564     getActionDefinitionsBuilder(Op)
565         .widenScalarToNextPow2(LitTyIdx, 8)
566         .widenScalarToNextPow2(BigTyIdx, 32)
567         .clampScalar(LitTyIdx, s8, s64)
568         .clampScalar(BigTyIdx, s32, s128)
569         .legalIf([=](const LegalityQuery &Q) {
570           switch (Q.Types[BigTyIdx].getSizeInBits()) {
571           case 32:
572           case 64:
573           case 128:
574             break;
575           default:
576             return false;
577           }
578           switch (Q.Types[LitTyIdx].getSizeInBits()) {
579           case 8:
580           case 16:
581           case 32:
582           case 64:
583             return true;
584           default:
585             return false;
586           }
587         });
588   }
589 
590   getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
591       .unsupportedIf([=](const LegalityQuery &Query) {
592         const LLT &EltTy = Query.Types[1].getElementType();
593         return Query.Types[0] != EltTy;
594       })
595       .minScalar(2, s64)
596       .legalIf([=](const LegalityQuery &Query) {
597         const LLT &VecTy = Query.Types[1];
598         return VecTy == v2s16 || VecTy == v4s16 || VecTy == v8s16 ||
599                VecTy == v4s32 || VecTy == v2s64 || VecTy == v2s32 ||
600                VecTy == v8s8 || VecTy == v16s8 || VecTy == v2s32 ||
601                VecTy == v2p0;
602       })
603       .minScalarOrEltIf(
604           [=](const LegalityQuery &Query) {
605             // We want to promote to <M x s1> to <M x s64> if that wouldn't
606             // cause the total vec size to be > 128b.
607             return Query.Types[1].getNumElements() <= 2;
608           },
609           0, s64)
610       .minScalarOrEltIf(
611           [=](const LegalityQuery &Query) {
612             return Query.Types[1].getNumElements() <= 4;
613           },
614           0, s32)
615       .minScalarOrEltIf(
616           [=](const LegalityQuery &Query) {
617             return Query.Types[1].getNumElements() <= 8;
618           },
619           0, s16)
620       .minScalarOrEltIf(
621           [=](const LegalityQuery &Query) {
622             return Query.Types[1].getNumElements() <= 16;
623           },
624           0, s8)
625       .minScalarOrElt(0, s8) // Worst case, we need at least s8.
626       .clampMaxNumElements(1, s64, 2)
627       .clampMaxNumElements(1, s32, 4)
628       .clampMaxNumElements(1, s16, 8)
629       .clampMaxNumElements(1, p0, 2);
630 
631   getActionDefinitionsBuilder(G_INSERT_VECTOR_ELT)
632       .legalIf(typeInSet(0, {v8s16, v2s32, v4s32, v2s64}));
633 
634   getActionDefinitionsBuilder(G_BUILD_VECTOR)
635       .legalFor({{v8s8, s8},
636                  {v16s8, s8},
637                  {v2s16, s16},
638                  {v4s16, s16},
639                  {v8s16, s16},
640                  {v2s32, s32},
641                  {v4s32, s32},
642                  {v2p0, p0},
643                  {v2s64, s64}})
644       .clampNumElements(0, v4s32, v4s32)
645       .clampNumElements(0, v2s64, v2s64)
646       .minScalarOrElt(0, s8)
647       .minScalarSameAs(1, 0);
648 
649   getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC).lower();
650 
651   getActionDefinitionsBuilder(G_CTLZ)
652       .legalForCartesianProduct(
653           {s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
654       .scalarize(1);
655   getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF).lower();
656 
657   // TODO: Custom lowering for v2s32, v4s32, v2s64.
658   getActionDefinitionsBuilder(G_BITREVERSE)
659       .legalFor({s32, s64, v8s8, v16s8})
660       .widenScalarToNextPow2(0, /*Min = */ 32)
661       .clampScalar(0, s32, s64);
662 
663   getActionDefinitionsBuilder(G_CTTZ_ZERO_UNDEF).lower();
664 
665   getActionDefinitionsBuilder(G_CTTZ)
666       .lowerIf(isVector(0))
667       .clampScalar(0, s32, s64)
668       .scalarSameSizeAs(1, 0)
669       .customFor({s32, s64});
670 
671   getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
672       .legalIf([=](const LegalityQuery &Query) {
673         const LLT &DstTy = Query.Types[0];
674         const LLT &SrcTy = Query.Types[1];
675         // For now just support the TBL2 variant which needs the source vectors
676         // to be the same size as the dest.
677         if (DstTy != SrcTy)
678           return false;
679         for (auto &Ty : {v2s32, v4s32, v2s64, v2p0, v16s8, v8s16}) {
680           if (DstTy == Ty)
681             return true;
682         }
683         return false;
684       })
685       // G_SHUFFLE_VECTOR can have scalar sources (from 1 x s vectors), we
686       // just want those lowered into G_BUILD_VECTOR
687       .lowerIf([=](const LegalityQuery &Query) {
688         return !Query.Types[1].isVector();
689       })
690       .moreElementsToNextPow2(0)
691       .clampNumElements(0, v4s32, v4s32)
692       .clampNumElements(0, v2s64, v2s64);
693 
694   getActionDefinitionsBuilder(G_CONCAT_VECTORS)
695       .legalFor({{v4s32, v2s32}, {v8s16, v4s16}, {v16s8, v8s8}});
696 
697   getActionDefinitionsBuilder(G_JUMP_TABLE).legalFor({{p0}, {s64}});
698 
699   getActionDefinitionsBuilder(G_BRJT).legalIf([=](const LegalityQuery &Query) {
700     return Query.Types[0] == p0 && Query.Types[1] == s64;
701   });
702 
703   getActionDefinitionsBuilder(G_DYN_STACKALLOC).lower();
704 
705   if (ST.hasMOPS()) {
706     // G_BZERO is not supported. Currently it is only emitted by
707     // PreLegalizerCombiner for G_MEMSET with zero constant.
708     getActionDefinitionsBuilder(G_BZERO).unsupported();
709 
710     getActionDefinitionsBuilder(G_MEMSET)
711         .legalForCartesianProduct({p0}, {s64}, {s64})
712         .customForCartesianProduct({p0}, {s8}, {s64})
713         .immIdx(0); // Inform verifier imm idx 0 is handled.
714 
715     getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE})
716         .legalForCartesianProduct({p0}, {p0}, {s64})
717         .immIdx(0); // Inform verifier imm idx 0 is handled.
718 
719     // G_MEMCPY_INLINE does not have a tailcall immediate
720     getActionDefinitionsBuilder(G_MEMCPY_INLINE)
721         .legalForCartesianProduct({p0}, {p0}, {s64});
722 
723   } else {
724     getActionDefinitionsBuilder({G_BZERO, G_MEMCPY, G_MEMMOVE, G_MEMSET})
725         .libcall();
726   }
727 
728   // FIXME: Legal types are only legal with NEON.
729   getActionDefinitionsBuilder(G_ABS)
730       .lowerIf(isScalar(0))
731       .legalFor(PackedVectorAllTypeList);
732 
733   getActionDefinitionsBuilder(G_VECREDUCE_FADD)
734       // We only have FADDP to do reduction-like operations. Lower the rest.
735       .legalFor({{s32, v2s32}, {s64, v2s64}})
736       .clampMaxNumElements(1, s64, 2)
737       .clampMaxNumElements(1, s32, 2)
738       .lower();
739 
740   getActionDefinitionsBuilder(G_VECREDUCE_ADD)
741       .legalFor(
742           {{s8, v16s8}, {s16, v8s16}, {s32, v4s32}, {s32, v2s32}, {s64, v2s64}})
743       .clampMaxNumElements(1, s64, 2)
744       .clampMaxNumElements(1, s32, 4)
745       .lower();
746 
747   getActionDefinitionsBuilder(
748       {G_VECREDUCE_OR, G_VECREDUCE_AND, G_VECREDUCE_XOR})
749       // Try to break down into smaller vectors as long as they're at least 64
750       // bits. This lets us use vector operations for some parts of the
751       // reduction.
752       .fewerElementsIf(
753           [=](const LegalityQuery &Q) {
754             LLT SrcTy = Q.Types[1];
755             if (SrcTy.isScalar())
756               return false;
757             if (!isPowerOf2_32(SrcTy.getNumElements()))
758               return false;
759             // We can usually perform 64b vector operations.
760             return SrcTy.getSizeInBits() > 64;
761           },
762           [=](const LegalityQuery &Q) {
763             LLT SrcTy = Q.Types[1];
764             return std::make_pair(1, SrcTy.divide(2));
765           })
766       .scalarize(1)
767       .lower();
768 
769   getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
770       .lowerIf([=](const LegalityQuery &Q) { return Q.Types[0].isScalar(); });
771 
772   getActionDefinitionsBuilder({G_FSHL, G_FSHR}).lower();
773 
774   getActionDefinitionsBuilder(G_ROTR)
775       .legalFor({{s32, s64}, {s64, s64}})
776       .customIf([=](const LegalityQuery &Q) {
777         return Q.Types[0].isScalar() && Q.Types[1].getScalarSizeInBits() < 64;
778       })
779       .lower();
780   getActionDefinitionsBuilder(G_ROTL).lower();
781 
782   getActionDefinitionsBuilder({G_SBFX, G_UBFX})
783       .customFor({{s32, s32}, {s64, s64}});
784 
785   // TODO: Use generic lowering when custom lowering is not possible.
786   auto always = [=](const LegalityQuery &Q) { return true; };
787   getActionDefinitionsBuilder(G_CTPOP)
788       .legalFor({{v8s8, v8s8}, {v16s8, v16s8}})
789       .clampScalar(0, s32, s128)
790       .widenScalarToNextPow2(0)
791       .minScalarEltSameAsIf(always, 1, 0)
792       .maxScalarEltSameAsIf(always, 1, 0)
793       .customFor({{s32, s32},
794                   {s64, s64},
795                   {s128, s128},
796                   {v2s64, v2s64},
797                   {v2s32, v2s32},
798                   {v4s32, v4s32},
799                   {v4s16, v4s16},
800                   {v8s16, v8s16}});
801 
802   // TODO: Vector types.
803   getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT}).lowerIf(isScalar(0));
804 
805   // TODO: Vector types.
806   getActionDefinitionsBuilder({G_FMAXNUM, G_FMINNUM})
807       .legalFor({MinFPScalar, s32, s64})
808       .libcallFor({s128})
809       .minScalar(0, MinFPScalar);
810 
811   // TODO: Vector types.
812   getActionDefinitionsBuilder({G_FMAXIMUM, G_FMINIMUM})
813       .legalFor({MinFPScalar, s32, s64})
814       .minScalar(0, MinFPScalar);
815 
816   // TODO: Libcall support for s128.
817   // TODO: s16 should be legal with full FP16 support.
818   getActionDefinitionsBuilder({G_LROUND, G_LLROUND})
819       .legalFor({{s64, s32}, {s64, s64}});
820 
821   getLegacyLegalizerInfo().computeTables();
822   verify(*ST.getInstrInfo());
823 }
824 
825 bool AArch64LegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
826                                           MachineInstr &MI) const {
827   MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
828   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
829   GISelChangeObserver &Observer = Helper.Observer;
830   switch (MI.getOpcode()) {
831   default:
832     // No idea what to do.
833     return false;
834   case TargetOpcode::G_VAARG:
835     return legalizeVaArg(MI, MRI, MIRBuilder);
836   case TargetOpcode::G_LOAD:
837   case TargetOpcode::G_STORE:
838     return legalizeLoadStore(MI, MRI, MIRBuilder, Observer);
839   case TargetOpcode::G_SHL:
840   case TargetOpcode::G_ASHR:
841   case TargetOpcode::G_LSHR:
842     return legalizeShlAshrLshr(MI, MRI, MIRBuilder, Observer);
843   case TargetOpcode::G_GLOBAL_VALUE:
844     return legalizeSmallCMGlobalValue(MI, MRI, MIRBuilder, Observer);
845   case TargetOpcode::G_TRUNC:
846     return legalizeVectorTrunc(MI, Helper);
847   case TargetOpcode::G_SBFX:
848   case TargetOpcode::G_UBFX:
849     return legalizeBitfieldExtract(MI, MRI, Helper);
850   case TargetOpcode::G_ROTR:
851     return legalizeRotate(MI, MRI, Helper);
852   case TargetOpcode::G_CTPOP:
853     return legalizeCTPOP(MI, MRI, Helper);
854   case TargetOpcode::G_ATOMIC_CMPXCHG:
855     return legalizeAtomicCmpxchg128(MI, MRI, Helper);
856   case TargetOpcode::G_CTTZ:
857     return legalizeCTTZ(MI, Helper);
858   case TargetOpcode::G_BZERO:
859   case TargetOpcode::G_MEMCPY:
860   case TargetOpcode::G_MEMMOVE:
861   case TargetOpcode::G_MEMSET:
862     return legalizeMemOps(MI, Helper);
863   }
864 
865   llvm_unreachable("expected switch to return");
866 }
867 
868 bool AArch64LegalizerInfo::legalizeRotate(MachineInstr &MI,
869                                           MachineRegisterInfo &MRI,
870                                           LegalizerHelper &Helper) const {
871   // To allow for imported patterns to match, we ensure that the rotate amount
872   // is 64b with an extension.
873   Register AmtReg = MI.getOperand(2).getReg();
874   LLT AmtTy = MRI.getType(AmtReg);
875   (void)AmtTy;
876   assert(AmtTy.isScalar() && "Expected a scalar rotate");
877   assert(AmtTy.getSizeInBits() < 64 && "Expected this rotate to be legal");
878   auto NewAmt = Helper.MIRBuilder.buildSExt(LLT::scalar(64), AmtReg);
879   Helper.Observer.changingInstr(MI);
880   MI.getOperand(2).setReg(NewAmt.getReg(0));
881   Helper.Observer.changedInstr(MI);
882   return true;
883 }
884 
885 static void extractParts(Register Reg, MachineRegisterInfo &MRI,
886                          MachineIRBuilder &MIRBuilder, LLT Ty, int NumParts,
887                          SmallVectorImpl<Register> &VRegs) {
888   for (int I = 0; I < NumParts; ++I)
889     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
890   MIRBuilder.buildUnmerge(VRegs, Reg);
891 }
892 
893 bool AArch64LegalizerInfo::legalizeVectorTrunc(
894     MachineInstr &MI, LegalizerHelper &Helper) const {
895   MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
896   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
897   // Similar to how operand splitting is done in SelectiondDAG, we can handle
898   // %res(v8s8) = G_TRUNC %in(v8s32) by generating:
899   //   %inlo(<4x s32>), %inhi(<4 x s32>) = G_UNMERGE %in(<8 x s32>)
900   //   %lo16(<4 x s16>) = G_TRUNC %inlo
901   //   %hi16(<4 x s16>) = G_TRUNC %inhi
902   //   %in16(<8 x s16>) = G_CONCAT_VECTORS %lo16, %hi16
903   //   %res(<8 x s8>) = G_TRUNC %in16
904 
905   Register DstReg = MI.getOperand(0).getReg();
906   Register SrcReg = MI.getOperand(1).getReg();
907   LLT DstTy = MRI.getType(DstReg);
908   LLT SrcTy = MRI.getType(SrcReg);
909   assert(isPowerOf2_32(DstTy.getSizeInBits()) &&
910          isPowerOf2_32(SrcTy.getSizeInBits()));
911 
912   // Split input type.
913   LLT SplitSrcTy =
914       SrcTy.changeElementCount(SrcTy.getElementCount().divideCoefficientBy(2));
915   // First, split the source into two smaller vectors.
916   SmallVector<Register, 2> SplitSrcs;
917   extractParts(SrcReg, MRI, MIRBuilder, SplitSrcTy, 2, SplitSrcs);
918 
919   // Truncate the splits into intermediate narrower elements.
920   LLT InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2);
921   for (unsigned I = 0; I < SplitSrcs.size(); ++I)
922     SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0);
923 
924   auto Concat = MIRBuilder.buildConcatVectors(
925       DstTy.changeElementSize(DstTy.getScalarSizeInBits() * 2), SplitSrcs);
926 
927   Helper.Observer.changingInstr(MI);
928   MI.getOperand(1).setReg(Concat.getReg(0));
929   Helper.Observer.changedInstr(MI);
930   return true;
931 }
932 
933 bool AArch64LegalizerInfo::legalizeSmallCMGlobalValue(
934     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
935     GISelChangeObserver &Observer) const {
936   assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
937   // We do this custom legalization to convert G_GLOBAL_VALUE into target ADRP +
938   // G_ADD_LOW instructions.
939   // By splitting this here, we can optimize accesses in the small code model by
940   // folding in the G_ADD_LOW into the load/store offset.
941   auto &GlobalOp = MI.getOperand(1);
942   const auto* GV = GlobalOp.getGlobal();
943   if (GV->isThreadLocal())
944     return true; // Don't want to modify TLS vars.
945 
946   auto &TM = ST->getTargetLowering()->getTargetMachine();
947   unsigned OpFlags = ST->ClassifyGlobalReference(GV, TM);
948 
949   if (OpFlags & AArch64II::MO_GOT)
950     return true;
951 
952   auto Offset = GlobalOp.getOffset();
953   Register DstReg = MI.getOperand(0).getReg();
954   auto ADRP = MIRBuilder.buildInstr(AArch64::ADRP, {LLT::pointer(0, 64)}, {})
955                   .addGlobalAddress(GV, Offset, OpFlags | AArch64II::MO_PAGE);
956   // Set the regclass on the dest reg too.
957   MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
958 
959   // MO_TAGGED on the page indicates a tagged address. Set the tag now. We do so
960   // by creating a MOVK that sets bits 48-63 of the register to (global address
961   // + 0x100000000 - PC) >> 48. The additional 0x100000000 offset here is to
962   // prevent an incorrect tag being generated during relocation when the the
963   // global appears before the code section. Without the offset, a global at
964   // `0x0f00'0000'0000'1000` (i.e. at `0x1000` with tag `0xf`) that's referenced
965   // by code at `0x2000` would result in `0x0f00'0000'0000'1000 - 0x2000 =
966   // 0x0eff'ffff'ffff'f000`, meaning the tag would be incorrectly set to `0xe`
967   // instead of `0xf`.
968   // This assumes that we're in the small code model so we can assume a binary
969   // size of <= 4GB, which makes the untagged PC relative offset positive. The
970   // binary must also be loaded into address range [0, 2^48). Both of these
971   // properties need to be ensured at runtime when using tagged addresses.
972   if (OpFlags & AArch64II::MO_TAGGED) {
973     assert(!Offset &&
974            "Should not have folded in an offset for a tagged global!");
975     ADRP = MIRBuilder.buildInstr(AArch64::MOVKXi, {LLT::pointer(0, 64)}, {ADRP})
976                .addGlobalAddress(GV, 0x100000000,
977                                  AArch64II::MO_PREL | AArch64II::MO_G3)
978                .addImm(48);
979     MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
980   }
981 
982   MIRBuilder.buildInstr(AArch64::G_ADD_LOW, {DstReg}, {ADRP})
983       .addGlobalAddress(GV, Offset,
984                         OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
985   MI.eraseFromParent();
986   return true;
987 }
988 
989 bool AArch64LegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
990                                              MachineInstr &MI) const {
991   switch (MI.getIntrinsicID()) {
992   case Intrinsic::vacopy: {
993     unsigned PtrSize = ST->isTargetILP32() ? 4 : 8;
994     unsigned VaListSize =
995       (ST->isTargetDarwin() || ST->isTargetWindows())
996           ? PtrSize
997           : ST->isTargetILP32() ? 20 : 32;
998 
999     MachineFunction &MF = *MI.getMF();
1000     auto Val = MF.getRegInfo().createGenericVirtualRegister(
1001         LLT::scalar(VaListSize * 8));
1002     MachineIRBuilder MIB(MI);
1003     MIB.buildLoad(Val, MI.getOperand(2),
1004                   *MF.getMachineMemOperand(MachinePointerInfo(),
1005                                            MachineMemOperand::MOLoad,
1006                                            VaListSize, Align(PtrSize)));
1007     MIB.buildStore(Val, MI.getOperand(1),
1008                    *MF.getMachineMemOperand(MachinePointerInfo(),
1009                                             MachineMemOperand::MOStore,
1010                                             VaListSize, Align(PtrSize)));
1011     MI.eraseFromParent();
1012     return true;
1013   }
1014   case Intrinsic::get_dynamic_area_offset: {
1015     MachineIRBuilder &MIB = Helper.MIRBuilder;
1016     MIB.buildConstant(MI.getOperand(0).getReg(), 0);
1017     MI.eraseFromParent();
1018     return true;
1019   }
1020   case Intrinsic::aarch64_mops_memset_tag: {
1021     assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
1022     // Zext the value to 64 bit
1023     MachineIRBuilder MIB(MI);
1024     auto &Value = MI.getOperand(3);
1025     Register ZExtValueReg = MIB.buildAnyExt(LLT::scalar(64), Value).getReg(0);
1026     Value.setReg(ZExtValueReg);
1027     return true;
1028   }
1029   }
1030 
1031   return true;
1032 }
1033 
1034 bool AArch64LegalizerInfo::legalizeShlAshrLshr(
1035     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
1036     GISelChangeObserver &Observer) const {
1037   assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
1038          MI.getOpcode() == TargetOpcode::G_LSHR ||
1039          MI.getOpcode() == TargetOpcode::G_SHL);
1040   // If the shift amount is a G_CONSTANT, promote it to a 64 bit type so the
1041   // imported patterns can select it later. Either way, it will be legal.
1042   Register AmtReg = MI.getOperand(2).getReg();
1043   auto VRegAndVal = getIConstantVRegValWithLookThrough(AmtReg, MRI);
1044   if (!VRegAndVal)
1045     return true;
1046   // Check the shift amount is in range for an immediate form.
1047   int64_t Amount = VRegAndVal->Value.getSExtValue();
1048   if (Amount > 31)
1049     return true; // This will have to remain a register variant.
1050   auto ExtCst = MIRBuilder.buildConstant(LLT::scalar(64), Amount);
1051   Observer.changingInstr(MI);
1052   MI.getOperand(2).setReg(ExtCst.getReg(0));
1053   Observer.changedInstr(MI);
1054   return true;
1055 }
1056 
1057 static void matchLDPSTPAddrMode(Register Root, Register &Base, int &Offset,
1058                                 MachineRegisterInfo &MRI) {
1059   Base = Root;
1060   Offset = 0;
1061 
1062   Register NewBase;
1063   int64_t NewOffset;
1064   if (mi_match(Root, MRI, m_GPtrAdd(m_Reg(NewBase), m_ICst(NewOffset))) &&
1065       isShiftedInt<7, 3>(NewOffset)) {
1066     Base = NewBase;
1067     Offset = NewOffset;
1068   }
1069 }
1070 
1071 // FIXME: This should be removed and replaced with the generic bitcast legalize
1072 // action.
1073 bool AArch64LegalizerInfo::legalizeLoadStore(
1074     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
1075     GISelChangeObserver &Observer) const {
1076   assert(MI.getOpcode() == TargetOpcode::G_STORE ||
1077          MI.getOpcode() == TargetOpcode::G_LOAD);
1078   // Here we just try to handle vector loads/stores where our value type might
1079   // have pointer elements, which the SelectionDAG importer can't handle. To
1080   // allow the existing patterns for s64 to fire for p0, we just try to bitcast
1081   // the value to use s64 types.
1082 
1083   // Custom legalization requires the instruction, if not deleted, must be fully
1084   // legalized. In order to allow further legalization of the inst, we create
1085   // a new instruction and erase the existing one.
1086 
1087   Register ValReg = MI.getOperand(0).getReg();
1088   const LLT ValTy = MRI.getType(ValReg);
1089 
1090   if (ValTy == LLT::scalar(128)) {
1091     assert((*MI.memoperands_begin())->getSuccessOrdering() ==
1092                AtomicOrdering::Monotonic ||
1093            (*MI.memoperands_begin())->getSuccessOrdering() ==
1094                AtomicOrdering::Unordered);
1095     assert(ST->hasLSE2() && "ldp/stp not single copy atomic without +lse2");
1096     LLT s64 = LLT::scalar(64);
1097     MachineInstrBuilder NewI;
1098     if (MI.getOpcode() == TargetOpcode::G_LOAD) {
1099       NewI = MIRBuilder.buildInstr(AArch64::LDPXi, {s64, s64}, {});
1100       MIRBuilder.buildMerge(ValReg, {NewI->getOperand(0), NewI->getOperand(1)});
1101     } else {
1102       auto Split = MIRBuilder.buildUnmerge(s64, MI.getOperand(0));
1103       NewI = MIRBuilder.buildInstr(
1104           AArch64::STPXi, {}, {Split->getOperand(0), Split->getOperand(1)});
1105     }
1106     Register Base;
1107     int Offset;
1108     matchLDPSTPAddrMode(MI.getOperand(1).getReg(), Base, Offset, MRI);
1109     NewI.addUse(Base);
1110     NewI.addImm(Offset / 8);
1111 
1112     NewI.cloneMemRefs(MI);
1113     constrainSelectedInstRegOperands(*NewI, *ST->getInstrInfo(),
1114                                      *MRI.getTargetRegisterInfo(),
1115                                      *ST->getRegBankInfo());
1116     MI.eraseFromParent();
1117     return true;
1118   }
1119 
1120   if (!ValTy.isVector() || !ValTy.getElementType().isPointer() ||
1121       ValTy.getElementType().getAddressSpace() != 0) {
1122     LLVM_DEBUG(dbgs() << "Tried to do custom legalization on wrong load/store");
1123     return false;
1124   }
1125 
1126   unsigned PtrSize = ValTy.getElementType().getSizeInBits();
1127   const LLT NewTy = LLT::vector(ValTy.getElementCount(), PtrSize);
1128   auto &MMO = **MI.memoperands_begin();
1129   MMO.setType(NewTy);
1130 
1131   if (MI.getOpcode() == TargetOpcode::G_STORE) {
1132     auto Bitcast = MIRBuilder.buildBitcast(NewTy, ValReg);
1133     MIRBuilder.buildStore(Bitcast.getReg(0), MI.getOperand(1), MMO);
1134   } else {
1135     auto NewLoad = MIRBuilder.buildLoad(NewTy, MI.getOperand(1), MMO);
1136     MIRBuilder.buildBitcast(ValReg, NewLoad);
1137   }
1138   MI.eraseFromParent();
1139   return true;
1140 }
1141 
1142 bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
1143                                          MachineRegisterInfo &MRI,
1144                                          MachineIRBuilder &MIRBuilder) const {
1145   MachineFunction &MF = MIRBuilder.getMF();
1146   Align Alignment(MI.getOperand(2).getImm());
1147   Register Dst = MI.getOperand(0).getReg();
1148   Register ListPtr = MI.getOperand(1).getReg();
1149 
1150   LLT PtrTy = MRI.getType(ListPtr);
1151   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
1152 
1153   const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
1154   const Align PtrAlign = Align(PtrSize);
1155   auto List = MIRBuilder.buildLoad(
1156       PtrTy, ListPtr,
1157       *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
1158                                PtrTy, PtrAlign));
1159 
1160   MachineInstrBuilder DstPtr;
1161   if (Alignment > PtrAlign) {
1162     // Realign the list to the actual required alignment.
1163     auto AlignMinus1 =
1164         MIRBuilder.buildConstant(IntPtrTy, Alignment.value() - 1);
1165     auto ListTmp = MIRBuilder.buildPtrAdd(PtrTy, List, AlignMinus1.getReg(0));
1166     DstPtr = MIRBuilder.buildMaskLowPtrBits(PtrTy, ListTmp, Log2(Alignment));
1167   } else
1168     DstPtr = List;
1169 
1170   LLT ValTy = MRI.getType(Dst);
1171   uint64_t ValSize = ValTy.getSizeInBits() / 8;
1172   MIRBuilder.buildLoad(
1173       Dst, DstPtr,
1174       *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
1175                                ValTy, std::max(Alignment, PtrAlign)));
1176 
1177   auto Size = MIRBuilder.buildConstant(IntPtrTy, alignTo(ValSize, PtrAlign));
1178 
1179   auto NewList = MIRBuilder.buildPtrAdd(PtrTy, DstPtr, Size.getReg(0));
1180 
1181   MIRBuilder.buildStore(NewList, ListPtr,
1182                         *MF.getMachineMemOperand(MachinePointerInfo(),
1183                                                  MachineMemOperand::MOStore,
1184                                                  PtrTy, PtrAlign));
1185 
1186   MI.eraseFromParent();
1187   return true;
1188 }
1189 
1190 bool AArch64LegalizerInfo::legalizeBitfieldExtract(
1191     MachineInstr &MI, MachineRegisterInfo &MRI, LegalizerHelper &Helper) const {
1192   // Only legal if we can select immediate forms.
1193   // TODO: Lower this otherwise.
1194   return getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI) &&
1195          getIConstantVRegValWithLookThrough(MI.getOperand(3).getReg(), MRI);
1196 }
1197 
1198 bool AArch64LegalizerInfo::legalizeCTPOP(MachineInstr &MI,
1199                                          MachineRegisterInfo &MRI,
1200                                          LegalizerHelper &Helper) const {
1201   // While there is no integer popcount instruction, it can
1202   // be more efficiently lowered to the following sequence that uses
1203   // AdvSIMD registers/instructions as long as the copies to/from
1204   // the AdvSIMD registers are cheap.
1205   //  FMOV    D0, X0        // copy 64-bit int to vector, high bits zero'd
1206   //  CNT     V0.8B, V0.8B  // 8xbyte pop-counts
1207   //  ADDV    B0, V0.8B     // sum 8xbyte pop-counts
1208   //  UMOV    X0, V0.B[0]   // copy byte result back to integer reg
1209   //
1210   // For 128 bit vector popcounts, we lower to the following sequence:
1211   //  cnt.16b   v0, v0  // v8s16, v4s32, v2s64
1212   //  uaddlp.8h v0, v0  // v8s16, v4s32, v2s64
1213   //  uaddlp.4s v0, v0  //        v4s32, v2s64
1214   //  uaddlp.2d v0, v0  //               v2s64
1215   //
1216   // For 64 bit vector popcounts, we lower to the following sequence:
1217   //  cnt.8b    v0, v0  // v4s16, v2s32
1218   //  uaddlp.4h v0, v0  // v4s16, v2s32
1219   //  uaddlp.2s v0, v0  //        v2s32
1220 
1221   if (!ST->hasNEON() ||
1222       MI.getMF()->getFunction().hasFnAttribute(Attribute::NoImplicitFloat))
1223     return false;
1224   MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
1225   Register Dst = MI.getOperand(0).getReg();
1226   Register Val = MI.getOperand(1).getReg();
1227   LLT Ty = MRI.getType(Val);
1228 
1229   assert(Ty == MRI.getType(Dst) &&
1230          "Expected src and dst to have the same type!");
1231   unsigned Size = Ty.getSizeInBits();
1232 
1233   // Pre-conditioning: widen Val up to the nearest vector type.
1234   // s32,s64,v4s16,v2s32 -> v8i8
1235   // v8s16,v4s32,v2s64 -> v16i8
1236   LLT VTy = Size == 128 ? LLT::fixed_vector(16, 8) : LLT::fixed_vector(8, 8);
1237   if (Ty.isScalar()) {
1238     assert((Size == 32 || Size == 64 || Size == 128) && "Expected only 32, 64, or 128 bit scalars!");
1239     if (Size == 32) {
1240       Val = MIRBuilder.buildZExt(LLT::scalar(64), Val).getReg(0);
1241     }
1242   }
1243   Val = MIRBuilder.buildBitcast(VTy, Val).getReg(0);
1244 
1245   // Count bits in each byte-sized lane.
1246   auto CTPOP = MIRBuilder.buildCTPOP(VTy, Val);
1247 
1248   // Sum across lanes.
1249   Register HSum = CTPOP.getReg(0);
1250   unsigned Opc;
1251   SmallVector<LLT> HAddTys;
1252   if (Ty.isScalar()) {
1253     Opc = Intrinsic::aarch64_neon_uaddlv;
1254     HAddTys.push_back(LLT::scalar(32));
1255   } else if (Ty == LLT::fixed_vector(8, 16)) {
1256     Opc = Intrinsic::aarch64_neon_uaddlp;
1257     HAddTys.push_back(LLT::fixed_vector(8, 16));
1258   } else if (Ty == LLT::fixed_vector(4, 32)) {
1259     Opc = Intrinsic::aarch64_neon_uaddlp;
1260     HAddTys.push_back(LLT::fixed_vector(8, 16));
1261     HAddTys.push_back(LLT::fixed_vector(4, 32));
1262   } else if (Ty == LLT::fixed_vector(2, 64)) {
1263     Opc = Intrinsic::aarch64_neon_uaddlp;
1264     HAddTys.push_back(LLT::fixed_vector(8, 16));
1265     HAddTys.push_back(LLT::fixed_vector(4, 32));
1266     HAddTys.push_back(LLT::fixed_vector(2, 64));
1267   } else if (Ty == LLT::fixed_vector(4, 16)) {
1268     Opc = Intrinsic::aarch64_neon_uaddlp;
1269     HAddTys.push_back(LLT::fixed_vector(4, 16));
1270   } else if (Ty == LLT::fixed_vector(2, 32)) {
1271     Opc = Intrinsic::aarch64_neon_uaddlp;
1272     HAddTys.push_back(LLT::fixed_vector(4, 16));
1273     HAddTys.push_back(LLT::fixed_vector(2, 32));
1274   } else
1275     llvm_unreachable("unexpected vector shape");
1276   MachineInstrBuilder UADD;
1277   for (LLT HTy : HAddTys) {
1278     UADD = MIRBuilder.buildIntrinsic(Opc, {HTy}, /*HasSideEffects =*/false)
1279                      .addUse(HSum);
1280     HSum = UADD.getReg(0);
1281   }
1282 
1283   // Post-conditioning.
1284   if (Ty.isScalar() && (Size == 64 || Size == 128))
1285     MIRBuilder.buildZExt(Dst, UADD);
1286   else
1287     UADD->getOperand(0).setReg(Dst);
1288   MI.eraseFromParent();
1289   return true;
1290 }
1291 
1292 bool AArch64LegalizerInfo::legalizeAtomicCmpxchg128(
1293     MachineInstr &MI, MachineRegisterInfo &MRI, LegalizerHelper &Helper) const {
1294   MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
1295   LLT s64 = LLT::scalar(64);
1296   auto Addr = MI.getOperand(1).getReg();
1297   auto DesiredI = MIRBuilder.buildUnmerge({s64, s64}, MI.getOperand(2));
1298   auto NewI = MIRBuilder.buildUnmerge({s64, s64}, MI.getOperand(3));
1299   auto DstLo = MRI.createGenericVirtualRegister(s64);
1300   auto DstHi = MRI.createGenericVirtualRegister(s64);
1301 
1302   MachineInstrBuilder CAS;
1303   if (ST->hasLSE()) {
1304     // We have 128-bit CASP instructions taking XSeqPair registers, which are
1305     // s128. We need the merge/unmerge to bracket the expansion and pair up with
1306     // the rest of the MIR so we must reassemble the extracted registers into a
1307     // 128-bit known-regclass one with code like this:
1308     //
1309     //     %in1 = REG_SEQUENCE Lo, Hi    ; One for each input
1310     //     %out = CASP %in1, ...
1311     //     %OldLo = G_EXTRACT %out, 0
1312     //     %OldHi = G_EXTRACT %out, 64
1313     auto Ordering = (*MI.memoperands_begin())->getMergedOrdering();
1314     unsigned Opcode;
1315     switch (Ordering) {
1316     case AtomicOrdering::Acquire:
1317       Opcode = AArch64::CASPAX;
1318       break;
1319     case AtomicOrdering::Release:
1320       Opcode = AArch64::CASPLX;
1321       break;
1322     case AtomicOrdering::AcquireRelease:
1323     case AtomicOrdering::SequentiallyConsistent:
1324       Opcode = AArch64::CASPALX;
1325       break;
1326     default:
1327       Opcode = AArch64::CASPX;
1328       break;
1329     }
1330 
1331     LLT s128 = LLT::scalar(128);
1332     auto CASDst = MRI.createGenericVirtualRegister(s128);
1333     auto CASDesired = MRI.createGenericVirtualRegister(s128);
1334     auto CASNew = MRI.createGenericVirtualRegister(s128);
1335     MIRBuilder.buildInstr(TargetOpcode::REG_SEQUENCE, {CASDesired}, {})
1336         .addUse(DesiredI->getOperand(0).getReg())
1337         .addImm(AArch64::sube64)
1338         .addUse(DesiredI->getOperand(1).getReg())
1339         .addImm(AArch64::subo64);
1340     MIRBuilder.buildInstr(TargetOpcode::REG_SEQUENCE, {CASNew}, {})
1341         .addUse(NewI->getOperand(0).getReg())
1342         .addImm(AArch64::sube64)
1343         .addUse(NewI->getOperand(1).getReg())
1344         .addImm(AArch64::subo64);
1345 
1346     CAS = MIRBuilder.buildInstr(Opcode, {CASDst}, {CASDesired, CASNew, Addr});
1347 
1348     MIRBuilder.buildExtract({DstLo}, {CASDst}, 0);
1349     MIRBuilder.buildExtract({DstHi}, {CASDst}, 64);
1350   } else {
1351     // The -O0 CMP_SWAP_128 is friendlier to generate code for because LDXP/STXP
1352     // can take arbitrary registers so it just has the normal GPR64 operands the
1353     // rest of AArch64 is expecting.
1354     auto Ordering = (*MI.memoperands_begin())->getMergedOrdering();
1355     unsigned Opcode;
1356     switch (Ordering) {
1357     case AtomicOrdering::Acquire:
1358       Opcode = AArch64::CMP_SWAP_128_ACQUIRE;
1359       break;
1360     case AtomicOrdering::Release:
1361       Opcode = AArch64::CMP_SWAP_128_RELEASE;
1362       break;
1363     case AtomicOrdering::AcquireRelease:
1364     case AtomicOrdering::SequentiallyConsistent:
1365       Opcode = AArch64::CMP_SWAP_128;
1366       break;
1367     default:
1368       Opcode = AArch64::CMP_SWAP_128_MONOTONIC;
1369       break;
1370     }
1371 
1372     auto Scratch = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1373     CAS = MIRBuilder.buildInstr(Opcode, {DstLo, DstHi, Scratch},
1374                                 {Addr, DesiredI->getOperand(0),
1375                                  DesiredI->getOperand(1), NewI->getOperand(0),
1376                                  NewI->getOperand(1)});
1377   }
1378 
1379   CAS.cloneMemRefs(MI);
1380   constrainSelectedInstRegOperands(*CAS, *ST->getInstrInfo(),
1381                                    *MRI.getTargetRegisterInfo(),
1382                                    *ST->getRegBankInfo());
1383 
1384   MIRBuilder.buildMerge(MI.getOperand(0), {DstLo, DstHi});
1385   MI.eraseFromParent();
1386   return true;
1387 }
1388 
1389 bool AArch64LegalizerInfo::legalizeCTTZ(MachineInstr &MI,
1390                                         LegalizerHelper &Helper) const {
1391   MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
1392   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
1393   LLT Ty = MRI.getType(MI.getOperand(1).getReg());
1394   auto BitReverse = MIRBuilder.buildBitReverse(Ty, MI.getOperand(1));
1395   MIRBuilder.buildCTLZ(MI.getOperand(0).getReg(), BitReverse);
1396   MI.eraseFromParent();
1397   return true;
1398 }
1399 
1400 bool AArch64LegalizerInfo::legalizeMemOps(MachineInstr &MI,
1401                                           LegalizerHelper &Helper) const {
1402   MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
1403 
1404   // Tagged version MOPSMemorySetTagged is legalised in legalizeIntrinsic
1405   if (MI.getOpcode() == TargetOpcode::G_MEMSET) {
1406     // Zext the value operand to 64 bit
1407     auto &Value = MI.getOperand(1);
1408     Register ZExtValueReg =
1409         MIRBuilder.buildAnyExt(LLT::scalar(64), Value).getReg(0);
1410     Value.setReg(ZExtValueReg);
1411     return true;
1412   }
1413 
1414   return false;
1415 }
1416