xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/GISel/AArch64LegalizerInfo.cpp (revision 19261079b74319502c6ffa1249920079f0f69a72)
1 //===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for
10 /// AArch64.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13 
14 #include "AArch64LegalizerInfo.h"
15 #include "AArch64Subtarget.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
17 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
19 #include "llvm/CodeGen/GlobalISel/Utils.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetOpcodes.h"
23 #include "llvm/CodeGen/ValueTypes.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Type.h"
26 #include <initializer_list>
27 #include "llvm/Support/MathExtras.h"
28 
29 #define DEBUG_TYPE "aarch64-legalinfo"
30 
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace LegalizeMutations;
34 using namespace LegalityPredicates;
35 
36 AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST)
37     : ST(&ST) {
38   using namespace TargetOpcode;
39   const LLT p0 = LLT::pointer(0, 64);
40   const LLT s1 = LLT::scalar(1);
41   const LLT s8 = LLT::scalar(8);
42   const LLT s16 = LLT::scalar(16);
43   const LLT s32 = LLT::scalar(32);
44   const LLT s64 = LLT::scalar(64);
45   const LLT s128 = LLT::scalar(128);
46   const LLT s256 = LLT::scalar(256);
47   const LLT s512 = LLT::scalar(512);
48   const LLT v16s8 = LLT::vector(16, 8);
49   const LLT v8s8 = LLT::vector(8, 8);
50   const LLT v4s8 = LLT::vector(4, 8);
51   const LLT v8s16 = LLT::vector(8, 16);
52   const LLT v4s16 = LLT::vector(4, 16);
53   const LLT v2s16 = LLT::vector(2, 16);
54   const LLT v2s32 = LLT::vector(2, 32);
55   const LLT v4s32 = LLT::vector(4, 32);
56   const LLT v2s64 = LLT::vector(2, 64);
57   const LLT v2p0 = LLT::vector(2, p0);
58 
59   std::initializer_list<LLT> PackedVectorAllTypeList = {/* Begin 128bit types */
60                                                         v16s8, v8s16, v4s32,
61                                                         v2s64, v2p0,
62                                                         /* End 128bit types */
63                                                         /* Begin 64bit types */
64                                                         v8s8, v4s16, v2s32};
65 
66   const TargetMachine &TM = ST.getTargetLowering()->getTargetMachine();
67 
68   // FIXME: support subtargets which have neon/fp-armv8 disabled.
69   if (!ST.hasNEON() || !ST.hasFPARMv8()) {
70     computeTables();
71     return;
72   }
73 
74   // Some instructions only support s16 if the subtarget has full 16-bit FP
75   // support.
76   const bool HasFP16 = ST.hasFullFP16();
77   const LLT &MinFPScalar = HasFP16 ? s16 : s32;
78 
79   getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
80       .legalFor({p0, s1, s8, s16, s32, s64})
81       .legalFor(PackedVectorAllTypeList)
82       .clampScalar(0, s1, s64)
83       .widenScalarToNextPow2(0, 8)
84       .fewerElementsIf(
85           [=](const LegalityQuery &Query) {
86             return Query.Types[0].isVector() &&
87                    (Query.Types[0].getElementType() != s64 ||
88                     Query.Types[0].getNumElements() != 2);
89           },
90           [=](const LegalityQuery &Query) {
91             LLT EltTy = Query.Types[0].getElementType();
92             if (EltTy == s64)
93               return std::make_pair(0, LLT::vector(2, 64));
94             return std::make_pair(0, EltTy);
95           });
96 
97   getActionDefinitionsBuilder(G_PHI).legalFor({p0, s16, s32, s64})
98       .legalFor(PackedVectorAllTypeList)
99       .clampScalar(0, s16, s64)
100       .widenScalarToNextPow2(0);
101 
102   getActionDefinitionsBuilder(G_BSWAP)
103       .legalFor({s32, s64, v4s32, v2s32, v2s64})
104       .clampScalar(0, s32, s64)
105       .widenScalarToNextPow2(0);
106 
107   getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
108       .legalFor({s32, s64, v2s32, v4s32, v4s16, v8s16, v16s8, v8s8})
109       .scalarizeIf(
110           [=](const LegalityQuery &Query) {
111             return Query.Opcode == G_MUL && Query.Types[0] == v2s64;
112           },
113           0)
114       .legalFor({v2s64})
115       .clampScalar(0, s32, s64)
116       .widenScalarToNextPow2(0)
117       .clampNumElements(0, v2s32, v4s32)
118       .clampNumElements(0, v2s64, v2s64)
119       .moreElementsToNextPow2(0);
120 
121   getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR})
122       .customIf([=](const LegalityQuery &Query) {
123         const auto &SrcTy = Query.Types[0];
124         const auto &AmtTy = Query.Types[1];
125         return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
126                AmtTy.getSizeInBits() == 32;
127       })
128       .legalFor({
129           {s32, s32},
130           {s32, s64},
131           {s64, s64},
132           {v8s8, v8s8},
133           {v16s8, v16s8},
134           {v4s16, v4s16},
135           {v8s16, v8s16},
136           {v2s32, v2s32},
137           {v4s32, v4s32},
138           {v2s64, v2s64},
139       })
140       .clampScalar(1, s32, s64)
141       .clampScalar(0, s32, s64)
142       .widenScalarToNextPow2(0)
143       .clampNumElements(0, v2s32, v4s32)
144       .clampNumElements(0, v2s64, v2s64)
145       .moreElementsToNextPow2(0)
146       .minScalarSameAs(1, 0);
147 
148   getActionDefinitionsBuilder(G_PTR_ADD)
149       .legalFor({{p0, s64}, {v2p0, v2s64}})
150       .clampScalar(1, s64, s64);
151 
152   getActionDefinitionsBuilder(G_PTRMASK).legalFor({{p0, s64}});
153 
154   getActionDefinitionsBuilder({G_SDIV, G_UDIV})
155       .legalFor({s32, s64})
156       .libcallFor({s128})
157       .clampScalar(0, s32, s64)
158       .widenScalarToNextPow2(0)
159       .scalarize(0);
160 
161   getActionDefinitionsBuilder({G_SREM, G_UREM})
162       .lowerFor({s1, s8, s16, s32, s64});
163 
164   getActionDefinitionsBuilder({G_SMULO, G_UMULO}).lowerFor({{s64, s1}});
165 
166   getActionDefinitionsBuilder({G_SMULH, G_UMULH}).legalFor({s32, s64});
167 
168   getActionDefinitionsBuilder(
169       {G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO, G_USUBO})
170       .legalFor({{s32, s1}, {s64, s1}})
171       .minScalar(0, s32);
172 
173   getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FNEG})
174       .legalFor({s32, s64, v2s64, v4s32, v2s32})
175       .clampNumElements(0, v2s32, v4s32)
176       .clampNumElements(0, v2s64, v2s64);
177 
178   getActionDefinitionsBuilder(G_FREM).libcallFor({s32, s64});
179 
180   getActionDefinitionsBuilder({G_FCEIL, G_FABS, G_FSQRT, G_FFLOOR, G_FRINT,
181                                G_FMA, G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND,
182                                G_FNEARBYINT, G_INTRINSIC_LRINT})
183       // If we don't have full FP16 support, then scalarize the elements of
184       // vectors containing fp16 types.
185       .fewerElementsIf(
186           [=, &ST](const LegalityQuery &Query) {
187             const auto &Ty = Query.Types[0];
188             return Ty.isVector() && Ty.getElementType() == s16 &&
189                    !ST.hasFullFP16();
190           },
191           [=](const LegalityQuery &Query) { return std::make_pair(0, s16); })
192       // If we don't have full FP16 support, then widen s16 to s32 if we
193       // encounter it.
194       .widenScalarIf(
195           [=, &ST](const LegalityQuery &Query) {
196             return Query.Types[0] == s16 && !ST.hasFullFP16();
197           },
198           [=](const LegalityQuery &Query) { return std::make_pair(0, s32); })
199       .legalFor({s16, s32, s64, v2s32, v4s32, v2s64, v2s16, v4s16, v8s16});
200 
201   getActionDefinitionsBuilder(
202       {G_FCOS, G_FSIN, G_FLOG10, G_FLOG, G_FLOG2, G_FEXP, G_FEXP2, G_FPOW})
203       // We need a call for these, so we always need to scalarize.
204       .scalarize(0)
205       // Regardless of FP16 support, widen 16-bit elements to 32-bits.
206       .minScalar(0, s32)
207       .libcallFor({s32, s64, v2s32, v4s32, v2s64});
208 
209   getActionDefinitionsBuilder(G_INSERT)
210       .unsupportedIf([=](const LegalityQuery &Query) {
211         return Query.Types[0].getSizeInBits() <= Query.Types[1].getSizeInBits();
212       })
213       .legalIf([=](const LegalityQuery &Query) {
214         const LLT &Ty0 = Query.Types[0];
215         const LLT &Ty1 = Query.Types[1];
216         if (Ty0 != s32 && Ty0 != s64 && Ty0 != p0)
217           return false;
218         return isPowerOf2_32(Ty1.getSizeInBits()) &&
219                (Ty1.getSizeInBits() == 1 || Ty1.getSizeInBits() >= 8);
220       })
221       .clampScalar(0, s32, s64)
222       .widenScalarToNextPow2(0)
223       .maxScalarIf(typeInSet(0, {s32}), 1, s16)
224       .maxScalarIf(typeInSet(0, {s64}), 1, s32)
225       .widenScalarToNextPow2(1);
226 
227   getActionDefinitionsBuilder(G_EXTRACT)
228       .unsupportedIf([=](const LegalityQuery &Query) {
229         return Query.Types[0].getSizeInBits() >= Query.Types[1].getSizeInBits();
230       })
231       .legalIf([=](const LegalityQuery &Query) {
232         const LLT &Ty0 = Query.Types[0];
233         const LLT &Ty1 = Query.Types[1];
234         if (Ty1 != s32 && Ty1 != s64 && Ty1 != s128)
235           return false;
236         if (Ty1 == p0)
237           return true;
238         return isPowerOf2_32(Ty0.getSizeInBits()) &&
239                (Ty0.getSizeInBits() == 1 || Ty0.getSizeInBits() >= 8);
240       })
241       .clampScalar(1, s32, s128)
242       .widenScalarToNextPow2(1)
243       .maxScalarIf(typeInSet(1, {s32}), 0, s16)
244       .maxScalarIf(typeInSet(1, {s64}), 0, s32)
245       .widenScalarToNextPow2(0);
246 
247   getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
248       .legalForTypesWithMemDesc({{s32, p0, 8, 8},
249                                  {s32, p0, 16, 8},
250                                  {s32, p0, 32, 8},
251                                  {s64, p0, 8, 2},
252                                  {s64, p0, 16, 2},
253                                  {s64, p0, 32, 4},
254                                  {s64, p0, 64, 8},
255                                  {p0, p0, 64, 8},
256                                  {v2s32, p0, 64, 8}})
257       .clampScalar(0, s32, s64)
258       .widenScalarToNextPow2(0)
259       // TODO: We could support sum-of-pow2's but the lowering code doesn't know
260       //       how to do that yet.
261       .unsupportedIfMemSizeNotPow2()
262       // Lower anything left over into G_*EXT and G_LOAD
263       .lower();
264 
265   auto IsPtrVecPred = [=](const LegalityQuery &Query) {
266     const LLT &ValTy = Query.Types[0];
267     if (!ValTy.isVector())
268       return false;
269     const LLT EltTy = ValTy.getElementType();
270     return EltTy.isPointer() && EltTy.getAddressSpace() == 0;
271   };
272 
273   getActionDefinitionsBuilder(G_LOAD)
274       .legalForTypesWithMemDesc({{s8, p0, 8, 8},
275                                  {s16, p0, 16, 8},
276                                  {s32, p0, 32, 8},
277                                  {s64, p0, 64, 8},
278                                  {p0, p0, 64, 8},
279                                  {s128, p0, 128, 8},
280                                  {v8s8, p0, 64, 8},
281                                  {v16s8, p0, 128, 8},
282                                  {v4s16, p0, 64, 8},
283                                  {v8s16, p0, 128, 8},
284                                  {v2s32, p0, 64, 8},
285                                  {v4s32, p0, 128, 8},
286                                  {v2s64, p0, 128, 8}})
287       // These extends are also legal
288       .legalForTypesWithMemDesc({{s32, p0, 8, 8}, {s32, p0, 16, 8}})
289       .clampScalar(0, s8, s64)
290       .lowerIfMemSizeNotPow2()
291       // Lower any any-extending loads left into G_ANYEXT and G_LOAD
292       .lowerIf([=](const LegalityQuery &Query) {
293         return Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits;
294       })
295       .widenScalarToNextPow2(0)
296       .clampMaxNumElements(0, s32, 2)
297       .clampMaxNumElements(0, s64, 1)
298       .customIf(IsPtrVecPred);
299 
300   getActionDefinitionsBuilder(G_STORE)
301       .legalForTypesWithMemDesc({{s8, p0, 8, 8},
302                                  {s16, p0, 16, 8},
303                                  {s32, p0, 8, 8},
304                                  {s32, p0, 16, 8},
305                                  {s32, p0, 32, 8},
306                                  {s64, p0, 64, 8},
307                                  {p0, p0, 64, 8},
308                                  {s128, p0, 128, 8},
309                                  {v16s8, p0, 128, 8},
310                                  {v8s8, p0, 64, 8},
311                                  {v4s16, p0, 64, 8},
312                                  {v8s16, p0, 128, 8},
313                                  {v2s32, p0, 64, 8},
314                                  {v4s32, p0, 128, 8},
315                                  {v2s64, p0, 128, 8}})
316       .clampScalar(0, s8, s64)
317       .lowerIfMemSizeNotPow2()
318       .lowerIf([=](const LegalityQuery &Query) {
319         return Query.Types[0].isScalar() &&
320                Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits;
321       })
322       .clampMaxNumElements(0, s32, 2)
323       .clampMaxNumElements(0, s64, 1)
324       .customIf(IsPtrVecPred);
325 
326   // Constants
327   getActionDefinitionsBuilder(G_CONSTANT)
328       .legalFor({p0, s8, s16, s32, s64})
329       .clampScalar(0, s8, s64)
330       .widenScalarToNextPow2(0);
331   getActionDefinitionsBuilder(G_FCONSTANT)
332       .legalIf([=](const LegalityQuery &Query) {
333         const auto &Ty = Query.Types[0];
334         if (HasFP16 && Ty == s16)
335           return true;
336         return Ty == s32 || Ty == s64 || Ty == s128;
337       })
338       .clampScalar(0, MinFPScalar, s128);
339 
340   getActionDefinitionsBuilder({G_ICMP, G_FCMP})
341       .legalFor({{s32, s32},
342                  {s32, s64},
343                  {s32, p0},
344                  {v4s32, v4s32},
345                  {v2s32, v2s32},
346                  {v2s64, v2s64},
347                  {v2s64, v2p0},
348                  {v4s16, v4s16},
349                  {v8s16, v8s16},
350                  {v8s8, v8s8},
351                  {v16s8, v16s8}})
352       .clampScalar(1, s32, s64)
353       .clampScalar(0, s32, s32)
354       .minScalarEltSameAsIf(
355           [=](const LegalityQuery &Query) {
356             const LLT &Ty = Query.Types[0];
357             const LLT &SrcTy = Query.Types[1];
358             return Ty.isVector() && !SrcTy.getElementType().isPointer() &&
359                    Ty.getElementType() != SrcTy.getElementType();
360           },
361           0, 1)
362       .minScalarOrEltIf(
363           [=](const LegalityQuery &Query) { return Query.Types[1] == v2s16; },
364           1, s32)
365       .minScalarOrEltIf(
366           [=](const LegalityQuery &Query) { return Query.Types[1] == v2p0; }, 0,
367           s64)
368       .widenScalarOrEltToNextPow2(1)
369       .clampNumElements(0, v2s32, v4s32);
370 
371   // Extensions
372   auto ExtLegalFunc = [=](const LegalityQuery &Query) {
373     unsigned DstSize = Query.Types[0].getSizeInBits();
374 
375     if (DstSize == 128 && !Query.Types[0].isVector())
376       return false; // Extending to a scalar s128 needs narrowing.
377 
378     // Make sure that we have something that will fit in a register, and
379     // make sure it's a power of 2.
380     if (DstSize < 8 || DstSize > 128 || !isPowerOf2_32(DstSize))
381       return false;
382 
383     const LLT &SrcTy = Query.Types[1];
384 
385     // Special case for s1.
386     if (SrcTy == s1)
387       return true;
388 
389     // Make sure we fit in a register otherwise. Don't bother checking that
390     // the source type is below 128 bits. We shouldn't be allowing anything
391     // through which is wider than the destination in the first place.
392     unsigned SrcSize = SrcTy.getSizeInBits();
393     if (SrcSize < 8 || !isPowerOf2_32(SrcSize))
394       return false;
395 
396     return true;
397   };
398   getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
399       .legalIf(ExtLegalFunc)
400       .clampScalar(0, s64, s64); // Just for s128, others are handled above.
401 
402   getActionDefinitionsBuilder(G_TRUNC)
403       .minScalarOrEltIf(
404           [=](const LegalityQuery &Query) { return Query.Types[0].isVector(); },
405           0, s8)
406       .customIf([=](const LegalityQuery &Query) {
407         LLT DstTy = Query.Types[0];
408         LLT SrcTy = Query.Types[1];
409         return DstTy == v8s8 && SrcTy.getSizeInBits() > 128;
410       })
411       .alwaysLegal();
412 
413   getActionDefinitionsBuilder(G_SEXT_INREG).legalFor({s32, s64}).lower();
414 
415   // FP conversions
416   getActionDefinitionsBuilder(G_FPTRUNC)
417       .legalFor(
418           {{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}})
419       .clampMaxNumElements(0, s32, 2);
420   getActionDefinitionsBuilder(G_FPEXT)
421       .legalFor(
422           {{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}})
423       .clampMaxNumElements(0, s64, 2);
424 
425   // Conversions
426   getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
427       .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
428       .clampScalar(0, s32, s64)
429       .widenScalarToNextPow2(0)
430       .clampScalar(1, s32, s64)
431       .widenScalarToNextPow2(1);
432 
433   getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
434       .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
435       .clampScalar(1, s32, s64)
436       .minScalarSameAs(1, 0)
437       .clampScalar(0, s32, s64)
438       .widenScalarToNextPow2(0);
439 
440   // Control-flow
441   getActionDefinitionsBuilder(G_BRCOND).legalFor({s1, s8, s16, s32});
442   getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
443 
444   getActionDefinitionsBuilder(G_SELECT)
445       .legalFor({{s32, s1}, {s64, s1}, {p0, s1}})
446       .clampScalar(0, s32, s64)
447       .widenScalarToNextPow2(0)
448       .minScalarEltSameAsIf(all(isVector(0), isVector(1)), 1, 0)
449       .lowerIf(isVector(0));
450 
451   // Pointer-handling
452   getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
453 
454   if (TM.getCodeModel() == CodeModel::Small)
455     getActionDefinitionsBuilder(G_GLOBAL_VALUE).custom();
456   else
457     getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
458 
459   getActionDefinitionsBuilder(G_PTRTOINT)
460       .legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
461       .maxScalar(0, s64)
462       .widenScalarToNextPow2(0, /*Min*/ 8);
463 
464   getActionDefinitionsBuilder(G_INTTOPTR)
465       .unsupportedIf([&](const LegalityQuery &Query) {
466         return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits();
467       })
468       .legalFor({{p0, s64}});
469 
470   // Casts for 32 and 64-bit width type are just copies.
471   // Same for 128-bit width type, except they are on the FPR bank.
472   getActionDefinitionsBuilder(G_BITCAST)
473       // FIXME: This is wrong since G_BITCAST is not allowed to change the
474       // number of bits but it's what the previous code described and fixing
475       // it breaks tests.
476       .legalForCartesianProduct({s1, s8, s16, s32, s64, s128, v16s8, v8s8, v4s8,
477                                  v8s16, v4s16, v2s16, v4s32, v2s32, v2s64,
478                                  v2p0});
479 
480   getActionDefinitionsBuilder(G_VASTART).legalFor({p0});
481 
482   // va_list must be a pointer, but most sized types are pretty easy to handle
483   // as the destination.
484   getActionDefinitionsBuilder(G_VAARG)
485       .customForCartesianProduct({s8, s16, s32, s64, p0}, {p0})
486       .clampScalar(0, s8, s64)
487       .widenScalarToNextPow2(0, /*Min*/ 8);
488 
489   if (ST.hasLSE()) {
490     getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
491         .lowerIf(all(
492             typeInSet(0, {s8, s16, s32, s64}), typeIs(1, s1), typeIs(2, p0),
493             atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic)));
494 
495     getActionDefinitionsBuilder(
496         {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND,
497          G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX,
498          G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX, G_ATOMIC_CMPXCHG})
499         .legalIf(all(
500             typeInSet(0, {s8, s16, s32, s64}), typeIs(1, p0),
501             atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic)));
502   }
503 
504   getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({p0});
505 
506   // Merge/Unmerge
507   for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
508     unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
509     unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
510 
511     auto notValidElt = [](const LegalityQuery &Query, unsigned TypeIdx) {
512       const LLT &Ty = Query.Types[TypeIdx];
513       if (Ty.isVector()) {
514         const LLT &EltTy = Ty.getElementType();
515         if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
516           return true;
517         if (!isPowerOf2_32(EltTy.getSizeInBits()))
518           return true;
519       }
520       return false;
521     };
522 
523     // FIXME: This rule is horrible, but specifies the same as what we had
524     // before with the particularly strange definitions removed (e.g.
525     // s8 = G_MERGE_VALUES s32, s32).
526     // Part of the complexity comes from these ops being extremely flexible. For
527     // example, you can build/decompose vectors with it, concatenate vectors,
528     // etc. and in addition to this you can also bitcast with it at the same
529     // time. We've been considering breaking it up into multiple ops to make it
530     // more manageable throughout the backend.
531     getActionDefinitionsBuilder(Op)
532         // Break up vectors with weird elements into scalars
533         .fewerElementsIf(
534             [=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
535             scalarize(0))
536         .fewerElementsIf(
537             [=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
538             scalarize(1))
539         // Clamp the big scalar to s8-s512 and make it either a power of 2, 192,
540         // or 384.
541         .clampScalar(BigTyIdx, s8, s512)
542         .widenScalarIf(
543             [=](const LegalityQuery &Query) {
544               const LLT &Ty = Query.Types[BigTyIdx];
545               return !isPowerOf2_32(Ty.getSizeInBits()) &&
546                      Ty.getSizeInBits() % 64 != 0;
547             },
548             [=](const LegalityQuery &Query) {
549               // Pick the next power of 2, or a multiple of 64 over 128.
550               // Whichever is smaller.
551               const LLT &Ty = Query.Types[BigTyIdx];
552               unsigned NewSizeInBits = 1
553                                        << Log2_32_Ceil(Ty.getSizeInBits() + 1);
554               if (NewSizeInBits >= 256) {
555                 unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
556                 if (RoundedTo < NewSizeInBits)
557                   NewSizeInBits = RoundedTo;
558               }
559               return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
560             })
561         // Clamp the little scalar to s8-s256 and make it a power of 2. It's not
562         // worth considering the multiples of 64 since 2*192 and 2*384 are not
563         // valid.
564         .clampScalar(LitTyIdx, s8, s256)
565         .widenScalarToNextPow2(LitTyIdx, /*Min*/ 8)
566         // So at this point, we have s8, s16, s32, s64, s128, s192, s256, s384,
567         // s512, <X x s8>, <X x s16>, <X x s32>, or <X x s64>.
568         // At this point it's simple enough to accept the legal types.
569         .legalIf([=](const LegalityQuery &Query) {
570           const LLT &BigTy = Query.Types[BigTyIdx];
571           const LLT &LitTy = Query.Types[LitTyIdx];
572           if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
573             return false;
574           if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
575             return false;
576           return BigTy.getSizeInBits() % LitTy.getSizeInBits() == 0;
577         })
578         // Any vectors left are the wrong size. Scalarize them.
579         .scalarize(0)
580         .scalarize(1);
581   }
582 
583   getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
584       .unsupportedIf([=](const LegalityQuery &Query) {
585         const LLT &EltTy = Query.Types[1].getElementType();
586         return Query.Types[0] != EltTy;
587       })
588       .minScalar(2, s64)
589       .legalIf([=](const LegalityQuery &Query) {
590         const LLT &VecTy = Query.Types[1];
591         return VecTy == v2s16 || VecTy == v4s16 || VecTy == v8s16 ||
592                VecTy == v4s32 || VecTy == v2s64 || VecTy == v2s32 ||
593                VecTy == v16s8 || VecTy == v2s32 || VecTy == v2p0;
594       })
595       .minScalarOrEltIf(
596           [=](const LegalityQuery &Query) {
597             // We want to promote to <M x s1> to <M x s64> if that wouldn't
598             // cause the total vec size to be > 128b.
599             return Query.Types[1].getNumElements() <= 2;
600           },
601           0, s64)
602       .minScalarOrEltIf(
603           [=](const LegalityQuery &Query) {
604             return Query.Types[1].getNumElements() <= 4;
605           },
606           0, s32)
607       .minScalarOrEltIf(
608           [=](const LegalityQuery &Query) {
609             return Query.Types[1].getNumElements() <= 8;
610           },
611           0, s16)
612       .minScalarOrEltIf(
613           [=](const LegalityQuery &Query) {
614             return Query.Types[1].getNumElements() <= 16;
615           },
616           0, s8)
617       .minScalarOrElt(0, s8); // Worst case, we need at least s8.
618 
619   getActionDefinitionsBuilder(G_INSERT_VECTOR_ELT)
620       .legalIf(typeInSet(0, {v8s16, v2s32, v4s32, v2s64}));
621 
622   getActionDefinitionsBuilder(G_BUILD_VECTOR)
623       .legalFor({{v8s8, s8},
624                  {v16s8, s8},
625                  {v4s16, s16},
626                  {v8s16, s16},
627                  {v2s32, s32},
628                  {v4s32, s32},
629                  {v2p0, p0},
630                  {v2s64, s64}})
631       .clampNumElements(0, v4s32, v4s32)
632       .clampNumElements(0, v2s64, v2s64)
633 
634       // Deal with larger scalar types, which will be implicitly truncated.
635       .legalIf([=](const LegalityQuery &Query) {
636         return Query.Types[0].getScalarSizeInBits() <
637                Query.Types[1].getSizeInBits();
638       })
639       .minScalarSameAs(1, 0);
640 
641   getActionDefinitionsBuilder(G_CTLZ)
642       .legalForCartesianProduct(
643           {s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
644       .scalarize(1);
645 
646   getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
647       .legalIf([=](const LegalityQuery &Query) {
648         const LLT &DstTy = Query.Types[0];
649         const LLT &SrcTy = Query.Types[1];
650         // For now just support the TBL2 variant which needs the source vectors
651         // to be the same size as the dest.
652         if (DstTy != SrcTy)
653           return false;
654         for (auto &Ty : {v2s32, v4s32, v2s64, v2p0, v16s8, v8s16}) {
655           if (DstTy == Ty)
656             return true;
657         }
658         return false;
659       })
660       // G_SHUFFLE_VECTOR can have scalar sources (from 1 x s vectors), we
661       // just want those lowered into G_BUILD_VECTOR
662       .lowerIf([=](const LegalityQuery &Query) {
663         return !Query.Types[1].isVector();
664       })
665       .clampNumElements(0, v4s32, v4s32)
666       .clampNumElements(0, v2s64, v2s64);
667 
668   getActionDefinitionsBuilder(G_CONCAT_VECTORS)
669       .legalFor({{v4s32, v2s32}, {v8s16, v4s16}});
670 
671   getActionDefinitionsBuilder(G_JUMP_TABLE).legalFor({{p0}, {s64}});
672 
673   getActionDefinitionsBuilder(G_BRJT).legalIf([=](const LegalityQuery &Query) {
674     return Query.Types[0] == p0 && Query.Types[1] == s64;
675   });
676 
677   getActionDefinitionsBuilder(G_DYN_STACKALLOC).lower();
678 
679   getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall();
680 
681   getActionDefinitionsBuilder(G_ABS).lowerIf(
682       [=](const LegalityQuery &Query) { return Query.Types[0].isScalar(); });
683 
684   getActionDefinitionsBuilder(G_VECREDUCE_FADD)
685       // We only have FADDP to do reduction-like operations. Lower the rest.
686       .legalFor({{s32, v2s32}, {s64, v2s64}})
687       .lower();
688 
689   getActionDefinitionsBuilder(G_VECREDUCE_ADD)
690       .legalFor({{s8, v16s8}, {s16, v8s16}, {s32, v4s32}, {s64, v2s64}})
691       .lower();
692 
693   computeTables();
694   verify(*ST.getInstrInfo());
695 }
696 
697 bool AArch64LegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
698                                           MachineInstr &MI) const {
699   MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
700   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
701   GISelChangeObserver &Observer = Helper.Observer;
702   switch (MI.getOpcode()) {
703   default:
704     // No idea what to do.
705     return false;
706   case TargetOpcode::G_VAARG:
707     return legalizeVaArg(MI, MRI, MIRBuilder);
708   case TargetOpcode::G_LOAD:
709   case TargetOpcode::G_STORE:
710     return legalizeLoadStore(MI, MRI, MIRBuilder, Observer);
711   case TargetOpcode::G_SHL:
712   case TargetOpcode::G_ASHR:
713   case TargetOpcode::G_LSHR:
714     return legalizeShlAshrLshr(MI, MRI, MIRBuilder, Observer);
715   case TargetOpcode::G_GLOBAL_VALUE:
716     return legalizeSmallCMGlobalValue(MI, MRI, MIRBuilder, Observer);
717   case TargetOpcode::G_TRUNC:
718     return legalizeVectorTrunc(MI, Helper);
719   }
720 
721   llvm_unreachable("expected switch to return");
722 }
723 
724 static void extractParts(Register Reg, MachineRegisterInfo &MRI,
725                          MachineIRBuilder &MIRBuilder, LLT Ty, int NumParts,
726                          SmallVectorImpl<Register> &VRegs) {
727   for (int I = 0; I < NumParts; ++I)
728     VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
729   MIRBuilder.buildUnmerge(VRegs, Reg);
730 }
731 
732 bool AArch64LegalizerInfo::legalizeVectorTrunc(
733     MachineInstr &MI, LegalizerHelper &Helper) const {
734   MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
735   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
736   // Similar to how operand splitting is done in SelectiondDAG, we can handle
737   // %res(v8s8) = G_TRUNC %in(v8s32) by generating:
738   //   %inlo(<4x s32>), %inhi(<4 x s32>) = G_UNMERGE %in(<8 x s32>)
739   //   %lo16(<4 x s16>) = G_TRUNC %inlo
740   //   %hi16(<4 x s16>) = G_TRUNC %inhi
741   //   %in16(<8 x s16>) = G_CONCAT_VECTORS %lo16, %hi16
742   //   %res(<8 x s8>) = G_TRUNC %in16
743 
744   Register DstReg = MI.getOperand(0).getReg();
745   Register SrcReg = MI.getOperand(1).getReg();
746   LLT DstTy = MRI.getType(DstReg);
747   LLT SrcTy = MRI.getType(SrcReg);
748   assert(isPowerOf2_32(DstTy.getSizeInBits()) &&
749          isPowerOf2_32(SrcTy.getSizeInBits()));
750 
751   // Split input type.
752   LLT SplitSrcTy = SrcTy.changeNumElements(SrcTy.getNumElements() / 2);
753   // First, split the source into two smaller vectors.
754   SmallVector<Register, 2> SplitSrcs;
755   extractParts(SrcReg, MRI, MIRBuilder, SplitSrcTy, 2, SplitSrcs);
756 
757   // Truncate the splits into intermediate narrower elements.
758   LLT InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2);
759   for (unsigned I = 0; I < SplitSrcs.size(); ++I)
760     SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0);
761 
762   auto Concat = MIRBuilder.buildConcatVectors(
763       DstTy.changeElementSize(DstTy.getScalarSizeInBits() * 2), SplitSrcs);
764 
765   Helper.Observer.changingInstr(MI);
766   MI.getOperand(1).setReg(Concat.getReg(0));
767   Helper.Observer.changedInstr(MI);
768   return true;
769 }
770 
771 bool AArch64LegalizerInfo::legalizeSmallCMGlobalValue(
772     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
773     GISelChangeObserver &Observer) const {
774   assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
775   // We do this custom legalization to convert G_GLOBAL_VALUE into target ADRP +
776   // G_ADD_LOW instructions.
777   // By splitting this here, we can optimize accesses in the small code model by
778   // folding in the G_ADD_LOW into the load/store offset.
779   auto GV = MI.getOperand(1).getGlobal();
780   if (GV->isThreadLocal())
781     return true; // Don't want to modify TLS vars.
782 
783   auto &TM = ST->getTargetLowering()->getTargetMachine();
784   unsigned OpFlags = ST->ClassifyGlobalReference(GV, TM);
785 
786   if (OpFlags & AArch64II::MO_GOT)
787     return true;
788 
789   Register DstReg = MI.getOperand(0).getReg();
790   auto ADRP = MIRBuilder.buildInstr(AArch64::ADRP, {LLT::pointer(0, 64)}, {})
791                   .addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE);
792   // Set the regclass on the dest reg too.
793   MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
794 
795   // MO_TAGGED on the page indicates a tagged address. Set the tag now. We do so
796   // by creating a MOVK that sets bits 48-63 of the register to (global address
797   // + 0x100000000 - PC) >> 48. The additional 0x100000000 offset here is to
798   // prevent an incorrect tag being generated during relocation when the the
799   // global appears before the code section. Without the offset, a global at
800   // `0x0f00'0000'0000'1000` (i.e. at `0x1000` with tag `0xf`) that's referenced
801   // by code at `0x2000` would result in `0x0f00'0000'0000'1000 - 0x2000 =
802   // 0x0eff'ffff'ffff'f000`, meaning the tag would be incorrectly set to `0xe`
803   // instead of `0xf`.
804   // This assumes that we're in the small code model so we can assume a binary
805   // size of <= 4GB, which makes the untagged PC relative offset positive. The
806   // binary must also be loaded into address range [0, 2^48). Both of these
807   // properties need to be ensured at runtime when using tagged addresses.
808   if (OpFlags & AArch64II::MO_TAGGED) {
809     ADRP = MIRBuilder.buildInstr(AArch64::MOVKXi, {LLT::pointer(0, 64)}, {ADRP})
810                .addGlobalAddress(GV, 0x100000000,
811                                  AArch64II::MO_PREL | AArch64II::MO_G3)
812                .addImm(48);
813     MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
814   }
815 
816   MIRBuilder.buildInstr(AArch64::G_ADD_LOW, {DstReg}, {ADRP})
817       .addGlobalAddress(GV, 0,
818                         OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
819   MI.eraseFromParent();
820   return true;
821 }
822 
823 bool AArch64LegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
824                                              MachineInstr &MI) const {
825   return true;
826 }
827 
828 bool AArch64LegalizerInfo::legalizeShlAshrLshr(
829     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
830     GISelChangeObserver &Observer) const {
831   assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
832          MI.getOpcode() == TargetOpcode::G_LSHR ||
833          MI.getOpcode() == TargetOpcode::G_SHL);
834   // If the shift amount is a G_CONSTANT, promote it to a 64 bit type so the
835   // imported patterns can select it later. Either way, it will be legal.
836   Register AmtReg = MI.getOperand(2).getReg();
837   auto VRegAndVal = getConstantVRegValWithLookThrough(AmtReg, MRI);
838   if (!VRegAndVal)
839     return true;
840   // Check the shift amount is in range for an immediate form.
841   int64_t Amount = VRegAndVal->Value.getSExtValue();
842   if (Amount > 31)
843     return true; // This will have to remain a register variant.
844   auto ExtCst = MIRBuilder.buildConstant(LLT::scalar(64), Amount);
845   Observer.changingInstr(MI);
846   MI.getOperand(2).setReg(ExtCst.getReg(0));
847   Observer.changedInstr(MI);
848   return true;
849 }
850 
851 bool AArch64LegalizerInfo::legalizeLoadStore(
852     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
853     GISelChangeObserver &Observer) const {
854   assert(MI.getOpcode() == TargetOpcode::G_STORE ||
855          MI.getOpcode() == TargetOpcode::G_LOAD);
856   // Here we just try to handle vector loads/stores where our value type might
857   // have pointer elements, which the SelectionDAG importer can't handle. To
858   // allow the existing patterns for s64 to fire for p0, we just try to bitcast
859   // the value to use s64 types.
860 
861   // Custom legalization requires the instruction, if not deleted, must be fully
862   // legalized. In order to allow further legalization of the inst, we create
863   // a new instruction and erase the existing one.
864 
865   Register ValReg = MI.getOperand(0).getReg();
866   const LLT ValTy = MRI.getType(ValReg);
867 
868   if (!ValTy.isVector() || !ValTy.getElementType().isPointer() ||
869       ValTy.getElementType().getAddressSpace() != 0) {
870     LLVM_DEBUG(dbgs() << "Tried to do custom legalization on wrong load/store");
871     return false;
872   }
873 
874   unsigned PtrSize = ValTy.getElementType().getSizeInBits();
875   const LLT NewTy = LLT::vector(ValTy.getNumElements(), PtrSize);
876   auto &MMO = **MI.memoperands_begin();
877   if (MI.getOpcode() == TargetOpcode::G_STORE) {
878     auto Bitcast = MIRBuilder.buildBitcast(NewTy, ValReg);
879     MIRBuilder.buildStore(Bitcast.getReg(0), MI.getOperand(1), MMO);
880   } else {
881     auto NewLoad = MIRBuilder.buildLoad(NewTy, MI.getOperand(1), MMO);
882     MIRBuilder.buildBitcast(ValReg, NewLoad);
883   }
884   MI.eraseFromParent();
885   return true;
886 }
887 
888 bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
889                                          MachineRegisterInfo &MRI,
890                                          MachineIRBuilder &MIRBuilder) const {
891   MachineFunction &MF = MIRBuilder.getMF();
892   Align Alignment(MI.getOperand(2).getImm());
893   Register Dst = MI.getOperand(0).getReg();
894   Register ListPtr = MI.getOperand(1).getReg();
895 
896   LLT PtrTy = MRI.getType(ListPtr);
897   LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
898 
899   const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
900   const Align PtrAlign = Align(PtrSize);
901   auto List = MIRBuilder.buildLoad(
902       PtrTy, ListPtr,
903       *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
904                                PtrSize, PtrAlign));
905 
906   MachineInstrBuilder DstPtr;
907   if (Alignment > PtrAlign) {
908     // Realign the list to the actual required alignment.
909     auto AlignMinus1 =
910         MIRBuilder.buildConstant(IntPtrTy, Alignment.value() - 1);
911     auto ListTmp = MIRBuilder.buildPtrAdd(PtrTy, List, AlignMinus1.getReg(0));
912     DstPtr = MIRBuilder.buildMaskLowPtrBits(PtrTy, ListTmp, Log2(Alignment));
913   } else
914     DstPtr = List;
915 
916   uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8;
917   MIRBuilder.buildLoad(
918       Dst, DstPtr,
919       *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
920                                ValSize, std::max(Alignment, PtrAlign)));
921 
922   auto Size = MIRBuilder.buildConstant(IntPtrTy, alignTo(ValSize, PtrAlign));
923 
924   auto NewList = MIRBuilder.buildPtrAdd(PtrTy, DstPtr, Size.getReg(0));
925 
926   MIRBuilder.buildStore(NewList, ListPtr,
927                         *MF.getMachineMemOperand(MachinePointerInfo(),
928                                                  MachineMemOperand::MOStore,
929                                                  PtrSize, PtrAlign));
930 
931   MI.eraseFromParent();
932   return true;
933 }
934