xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/GISel/AArch64InstructionSelector.cpp (revision ba3c1f5972d7b90feb6e6da47905ff2757e0fe57)
1 //===- AArch64InstructionSelector.cpp ----------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the InstructionSelector class for
10 /// AArch64.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13 
14 #include "AArch64GlobalISelUtils.h"
15 #include "AArch64InstrInfo.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64RegisterBankInfo.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "AArch64TargetMachine.h"
21 #include "MCTargetDesc/AArch64AddressingModes.h"
22 #include "MCTargetDesc/AArch64MCTargetDesc.h"
23 #include "llvm/BinaryFormat/Dwarf.h"
24 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
25 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
26 #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
27 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
28 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
29 #include "llvm/CodeGen/GlobalISel/Utils.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicsAArch64.h"
44 #include "llvm/IR/PatternMatch.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <optional>
50 
51 #define DEBUG_TYPE "aarch64-isel"
52 
53 using namespace llvm;
54 using namespace MIPatternMatch;
55 using namespace AArch64GISelUtils;
56 
57 namespace llvm {
58 class BlockFrequencyInfo;
59 class ProfileSummaryInfo;
60 }
61 
62 namespace {
63 
64 #define GET_GLOBALISEL_PREDICATE_BITSET
65 #include "AArch64GenGlobalISel.inc"
66 #undef GET_GLOBALISEL_PREDICATE_BITSET
67 
68 
69 class AArch64InstructionSelector : public InstructionSelector {
70 public:
71   AArch64InstructionSelector(const AArch64TargetMachine &TM,
72                              const AArch64Subtarget &STI,
73                              const AArch64RegisterBankInfo &RBI);
74 
75   bool select(MachineInstr &I) override;
76   static const char *getName() { return DEBUG_TYPE; }
77 
78   void setupMF(MachineFunction &MF, GISelKnownBits *KB,
79                CodeGenCoverage &CoverageInfo, ProfileSummaryInfo *PSI,
80                BlockFrequencyInfo *BFI) override {
81     InstructionSelector::setupMF(MF, KB, CoverageInfo, PSI, BFI);
82     MIB.setMF(MF);
83 
84     // hasFnAttribute() is expensive to call on every BRCOND selection, so
85     // cache it here for each run of the selector.
86     ProduceNonFlagSettingCondBr =
87         !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening);
88     MFReturnAddr = Register();
89 
90     processPHIs(MF);
91   }
92 
93 private:
94   /// tblgen-erated 'select' implementation, used as the initial selector for
95   /// the patterns that don't require complex C++.
96   bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
97 
98   // A lowering phase that runs before any selection attempts.
99   // Returns true if the instruction was modified.
100   bool preISelLower(MachineInstr &I);
101 
102   // An early selection function that runs before the selectImpl() call.
103   bool earlySelect(MachineInstr &I);
104 
105   // Do some preprocessing of G_PHIs before we begin selection.
106   void processPHIs(MachineFunction &MF);
107 
108   bool earlySelectSHL(MachineInstr &I, MachineRegisterInfo &MRI);
109 
110   /// Eliminate same-sized cross-bank copies into stores before selectImpl().
111   bool contractCrossBankCopyIntoStore(MachineInstr &I,
112                                       MachineRegisterInfo &MRI);
113 
114   bool convertPtrAddToAdd(MachineInstr &I, MachineRegisterInfo &MRI);
115 
116   bool selectVaStartAAPCS(MachineInstr &I, MachineFunction &MF,
117                           MachineRegisterInfo &MRI) const;
118   bool selectVaStartDarwin(MachineInstr &I, MachineFunction &MF,
119                            MachineRegisterInfo &MRI) const;
120 
121   ///@{
122   /// Helper functions for selectCompareBranch.
123   bool selectCompareBranchFedByFCmp(MachineInstr &I, MachineInstr &FCmp,
124                                     MachineIRBuilder &MIB) const;
125   bool selectCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp,
126                                     MachineIRBuilder &MIB) const;
127   bool tryOptCompareBranchFedByICmp(MachineInstr &I, MachineInstr &ICmp,
128                                     MachineIRBuilder &MIB) const;
129   bool tryOptAndIntoCompareBranch(MachineInstr &AndInst, bool Invert,
130                                   MachineBasicBlock *DstMBB,
131                                   MachineIRBuilder &MIB) const;
132   ///@}
133 
134   bool selectCompareBranch(MachineInstr &I, MachineFunction &MF,
135                            MachineRegisterInfo &MRI);
136 
137   bool selectVectorAshrLshr(MachineInstr &I, MachineRegisterInfo &MRI);
138   bool selectVectorSHL(MachineInstr &I, MachineRegisterInfo &MRI);
139 
140   // Helper to generate an equivalent of scalar_to_vector into a new register,
141   // returned via 'Dst'.
142   MachineInstr *emitScalarToVector(unsigned EltSize,
143                                    const TargetRegisterClass *DstRC,
144                                    Register Scalar,
145                                    MachineIRBuilder &MIRBuilder) const;
146 
147   /// Emit a lane insert into \p DstReg, or a new vector register if
148   /// std::nullopt is provided.
149   ///
150   /// The lane inserted into is defined by \p LaneIdx. The vector source
151   /// register is given by \p SrcReg. The register containing the element is
152   /// given by \p EltReg.
153   MachineInstr *emitLaneInsert(std::optional<Register> DstReg, Register SrcReg,
154                                Register EltReg, unsigned LaneIdx,
155                                const RegisterBank &RB,
156                                MachineIRBuilder &MIRBuilder) const;
157 
158   /// Emit a sequence of instructions representing a constant \p CV for a
159   /// vector register \p Dst. (E.g. a MOV, or a load from a constant pool.)
160   ///
161   /// \returns the last instruction in the sequence on success, and nullptr
162   /// otherwise.
163   MachineInstr *emitConstantVector(Register Dst, Constant *CV,
164                                    MachineIRBuilder &MIRBuilder,
165                                    MachineRegisterInfo &MRI);
166 
167   bool selectInsertElt(MachineInstr &I, MachineRegisterInfo &MRI);
168   bool tryOptConstantBuildVec(MachineInstr &MI, LLT DstTy,
169                               MachineRegisterInfo &MRI);
170   /// \returns true if a G_BUILD_VECTOR instruction \p MI can be selected as a
171   /// SUBREG_TO_REG.
172   bool tryOptBuildVecToSubregToReg(MachineInstr &MI, MachineRegisterInfo &MRI);
173   bool selectBuildVector(MachineInstr &I, MachineRegisterInfo &MRI);
174   bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI);
175   bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI);
176 
177   bool selectShuffleVector(MachineInstr &I, MachineRegisterInfo &MRI);
178   bool selectExtractElt(MachineInstr &I, MachineRegisterInfo &MRI);
179   bool selectConcatVectors(MachineInstr &I, MachineRegisterInfo &MRI);
180   bool selectSplitVectorUnmerge(MachineInstr &I, MachineRegisterInfo &MRI);
181 
182   /// Helper function to select vector load intrinsics like
183   /// @llvm.aarch64.neon.ld2.*, @llvm.aarch64.neon.ld4.*, etc.
184   /// \p Opc is the opcode that the selected instruction should use.
185   /// \p NumVecs is the number of vector destinations for the instruction.
186   /// \p I is the original G_INTRINSIC_W_SIDE_EFFECTS instruction.
187   bool selectVectorLoadIntrinsic(unsigned Opc, unsigned NumVecs,
188                                  MachineInstr &I);
189   bool selectIntrinsicWithSideEffects(MachineInstr &I,
190                                       MachineRegisterInfo &MRI);
191   bool selectIntrinsic(MachineInstr &I, MachineRegisterInfo &MRI);
192   bool selectVectorICmp(MachineInstr &I, MachineRegisterInfo &MRI);
193   bool selectIntrinsicTrunc(MachineInstr &I, MachineRegisterInfo &MRI) const;
194   bool selectIntrinsicRound(MachineInstr &I, MachineRegisterInfo &MRI) const;
195   bool selectJumpTable(MachineInstr &I, MachineRegisterInfo &MRI);
196   bool selectBrJT(MachineInstr &I, MachineRegisterInfo &MRI);
197   bool selectTLSGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI);
198   bool selectReduction(MachineInstr &I, MachineRegisterInfo &MRI);
199   bool selectMOPS(MachineInstr &I, MachineRegisterInfo &MRI);
200   bool selectUSMovFromExtend(MachineInstr &I, MachineRegisterInfo &MRI);
201 
202   unsigned emitConstantPoolEntry(const Constant *CPVal,
203                                  MachineFunction &MF) const;
204   MachineInstr *emitLoadFromConstantPool(const Constant *CPVal,
205                                          MachineIRBuilder &MIRBuilder) const;
206 
207   // Emit a vector concat operation.
208   MachineInstr *emitVectorConcat(std::optional<Register> Dst, Register Op1,
209                                  Register Op2,
210                                  MachineIRBuilder &MIRBuilder) const;
211 
212   // Emit an integer compare between LHS and RHS, which checks for Predicate.
213   MachineInstr *emitIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
214                                    MachineOperand &Predicate,
215                                    MachineIRBuilder &MIRBuilder) const;
216 
217   /// Emit a floating point comparison between \p LHS and \p RHS.
218   /// \p Pred if given is the intended predicate to use.
219   MachineInstr *
220   emitFPCompare(Register LHS, Register RHS, MachineIRBuilder &MIRBuilder,
221                 std::optional<CmpInst::Predicate> = std::nullopt) const;
222 
223   MachineInstr *
224   emitInstr(unsigned Opcode, std::initializer_list<llvm::DstOp> DstOps,
225             std::initializer_list<llvm::SrcOp> SrcOps,
226             MachineIRBuilder &MIRBuilder,
227             const ComplexRendererFns &RenderFns = std::nullopt) const;
228   /// Helper function to emit an add or sub instruction.
229   ///
230   /// \p AddrModeAndSizeToOpcode must contain each of the opcode variants above
231   /// in a specific order.
232   ///
233   /// Below is an example of the expected input to \p AddrModeAndSizeToOpcode.
234   ///
235   /// \code
236   ///   const std::array<std::array<unsigned, 2>, 4> Table {
237   ///    {{AArch64::ADDXri, AArch64::ADDWri},
238   ///     {AArch64::ADDXrs, AArch64::ADDWrs},
239   ///     {AArch64::ADDXrr, AArch64::ADDWrr},
240   ///     {AArch64::SUBXri, AArch64::SUBWri},
241   ///     {AArch64::ADDXrx, AArch64::ADDWrx}}};
242   /// \endcode
243   ///
244   /// Each row in the table corresponds to a different addressing mode. Each
245   /// column corresponds to a different register size.
246   ///
247   /// \attention Rows must be structured as follows:
248   ///   - Row 0: The ri opcode variants
249   ///   - Row 1: The rs opcode variants
250   ///   - Row 2: The rr opcode variants
251   ///   - Row 3: The ri opcode variants for negative immediates
252   ///   - Row 4: The rx opcode variants
253   ///
254   /// \attention Columns must be structured as follows:
255   ///   - Column 0: The 64-bit opcode variants
256   ///   - Column 1: The 32-bit opcode variants
257   ///
258   /// \p Dst is the destination register of the binop to emit.
259   /// \p LHS is the left-hand operand of the binop to emit.
260   /// \p RHS is the right-hand operand of the binop to emit.
261   MachineInstr *emitAddSub(
262       const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode,
263       Register Dst, MachineOperand &LHS, MachineOperand &RHS,
264       MachineIRBuilder &MIRBuilder) const;
265   MachineInstr *emitADD(Register DefReg, MachineOperand &LHS,
266                         MachineOperand &RHS,
267                         MachineIRBuilder &MIRBuilder) const;
268   MachineInstr *emitADDS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
269                          MachineIRBuilder &MIRBuilder) const;
270   MachineInstr *emitSUBS(Register Dst, MachineOperand &LHS, MachineOperand &RHS,
271                          MachineIRBuilder &MIRBuilder) const;
272   MachineInstr *emitCMN(MachineOperand &LHS, MachineOperand &RHS,
273                         MachineIRBuilder &MIRBuilder) const;
274   MachineInstr *emitTST(MachineOperand &LHS, MachineOperand &RHS,
275                         MachineIRBuilder &MIRBuilder) const;
276   MachineInstr *emitSelect(Register Dst, Register LHS, Register RHS,
277                            AArch64CC::CondCode CC,
278                            MachineIRBuilder &MIRBuilder) const;
279   MachineInstr *emitExtractVectorElt(std::optional<Register> DstReg,
280                                      const RegisterBank &DstRB, LLT ScalarTy,
281                                      Register VecReg, unsigned LaneIdx,
282                                      MachineIRBuilder &MIRBuilder) const;
283   MachineInstr *emitCSINC(Register Dst, Register Src1, Register Src2,
284                           AArch64CC::CondCode Pred,
285                           MachineIRBuilder &MIRBuilder) const;
286   /// Emit a CSet for a FP compare.
287   ///
288   /// \p Dst is expected to be a 32-bit scalar register.
289   MachineInstr *emitCSetForFCmp(Register Dst, CmpInst::Predicate Pred,
290                                 MachineIRBuilder &MIRBuilder) const;
291 
292   /// Emit the overflow op for \p Opcode.
293   ///
294   /// \p Opcode is expected to be an overflow op's opcode, e.g. G_UADDO,
295   /// G_USUBO, etc.
296   std::pair<MachineInstr *, AArch64CC::CondCode>
297   emitOverflowOp(unsigned Opcode, Register Dst, MachineOperand &LHS,
298                  MachineOperand &RHS, MachineIRBuilder &MIRBuilder) const;
299 
300   /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
301   /// In some cases this is even possible with OR operations in the expression.
302   MachineInstr *emitConjunction(Register Val, AArch64CC::CondCode &OutCC,
303                                 MachineIRBuilder &MIB) const;
304   MachineInstr *emitConditionalComparison(Register LHS, Register RHS,
305                                           CmpInst::Predicate CC,
306                                           AArch64CC::CondCode Predicate,
307                                           AArch64CC::CondCode OutCC,
308                                           MachineIRBuilder &MIB) const;
309   MachineInstr *emitConjunctionRec(Register Val, AArch64CC::CondCode &OutCC,
310                                    bool Negate, Register CCOp,
311                                    AArch64CC::CondCode Predicate,
312                                    MachineIRBuilder &MIB) const;
313 
314   /// Emit a TB(N)Z instruction which tests \p Bit in \p TestReg.
315   /// \p IsNegative is true if the test should be "not zero".
316   /// This will also optimize the test bit instruction when possible.
317   MachineInstr *emitTestBit(Register TestReg, uint64_t Bit, bool IsNegative,
318                             MachineBasicBlock *DstMBB,
319                             MachineIRBuilder &MIB) const;
320 
321   /// Emit a CB(N)Z instruction which branches to \p DestMBB.
322   MachineInstr *emitCBZ(Register CompareReg, bool IsNegative,
323                         MachineBasicBlock *DestMBB,
324                         MachineIRBuilder &MIB) const;
325 
326   // Equivalent to the i32shift_a and friends from AArch64InstrInfo.td.
327   // We use these manually instead of using the importer since it doesn't
328   // support SDNodeXForm.
329   ComplexRendererFns selectShiftA_32(const MachineOperand &Root) const;
330   ComplexRendererFns selectShiftB_32(const MachineOperand &Root) const;
331   ComplexRendererFns selectShiftA_64(const MachineOperand &Root) const;
332   ComplexRendererFns selectShiftB_64(const MachineOperand &Root) const;
333 
334   ComplexRendererFns select12BitValueWithLeftShift(uint64_t Immed) const;
335   ComplexRendererFns selectArithImmed(MachineOperand &Root) const;
336   ComplexRendererFns selectNegArithImmed(MachineOperand &Root) const;
337 
338   ComplexRendererFns selectAddrModeUnscaled(MachineOperand &Root,
339                                             unsigned Size) const;
340 
341   ComplexRendererFns selectAddrModeUnscaled8(MachineOperand &Root) const {
342     return selectAddrModeUnscaled(Root, 1);
343   }
344   ComplexRendererFns selectAddrModeUnscaled16(MachineOperand &Root) const {
345     return selectAddrModeUnscaled(Root, 2);
346   }
347   ComplexRendererFns selectAddrModeUnscaled32(MachineOperand &Root) const {
348     return selectAddrModeUnscaled(Root, 4);
349   }
350   ComplexRendererFns selectAddrModeUnscaled64(MachineOperand &Root) const {
351     return selectAddrModeUnscaled(Root, 8);
352   }
353   ComplexRendererFns selectAddrModeUnscaled128(MachineOperand &Root) const {
354     return selectAddrModeUnscaled(Root, 16);
355   }
356 
357   /// Helper to try to fold in a GISEL_ADD_LOW into an immediate, to be used
358   /// from complex pattern matchers like selectAddrModeIndexed().
359   ComplexRendererFns tryFoldAddLowIntoImm(MachineInstr &RootDef, unsigned Size,
360                                           MachineRegisterInfo &MRI) const;
361 
362   ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root,
363                                            unsigned Size) const;
364   template <int Width>
365   ComplexRendererFns selectAddrModeIndexed(MachineOperand &Root) const {
366     return selectAddrModeIndexed(Root, Width / 8);
367   }
368 
369   bool isWorthFoldingIntoExtendedReg(MachineInstr &MI,
370                                      const MachineRegisterInfo &MRI) const;
371   ComplexRendererFns
372   selectAddrModeShiftedExtendXReg(MachineOperand &Root,
373                                   unsigned SizeInBytes) const;
374 
375   /// Returns a \p ComplexRendererFns which contains a base, offset, and whether
376   /// or not a shift + extend should be folded into an addressing mode. Returns
377   /// None when this is not profitable or possible.
378   ComplexRendererFns
379   selectExtendedSHL(MachineOperand &Root, MachineOperand &Base,
380                     MachineOperand &Offset, unsigned SizeInBytes,
381                     bool WantsExt) const;
382   ComplexRendererFns selectAddrModeRegisterOffset(MachineOperand &Root) const;
383   ComplexRendererFns selectAddrModeXRO(MachineOperand &Root,
384                                        unsigned SizeInBytes) const;
385   template <int Width>
386   ComplexRendererFns selectAddrModeXRO(MachineOperand &Root) const {
387     return selectAddrModeXRO(Root, Width / 8);
388   }
389 
390   ComplexRendererFns selectAddrModeWRO(MachineOperand &Root,
391                                        unsigned SizeInBytes) const;
392   template <int Width>
393   ComplexRendererFns selectAddrModeWRO(MachineOperand &Root) const {
394     return selectAddrModeWRO(Root, Width / 8);
395   }
396 
397   ComplexRendererFns selectShiftedRegister(MachineOperand &Root,
398                                            bool AllowROR = false) const;
399 
400   ComplexRendererFns selectArithShiftedRegister(MachineOperand &Root) const {
401     return selectShiftedRegister(Root);
402   }
403 
404   ComplexRendererFns selectLogicalShiftedRegister(MachineOperand &Root) const {
405     return selectShiftedRegister(Root, true);
406   }
407 
408   /// Given an extend instruction, determine the correct shift-extend type for
409   /// that instruction.
410   ///
411   /// If the instruction is going to be used in a load or store, pass
412   /// \p IsLoadStore = true.
413   AArch64_AM::ShiftExtendType
414   getExtendTypeForInst(MachineInstr &MI, MachineRegisterInfo &MRI,
415                        bool IsLoadStore = false) const;
416 
417   /// Move \p Reg to \p RC if \p Reg is not already on \p RC.
418   ///
419   /// \returns Either \p Reg if no change was necessary, or the new register
420   /// created by moving \p Reg.
421   ///
422   /// Note: This uses emitCopy right now.
423   Register moveScalarRegClass(Register Reg, const TargetRegisterClass &RC,
424                               MachineIRBuilder &MIB) const;
425 
426   ComplexRendererFns selectArithExtendedRegister(MachineOperand &Root) const;
427 
428   void renderTruncImm(MachineInstrBuilder &MIB, const MachineInstr &MI,
429                       int OpIdx = -1) const;
430   void renderLogicalImm32(MachineInstrBuilder &MIB, const MachineInstr &I,
431                           int OpIdx = -1) const;
432   void renderLogicalImm64(MachineInstrBuilder &MIB, const MachineInstr &I,
433                           int OpIdx = -1) const;
434   void renderFPImm16(MachineInstrBuilder &MIB, const MachineInstr &MI,
435                      int OpIdx = -1) const;
436   void renderFPImm32(MachineInstrBuilder &MIB, const MachineInstr &MI,
437                      int OpIdx = -1) const;
438   void renderFPImm64(MachineInstrBuilder &MIB, const MachineInstr &MI,
439                      int OpIdx = -1) const;
440   void renderFPImm32SIMDModImmType4(MachineInstrBuilder &MIB,
441                                     const MachineInstr &MI,
442                                     int OpIdx = -1) const;
443 
444   // Materialize a GlobalValue or BlockAddress using a movz+movk sequence.
445   void materializeLargeCMVal(MachineInstr &I, const Value *V, unsigned OpFlags);
446 
447   // Optimization methods.
448   bool tryOptSelect(GSelect &Sel);
449   bool tryOptSelectConjunction(GSelect &Sel, MachineInstr &CondMI);
450   MachineInstr *tryFoldIntegerCompare(MachineOperand &LHS, MachineOperand &RHS,
451                                       MachineOperand &Predicate,
452                                       MachineIRBuilder &MIRBuilder) const;
453 
454   /// Return true if \p MI is a load or store of \p NumBytes bytes.
455   bool isLoadStoreOfNumBytes(const MachineInstr &MI, unsigned NumBytes) const;
456 
457   /// Returns true if \p MI is guaranteed to have the high-half of a 64-bit
458   /// register zeroed out. In other words, the result of MI has been explicitly
459   /// zero extended.
460   bool isDef32(const MachineInstr &MI) const;
461 
462   const AArch64TargetMachine &TM;
463   const AArch64Subtarget &STI;
464   const AArch64InstrInfo &TII;
465   const AArch64RegisterInfo &TRI;
466   const AArch64RegisterBankInfo &RBI;
467 
468   bool ProduceNonFlagSettingCondBr = false;
469 
470   // Some cached values used during selection.
471   // We use LR as a live-in register, and we keep track of it here as it can be
472   // clobbered by calls.
473   Register MFReturnAddr;
474 
475   MachineIRBuilder MIB;
476 
477 #define GET_GLOBALISEL_PREDICATES_DECL
478 #include "AArch64GenGlobalISel.inc"
479 #undef GET_GLOBALISEL_PREDICATES_DECL
480 
481 // We declare the temporaries used by selectImpl() in the class to minimize the
482 // cost of constructing placeholder values.
483 #define GET_GLOBALISEL_TEMPORARIES_DECL
484 #include "AArch64GenGlobalISel.inc"
485 #undef GET_GLOBALISEL_TEMPORARIES_DECL
486 };
487 
488 } // end anonymous namespace
489 
490 #define GET_GLOBALISEL_IMPL
491 #include "AArch64GenGlobalISel.inc"
492 #undef GET_GLOBALISEL_IMPL
493 
494 AArch64InstructionSelector::AArch64InstructionSelector(
495     const AArch64TargetMachine &TM, const AArch64Subtarget &STI,
496     const AArch64RegisterBankInfo &RBI)
497     : TM(TM), STI(STI), TII(*STI.getInstrInfo()), TRI(*STI.getRegisterInfo()),
498       RBI(RBI),
499 #define GET_GLOBALISEL_PREDICATES_INIT
500 #include "AArch64GenGlobalISel.inc"
501 #undef GET_GLOBALISEL_PREDICATES_INIT
502 #define GET_GLOBALISEL_TEMPORARIES_INIT
503 #include "AArch64GenGlobalISel.inc"
504 #undef GET_GLOBALISEL_TEMPORARIES_INIT
505 {
506 }
507 
508 // FIXME: This should be target-independent, inferred from the types declared
509 // for each class in the bank.
510 //
511 /// Given a register bank, and a type, return the smallest register class that
512 /// can represent that combination.
513 static const TargetRegisterClass *
514 getRegClassForTypeOnBank(LLT Ty, const RegisterBank &RB,
515                          bool GetAllRegSet = false) {
516   if (RB.getID() == AArch64::GPRRegBankID) {
517     if (Ty.getSizeInBits() <= 32)
518       return GetAllRegSet ? &AArch64::GPR32allRegClass
519                           : &AArch64::GPR32RegClass;
520     if (Ty.getSizeInBits() == 64)
521       return GetAllRegSet ? &AArch64::GPR64allRegClass
522                           : &AArch64::GPR64RegClass;
523     if (Ty.getSizeInBits() == 128)
524       return &AArch64::XSeqPairsClassRegClass;
525     return nullptr;
526   }
527 
528   if (RB.getID() == AArch64::FPRRegBankID) {
529     switch (Ty.getSizeInBits()) {
530     case 8:
531       return &AArch64::FPR8RegClass;
532     case 16:
533       return &AArch64::FPR16RegClass;
534     case 32:
535       return &AArch64::FPR32RegClass;
536     case 64:
537       return &AArch64::FPR64RegClass;
538     case 128:
539       return &AArch64::FPR128RegClass;
540     }
541     return nullptr;
542   }
543 
544   return nullptr;
545 }
546 
547 /// Given a register bank, and size in bits, return the smallest register class
548 /// that can represent that combination.
549 static const TargetRegisterClass *
550 getMinClassForRegBank(const RegisterBank &RB, unsigned SizeInBits,
551                       bool GetAllRegSet = false) {
552   unsigned RegBankID = RB.getID();
553 
554   if (RegBankID == AArch64::GPRRegBankID) {
555     if (SizeInBits <= 32)
556       return GetAllRegSet ? &AArch64::GPR32allRegClass
557                           : &AArch64::GPR32RegClass;
558     if (SizeInBits == 64)
559       return GetAllRegSet ? &AArch64::GPR64allRegClass
560                           : &AArch64::GPR64RegClass;
561     if (SizeInBits == 128)
562       return &AArch64::XSeqPairsClassRegClass;
563   }
564 
565   if (RegBankID == AArch64::FPRRegBankID) {
566     switch (SizeInBits) {
567     default:
568       return nullptr;
569     case 8:
570       return &AArch64::FPR8RegClass;
571     case 16:
572       return &AArch64::FPR16RegClass;
573     case 32:
574       return &AArch64::FPR32RegClass;
575     case 64:
576       return &AArch64::FPR64RegClass;
577     case 128:
578       return &AArch64::FPR128RegClass;
579     }
580   }
581 
582   return nullptr;
583 }
584 
585 /// Returns the correct subregister to use for a given register class.
586 static bool getSubRegForClass(const TargetRegisterClass *RC,
587                               const TargetRegisterInfo &TRI, unsigned &SubReg) {
588   switch (TRI.getRegSizeInBits(*RC)) {
589   case 8:
590     SubReg = AArch64::bsub;
591     break;
592   case 16:
593     SubReg = AArch64::hsub;
594     break;
595   case 32:
596     if (RC != &AArch64::FPR32RegClass)
597       SubReg = AArch64::sub_32;
598     else
599       SubReg = AArch64::ssub;
600     break;
601   case 64:
602     SubReg = AArch64::dsub;
603     break;
604   default:
605     LLVM_DEBUG(
606         dbgs() << "Couldn't find appropriate subregister for register class.");
607     return false;
608   }
609 
610   return true;
611 }
612 
613 /// Returns the minimum size the given register bank can hold.
614 static unsigned getMinSizeForRegBank(const RegisterBank &RB) {
615   switch (RB.getID()) {
616   case AArch64::GPRRegBankID:
617     return 32;
618   case AArch64::FPRRegBankID:
619     return 8;
620   default:
621     llvm_unreachable("Tried to get minimum size for unknown register bank.");
622   }
623 }
624 
625 /// Create a REG_SEQUENCE instruction using the registers in \p Regs.
626 /// Helper function for functions like createDTuple and createQTuple.
627 ///
628 /// \p RegClassIDs - The list of register class IDs available for some tuple of
629 /// a scalar class. E.g. QQRegClassID, QQQRegClassID, QQQQRegClassID. This is
630 /// expected to contain between 2 and 4 tuple classes.
631 ///
632 /// \p SubRegs - The list of subregister classes associated with each register
633 /// class ID in \p RegClassIDs. E.g., QQRegClassID should use the qsub0
634 /// subregister class. The index of each subregister class is expected to
635 /// correspond with the index of each register class.
636 ///
637 /// \returns Either the destination register of REG_SEQUENCE instruction that
638 /// was created, or the 0th element of \p Regs if \p Regs contains a single
639 /// element.
640 static Register createTuple(ArrayRef<Register> Regs,
641                             const unsigned RegClassIDs[],
642                             const unsigned SubRegs[], MachineIRBuilder &MIB) {
643   unsigned NumRegs = Regs.size();
644   if (NumRegs == 1)
645     return Regs[0];
646   assert(NumRegs >= 2 && NumRegs <= 4 &&
647          "Only support between two and 4 registers in a tuple!");
648   const TargetRegisterInfo *TRI = MIB.getMF().getSubtarget().getRegisterInfo();
649   auto *DesiredClass = TRI->getRegClass(RegClassIDs[NumRegs - 2]);
650   auto RegSequence =
651       MIB.buildInstr(TargetOpcode::REG_SEQUENCE, {DesiredClass}, {});
652   for (unsigned I = 0, E = Regs.size(); I < E; ++I) {
653     RegSequence.addUse(Regs[I]);
654     RegSequence.addImm(SubRegs[I]);
655   }
656   return RegSequence.getReg(0);
657 }
658 
659 /// Create a tuple of D-registers using the registers in \p Regs.
660 static Register createDTuple(ArrayRef<Register> Regs, MachineIRBuilder &MIB) {
661   static const unsigned RegClassIDs[] = {
662       AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
663   static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
664                                      AArch64::dsub2, AArch64::dsub3};
665   return createTuple(Regs, RegClassIDs, SubRegs, MIB);
666 }
667 
668 /// Create a tuple of Q-registers using the registers in \p Regs.
669 static Register createQTuple(ArrayRef<Register> Regs, MachineIRBuilder &MIB) {
670   static const unsigned RegClassIDs[] = {
671       AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
672   static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
673                                      AArch64::qsub2, AArch64::qsub3};
674   return createTuple(Regs, RegClassIDs, SubRegs, MIB);
675 }
676 
677 static std::optional<uint64_t> getImmedFromMO(const MachineOperand &Root) {
678   auto &MI = *Root.getParent();
679   auto &MBB = *MI.getParent();
680   auto &MF = *MBB.getParent();
681   auto &MRI = MF.getRegInfo();
682   uint64_t Immed;
683   if (Root.isImm())
684     Immed = Root.getImm();
685   else if (Root.isCImm())
686     Immed = Root.getCImm()->getZExtValue();
687   else if (Root.isReg()) {
688     auto ValAndVReg =
689         getIConstantVRegValWithLookThrough(Root.getReg(), MRI, true);
690     if (!ValAndVReg)
691       return std::nullopt;
692     Immed = ValAndVReg->Value.getSExtValue();
693   } else
694     return std::nullopt;
695   return Immed;
696 }
697 
698 /// Check whether \p I is a currently unsupported binary operation:
699 /// - it has an unsized type
700 /// - an operand is not a vreg
701 /// - all operands are not in the same bank
702 /// These are checks that should someday live in the verifier, but right now,
703 /// these are mostly limitations of the aarch64 selector.
704 static bool unsupportedBinOp(const MachineInstr &I,
705                              const AArch64RegisterBankInfo &RBI,
706                              const MachineRegisterInfo &MRI,
707                              const AArch64RegisterInfo &TRI) {
708   LLT Ty = MRI.getType(I.getOperand(0).getReg());
709   if (!Ty.isValid()) {
710     LLVM_DEBUG(dbgs() << "Generic binop register should be typed\n");
711     return true;
712   }
713 
714   const RegisterBank *PrevOpBank = nullptr;
715   for (auto &MO : I.operands()) {
716     // FIXME: Support non-register operands.
717     if (!MO.isReg()) {
718       LLVM_DEBUG(dbgs() << "Generic inst non-reg operands are unsupported\n");
719       return true;
720     }
721 
722     // FIXME: Can generic operations have physical registers operands? If
723     // so, this will need to be taught about that, and we'll need to get the
724     // bank out of the minimal class for the register.
725     // Either way, this needs to be documented (and possibly verified).
726     if (!MO.getReg().isVirtual()) {
727       LLVM_DEBUG(dbgs() << "Generic inst has physical register operand\n");
728       return true;
729     }
730 
731     const RegisterBank *OpBank = RBI.getRegBank(MO.getReg(), MRI, TRI);
732     if (!OpBank) {
733       LLVM_DEBUG(dbgs() << "Generic register has no bank or class\n");
734       return true;
735     }
736 
737     if (PrevOpBank && OpBank != PrevOpBank) {
738       LLVM_DEBUG(dbgs() << "Generic inst operands have different banks\n");
739       return true;
740     }
741     PrevOpBank = OpBank;
742   }
743   return false;
744 }
745 
746 /// Select the AArch64 opcode for the basic binary operation \p GenericOpc
747 /// (such as G_OR or G_SDIV), appropriate for the register bank \p RegBankID
748 /// and of size \p OpSize.
749 /// \returns \p GenericOpc if the combination is unsupported.
750 static unsigned selectBinaryOp(unsigned GenericOpc, unsigned RegBankID,
751                                unsigned OpSize) {
752   switch (RegBankID) {
753   case AArch64::GPRRegBankID:
754     if (OpSize == 32) {
755       switch (GenericOpc) {
756       case TargetOpcode::G_SHL:
757         return AArch64::LSLVWr;
758       case TargetOpcode::G_LSHR:
759         return AArch64::LSRVWr;
760       case TargetOpcode::G_ASHR:
761         return AArch64::ASRVWr;
762       default:
763         return GenericOpc;
764       }
765     } else if (OpSize == 64) {
766       switch (GenericOpc) {
767       case TargetOpcode::G_PTR_ADD:
768         return AArch64::ADDXrr;
769       case TargetOpcode::G_SHL:
770         return AArch64::LSLVXr;
771       case TargetOpcode::G_LSHR:
772         return AArch64::LSRVXr;
773       case TargetOpcode::G_ASHR:
774         return AArch64::ASRVXr;
775       default:
776         return GenericOpc;
777       }
778     }
779     break;
780   case AArch64::FPRRegBankID:
781     switch (OpSize) {
782     case 32:
783       switch (GenericOpc) {
784       case TargetOpcode::G_FADD:
785         return AArch64::FADDSrr;
786       case TargetOpcode::G_FSUB:
787         return AArch64::FSUBSrr;
788       case TargetOpcode::G_FMUL:
789         return AArch64::FMULSrr;
790       case TargetOpcode::G_FDIV:
791         return AArch64::FDIVSrr;
792       default:
793         return GenericOpc;
794       }
795     case 64:
796       switch (GenericOpc) {
797       case TargetOpcode::G_FADD:
798         return AArch64::FADDDrr;
799       case TargetOpcode::G_FSUB:
800         return AArch64::FSUBDrr;
801       case TargetOpcode::G_FMUL:
802         return AArch64::FMULDrr;
803       case TargetOpcode::G_FDIV:
804         return AArch64::FDIVDrr;
805       case TargetOpcode::G_OR:
806         return AArch64::ORRv8i8;
807       default:
808         return GenericOpc;
809       }
810     }
811     break;
812   }
813   return GenericOpc;
814 }
815 
816 /// Select the AArch64 opcode for the G_LOAD or G_STORE operation \p GenericOpc,
817 /// appropriate for the (value) register bank \p RegBankID and of memory access
818 /// size \p OpSize.  This returns the variant with the base+unsigned-immediate
819 /// addressing mode (e.g., LDRXui).
820 /// \returns \p GenericOpc if the combination is unsupported.
821 static unsigned selectLoadStoreUIOp(unsigned GenericOpc, unsigned RegBankID,
822                                     unsigned OpSize) {
823   const bool isStore = GenericOpc == TargetOpcode::G_STORE;
824   switch (RegBankID) {
825   case AArch64::GPRRegBankID:
826     switch (OpSize) {
827     case 8:
828       return isStore ? AArch64::STRBBui : AArch64::LDRBBui;
829     case 16:
830       return isStore ? AArch64::STRHHui : AArch64::LDRHHui;
831     case 32:
832       return isStore ? AArch64::STRWui : AArch64::LDRWui;
833     case 64:
834       return isStore ? AArch64::STRXui : AArch64::LDRXui;
835     }
836     break;
837   case AArch64::FPRRegBankID:
838     switch (OpSize) {
839     case 8:
840       return isStore ? AArch64::STRBui : AArch64::LDRBui;
841     case 16:
842       return isStore ? AArch64::STRHui : AArch64::LDRHui;
843     case 32:
844       return isStore ? AArch64::STRSui : AArch64::LDRSui;
845     case 64:
846       return isStore ? AArch64::STRDui : AArch64::LDRDui;
847     case 128:
848       return isStore ? AArch64::STRQui : AArch64::LDRQui;
849     }
850     break;
851   }
852   return GenericOpc;
853 }
854 
855 /// Helper function for selectCopy. Inserts a subregister copy from \p SrcReg
856 /// to \p *To.
857 ///
858 /// E.g "To = COPY SrcReg:SubReg"
859 static bool copySubReg(MachineInstr &I, MachineRegisterInfo &MRI,
860                        const RegisterBankInfo &RBI, Register SrcReg,
861                        const TargetRegisterClass *To, unsigned SubReg) {
862   assert(SrcReg.isValid() && "Expected a valid source register?");
863   assert(To && "Destination register class cannot be null");
864   assert(SubReg && "Expected a valid subregister");
865 
866   MachineIRBuilder MIB(I);
867   auto SubRegCopy =
868       MIB.buildInstr(TargetOpcode::COPY, {To}, {}).addReg(SrcReg, 0, SubReg);
869   MachineOperand &RegOp = I.getOperand(1);
870   RegOp.setReg(SubRegCopy.getReg(0));
871 
872   // It's possible that the destination register won't be constrained. Make
873   // sure that happens.
874   if (!I.getOperand(0).getReg().isPhysical())
875     RBI.constrainGenericRegister(I.getOperand(0).getReg(), *To, MRI);
876 
877   return true;
878 }
879 
880 /// Helper function to get the source and destination register classes for a
881 /// copy. Returns a std::pair containing the source register class for the
882 /// copy, and the destination register class for the copy. If a register class
883 /// cannot be determined, then it will be nullptr.
884 static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
885 getRegClassesForCopy(MachineInstr &I, const TargetInstrInfo &TII,
886                      MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
887                      const RegisterBankInfo &RBI) {
888   Register DstReg = I.getOperand(0).getReg();
889   Register SrcReg = I.getOperand(1).getReg();
890   const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
891   const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
892   unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
893   unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
894 
895   // Special casing for cross-bank copies of s1s. We can technically represent
896   // a 1-bit value with any size of register. The minimum size for a GPR is 32
897   // bits. So, we need to put the FPR on 32 bits as well.
898   //
899   // FIXME: I'm not sure if this case holds true outside of copies. If it does,
900   // then we can pull it into the helpers that get the appropriate class for a
901   // register bank. Or make a new helper that carries along some constraint
902   // information.
903   if (SrcRegBank != DstRegBank && (DstSize == 1 && SrcSize == 1))
904     SrcSize = DstSize = 32;
905 
906   return {getMinClassForRegBank(SrcRegBank, SrcSize, true),
907           getMinClassForRegBank(DstRegBank, DstSize, true)};
908 }
909 
910 // FIXME: We need some sort of API in RBI/TRI to allow generic code to
911 // constrain operands of simple instructions given a TargetRegisterClass
912 // and LLT
913 static bool selectDebugInstr(MachineInstr &I, MachineRegisterInfo &MRI,
914                              const RegisterBankInfo &RBI) {
915   for (MachineOperand &MO : I.operands()) {
916     if (!MO.isReg())
917       continue;
918     Register Reg = MO.getReg();
919     if (!Reg)
920       continue;
921     if (Reg.isPhysical())
922       continue;
923     LLT Ty = MRI.getType(Reg);
924     const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
925     const TargetRegisterClass *RC =
926         RegClassOrBank.dyn_cast<const TargetRegisterClass *>();
927     if (!RC) {
928       const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>();
929       RC = getRegClassForTypeOnBank(Ty, RB);
930       if (!RC) {
931         LLVM_DEBUG(
932             dbgs() << "Warning: DBG_VALUE operand has unexpected size/bank\n");
933         break;
934       }
935     }
936     RBI.constrainGenericRegister(Reg, *RC, MRI);
937   }
938 
939   return true;
940 }
941 
942 static bool selectCopy(MachineInstr &I, const TargetInstrInfo &TII,
943                        MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
944                        const RegisterBankInfo &RBI) {
945   Register DstReg = I.getOperand(0).getReg();
946   Register SrcReg = I.getOperand(1).getReg();
947   const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
948   const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
949 
950   // Find the correct register classes for the source and destination registers.
951   const TargetRegisterClass *SrcRC;
952   const TargetRegisterClass *DstRC;
953   std::tie(SrcRC, DstRC) = getRegClassesForCopy(I, TII, MRI, TRI, RBI);
954 
955   if (!DstRC) {
956     LLVM_DEBUG(dbgs() << "Unexpected dest size "
957                       << RBI.getSizeInBits(DstReg, MRI, TRI) << '\n');
958     return false;
959   }
960 
961   // Is this a copy? If so, then we may need to insert a subregister copy.
962   if (I.isCopy()) {
963     // Yes. Check if there's anything to fix up.
964     if (!SrcRC) {
965       LLVM_DEBUG(dbgs() << "Couldn't determine source register class\n");
966       return false;
967     }
968 
969     unsigned SrcSize = TRI.getRegSizeInBits(*SrcRC);
970     unsigned DstSize = TRI.getRegSizeInBits(*DstRC);
971     unsigned SubReg;
972 
973     // If the source bank doesn't support a subregister copy small enough,
974     // then we first need to copy to the destination bank.
975     if (getMinSizeForRegBank(SrcRegBank) > DstSize) {
976       const TargetRegisterClass *DstTempRC =
977           getMinClassForRegBank(DstRegBank, SrcSize, /* GetAllRegSet */ true);
978       getSubRegForClass(DstRC, TRI, SubReg);
979 
980       MachineIRBuilder MIB(I);
981       auto Copy = MIB.buildCopy({DstTempRC}, {SrcReg});
982       copySubReg(I, MRI, RBI, Copy.getReg(0), DstRC, SubReg);
983     } else if (SrcSize > DstSize) {
984       // If the source register is bigger than the destination we need to
985       // perform a subregister copy.
986       const TargetRegisterClass *SubRegRC =
987           getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true);
988       getSubRegForClass(SubRegRC, TRI, SubReg);
989       copySubReg(I, MRI, RBI, SrcReg, DstRC, SubReg);
990     } else if (DstSize > SrcSize) {
991       // If the destination register is bigger than the source we need to do
992       // a promotion using SUBREG_TO_REG.
993       const TargetRegisterClass *PromotionRC =
994           getMinClassForRegBank(SrcRegBank, DstSize, /* GetAllRegSet */ true);
995       getSubRegForClass(SrcRC, TRI, SubReg);
996 
997       Register PromoteReg = MRI.createVirtualRegister(PromotionRC);
998       BuildMI(*I.getParent(), I, I.getDebugLoc(),
999               TII.get(AArch64::SUBREG_TO_REG), PromoteReg)
1000           .addImm(0)
1001           .addUse(SrcReg)
1002           .addImm(SubReg);
1003       MachineOperand &RegOp = I.getOperand(1);
1004       RegOp.setReg(PromoteReg);
1005     }
1006 
1007     // If the destination is a physical register, then there's nothing to
1008     // change, so we're done.
1009     if (DstReg.isPhysical())
1010       return true;
1011   }
1012 
1013   // No need to constrain SrcReg. It will get constrained when we hit another
1014   // of its use or its defs. Copies do not have constraints.
1015   if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
1016     LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
1017                       << " operand\n");
1018     return false;
1019   }
1020 
1021   // If this a GPR ZEXT that we want to just reduce down into a copy.
1022   // The sizes will be mismatched with the source < 32b but that's ok.
1023   if (I.getOpcode() == TargetOpcode::G_ZEXT) {
1024     I.setDesc(TII.get(AArch64::COPY));
1025     assert(SrcRegBank.getID() == AArch64::GPRRegBankID);
1026     return selectCopy(I, TII, MRI, TRI, RBI);
1027   }
1028 
1029   I.setDesc(TII.get(AArch64::COPY));
1030   return true;
1031 }
1032 
1033 static unsigned selectFPConvOpc(unsigned GenericOpc, LLT DstTy, LLT SrcTy) {
1034   if (!DstTy.isScalar() || !SrcTy.isScalar())
1035     return GenericOpc;
1036 
1037   const unsigned DstSize = DstTy.getSizeInBits();
1038   const unsigned SrcSize = SrcTy.getSizeInBits();
1039 
1040   switch (DstSize) {
1041   case 32:
1042     switch (SrcSize) {
1043     case 32:
1044       switch (GenericOpc) {
1045       case TargetOpcode::G_SITOFP:
1046         return AArch64::SCVTFUWSri;
1047       case TargetOpcode::G_UITOFP:
1048         return AArch64::UCVTFUWSri;
1049       case TargetOpcode::G_FPTOSI:
1050         return AArch64::FCVTZSUWSr;
1051       case TargetOpcode::G_FPTOUI:
1052         return AArch64::FCVTZUUWSr;
1053       default:
1054         return GenericOpc;
1055       }
1056     case 64:
1057       switch (GenericOpc) {
1058       case TargetOpcode::G_SITOFP:
1059         return AArch64::SCVTFUXSri;
1060       case TargetOpcode::G_UITOFP:
1061         return AArch64::UCVTFUXSri;
1062       case TargetOpcode::G_FPTOSI:
1063         return AArch64::FCVTZSUWDr;
1064       case TargetOpcode::G_FPTOUI:
1065         return AArch64::FCVTZUUWDr;
1066       default:
1067         return GenericOpc;
1068       }
1069     default:
1070       return GenericOpc;
1071     }
1072   case 64:
1073     switch (SrcSize) {
1074     case 32:
1075       switch (GenericOpc) {
1076       case TargetOpcode::G_SITOFP:
1077         return AArch64::SCVTFUWDri;
1078       case TargetOpcode::G_UITOFP:
1079         return AArch64::UCVTFUWDri;
1080       case TargetOpcode::G_FPTOSI:
1081         return AArch64::FCVTZSUXSr;
1082       case TargetOpcode::G_FPTOUI:
1083         return AArch64::FCVTZUUXSr;
1084       default:
1085         return GenericOpc;
1086       }
1087     case 64:
1088       switch (GenericOpc) {
1089       case TargetOpcode::G_SITOFP:
1090         return AArch64::SCVTFUXDri;
1091       case TargetOpcode::G_UITOFP:
1092         return AArch64::UCVTFUXDri;
1093       case TargetOpcode::G_FPTOSI:
1094         return AArch64::FCVTZSUXDr;
1095       case TargetOpcode::G_FPTOUI:
1096         return AArch64::FCVTZUUXDr;
1097       default:
1098         return GenericOpc;
1099       }
1100     default:
1101       return GenericOpc;
1102     }
1103   default:
1104     return GenericOpc;
1105   };
1106   return GenericOpc;
1107 }
1108 
1109 MachineInstr *
1110 AArch64InstructionSelector::emitSelect(Register Dst, Register True,
1111                                        Register False, AArch64CC::CondCode CC,
1112                                        MachineIRBuilder &MIB) const {
1113   MachineRegisterInfo &MRI = *MIB.getMRI();
1114   assert(RBI.getRegBank(False, MRI, TRI)->getID() ==
1115              RBI.getRegBank(True, MRI, TRI)->getID() &&
1116          "Expected both select operands to have the same regbank?");
1117   LLT Ty = MRI.getType(True);
1118   if (Ty.isVector())
1119     return nullptr;
1120   const unsigned Size = Ty.getSizeInBits();
1121   assert((Size == 32 || Size == 64) &&
1122          "Expected 32 bit or 64 bit select only?");
1123   const bool Is32Bit = Size == 32;
1124   if (RBI.getRegBank(True, MRI, TRI)->getID() != AArch64::GPRRegBankID) {
1125     unsigned Opc = Is32Bit ? AArch64::FCSELSrrr : AArch64::FCSELDrrr;
1126     auto FCSel = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC);
1127     constrainSelectedInstRegOperands(*FCSel, TII, TRI, RBI);
1128     return &*FCSel;
1129   }
1130 
1131   // By default, we'll try and emit a CSEL.
1132   unsigned Opc = Is32Bit ? AArch64::CSELWr : AArch64::CSELXr;
1133   bool Optimized = false;
1134   auto TryFoldBinOpIntoSelect = [&Opc, Is32Bit, &CC, &MRI,
1135                                  &Optimized](Register &Reg, Register &OtherReg,
1136                                              bool Invert) {
1137     if (Optimized)
1138       return false;
1139 
1140     // Attempt to fold:
1141     //
1142     // %sub = G_SUB 0, %x
1143     // %select = G_SELECT cc, %reg, %sub
1144     //
1145     // Into:
1146     // %select = CSNEG %reg, %x, cc
1147     Register MatchReg;
1148     if (mi_match(Reg, MRI, m_Neg(m_Reg(MatchReg)))) {
1149       Opc = Is32Bit ? AArch64::CSNEGWr : AArch64::CSNEGXr;
1150       Reg = MatchReg;
1151       if (Invert) {
1152         CC = AArch64CC::getInvertedCondCode(CC);
1153         std::swap(Reg, OtherReg);
1154       }
1155       return true;
1156     }
1157 
1158     // Attempt to fold:
1159     //
1160     // %xor = G_XOR %x, -1
1161     // %select = G_SELECT cc, %reg, %xor
1162     //
1163     // Into:
1164     // %select = CSINV %reg, %x, cc
1165     if (mi_match(Reg, MRI, m_Not(m_Reg(MatchReg)))) {
1166       Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1167       Reg = MatchReg;
1168       if (Invert) {
1169         CC = AArch64CC::getInvertedCondCode(CC);
1170         std::swap(Reg, OtherReg);
1171       }
1172       return true;
1173     }
1174 
1175     // Attempt to fold:
1176     //
1177     // %add = G_ADD %x, 1
1178     // %select = G_SELECT cc, %reg, %add
1179     //
1180     // Into:
1181     // %select = CSINC %reg, %x, cc
1182     if (mi_match(Reg, MRI,
1183                  m_any_of(m_GAdd(m_Reg(MatchReg), m_SpecificICst(1)),
1184                           m_GPtrAdd(m_Reg(MatchReg), m_SpecificICst(1))))) {
1185       Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1186       Reg = MatchReg;
1187       if (Invert) {
1188         CC = AArch64CC::getInvertedCondCode(CC);
1189         std::swap(Reg, OtherReg);
1190       }
1191       return true;
1192     }
1193 
1194     return false;
1195   };
1196 
1197   // Helper lambda which tries to use CSINC/CSINV for the instruction when its
1198   // true/false values are constants.
1199   // FIXME: All of these patterns already exist in tablegen. We should be
1200   // able to import these.
1201   auto TryOptSelectCst = [&Opc, &True, &False, &CC, Is32Bit, &MRI,
1202                           &Optimized]() {
1203     if (Optimized)
1204       return false;
1205     auto TrueCst = getIConstantVRegValWithLookThrough(True, MRI);
1206     auto FalseCst = getIConstantVRegValWithLookThrough(False, MRI);
1207     if (!TrueCst && !FalseCst)
1208       return false;
1209 
1210     Register ZReg = Is32Bit ? AArch64::WZR : AArch64::XZR;
1211     if (TrueCst && FalseCst) {
1212       int64_t T = TrueCst->Value.getSExtValue();
1213       int64_t F = FalseCst->Value.getSExtValue();
1214 
1215       if (T == 0 && F == 1) {
1216         // G_SELECT cc, 0, 1 -> CSINC zreg, zreg, cc
1217         Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1218         True = ZReg;
1219         False = ZReg;
1220         return true;
1221       }
1222 
1223       if (T == 0 && F == -1) {
1224         // G_SELECT cc 0, -1 -> CSINV zreg, zreg cc
1225         Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1226         True = ZReg;
1227         False = ZReg;
1228         return true;
1229       }
1230     }
1231 
1232     if (TrueCst) {
1233       int64_t T = TrueCst->Value.getSExtValue();
1234       if (T == 1) {
1235         // G_SELECT cc, 1, f -> CSINC f, zreg, inv_cc
1236         Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1237         True = False;
1238         False = ZReg;
1239         CC = AArch64CC::getInvertedCondCode(CC);
1240         return true;
1241       }
1242 
1243       if (T == -1) {
1244         // G_SELECT cc, -1, f -> CSINV f, zreg, inv_cc
1245         Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1246         True = False;
1247         False = ZReg;
1248         CC = AArch64CC::getInvertedCondCode(CC);
1249         return true;
1250       }
1251     }
1252 
1253     if (FalseCst) {
1254       int64_t F = FalseCst->Value.getSExtValue();
1255       if (F == 1) {
1256         // G_SELECT cc, t, 1 -> CSINC t, zreg, cc
1257         Opc = Is32Bit ? AArch64::CSINCWr : AArch64::CSINCXr;
1258         False = ZReg;
1259         return true;
1260       }
1261 
1262       if (F == -1) {
1263         // G_SELECT cc, t, -1 -> CSINC t, zreg, cc
1264         Opc = Is32Bit ? AArch64::CSINVWr : AArch64::CSINVXr;
1265         False = ZReg;
1266         return true;
1267       }
1268     }
1269     return false;
1270   };
1271 
1272   Optimized |= TryFoldBinOpIntoSelect(False, True, /*Invert = */ false);
1273   Optimized |= TryFoldBinOpIntoSelect(True, False, /*Invert = */ true);
1274   Optimized |= TryOptSelectCst();
1275   auto SelectInst = MIB.buildInstr(Opc, {Dst}, {True, False}).addImm(CC);
1276   constrainSelectedInstRegOperands(*SelectInst, TII, TRI, RBI);
1277   return &*SelectInst;
1278 }
1279 
1280 static AArch64CC::CondCode changeICMPPredToAArch64CC(CmpInst::Predicate P) {
1281   switch (P) {
1282   default:
1283     llvm_unreachable("Unknown condition code!");
1284   case CmpInst::ICMP_NE:
1285     return AArch64CC::NE;
1286   case CmpInst::ICMP_EQ:
1287     return AArch64CC::EQ;
1288   case CmpInst::ICMP_SGT:
1289     return AArch64CC::GT;
1290   case CmpInst::ICMP_SGE:
1291     return AArch64CC::GE;
1292   case CmpInst::ICMP_SLT:
1293     return AArch64CC::LT;
1294   case CmpInst::ICMP_SLE:
1295     return AArch64CC::LE;
1296   case CmpInst::ICMP_UGT:
1297     return AArch64CC::HI;
1298   case CmpInst::ICMP_UGE:
1299     return AArch64CC::HS;
1300   case CmpInst::ICMP_ULT:
1301     return AArch64CC::LO;
1302   case CmpInst::ICMP_ULE:
1303     return AArch64CC::LS;
1304   }
1305 }
1306 
1307 /// changeFPCCToORAArch64CC - Convert an IR fp condition code to an AArch64 CC.
1308 static void changeFPCCToORAArch64CC(CmpInst::Predicate CC,
1309                                     AArch64CC::CondCode &CondCode,
1310                                     AArch64CC::CondCode &CondCode2) {
1311   CondCode2 = AArch64CC::AL;
1312   switch (CC) {
1313   default:
1314     llvm_unreachable("Unknown FP condition!");
1315   case CmpInst::FCMP_OEQ:
1316     CondCode = AArch64CC::EQ;
1317     break;
1318   case CmpInst::FCMP_OGT:
1319     CondCode = AArch64CC::GT;
1320     break;
1321   case CmpInst::FCMP_OGE:
1322     CondCode = AArch64CC::GE;
1323     break;
1324   case CmpInst::FCMP_OLT:
1325     CondCode = AArch64CC::MI;
1326     break;
1327   case CmpInst::FCMP_OLE:
1328     CondCode = AArch64CC::LS;
1329     break;
1330   case CmpInst::FCMP_ONE:
1331     CondCode = AArch64CC::MI;
1332     CondCode2 = AArch64CC::GT;
1333     break;
1334   case CmpInst::FCMP_ORD:
1335     CondCode = AArch64CC::VC;
1336     break;
1337   case CmpInst::FCMP_UNO:
1338     CondCode = AArch64CC::VS;
1339     break;
1340   case CmpInst::FCMP_UEQ:
1341     CondCode = AArch64CC::EQ;
1342     CondCode2 = AArch64CC::VS;
1343     break;
1344   case CmpInst::FCMP_UGT:
1345     CondCode = AArch64CC::HI;
1346     break;
1347   case CmpInst::FCMP_UGE:
1348     CondCode = AArch64CC::PL;
1349     break;
1350   case CmpInst::FCMP_ULT:
1351     CondCode = AArch64CC::LT;
1352     break;
1353   case CmpInst::FCMP_ULE:
1354     CondCode = AArch64CC::LE;
1355     break;
1356   case CmpInst::FCMP_UNE:
1357     CondCode = AArch64CC::NE;
1358     break;
1359   }
1360 }
1361 
1362 /// Convert an IR fp condition code to an AArch64 CC.
1363 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1364 /// should be AND'ed instead of OR'ed.
1365 static void changeFPCCToANDAArch64CC(CmpInst::Predicate CC,
1366                                      AArch64CC::CondCode &CondCode,
1367                                      AArch64CC::CondCode &CondCode2) {
1368   CondCode2 = AArch64CC::AL;
1369   switch (CC) {
1370   default:
1371     changeFPCCToORAArch64CC(CC, CondCode, CondCode2);
1372     assert(CondCode2 == AArch64CC::AL);
1373     break;
1374   case CmpInst::FCMP_ONE:
1375     // (a one b)
1376     // == ((a olt b) || (a ogt b))
1377     // == ((a ord b) && (a une b))
1378     CondCode = AArch64CC::VC;
1379     CondCode2 = AArch64CC::NE;
1380     break;
1381   case CmpInst::FCMP_UEQ:
1382     // (a ueq b)
1383     // == ((a uno b) || (a oeq b))
1384     // == ((a ule b) && (a uge b))
1385     CondCode = AArch64CC::PL;
1386     CondCode2 = AArch64CC::LE;
1387     break;
1388   }
1389 }
1390 
1391 /// Return a register which can be used as a bit to test in a TB(N)Z.
1392 static Register getTestBitReg(Register Reg, uint64_t &Bit, bool &Invert,
1393                               MachineRegisterInfo &MRI) {
1394   assert(Reg.isValid() && "Expected valid register!");
1395   bool HasZext = false;
1396   while (MachineInstr *MI = getDefIgnoringCopies(Reg, MRI)) {
1397     unsigned Opc = MI->getOpcode();
1398 
1399     if (!MI->getOperand(0).isReg() ||
1400         !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1401       break;
1402 
1403     // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
1404     //
1405     // (tbz (trunc x), b) -> (tbz x, b) is always safe, because the bit number
1406     // on the truncated x is the same as the bit number on x.
1407     if (Opc == TargetOpcode::G_ANYEXT || Opc == TargetOpcode::G_ZEXT ||
1408         Opc == TargetOpcode::G_TRUNC) {
1409       if (Opc == TargetOpcode::G_ZEXT)
1410         HasZext = true;
1411 
1412       Register NextReg = MI->getOperand(1).getReg();
1413       // Did we find something worth folding?
1414       if (!NextReg.isValid() || !MRI.hasOneNonDBGUse(NextReg))
1415         break;
1416 
1417       // NextReg is worth folding. Keep looking.
1418       Reg = NextReg;
1419       continue;
1420     }
1421 
1422     // Attempt to find a suitable operation with a constant on one side.
1423     std::optional<uint64_t> C;
1424     Register TestReg;
1425     switch (Opc) {
1426     default:
1427       break;
1428     case TargetOpcode::G_AND:
1429     case TargetOpcode::G_XOR: {
1430       TestReg = MI->getOperand(1).getReg();
1431       Register ConstantReg = MI->getOperand(2).getReg();
1432       auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstantReg, MRI);
1433       if (!VRegAndVal) {
1434         // AND commutes, check the other side for a constant.
1435         // FIXME: Can we canonicalize the constant so that it's always on the
1436         // same side at some point earlier?
1437         std::swap(ConstantReg, TestReg);
1438         VRegAndVal = getIConstantVRegValWithLookThrough(ConstantReg, MRI);
1439       }
1440       if (VRegAndVal) {
1441         if (HasZext)
1442           C = VRegAndVal->Value.getZExtValue();
1443         else
1444           C = VRegAndVal->Value.getSExtValue();
1445       }
1446       break;
1447     }
1448     case TargetOpcode::G_ASHR:
1449     case TargetOpcode::G_LSHR:
1450     case TargetOpcode::G_SHL: {
1451       TestReg = MI->getOperand(1).getReg();
1452       auto VRegAndVal =
1453           getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1454       if (VRegAndVal)
1455         C = VRegAndVal->Value.getSExtValue();
1456       break;
1457     }
1458     }
1459 
1460     // Didn't find a constant or viable register. Bail out of the loop.
1461     if (!C || !TestReg.isValid())
1462       break;
1463 
1464     // We found a suitable instruction with a constant. Check to see if we can
1465     // walk through the instruction.
1466     Register NextReg;
1467     unsigned TestRegSize = MRI.getType(TestReg).getSizeInBits();
1468     switch (Opc) {
1469     default:
1470       break;
1471     case TargetOpcode::G_AND:
1472       // (tbz (and x, m), b) -> (tbz x, b) when the b-th bit of m is set.
1473       if ((*C >> Bit) & 1)
1474         NextReg = TestReg;
1475       break;
1476     case TargetOpcode::G_SHL:
1477       // (tbz (shl x, c), b) -> (tbz x, b-c) when b-c is positive and fits in
1478       // the type of the register.
1479       if (*C <= Bit && (Bit - *C) < TestRegSize) {
1480         NextReg = TestReg;
1481         Bit = Bit - *C;
1482       }
1483       break;
1484     case TargetOpcode::G_ASHR:
1485       // (tbz (ashr x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits
1486       // in x
1487       NextReg = TestReg;
1488       Bit = Bit + *C;
1489       if (Bit >= TestRegSize)
1490         Bit = TestRegSize - 1;
1491       break;
1492     case TargetOpcode::G_LSHR:
1493       // (tbz (lshr x, c), b) -> (tbz x, b+c) when b + c is < # bits in x
1494       if ((Bit + *C) < TestRegSize) {
1495         NextReg = TestReg;
1496         Bit = Bit + *C;
1497       }
1498       break;
1499     case TargetOpcode::G_XOR:
1500       // We can walk through a G_XOR by inverting whether we use tbz/tbnz when
1501       // appropriate.
1502       //
1503       // e.g. If x' = xor x, c, and the b-th bit is set in c then
1504       //
1505       // tbz x', b -> tbnz x, b
1506       //
1507       // Because x' only has the b-th bit set if x does not.
1508       if ((*C >> Bit) & 1)
1509         Invert = !Invert;
1510       NextReg = TestReg;
1511       break;
1512     }
1513 
1514     // Check if we found anything worth folding.
1515     if (!NextReg.isValid())
1516       return Reg;
1517     Reg = NextReg;
1518   }
1519 
1520   return Reg;
1521 }
1522 
1523 MachineInstr *AArch64InstructionSelector::emitTestBit(
1524     Register TestReg, uint64_t Bit, bool IsNegative, MachineBasicBlock *DstMBB,
1525     MachineIRBuilder &MIB) const {
1526   assert(TestReg.isValid());
1527   assert(ProduceNonFlagSettingCondBr &&
1528          "Cannot emit TB(N)Z with speculation tracking!");
1529   MachineRegisterInfo &MRI = *MIB.getMRI();
1530 
1531   // Attempt to optimize the test bit by walking over instructions.
1532   TestReg = getTestBitReg(TestReg, Bit, IsNegative, MRI);
1533   LLT Ty = MRI.getType(TestReg);
1534   unsigned Size = Ty.getSizeInBits();
1535   assert(!Ty.isVector() && "Expected a scalar!");
1536   assert(Bit < 64 && "Bit is too large!");
1537 
1538   // When the test register is a 64-bit register, we have to narrow to make
1539   // TBNZW work.
1540   bool UseWReg = Bit < 32;
1541   unsigned NecessarySize = UseWReg ? 32 : 64;
1542   if (Size != NecessarySize)
1543     TestReg = moveScalarRegClass(
1544         TestReg, UseWReg ? AArch64::GPR32RegClass : AArch64::GPR64RegClass,
1545         MIB);
1546 
1547   static const unsigned OpcTable[2][2] = {{AArch64::TBZX, AArch64::TBNZX},
1548                                           {AArch64::TBZW, AArch64::TBNZW}};
1549   unsigned Opc = OpcTable[UseWReg][IsNegative];
1550   auto TestBitMI =
1551       MIB.buildInstr(Opc).addReg(TestReg).addImm(Bit).addMBB(DstMBB);
1552   constrainSelectedInstRegOperands(*TestBitMI, TII, TRI, RBI);
1553   return &*TestBitMI;
1554 }
1555 
1556 bool AArch64InstructionSelector::tryOptAndIntoCompareBranch(
1557     MachineInstr &AndInst, bool Invert, MachineBasicBlock *DstMBB,
1558     MachineIRBuilder &MIB) const {
1559   assert(AndInst.getOpcode() == TargetOpcode::G_AND && "Expected G_AND only?");
1560   // Given something like this:
1561   //
1562   //  %x = ...Something...
1563   //  %one = G_CONSTANT i64 1
1564   //  %zero = G_CONSTANT i64 0
1565   //  %and = G_AND %x, %one
1566   //  %cmp = G_ICMP intpred(ne), %and, %zero
1567   //  %cmp_trunc = G_TRUNC %cmp
1568   //  G_BRCOND %cmp_trunc, %bb.3
1569   //
1570   // We want to try and fold the AND into the G_BRCOND and produce either a
1571   // TBNZ (when we have intpred(ne)) or a TBZ (when we have intpred(eq)).
1572   //
1573   // In this case, we'd get
1574   //
1575   // TBNZ %x %bb.3
1576   //
1577 
1578   // Check if the AND has a constant on its RHS which we can use as a mask.
1579   // If it's a power of 2, then it's the same as checking a specific bit.
1580   // (e.g, ANDing with 8 == ANDing with 000...100 == testing if bit 3 is set)
1581   auto MaybeBit = getIConstantVRegValWithLookThrough(
1582       AndInst.getOperand(2).getReg(), *MIB.getMRI());
1583   if (!MaybeBit)
1584     return false;
1585 
1586   int32_t Bit = MaybeBit->Value.exactLogBase2();
1587   if (Bit < 0)
1588     return false;
1589 
1590   Register TestReg = AndInst.getOperand(1).getReg();
1591 
1592   // Emit a TB(N)Z.
1593   emitTestBit(TestReg, Bit, Invert, DstMBB, MIB);
1594   return true;
1595 }
1596 
1597 MachineInstr *AArch64InstructionSelector::emitCBZ(Register CompareReg,
1598                                                   bool IsNegative,
1599                                                   MachineBasicBlock *DestMBB,
1600                                                   MachineIRBuilder &MIB) const {
1601   assert(ProduceNonFlagSettingCondBr && "CBZ does not set flags!");
1602   MachineRegisterInfo &MRI = *MIB.getMRI();
1603   assert(RBI.getRegBank(CompareReg, MRI, TRI)->getID() ==
1604              AArch64::GPRRegBankID &&
1605          "Expected GPRs only?");
1606   auto Ty = MRI.getType(CompareReg);
1607   unsigned Width = Ty.getSizeInBits();
1608   assert(!Ty.isVector() && "Expected scalar only?");
1609   assert(Width <= 64 && "Expected width to be at most 64?");
1610   static const unsigned OpcTable[2][2] = {{AArch64::CBZW, AArch64::CBZX},
1611                                           {AArch64::CBNZW, AArch64::CBNZX}};
1612   unsigned Opc = OpcTable[IsNegative][Width == 64];
1613   auto BranchMI = MIB.buildInstr(Opc, {}, {CompareReg}).addMBB(DestMBB);
1614   constrainSelectedInstRegOperands(*BranchMI, TII, TRI, RBI);
1615   return &*BranchMI;
1616 }
1617 
1618 bool AArch64InstructionSelector::selectCompareBranchFedByFCmp(
1619     MachineInstr &I, MachineInstr &FCmp, MachineIRBuilder &MIB) const {
1620   assert(FCmp.getOpcode() == TargetOpcode::G_FCMP);
1621   assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1622   // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
1623   // totally clean.  Some of them require two branches to implement.
1624   auto Pred = (CmpInst::Predicate)FCmp.getOperand(1).getPredicate();
1625   emitFPCompare(FCmp.getOperand(2).getReg(), FCmp.getOperand(3).getReg(), MIB,
1626                 Pred);
1627   AArch64CC::CondCode CC1, CC2;
1628   changeFCMPPredToAArch64CC(static_cast<CmpInst::Predicate>(Pred), CC1, CC2);
1629   MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1630   MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC1).addMBB(DestMBB);
1631   if (CC2 != AArch64CC::AL)
1632     MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC2).addMBB(DestMBB);
1633   I.eraseFromParent();
1634   return true;
1635 }
1636 
1637 bool AArch64InstructionSelector::tryOptCompareBranchFedByICmp(
1638     MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const {
1639   assert(ICmp.getOpcode() == TargetOpcode::G_ICMP);
1640   assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1641   // Attempt to optimize the G_BRCOND + G_ICMP into a TB(N)Z/CB(N)Z.
1642   //
1643   // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
1644   // instructions will not be produced, as they are conditional branch
1645   // instructions that do not set flags.
1646   if (!ProduceNonFlagSettingCondBr)
1647     return false;
1648 
1649   MachineRegisterInfo &MRI = *MIB.getMRI();
1650   MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1651   auto Pred =
1652       static_cast<CmpInst::Predicate>(ICmp.getOperand(1).getPredicate());
1653   Register LHS = ICmp.getOperand(2).getReg();
1654   Register RHS = ICmp.getOperand(3).getReg();
1655 
1656   // We're allowed to emit a TB(N)Z/CB(N)Z. Try to do that.
1657   auto VRegAndVal = getIConstantVRegValWithLookThrough(RHS, MRI);
1658   MachineInstr *AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI);
1659 
1660   // When we can emit a TB(N)Z, prefer that.
1661   //
1662   // Handle non-commutative condition codes first.
1663   // Note that we don't want to do this when we have a G_AND because it can
1664   // become a tst. The tst will make the test bit in the TB(N)Z redundant.
1665   if (VRegAndVal && !AndInst) {
1666     int64_t C = VRegAndVal->Value.getSExtValue();
1667 
1668     // When we have a greater-than comparison, we can just test if the msb is
1669     // zero.
1670     if (C == -1 && Pred == CmpInst::ICMP_SGT) {
1671       uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
1672       emitTestBit(LHS, Bit, /*IsNegative = */ false, DestMBB, MIB);
1673       I.eraseFromParent();
1674       return true;
1675     }
1676 
1677     // When we have a less than comparison, we can just test if the msb is not
1678     // zero.
1679     if (C == 0 && Pred == CmpInst::ICMP_SLT) {
1680       uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
1681       emitTestBit(LHS, Bit, /*IsNegative = */ true, DestMBB, MIB);
1682       I.eraseFromParent();
1683       return true;
1684     }
1685 
1686     // Inversely, if we have a signed greater-than-or-equal comparison to zero,
1687     // we can test if the msb is zero.
1688     if (C == 0 && Pred == CmpInst::ICMP_SGE) {
1689       uint64_t Bit = MRI.getType(LHS).getSizeInBits() - 1;
1690       emitTestBit(LHS, Bit, /*IsNegative = */ false, DestMBB, MIB);
1691       I.eraseFromParent();
1692       return true;
1693     }
1694   }
1695 
1696   // Attempt to handle commutative condition codes. Right now, that's only
1697   // eq/ne.
1698   if (ICmpInst::isEquality(Pred)) {
1699     if (!VRegAndVal) {
1700       std::swap(RHS, LHS);
1701       VRegAndVal = getIConstantVRegValWithLookThrough(RHS, MRI);
1702       AndInst = getOpcodeDef(TargetOpcode::G_AND, LHS, MRI);
1703     }
1704 
1705     if (VRegAndVal && VRegAndVal->Value == 0) {
1706       // If there's a G_AND feeding into this branch, try to fold it away by
1707       // emitting a TB(N)Z instead.
1708       //
1709       // Note: If we have LT, then it *is* possible to fold, but it wouldn't be
1710       // beneficial. When we have an AND and LT, we need a TST/ANDS, so folding
1711       // would be redundant.
1712       if (AndInst &&
1713           tryOptAndIntoCompareBranch(
1714               *AndInst, /*Invert = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB)) {
1715         I.eraseFromParent();
1716         return true;
1717       }
1718 
1719       // Otherwise, try to emit a CB(N)Z instead.
1720       auto LHSTy = MRI.getType(LHS);
1721       if (!LHSTy.isVector() && LHSTy.getSizeInBits() <= 64) {
1722         emitCBZ(LHS, /*IsNegative = */ Pred == CmpInst::ICMP_NE, DestMBB, MIB);
1723         I.eraseFromParent();
1724         return true;
1725       }
1726     }
1727   }
1728 
1729   return false;
1730 }
1731 
1732 bool AArch64InstructionSelector::selectCompareBranchFedByICmp(
1733     MachineInstr &I, MachineInstr &ICmp, MachineIRBuilder &MIB) const {
1734   assert(ICmp.getOpcode() == TargetOpcode::G_ICMP);
1735   assert(I.getOpcode() == TargetOpcode::G_BRCOND);
1736   if (tryOptCompareBranchFedByICmp(I, ICmp, MIB))
1737     return true;
1738 
1739   // Couldn't optimize. Emit a compare + a Bcc.
1740   MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1741   auto PredOp = ICmp.getOperand(1);
1742   emitIntegerCompare(ICmp.getOperand(2), ICmp.getOperand(3), PredOp, MIB);
1743   const AArch64CC::CondCode CC = changeICMPPredToAArch64CC(
1744       static_cast<CmpInst::Predicate>(PredOp.getPredicate()));
1745   MIB.buildInstr(AArch64::Bcc, {}, {}).addImm(CC).addMBB(DestMBB);
1746   I.eraseFromParent();
1747   return true;
1748 }
1749 
1750 bool AArch64InstructionSelector::selectCompareBranch(
1751     MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) {
1752   Register CondReg = I.getOperand(0).getReg();
1753   MachineInstr *CCMI = MRI.getVRegDef(CondReg);
1754   // Try to select the G_BRCOND using whatever is feeding the condition if
1755   // possible.
1756   unsigned CCMIOpc = CCMI->getOpcode();
1757   if (CCMIOpc == TargetOpcode::G_FCMP)
1758     return selectCompareBranchFedByFCmp(I, *CCMI, MIB);
1759   if (CCMIOpc == TargetOpcode::G_ICMP)
1760     return selectCompareBranchFedByICmp(I, *CCMI, MIB);
1761 
1762   // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z
1763   // instructions will not be produced, as they are conditional branch
1764   // instructions that do not set flags.
1765   if (ProduceNonFlagSettingCondBr) {
1766     emitTestBit(CondReg, /*Bit = */ 0, /*IsNegative = */ true,
1767                 I.getOperand(1).getMBB(), MIB);
1768     I.eraseFromParent();
1769     return true;
1770   }
1771 
1772   // Can't emit TB(N)Z/CB(N)Z. Emit a tst + bcc instead.
1773   auto TstMI =
1774       MIB.buildInstr(AArch64::ANDSWri, {LLT::scalar(32)}, {CondReg}).addImm(1);
1775   constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
1776   auto Bcc = MIB.buildInstr(AArch64::Bcc)
1777                  .addImm(AArch64CC::EQ)
1778                  .addMBB(I.getOperand(1).getMBB());
1779   I.eraseFromParent();
1780   return constrainSelectedInstRegOperands(*Bcc, TII, TRI, RBI);
1781 }
1782 
1783 /// Returns the element immediate value of a vector shift operand if found.
1784 /// This needs to detect a splat-like operation, e.g. a G_BUILD_VECTOR.
1785 static std::optional<int64_t> getVectorShiftImm(Register Reg,
1786                                                 MachineRegisterInfo &MRI) {
1787   assert(MRI.getType(Reg).isVector() && "Expected a *vector* shift operand");
1788   MachineInstr *OpMI = MRI.getVRegDef(Reg);
1789   return getAArch64VectorSplatScalar(*OpMI, MRI);
1790 }
1791 
1792 /// Matches and returns the shift immediate value for a SHL instruction given
1793 /// a shift operand.
1794 static std::optional<int64_t> getVectorSHLImm(LLT SrcTy, Register Reg,
1795                                               MachineRegisterInfo &MRI) {
1796   std::optional<int64_t> ShiftImm = getVectorShiftImm(Reg, MRI);
1797   if (!ShiftImm)
1798     return std::nullopt;
1799   // Check the immediate is in range for a SHL.
1800   int64_t Imm = *ShiftImm;
1801   if (Imm < 0)
1802     return std::nullopt;
1803   switch (SrcTy.getElementType().getSizeInBits()) {
1804   default:
1805     LLVM_DEBUG(dbgs() << "Unhandled element type for vector shift");
1806     return std::nullopt;
1807   case 8:
1808     if (Imm > 7)
1809       return std::nullopt;
1810     break;
1811   case 16:
1812     if (Imm > 15)
1813       return std::nullopt;
1814     break;
1815   case 32:
1816     if (Imm > 31)
1817       return std::nullopt;
1818     break;
1819   case 64:
1820     if (Imm > 63)
1821       return std::nullopt;
1822     break;
1823   }
1824   return Imm;
1825 }
1826 
1827 bool AArch64InstructionSelector::selectVectorSHL(MachineInstr &I,
1828                                                  MachineRegisterInfo &MRI) {
1829   assert(I.getOpcode() == TargetOpcode::G_SHL);
1830   Register DstReg = I.getOperand(0).getReg();
1831   const LLT Ty = MRI.getType(DstReg);
1832   Register Src1Reg = I.getOperand(1).getReg();
1833   Register Src2Reg = I.getOperand(2).getReg();
1834 
1835   if (!Ty.isVector())
1836     return false;
1837 
1838   // Check if we have a vector of constants on RHS that we can select as the
1839   // immediate form.
1840   std::optional<int64_t> ImmVal = getVectorSHLImm(Ty, Src2Reg, MRI);
1841 
1842   unsigned Opc = 0;
1843   if (Ty == LLT::fixed_vector(2, 64)) {
1844     Opc = ImmVal ? AArch64::SHLv2i64_shift : AArch64::USHLv2i64;
1845   } else if (Ty == LLT::fixed_vector(4, 32)) {
1846     Opc = ImmVal ? AArch64::SHLv4i32_shift : AArch64::USHLv4i32;
1847   } else if (Ty == LLT::fixed_vector(2, 32)) {
1848     Opc = ImmVal ? AArch64::SHLv2i32_shift : AArch64::USHLv2i32;
1849   } else if (Ty == LLT::fixed_vector(4, 16)) {
1850     Opc = ImmVal ? AArch64::SHLv4i16_shift : AArch64::USHLv4i16;
1851   } else if (Ty == LLT::fixed_vector(8, 16)) {
1852     Opc = ImmVal ? AArch64::SHLv8i16_shift : AArch64::USHLv8i16;
1853   } else if (Ty == LLT::fixed_vector(16, 8)) {
1854     Opc = ImmVal ? AArch64::SHLv16i8_shift : AArch64::USHLv16i8;
1855   } else if (Ty == LLT::fixed_vector(8, 8)) {
1856     Opc = ImmVal ? AArch64::SHLv8i8_shift : AArch64::USHLv8i8;
1857   } else {
1858     LLVM_DEBUG(dbgs() << "Unhandled G_SHL type");
1859     return false;
1860   }
1861 
1862   auto Shl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg});
1863   if (ImmVal)
1864     Shl.addImm(*ImmVal);
1865   else
1866     Shl.addUse(Src2Reg);
1867   constrainSelectedInstRegOperands(*Shl, TII, TRI, RBI);
1868   I.eraseFromParent();
1869   return true;
1870 }
1871 
1872 bool AArch64InstructionSelector::selectVectorAshrLshr(
1873     MachineInstr &I, MachineRegisterInfo &MRI) {
1874   assert(I.getOpcode() == TargetOpcode::G_ASHR ||
1875          I.getOpcode() == TargetOpcode::G_LSHR);
1876   Register DstReg = I.getOperand(0).getReg();
1877   const LLT Ty = MRI.getType(DstReg);
1878   Register Src1Reg = I.getOperand(1).getReg();
1879   Register Src2Reg = I.getOperand(2).getReg();
1880 
1881   if (!Ty.isVector())
1882     return false;
1883 
1884   bool IsASHR = I.getOpcode() == TargetOpcode::G_ASHR;
1885 
1886   // We expect the immediate case to be lowered in the PostLegalCombiner to
1887   // AArch64ISD::VASHR or AArch64ISD::VLSHR equivalents.
1888 
1889   // There is not a shift right register instruction, but the shift left
1890   // register instruction takes a signed value, where negative numbers specify a
1891   // right shift.
1892 
1893   unsigned Opc = 0;
1894   unsigned NegOpc = 0;
1895   const TargetRegisterClass *RC =
1896       getRegClassForTypeOnBank(Ty, RBI.getRegBank(AArch64::FPRRegBankID));
1897   if (Ty == LLT::fixed_vector(2, 64)) {
1898     Opc = IsASHR ? AArch64::SSHLv2i64 : AArch64::USHLv2i64;
1899     NegOpc = AArch64::NEGv2i64;
1900   } else if (Ty == LLT::fixed_vector(4, 32)) {
1901     Opc = IsASHR ? AArch64::SSHLv4i32 : AArch64::USHLv4i32;
1902     NegOpc = AArch64::NEGv4i32;
1903   } else if (Ty == LLT::fixed_vector(2, 32)) {
1904     Opc = IsASHR ? AArch64::SSHLv2i32 : AArch64::USHLv2i32;
1905     NegOpc = AArch64::NEGv2i32;
1906   } else if (Ty == LLT::fixed_vector(4, 16)) {
1907     Opc = IsASHR ? AArch64::SSHLv4i16 : AArch64::USHLv4i16;
1908     NegOpc = AArch64::NEGv4i16;
1909   } else if (Ty == LLT::fixed_vector(8, 16)) {
1910     Opc = IsASHR ? AArch64::SSHLv8i16 : AArch64::USHLv8i16;
1911     NegOpc = AArch64::NEGv8i16;
1912   } else if (Ty == LLT::fixed_vector(16, 8)) {
1913     Opc = IsASHR ? AArch64::SSHLv16i8 : AArch64::USHLv16i8;
1914     NegOpc = AArch64::NEGv16i8;
1915   } else if (Ty == LLT::fixed_vector(8, 8)) {
1916     Opc = IsASHR ? AArch64::SSHLv8i8 : AArch64::USHLv8i8;
1917     NegOpc = AArch64::NEGv8i8;
1918   } else {
1919     LLVM_DEBUG(dbgs() << "Unhandled G_ASHR type");
1920     return false;
1921   }
1922 
1923   auto Neg = MIB.buildInstr(NegOpc, {RC}, {Src2Reg});
1924   constrainSelectedInstRegOperands(*Neg, TII, TRI, RBI);
1925   auto SShl = MIB.buildInstr(Opc, {DstReg}, {Src1Reg, Neg});
1926   constrainSelectedInstRegOperands(*SShl, TII, TRI, RBI);
1927   I.eraseFromParent();
1928   return true;
1929 }
1930 
1931 bool AArch64InstructionSelector::selectVaStartAAPCS(
1932     MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
1933   return false;
1934 }
1935 
1936 bool AArch64InstructionSelector::selectVaStartDarwin(
1937     MachineInstr &I, MachineFunction &MF, MachineRegisterInfo &MRI) const {
1938   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
1939   Register ListReg = I.getOperand(0).getReg();
1940 
1941   Register ArgsAddrReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1942 
1943   auto MIB =
1944       BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::ADDXri))
1945           .addDef(ArgsAddrReg)
1946           .addFrameIndex(FuncInfo->getVarArgsStackIndex())
1947           .addImm(0)
1948           .addImm(0);
1949 
1950   constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
1951 
1952   MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::STRXui))
1953             .addUse(ArgsAddrReg)
1954             .addUse(ListReg)
1955             .addImm(0)
1956             .addMemOperand(*I.memoperands_begin());
1957 
1958   constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
1959   I.eraseFromParent();
1960   return true;
1961 }
1962 
1963 void AArch64InstructionSelector::materializeLargeCMVal(
1964     MachineInstr &I, const Value *V, unsigned OpFlags) {
1965   MachineBasicBlock &MBB = *I.getParent();
1966   MachineFunction &MF = *MBB.getParent();
1967   MachineRegisterInfo &MRI = MF.getRegInfo();
1968 
1969   auto MovZ = MIB.buildInstr(AArch64::MOVZXi, {&AArch64::GPR64RegClass}, {});
1970   MovZ->addOperand(MF, I.getOperand(1));
1971   MovZ->getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_G0 |
1972                                      AArch64II::MO_NC);
1973   MovZ->addOperand(MF, MachineOperand::CreateImm(0));
1974   constrainSelectedInstRegOperands(*MovZ, TII, TRI, RBI);
1975 
1976   auto BuildMovK = [&](Register SrcReg, unsigned char Flags, unsigned Offset,
1977                        Register ForceDstReg) {
1978     Register DstReg = ForceDstReg
1979                           ? ForceDstReg
1980                           : MRI.createVirtualRegister(&AArch64::GPR64RegClass);
1981     auto MovI = MIB.buildInstr(AArch64::MOVKXi).addDef(DstReg).addUse(SrcReg);
1982     if (auto *GV = dyn_cast<GlobalValue>(V)) {
1983       MovI->addOperand(MF, MachineOperand::CreateGA(
1984                                GV, MovZ->getOperand(1).getOffset(), Flags));
1985     } else {
1986       MovI->addOperand(
1987           MF, MachineOperand::CreateBA(cast<BlockAddress>(V),
1988                                        MovZ->getOperand(1).getOffset(), Flags));
1989     }
1990     MovI->addOperand(MF, MachineOperand::CreateImm(Offset));
1991     constrainSelectedInstRegOperands(*MovI, TII, TRI, RBI);
1992     return DstReg;
1993   };
1994   Register DstReg = BuildMovK(MovZ.getReg(0),
1995                               AArch64II::MO_G1 | AArch64II::MO_NC, 16, 0);
1996   DstReg = BuildMovK(DstReg, AArch64II::MO_G2 | AArch64II::MO_NC, 32, 0);
1997   BuildMovK(DstReg, AArch64II::MO_G3, 48, I.getOperand(0).getReg());
1998 }
1999 
2000 bool AArch64InstructionSelector::preISelLower(MachineInstr &I) {
2001   MachineBasicBlock &MBB = *I.getParent();
2002   MachineFunction &MF = *MBB.getParent();
2003   MachineRegisterInfo &MRI = MF.getRegInfo();
2004 
2005   switch (I.getOpcode()) {
2006   case TargetOpcode::G_STORE: {
2007     bool Changed = contractCrossBankCopyIntoStore(I, MRI);
2008     MachineOperand &SrcOp = I.getOperand(0);
2009     if (MRI.getType(SrcOp.getReg()).isPointer()) {
2010       // Allow matching with imported patterns for stores of pointers. Unlike
2011       // G_LOAD/G_PTR_ADD, we may not have selected all users. So, emit a copy
2012       // and constrain.
2013       auto Copy = MIB.buildCopy(LLT::scalar(64), SrcOp);
2014       Register NewSrc = Copy.getReg(0);
2015       SrcOp.setReg(NewSrc);
2016       RBI.constrainGenericRegister(NewSrc, AArch64::GPR64RegClass, MRI);
2017       Changed = true;
2018     }
2019     return Changed;
2020   }
2021   case TargetOpcode::G_PTR_ADD:
2022     return convertPtrAddToAdd(I, MRI);
2023   case TargetOpcode::G_LOAD: {
2024     // For scalar loads of pointers, we try to convert the dest type from p0
2025     // to s64 so that our imported patterns can match. Like with the G_PTR_ADD
2026     // conversion, this should be ok because all users should have been
2027     // selected already, so the type doesn't matter for them.
2028     Register DstReg = I.getOperand(0).getReg();
2029     const LLT DstTy = MRI.getType(DstReg);
2030     if (!DstTy.isPointer())
2031       return false;
2032     MRI.setType(DstReg, LLT::scalar(64));
2033     return true;
2034   }
2035   case AArch64::G_DUP: {
2036     // Convert the type from p0 to s64 to help selection.
2037     LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2038     if (!DstTy.getElementType().isPointer())
2039       return false;
2040     auto NewSrc = MIB.buildCopy(LLT::scalar(64), I.getOperand(1).getReg());
2041     MRI.setType(I.getOperand(0).getReg(),
2042                 DstTy.changeElementType(LLT::scalar(64)));
2043     MRI.setRegClass(NewSrc.getReg(0), &AArch64::GPR64RegClass);
2044     I.getOperand(1).setReg(NewSrc.getReg(0));
2045     return true;
2046   }
2047   case TargetOpcode::G_UITOFP:
2048   case TargetOpcode::G_SITOFP: {
2049     // If both source and destination regbanks are FPR, then convert the opcode
2050     // to G_SITOF so that the importer can select it to an fpr variant.
2051     // Otherwise, it ends up matching an fpr/gpr variant and adding a cross-bank
2052     // copy.
2053     Register SrcReg = I.getOperand(1).getReg();
2054     LLT SrcTy = MRI.getType(SrcReg);
2055     LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2056     if (SrcTy.isVector() || SrcTy.getSizeInBits() != DstTy.getSizeInBits())
2057       return false;
2058 
2059     if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::FPRRegBankID) {
2060       if (I.getOpcode() == TargetOpcode::G_SITOFP)
2061         I.setDesc(TII.get(AArch64::G_SITOF));
2062       else
2063         I.setDesc(TII.get(AArch64::G_UITOF));
2064       return true;
2065     }
2066     return false;
2067   }
2068   default:
2069     return false;
2070   }
2071 }
2072 
2073 /// This lowering tries to look for G_PTR_ADD instructions and then converts
2074 /// them to a standard G_ADD with a COPY on the source.
2075 ///
2076 /// The motivation behind this is to expose the add semantics to the imported
2077 /// tablegen patterns. We shouldn't need to check for uses being loads/stores,
2078 /// because the selector works bottom up, uses before defs. By the time we
2079 /// end up trying to select a G_PTR_ADD, we should have already attempted to
2080 /// fold this into addressing modes and were therefore unsuccessful.
2081 bool AArch64InstructionSelector::convertPtrAddToAdd(
2082     MachineInstr &I, MachineRegisterInfo &MRI) {
2083   assert(I.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
2084   Register DstReg = I.getOperand(0).getReg();
2085   Register AddOp1Reg = I.getOperand(1).getReg();
2086   const LLT PtrTy = MRI.getType(DstReg);
2087   if (PtrTy.getAddressSpace() != 0)
2088     return false;
2089 
2090   const LLT CastPtrTy =
2091       PtrTy.isVector() ? LLT::fixed_vector(2, 64) : LLT::scalar(64);
2092   auto PtrToInt = MIB.buildPtrToInt(CastPtrTy, AddOp1Reg);
2093   // Set regbanks on the registers.
2094   if (PtrTy.isVector())
2095     MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::FPRRegBankID));
2096   else
2097     MRI.setRegBank(PtrToInt.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
2098 
2099   // Now turn the %dst(p0) = G_PTR_ADD %base, off into:
2100   // %dst(intty) = G_ADD %intbase, off
2101   I.setDesc(TII.get(TargetOpcode::G_ADD));
2102   MRI.setType(DstReg, CastPtrTy);
2103   I.getOperand(1).setReg(PtrToInt.getReg(0));
2104   if (!select(*PtrToInt)) {
2105     LLVM_DEBUG(dbgs() << "Failed to select G_PTRTOINT in convertPtrAddToAdd");
2106     return false;
2107   }
2108 
2109   // Also take the opportunity here to try to do some optimization.
2110   // Try to convert this into a G_SUB if the offset is a 0-x negate idiom.
2111   Register NegatedReg;
2112   if (!mi_match(I.getOperand(2).getReg(), MRI, m_Neg(m_Reg(NegatedReg))))
2113     return true;
2114   I.getOperand(2).setReg(NegatedReg);
2115   I.setDesc(TII.get(TargetOpcode::G_SUB));
2116   return true;
2117 }
2118 
2119 bool AArch64InstructionSelector::earlySelectSHL(MachineInstr &I,
2120                                                 MachineRegisterInfo &MRI) {
2121   // We try to match the immediate variant of LSL, which is actually an alias
2122   // for a special case of UBFM. Otherwise, we fall back to the imported
2123   // selector which will match the register variant.
2124   assert(I.getOpcode() == TargetOpcode::G_SHL && "unexpected op");
2125   const auto &MO = I.getOperand(2);
2126   auto VRegAndVal = getIConstantVRegVal(MO.getReg(), MRI);
2127   if (!VRegAndVal)
2128     return false;
2129 
2130   const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2131   if (DstTy.isVector())
2132     return false;
2133   bool Is64Bit = DstTy.getSizeInBits() == 64;
2134   auto Imm1Fn = Is64Bit ? selectShiftA_64(MO) : selectShiftA_32(MO);
2135   auto Imm2Fn = Is64Bit ? selectShiftB_64(MO) : selectShiftB_32(MO);
2136 
2137   if (!Imm1Fn || !Imm2Fn)
2138     return false;
2139 
2140   auto NewI =
2141       MIB.buildInstr(Is64Bit ? AArch64::UBFMXri : AArch64::UBFMWri,
2142                      {I.getOperand(0).getReg()}, {I.getOperand(1).getReg()});
2143 
2144   for (auto &RenderFn : *Imm1Fn)
2145     RenderFn(NewI);
2146   for (auto &RenderFn : *Imm2Fn)
2147     RenderFn(NewI);
2148 
2149   I.eraseFromParent();
2150   return constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI);
2151 }
2152 
2153 bool AArch64InstructionSelector::contractCrossBankCopyIntoStore(
2154     MachineInstr &I, MachineRegisterInfo &MRI) {
2155   assert(I.getOpcode() == TargetOpcode::G_STORE && "Expected G_STORE");
2156   // If we're storing a scalar, it doesn't matter what register bank that
2157   // scalar is on. All that matters is the size.
2158   //
2159   // So, if we see something like this (with a 32-bit scalar as an example):
2160   //
2161   // %x:gpr(s32) = ... something ...
2162   // %y:fpr(s32) = COPY %x:gpr(s32)
2163   // G_STORE %y:fpr(s32)
2164   //
2165   // We can fix this up into something like this:
2166   //
2167   // G_STORE %x:gpr(s32)
2168   //
2169   // And then continue the selection process normally.
2170   Register DefDstReg = getSrcRegIgnoringCopies(I.getOperand(0).getReg(), MRI);
2171   if (!DefDstReg.isValid())
2172     return false;
2173   LLT DefDstTy = MRI.getType(DefDstReg);
2174   Register StoreSrcReg = I.getOperand(0).getReg();
2175   LLT StoreSrcTy = MRI.getType(StoreSrcReg);
2176 
2177   // If we get something strange like a physical register, then we shouldn't
2178   // go any further.
2179   if (!DefDstTy.isValid())
2180     return false;
2181 
2182   // Are the source and dst types the same size?
2183   if (DefDstTy.getSizeInBits() != StoreSrcTy.getSizeInBits())
2184     return false;
2185 
2186   if (RBI.getRegBank(StoreSrcReg, MRI, TRI) ==
2187       RBI.getRegBank(DefDstReg, MRI, TRI))
2188     return false;
2189 
2190   // We have a cross-bank copy, which is entering a store. Let's fold it.
2191   I.getOperand(0).setReg(DefDstReg);
2192   return true;
2193 }
2194 
2195 bool AArch64InstructionSelector::earlySelect(MachineInstr &I) {
2196   assert(I.getParent() && "Instruction should be in a basic block!");
2197   assert(I.getParent()->getParent() && "Instruction should be in a function!");
2198 
2199   MachineBasicBlock &MBB = *I.getParent();
2200   MachineFunction &MF = *MBB.getParent();
2201   MachineRegisterInfo &MRI = MF.getRegInfo();
2202 
2203   switch (I.getOpcode()) {
2204   case AArch64::G_DUP: {
2205     // Before selecting a DUP instruction, check if it is better selected as a
2206     // MOV or load from a constant pool.
2207     Register Src = I.getOperand(1).getReg();
2208     auto ValAndVReg = getIConstantVRegValWithLookThrough(Src, MRI);
2209     if (!ValAndVReg)
2210       return false;
2211     LLVMContext &Ctx = MF.getFunction().getContext();
2212     Register Dst = I.getOperand(0).getReg();
2213     auto *CV = ConstantDataVector::getSplat(
2214         MRI.getType(Dst).getNumElements(),
2215         ConstantInt::get(Type::getIntNTy(Ctx, MRI.getType(Src).getSizeInBits()),
2216                          ValAndVReg->Value));
2217     if (!emitConstantVector(Dst, CV, MIB, MRI))
2218       return false;
2219     I.eraseFromParent();
2220     return true;
2221   }
2222   case TargetOpcode::G_SEXT:
2223     // Check for i64 sext(i32 vector_extract) prior to tablegen to select SMOV
2224     // over a normal extend.
2225     if (selectUSMovFromExtend(I, MRI))
2226       return true;
2227     return false;
2228   case TargetOpcode::G_BR:
2229     return false;
2230   case TargetOpcode::G_SHL:
2231     return earlySelectSHL(I, MRI);
2232   case TargetOpcode::G_CONSTANT: {
2233     bool IsZero = false;
2234     if (I.getOperand(1).isCImm())
2235       IsZero = I.getOperand(1).getCImm()->getZExtValue() == 0;
2236     else if (I.getOperand(1).isImm())
2237       IsZero = I.getOperand(1).getImm() == 0;
2238 
2239     if (!IsZero)
2240       return false;
2241 
2242     Register DefReg = I.getOperand(0).getReg();
2243     LLT Ty = MRI.getType(DefReg);
2244     if (Ty.getSizeInBits() == 64) {
2245       I.getOperand(1).ChangeToRegister(AArch64::XZR, false);
2246       RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
2247     } else if (Ty.getSizeInBits() == 32) {
2248       I.getOperand(1).ChangeToRegister(AArch64::WZR, false);
2249       RBI.constrainGenericRegister(DefReg, AArch64::GPR32RegClass, MRI);
2250     } else
2251       return false;
2252 
2253     I.setDesc(TII.get(TargetOpcode::COPY));
2254     return true;
2255   }
2256 
2257   case TargetOpcode::G_ADD: {
2258     // Check if this is being fed by a G_ICMP on either side.
2259     //
2260     // (cmp pred, x, y) + z
2261     //
2262     // In the above case, when the cmp is true, we increment z by 1. So, we can
2263     // fold the add into the cset for the cmp by using cinc.
2264     //
2265     // FIXME: This would probably be a lot nicer in PostLegalizerLowering.
2266     Register AddDst = I.getOperand(0).getReg();
2267     Register AddLHS = I.getOperand(1).getReg();
2268     Register AddRHS = I.getOperand(2).getReg();
2269     // Only handle scalars.
2270     LLT Ty = MRI.getType(AddLHS);
2271     if (Ty.isVector())
2272       return false;
2273     // Since G_ICMP is modeled as ADDS/SUBS/ANDS, we can handle 32 bits or 64
2274     // bits.
2275     unsigned Size = Ty.getSizeInBits();
2276     if (Size != 32 && Size != 64)
2277       return false;
2278     auto MatchCmp = [&](Register Reg) -> MachineInstr * {
2279       if (!MRI.hasOneNonDBGUse(Reg))
2280         return nullptr;
2281       // If the LHS of the add is 32 bits, then we want to fold a 32-bit
2282       // compare.
2283       if (Size == 32)
2284         return getOpcodeDef(TargetOpcode::G_ICMP, Reg, MRI);
2285       // We model scalar compares using 32-bit destinations right now.
2286       // If it's a 64-bit compare, it'll have 64-bit sources.
2287       Register ZExt;
2288       if (!mi_match(Reg, MRI,
2289                     m_OneNonDBGUse(m_GZExt(m_OneNonDBGUse(m_Reg(ZExt))))))
2290         return nullptr;
2291       auto *Cmp = getOpcodeDef(TargetOpcode::G_ICMP, ZExt, MRI);
2292       if (!Cmp ||
2293           MRI.getType(Cmp->getOperand(2).getReg()).getSizeInBits() != 64)
2294         return nullptr;
2295       return Cmp;
2296     };
2297     // Try to match
2298     // z + (cmp pred, x, y)
2299     MachineInstr *Cmp = MatchCmp(AddRHS);
2300     if (!Cmp) {
2301       // (cmp pred, x, y) + z
2302       std::swap(AddLHS, AddRHS);
2303       Cmp = MatchCmp(AddRHS);
2304       if (!Cmp)
2305         return false;
2306     }
2307     auto &PredOp = Cmp->getOperand(1);
2308     auto Pred = static_cast<CmpInst::Predicate>(PredOp.getPredicate());
2309     const AArch64CC::CondCode InvCC =
2310         changeICMPPredToAArch64CC(CmpInst::getInversePredicate(Pred));
2311     MIB.setInstrAndDebugLoc(I);
2312     emitIntegerCompare(/*LHS=*/Cmp->getOperand(2),
2313                        /*RHS=*/Cmp->getOperand(3), PredOp, MIB);
2314     emitCSINC(/*Dst=*/AddDst, /*Src =*/AddLHS, /*Src2=*/AddLHS, InvCC, MIB);
2315     I.eraseFromParent();
2316     return true;
2317   }
2318   case TargetOpcode::G_OR: {
2319     // Look for operations that take the lower `Width=Size-ShiftImm` bits of
2320     // `ShiftSrc` and insert them into the upper `Width` bits of `MaskSrc` via
2321     // shifting and masking that we can replace with a BFI (encoded as a BFM).
2322     Register Dst = I.getOperand(0).getReg();
2323     LLT Ty = MRI.getType(Dst);
2324 
2325     if (!Ty.isScalar())
2326       return false;
2327 
2328     unsigned Size = Ty.getSizeInBits();
2329     if (Size != 32 && Size != 64)
2330       return false;
2331 
2332     Register ShiftSrc;
2333     int64_t ShiftImm;
2334     Register MaskSrc;
2335     int64_t MaskImm;
2336     if (!mi_match(
2337             Dst, MRI,
2338             m_GOr(m_OneNonDBGUse(m_GShl(m_Reg(ShiftSrc), m_ICst(ShiftImm))),
2339                   m_OneNonDBGUse(m_GAnd(m_Reg(MaskSrc), m_ICst(MaskImm))))))
2340       return false;
2341 
2342     if (ShiftImm > Size || ((1ULL << ShiftImm) - 1ULL) != uint64_t(MaskImm))
2343       return false;
2344 
2345     int64_t Immr = Size - ShiftImm;
2346     int64_t Imms = Size - ShiftImm - 1;
2347     unsigned Opc = Size == 32 ? AArch64::BFMWri : AArch64::BFMXri;
2348     emitInstr(Opc, {Dst}, {MaskSrc, ShiftSrc, Immr, Imms}, MIB);
2349     I.eraseFromParent();
2350     return true;
2351   }
2352   case TargetOpcode::G_FENCE: {
2353     if (I.getOperand(1).getImm() == 0)
2354       BuildMI(MBB, I, MIMetadata(I), TII.get(TargetOpcode::MEMBARRIER));
2355     else
2356       BuildMI(MBB, I, MIMetadata(I), TII.get(AArch64::DMB))
2357           .addImm(I.getOperand(0).getImm() == 4 ? 0x9 : 0xb);
2358     I.eraseFromParent();
2359     return true;
2360   }
2361   default:
2362     return false;
2363   }
2364 }
2365 
2366 bool AArch64InstructionSelector::select(MachineInstr &I) {
2367   assert(I.getParent() && "Instruction should be in a basic block!");
2368   assert(I.getParent()->getParent() && "Instruction should be in a function!");
2369 
2370   MachineBasicBlock &MBB = *I.getParent();
2371   MachineFunction &MF = *MBB.getParent();
2372   MachineRegisterInfo &MRI = MF.getRegInfo();
2373 
2374   const AArch64Subtarget *Subtarget = &MF.getSubtarget<AArch64Subtarget>();
2375   if (Subtarget->requiresStrictAlign()) {
2376     // We don't support this feature yet.
2377     LLVM_DEBUG(dbgs() << "AArch64 GISel does not support strict-align yet\n");
2378     return false;
2379   }
2380 
2381   MIB.setInstrAndDebugLoc(I);
2382 
2383   unsigned Opcode = I.getOpcode();
2384   // G_PHI requires same handling as PHI
2385   if (!I.isPreISelOpcode() || Opcode == TargetOpcode::G_PHI) {
2386     // Certain non-generic instructions also need some special handling.
2387 
2388     if (Opcode ==  TargetOpcode::LOAD_STACK_GUARD)
2389       return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2390 
2391     if (Opcode == TargetOpcode::PHI || Opcode == TargetOpcode::G_PHI) {
2392       const Register DefReg = I.getOperand(0).getReg();
2393       const LLT DefTy = MRI.getType(DefReg);
2394 
2395       const RegClassOrRegBank &RegClassOrBank =
2396         MRI.getRegClassOrRegBank(DefReg);
2397 
2398       const TargetRegisterClass *DefRC
2399         = RegClassOrBank.dyn_cast<const TargetRegisterClass *>();
2400       if (!DefRC) {
2401         if (!DefTy.isValid()) {
2402           LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n");
2403           return false;
2404         }
2405         const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>();
2406         DefRC = getRegClassForTypeOnBank(DefTy, RB);
2407         if (!DefRC) {
2408           LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n");
2409           return false;
2410         }
2411       }
2412 
2413       I.setDesc(TII.get(TargetOpcode::PHI));
2414 
2415       return RBI.constrainGenericRegister(DefReg, *DefRC, MRI);
2416     }
2417 
2418     if (I.isCopy())
2419       return selectCopy(I, TII, MRI, TRI, RBI);
2420 
2421     if (I.isDebugInstr())
2422       return selectDebugInstr(I, MRI, RBI);
2423 
2424     return true;
2425   }
2426 
2427 
2428   if (I.getNumOperands() != I.getNumExplicitOperands()) {
2429     LLVM_DEBUG(
2430         dbgs() << "Generic instruction has unexpected implicit operands\n");
2431     return false;
2432   }
2433 
2434   // Try to do some lowering before we start instruction selecting. These
2435   // lowerings are purely transformations on the input G_MIR and so selection
2436   // must continue after any modification of the instruction.
2437   if (preISelLower(I)) {
2438     Opcode = I.getOpcode(); // The opcode may have been modified, refresh it.
2439   }
2440 
2441   // There may be patterns where the importer can't deal with them optimally,
2442   // but does select it to a suboptimal sequence so our custom C++ selection
2443   // code later never has a chance to work on it. Therefore, we have an early
2444   // selection attempt here to give priority to certain selection routines
2445   // over the imported ones.
2446   if (earlySelect(I))
2447     return true;
2448 
2449   if (selectImpl(I, *CoverageInfo))
2450     return true;
2451 
2452   LLT Ty =
2453       I.getOperand(0).isReg() ? MRI.getType(I.getOperand(0).getReg()) : LLT{};
2454 
2455   switch (Opcode) {
2456   case TargetOpcode::G_SBFX:
2457   case TargetOpcode::G_UBFX: {
2458     static const unsigned OpcTable[2][2] = {
2459         {AArch64::UBFMWri, AArch64::UBFMXri},
2460         {AArch64::SBFMWri, AArch64::SBFMXri}};
2461     bool IsSigned = Opcode == TargetOpcode::G_SBFX;
2462     unsigned Size = Ty.getSizeInBits();
2463     unsigned Opc = OpcTable[IsSigned][Size == 64];
2464     auto Cst1 =
2465         getIConstantVRegValWithLookThrough(I.getOperand(2).getReg(), MRI);
2466     assert(Cst1 && "Should have gotten a constant for src 1?");
2467     auto Cst2 =
2468         getIConstantVRegValWithLookThrough(I.getOperand(3).getReg(), MRI);
2469     assert(Cst2 && "Should have gotten a constant for src 2?");
2470     auto LSB = Cst1->Value.getZExtValue();
2471     auto Width = Cst2->Value.getZExtValue();
2472     auto BitfieldInst =
2473         MIB.buildInstr(Opc, {I.getOperand(0)}, {I.getOperand(1)})
2474             .addImm(LSB)
2475             .addImm(LSB + Width - 1);
2476     I.eraseFromParent();
2477     return constrainSelectedInstRegOperands(*BitfieldInst, TII, TRI, RBI);
2478   }
2479   case TargetOpcode::G_BRCOND:
2480     return selectCompareBranch(I, MF, MRI);
2481 
2482   case TargetOpcode::G_BRINDIRECT: {
2483     I.setDesc(TII.get(AArch64::BR));
2484     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2485   }
2486 
2487   case TargetOpcode::G_BRJT:
2488     return selectBrJT(I, MRI);
2489 
2490   case AArch64::G_ADD_LOW: {
2491     // This op may have been separated from it's ADRP companion by the localizer
2492     // or some other code motion pass. Given that many CPUs will try to
2493     // macro fuse these operations anyway, select this into a MOVaddr pseudo
2494     // which will later be expanded into an ADRP+ADD pair after scheduling.
2495     MachineInstr *BaseMI = MRI.getVRegDef(I.getOperand(1).getReg());
2496     if (BaseMI->getOpcode() != AArch64::ADRP) {
2497       I.setDesc(TII.get(AArch64::ADDXri));
2498       I.addOperand(MachineOperand::CreateImm(0));
2499       return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2500     }
2501     assert(TM.getCodeModel() == CodeModel::Small &&
2502            "Expected small code model");
2503     auto Op1 = BaseMI->getOperand(1);
2504     auto Op2 = I.getOperand(2);
2505     auto MovAddr = MIB.buildInstr(AArch64::MOVaddr, {I.getOperand(0)}, {})
2506                        .addGlobalAddress(Op1.getGlobal(), Op1.getOffset(),
2507                                          Op1.getTargetFlags())
2508                        .addGlobalAddress(Op2.getGlobal(), Op2.getOffset(),
2509                                          Op2.getTargetFlags());
2510     I.eraseFromParent();
2511     return constrainSelectedInstRegOperands(*MovAddr, TII, TRI, RBI);
2512   }
2513 
2514   case TargetOpcode::G_BSWAP: {
2515     // Handle vector types for G_BSWAP directly.
2516     Register DstReg = I.getOperand(0).getReg();
2517     LLT DstTy = MRI.getType(DstReg);
2518 
2519     // We should only get vector types here; everything else is handled by the
2520     // importer right now.
2521     if (!DstTy.isVector() || DstTy.getSizeInBits() > 128) {
2522       LLVM_DEBUG(dbgs() << "Dst type for G_BSWAP currently unsupported.\n");
2523       return false;
2524     }
2525 
2526     // Only handle 4 and 2 element vectors for now.
2527     // TODO: 16-bit elements.
2528     unsigned NumElts = DstTy.getNumElements();
2529     if (NumElts != 4 && NumElts != 2) {
2530       LLVM_DEBUG(dbgs() << "Unsupported number of elements for G_BSWAP.\n");
2531       return false;
2532     }
2533 
2534     // Choose the correct opcode for the supported types. Right now, that's
2535     // v2s32, v4s32, and v2s64.
2536     unsigned Opc = 0;
2537     unsigned EltSize = DstTy.getElementType().getSizeInBits();
2538     if (EltSize == 32)
2539       Opc = (DstTy.getNumElements() == 2) ? AArch64::REV32v8i8
2540                                           : AArch64::REV32v16i8;
2541     else if (EltSize == 64)
2542       Opc = AArch64::REV64v16i8;
2543 
2544     // We should always get something by the time we get here...
2545     assert(Opc != 0 && "Didn't get an opcode for G_BSWAP?");
2546 
2547     I.setDesc(TII.get(Opc));
2548     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2549   }
2550 
2551   case TargetOpcode::G_FCONSTANT:
2552   case TargetOpcode::G_CONSTANT: {
2553     const bool isFP = Opcode == TargetOpcode::G_FCONSTANT;
2554 
2555     const LLT s8 = LLT::scalar(8);
2556     const LLT s16 = LLT::scalar(16);
2557     const LLT s32 = LLT::scalar(32);
2558     const LLT s64 = LLT::scalar(64);
2559     const LLT s128 = LLT::scalar(128);
2560     const LLT p0 = LLT::pointer(0, 64);
2561 
2562     const Register DefReg = I.getOperand(0).getReg();
2563     const LLT DefTy = MRI.getType(DefReg);
2564     const unsigned DefSize = DefTy.getSizeInBits();
2565     const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
2566 
2567     // FIXME: Redundant check, but even less readable when factored out.
2568     if (isFP) {
2569       if (Ty != s16 && Ty != s32 && Ty != s64 && Ty != s128) {
2570         LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
2571                           << " constant, expected: " << s16 << " or " << s32
2572                           << " or " << s64 << " or " << s128 << '\n');
2573         return false;
2574       }
2575 
2576       if (RB.getID() != AArch64::FPRRegBankID) {
2577         LLVM_DEBUG(dbgs() << "Unable to materialize FP " << Ty
2578                           << " constant on bank: " << RB
2579                           << ", expected: FPR\n");
2580         return false;
2581       }
2582 
2583       // The case when we have 0.0 is covered by tablegen. Reject it here so we
2584       // can be sure tablegen works correctly and isn't rescued by this code.
2585       // 0.0 is not covered by tablegen for FP128. So we will handle this
2586       // scenario in the code here.
2587       if (DefSize != 128 && I.getOperand(1).getFPImm()->isExactlyValue(0.0))
2588         return false;
2589     } else {
2590       // s32 and s64 are covered by tablegen.
2591       if (Ty != p0 && Ty != s8 && Ty != s16) {
2592         LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
2593                           << " constant, expected: " << s32 << ", " << s64
2594                           << ", or " << p0 << '\n');
2595         return false;
2596       }
2597 
2598       if (RB.getID() != AArch64::GPRRegBankID) {
2599         LLVM_DEBUG(dbgs() << "Unable to materialize integer " << Ty
2600                           << " constant on bank: " << RB
2601                           << ", expected: GPR\n");
2602         return false;
2603       }
2604     }
2605 
2606     if (isFP) {
2607       const TargetRegisterClass &FPRRC = *getRegClassForTypeOnBank(DefTy, RB);
2608       // For 16, 64, and 128b values, emit a constant pool load.
2609       switch (DefSize) {
2610       default:
2611         llvm_unreachable("Unexpected destination size for G_FCONSTANT?");
2612       case 32:
2613         // For s32, use a cp load if we have optsize/minsize.
2614         if (!shouldOptForSize(&MF))
2615           break;
2616         [[fallthrough]];
2617       case 16:
2618       case 64:
2619       case 128: {
2620         auto *FPImm = I.getOperand(1).getFPImm();
2621         auto *LoadMI = emitLoadFromConstantPool(FPImm, MIB);
2622         if (!LoadMI) {
2623           LLVM_DEBUG(dbgs() << "Failed to load double constant pool entry\n");
2624           return false;
2625         }
2626         MIB.buildCopy({DefReg}, {LoadMI->getOperand(0).getReg()});
2627         I.eraseFromParent();
2628         return RBI.constrainGenericRegister(DefReg, FPRRC, MRI);
2629       }
2630       }
2631 
2632       // Either emit a FMOV, or emit a copy to emit a normal mov.
2633       assert(DefSize == 32 &&
2634              "Expected constant pool loads for all sizes other than 32!");
2635       const Register DefGPRReg =
2636           MRI.createVirtualRegister(&AArch64::GPR32RegClass);
2637       MachineOperand &RegOp = I.getOperand(0);
2638       RegOp.setReg(DefGPRReg);
2639       MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
2640       MIB.buildCopy({DefReg}, {DefGPRReg});
2641 
2642       if (!RBI.constrainGenericRegister(DefReg, FPRRC, MRI)) {
2643         LLVM_DEBUG(dbgs() << "Failed to constrain G_FCONSTANT def operand\n");
2644         return false;
2645       }
2646 
2647       MachineOperand &ImmOp = I.getOperand(1);
2648       // FIXME: Is going through int64_t always correct?
2649       ImmOp.ChangeToImmediate(
2650           ImmOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue());
2651     } else if (I.getOperand(1).isCImm()) {
2652       uint64_t Val = I.getOperand(1).getCImm()->getZExtValue();
2653       I.getOperand(1).ChangeToImmediate(Val);
2654     } else if (I.getOperand(1).isImm()) {
2655       uint64_t Val = I.getOperand(1).getImm();
2656       I.getOperand(1).ChangeToImmediate(Val);
2657     }
2658 
2659     const unsigned MovOpc =
2660         DefSize == 64 ? AArch64::MOVi64imm : AArch64::MOVi32imm;
2661     I.setDesc(TII.get(MovOpc));
2662     constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2663     return true;
2664   }
2665   case TargetOpcode::G_EXTRACT: {
2666     Register DstReg = I.getOperand(0).getReg();
2667     Register SrcReg = I.getOperand(1).getReg();
2668     LLT SrcTy = MRI.getType(SrcReg);
2669     LLT DstTy = MRI.getType(DstReg);
2670     (void)DstTy;
2671     unsigned SrcSize = SrcTy.getSizeInBits();
2672 
2673     if (SrcTy.getSizeInBits() > 64) {
2674       // This should be an extract of an s128, which is like a vector extract.
2675       if (SrcTy.getSizeInBits() != 128)
2676         return false;
2677       // Only support extracting 64 bits from an s128 at the moment.
2678       if (DstTy.getSizeInBits() != 64)
2679         return false;
2680 
2681       unsigned Offset = I.getOperand(2).getImm();
2682       if (Offset % 64 != 0)
2683         return false;
2684 
2685       // Check we have the right regbank always.
2686       const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
2687       const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
2688       assert(SrcRB.getID() == DstRB.getID() && "Wrong extract regbank!");
2689 
2690       if (SrcRB.getID() == AArch64::GPRRegBankID) {
2691         auto NewI =
2692             MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {})
2693                 .addUse(SrcReg, 0,
2694                         Offset == 0 ? AArch64::sube64 : AArch64::subo64);
2695         constrainOperandRegClass(MF, TRI, MRI, TII, RBI, *NewI,
2696                                  AArch64::GPR64RegClass, NewI->getOperand(0));
2697         I.eraseFromParent();
2698         return true;
2699       }
2700 
2701       // Emit the same code as a vector extract.
2702       // Offset must be a multiple of 64.
2703       unsigned LaneIdx = Offset / 64;
2704       MachineInstr *Extract = emitExtractVectorElt(
2705           DstReg, DstRB, LLT::scalar(64), SrcReg, LaneIdx, MIB);
2706       if (!Extract)
2707         return false;
2708       I.eraseFromParent();
2709       return true;
2710     }
2711 
2712     I.setDesc(TII.get(SrcSize == 64 ? AArch64::UBFMXri : AArch64::UBFMWri));
2713     MachineInstrBuilder(MF, I).addImm(I.getOperand(2).getImm() +
2714                                       Ty.getSizeInBits() - 1);
2715 
2716     if (SrcSize < 64) {
2717       assert(SrcSize == 32 && DstTy.getSizeInBits() == 16 &&
2718              "unexpected G_EXTRACT types");
2719       return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2720     }
2721 
2722     DstReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
2723     MIB.setInsertPt(MIB.getMBB(), std::next(I.getIterator()));
2724     MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
2725         .addReg(DstReg, 0, AArch64::sub_32);
2726     RBI.constrainGenericRegister(I.getOperand(0).getReg(),
2727                                  AArch64::GPR32RegClass, MRI);
2728     I.getOperand(0).setReg(DstReg);
2729 
2730     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2731   }
2732 
2733   case TargetOpcode::G_INSERT: {
2734     LLT SrcTy = MRI.getType(I.getOperand(2).getReg());
2735     LLT DstTy = MRI.getType(I.getOperand(0).getReg());
2736     unsigned DstSize = DstTy.getSizeInBits();
2737     // Larger inserts are vectors, same-size ones should be something else by
2738     // now (split up or turned into COPYs).
2739     if (Ty.getSizeInBits() > 64 || SrcTy.getSizeInBits() > 32)
2740       return false;
2741 
2742     I.setDesc(TII.get(DstSize == 64 ? AArch64::BFMXri : AArch64::BFMWri));
2743     unsigned LSB = I.getOperand(3).getImm();
2744     unsigned Width = MRI.getType(I.getOperand(2).getReg()).getSizeInBits();
2745     I.getOperand(3).setImm((DstSize - LSB) % DstSize);
2746     MachineInstrBuilder(MF, I).addImm(Width - 1);
2747 
2748     if (DstSize < 64) {
2749       assert(DstSize == 32 && SrcTy.getSizeInBits() == 16 &&
2750              "unexpected G_INSERT types");
2751       return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2752     }
2753 
2754     Register SrcReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
2755     BuildMI(MBB, I.getIterator(), I.getDebugLoc(),
2756             TII.get(AArch64::SUBREG_TO_REG))
2757         .addDef(SrcReg)
2758         .addImm(0)
2759         .addUse(I.getOperand(2).getReg())
2760         .addImm(AArch64::sub_32);
2761     RBI.constrainGenericRegister(I.getOperand(2).getReg(),
2762                                  AArch64::GPR32RegClass, MRI);
2763     I.getOperand(2).setReg(SrcReg);
2764 
2765     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2766   }
2767   case TargetOpcode::G_FRAME_INDEX: {
2768     // allocas and G_FRAME_INDEX are only supported in addrspace(0).
2769     if (Ty != LLT::pointer(0, 64)) {
2770       LLVM_DEBUG(dbgs() << "G_FRAME_INDEX pointer has type: " << Ty
2771                         << ", expected: " << LLT::pointer(0, 64) << '\n');
2772       return false;
2773     }
2774     I.setDesc(TII.get(AArch64::ADDXri));
2775 
2776     // MOs for a #0 shifted immediate.
2777     I.addOperand(MachineOperand::CreateImm(0));
2778     I.addOperand(MachineOperand::CreateImm(0));
2779 
2780     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2781   }
2782 
2783   case TargetOpcode::G_GLOBAL_VALUE: {
2784     auto GV = I.getOperand(1).getGlobal();
2785     if (GV->isThreadLocal())
2786       return selectTLSGlobalValue(I, MRI);
2787 
2788     unsigned OpFlags = STI.ClassifyGlobalReference(GV, TM);
2789     if (OpFlags & AArch64II::MO_GOT) {
2790       I.setDesc(TII.get(AArch64::LOADgot));
2791       I.getOperand(1).setTargetFlags(OpFlags);
2792     } else if (TM.getCodeModel() == CodeModel::Large) {
2793       // Materialize the global using movz/movk instructions.
2794       materializeLargeCMVal(I, GV, OpFlags);
2795       I.eraseFromParent();
2796       return true;
2797     } else if (TM.getCodeModel() == CodeModel::Tiny) {
2798       I.setDesc(TII.get(AArch64::ADR));
2799       I.getOperand(1).setTargetFlags(OpFlags);
2800     } else {
2801       I.setDesc(TII.get(AArch64::MOVaddr));
2802       I.getOperand(1).setTargetFlags(OpFlags | AArch64II::MO_PAGE);
2803       MachineInstrBuilder MIB(MF, I);
2804       MIB.addGlobalAddress(GV, I.getOperand(1).getOffset(),
2805                            OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
2806     }
2807     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2808   }
2809 
2810   case TargetOpcode::G_ZEXTLOAD:
2811   case TargetOpcode::G_LOAD:
2812   case TargetOpcode::G_STORE: {
2813     GLoadStore &LdSt = cast<GLoadStore>(I);
2814     bool IsZExtLoad = I.getOpcode() == TargetOpcode::G_ZEXTLOAD;
2815     LLT PtrTy = MRI.getType(LdSt.getPointerReg());
2816 
2817     if (PtrTy != LLT::pointer(0, 64)) {
2818       LLVM_DEBUG(dbgs() << "Load/Store pointer has type: " << PtrTy
2819                         << ", expected: " << LLT::pointer(0, 64) << '\n');
2820       return false;
2821     }
2822 
2823     uint64_t MemSizeInBytes = LdSt.getMemSize();
2824     unsigned MemSizeInBits = LdSt.getMemSizeInBits();
2825     AtomicOrdering Order = LdSt.getMMO().getSuccessOrdering();
2826 
2827     // Need special instructions for atomics that affect ordering.
2828     if (Order != AtomicOrdering::NotAtomic &&
2829         Order != AtomicOrdering::Unordered &&
2830         Order != AtomicOrdering::Monotonic) {
2831       assert(!isa<GZExtLoad>(LdSt));
2832       if (MemSizeInBytes > 64)
2833         return false;
2834 
2835       if (isa<GLoad>(LdSt)) {
2836         static constexpr unsigned LDAPROpcodes[] = {
2837             AArch64::LDAPRB, AArch64::LDAPRH, AArch64::LDAPRW, AArch64::LDAPRX};
2838         static constexpr unsigned LDAROpcodes[] = {
2839             AArch64::LDARB, AArch64::LDARH, AArch64::LDARW, AArch64::LDARX};
2840         ArrayRef<unsigned> Opcodes =
2841             STI.hasRCPC() && Order != AtomicOrdering::SequentiallyConsistent
2842                 ? LDAPROpcodes
2843                 : LDAROpcodes;
2844         I.setDesc(TII.get(Opcodes[Log2_32(MemSizeInBytes)]));
2845       } else {
2846         static constexpr unsigned Opcodes[] = {AArch64::STLRB, AArch64::STLRH,
2847                                                AArch64::STLRW, AArch64::STLRX};
2848         Register ValReg = LdSt.getReg(0);
2849         if (MRI.getType(ValReg).getSizeInBits() == 64 && MemSizeInBits != 64) {
2850           // Emit a subreg copy of 32 bits.
2851           Register NewVal = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
2852           MIB.buildInstr(TargetOpcode::COPY, {NewVal}, {})
2853               .addReg(I.getOperand(0).getReg(), 0, AArch64::sub_32);
2854           I.getOperand(0).setReg(NewVal);
2855         }
2856         I.setDesc(TII.get(Opcodes[Log2_32(MemSizeInBytes)]));
2857       }
2858       constrainSelectedInstRegOperands(I, TII, TRI, RBI);
2859       return true;
2860     }
2861 
2862 #ifndef NDEBUG
2863     const Register PtrReg = LdSt.getPointerReg();
2864     const RegisterBank &PtrRB = *RBI.getRegBank(PtrReg, MRI, TRI);
2865     // Check that the pointer register is valid.
2866     assert(PtrRB.getID() == AArch64::GPRRegBankID &&
2867            "Load/Store pointer operand isn't a GPR");
2868     assert(MRI.getType(PtrReg).isPointer() &&
2869            "Load/Store pointer operand isn't a pointer");
2870 #endif
2871 
2872     const Register ValReg = LdSt.getReg(0);
2873     const LLT ValTy = MRI.getType(ValReg);
2874     const RegisterBank &RB = *RBI.getRegBank(ValReg, MRI, TRI);
2875 
2876     // The code below doesn't support truncating stores, so we need to split it
2877     // again.
2878     if (isa<GStore>(LdSt) && ValTy.getSizeInBits() > MemSizeInBits) {
2879       unsigned SubReg;
2880       LLT MemTy = LdSt.getMMO().getMemoryType();
2881       auto *RC = getRegClassForTypeOnBank(MemTy, RB);
2882       if (!getSubRegForClass(RC, TRI, SubReg))
2883         return false;
2884 
2885       // Generate a subreg copy.
2886       auto Copy = MIB.buildInstr(TargetOpcode::COPY, {MemTy}, {})
2887                       .addReg(ValReg, 0, SubReg)
2888                       .getReg(0);
2889       RBI.constrainGenericRegister(Copy, *RC, MRI);
2890       LdSt.getOperand(0).setReg(Copy);
2891     } else if (isa<GLoad>(LdSt) && ValTy.getSizeInBits() > MemSizeInBits) {
2892       // If this is an any-extending load from the FPR bank, split it into a regular
2893       // load + extend.
2894       if (RB.getID() == AArch64::FPRRegBankID) {
2895         unsigned SubReg;
2896         LLT MemTy = LdSt.getMMO().getMemoryType();
2897         auto *RC = getRegClassForTypeOnBank(MemTy, RB);
2898         if (!getSubRegForClass(RC, TRI, SubReg))
2899           return false;
2900         Register OldDst = LdSt.getReg(0);
2901         Register NewDst =
2902             MRI.createGenericVirtualRegister(LdSt.getMMO().getMemoryType());
2903         LdSt.getOperand(0).setReg(NewDst);
2904         MRI.setRegBank(NewDst, RB);
2905         // Generate a SUBREG_TO_REG to extend it.
2906         MIB.setInsertPt(MIB.getMBB(), std::next(LdSt.getIterator()));
2907         MIB.buildInstr(AArch64::SUBREG_TO_REG, {OldDst}, {})
2908             .addImm(0)
2909             .addUse(NewDst)
2910             .addImm(SubReg);
2911         auto SubRegRC = getRegClassForTypeOnBank(MRI.getType(OldDst), RB);
2912         RBI.constrainGenericRegister(OldDst, *SubRegRC, MRI);
2913         MIB.setInstr(LdSt);
2914       }
2915     }
2916 
2917     // Helper lambda for partially selecting I. Either returns the original
2918     // instruction with an updated opcode, or a new instruction.
2919     auto SelectLoadStoreAddressingMode = [&]() -> MachineInstr * {
2920       bool IsStore = isa<GStore>(I);
2921       const unsigned NewOpc =
2922           selectLoadStoreUIOp(I.getOpcode(), RB.getID(), MemSizeInBits);
2923       if (NewOpc == I.getOpcode())
2924         return nullptr;
2925       // Check if we can fold anything into the addressing mode.
2926       auto AddrModeFns =
2927           selectAddrModeIndexed(I.getOperand(1), MemSizeInBytes);
2928       if (!AddrModeFns) {
2929         // Can't fold anything. Use the original instruction.
2930         I.setDesc(TII.get(NewOpc));
2931         I.addOperand(MachineOperand::CreateImm(0));
2932         return &I;
2933       }
2934 
2935       // Folded something. Create a new instruction and return it.
2936       auto NewInst = MIB.buildInstr(NewOpc, {}, {}, I.getFlags());
2937       Register CurValReg = I.getOperand(0).getReg();
2938       IsStore ? NewInst.addUse(CurValReg) : NewInst.addDef(CurValReg);
2939       NewInst.cloneMemRefs(I);
2940       for (auto &Fn : *AddrModeFns)
2941         Fn(NewInst);
2942       I.eraseFromParent();
2943       return &*NewInst;
2944     };
2945 
2946     MachineInstr *LoadStore = SelectLoadStoreAddressingMode();
2947     if (!LoadStore)
2948       return false;
2949 
2950     // If we're storing a 0, use WZR/XZR.
2951     if (Opcode == TargetOpcode::G_STORE) {
2952       auto CVal = getIConstantVRegValWithLookThrough(
2953           LoadStore->getOperand(0).getReg(), MRI);
2954       if (CVal && CVal->Value == 0) {
2955         switch (LoadStore->getOpcode()) {
2956         case AArch64::STRWui:
2957         case AArch64::STRHHui:
2958         case AArch64::STRBBui:
2959           LoadStore->getOperand(0).setReg(AArch64::WZR);
2960           break;
2961         case AArch64::STRXui:
2962           LoadStore->getOperand(0).setReg(AArch64::XZR);
2963           break;
2964         }
2965       }
2966     }
2967 
2968     if (IsZExtLoad) {
2969       // The zextload from a smaller type to i32 should be handled by the
2970       // importer.
2971       if (MRI.getType(LoadStore->getOperand(0).getReg()).getSizeInBits() != 64)
2972         return false;
2973       // If we have a ZEXTLOAD then change the load's type to be a narrower reg
2974       // and zero_extend with SUBREG_TO_REG.
2975       Register LdReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
2976       Register DstReg = LoadStore->getOperand(0).getReg();
2977       LoadStore->getOperand(0).setReg(LdReg);
2978 
2979       MIB.setInsertPt(MIB.getMBB(), std::next(LoadStore->getIterator()));
2980       MIB.buildInstr(AArch64::SUBREG_TO_REG, {DstReg}, {})
2981           .addImm(0)
2982           .addUse(LdReg)
2983           .addImm(AArch64::sub_32);
2984       constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI);
2985       return RBI.constrainGenericRegister(DstReg, AArch64::GPR64allRegClass,
2986                                           MRI);
2987     }
2988     return constrainSelectedInstRegOperands(*LoadStore, TII, TRI, RBI);
2989   }
2990 
2991   case TargetOpcode::G_SMULH:
2992   case TargetOpcode::G_UMULH: {
2993     // Reject the various things we don't support yet.
2994     if (unsupportedBinOp(I, RBI, MRI, TRI))
2995       return false;
2996 
2997     const Register DefReg = I.getOperand(0).getReg();
2998     const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
2999 
3000     if (RB.getID() != AArch64::GPRRegBankID) {
3001       LLVM_DEBUG(dbgs() << "G_[SU]MULH on bank: " << RB << ", expected: GPR\n");
3002       return false;
3003     }
3004 
3005     if (Ty != LLT::scalar(64)) {
3006       LLVM_DEBUG(dbgs() << "G_[SU]MULH has type: " << Ty
3007                         << ", expected: " << LLT::scalar(64) << '\n');
3008       return false;
3009     }
3010 
3011     unsigned NewOpc = I.getOpcode() == TargetOpcode::G_SMULH ? AArch64::SMULHrr
3012                                                              : AArch64::UMULHrr;
3013     I.setDesc(TII.get(NewOpc));
3014 
3015     // Now that we selected an opcode, we need to constrain the register
3016     // operands to use appropriate classes.
3017     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3018   }
3019   case TargetOpcode::G_LSHR:
3020   case TargetOpcode::G_ASHR:
3021     if (MRI.getType(I.getOperand(0).getReg()).isVector())
3022       return selectVectorAshrLshr(I, MRI);
3023     [[fallthrough]];
3024   case TargetOpcode::G_SHL:
3025     if (Opcode == TargetOpcode::G_SHL &&
3026         MRI.getType(I.getOperand(0).getReg()).isVector())
3027       return selectVectorSHL(I, MRI);
3028 
3029     // These shifts were legalized to have 64 bit shift amounts because we
3030     // want to take advantage of the selection patterns that assume the
3031     // immediates are s64s, however, selectBinaryOp will assume both operands
3032     // will have the same bit size.
3033     {
3034       Register SrcReg = I.getOperand(1).getReg();
3035       Register ShiftReg = I.getOperand(2).getReg();
3036       const LLT ShiftTy = MRI.getType(ShiftReg);
3037       const LLT SrcTy = MRI.getType(SrcReg);
3038       if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
3039           ShiftTy.getSizeInBits() == 64) {
3040         assert(!ShiftTy.isVector() && "unexpected vector shift ty");
3041         // Insert a subregister copy to implement a 64->32 trunc
3042         auto Trunc = MIB.buildInstr(TargetOpcode::COPY, {SrcTy}, {})
3043                          .addReg(ShiftReg, 0, AArch64::sub_32);
3044         MRI.setRegBank(Trunc.getReg(0), RBI.getRegBank(AArch64::GPRRegBankID));
3045         I.getOperand(2).setReg(Trunc.getReg(0));
3046       }
3047     }
3048     [[fallthrough]];
3049   case TargetOpcode::G_OR: {
3050     // Reject the various things we don't support yet.
3051     if (unsupportedBinOp(I, RBI, MRI, TRI))
3052       return false;
3053 
3054     const unsigned OpSize = Ty.getSizeInBits();
3055 
3056     const Register DefReg = I.getOperand(0).getReg();
3057     const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
3058 
3059     const unsigned NewOpc = selectBinaryOp(I.getOpcode(), RB.getID(), OpSize);
3060     if (NewOpc == I.getOpcode())
3061       return false;
3062 
3063     I.setDesc(TII.get(NewOpc));
3064     // FIXME: Should the type be always reset in setDesc?
3065 
3066     // Now that we selected an opcode, we need to constrain the register
3067     // operands to use appropriate classes.
3068     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3069   }
3070 
3071   case TargetOpcode::G_PTR_ADD: {
3072     emitADD(I.getOperand(0).getReg(), I.getOperand(1), I.getOperand(2), MIB);
3073     I.eraseFromParent();
3074     return true;
3075   }
3076   case TargetOpcode::G_SADDO:
3077   case TargetOpcode::G_UADDO:
3078   case TargetOpcode::G_SSUBO:
3079   case TargetOpcode::G_USUBO: {
3080     // Emit the operation and get the correct condition code.
3081     auto OpAndCC = emitOverflowOp(Opcode, I.getOperand(0).getReg(),
3082                                   I.getOperand(2), I.getOperand(3), MIB);
3083 
3084     // Now, put the overflow result in the register given by the first operand
3085     // to the overflow op. CSINC increments the result when the predicate is
3086     // false, so to get the increment when it's true, we need to use the
3087     // inverse. In this case, we want to increment when carry is set.
3088     Register ZReg = AArch64::WZR;
3089     emitCSINC(/*Dst=*/I.getOperand(1).getReg(), /*Src1=*/ZReg, /*Src2=*/ZReg,
3090               getInvertedCondCode(OpAndCC.second), MIB);
3091     I.eraseFromParent();
3092     return true;
3093   }
3094 
3095   case TargetOpcode::G_PTRMASK: {
3096     Register MaskReg = I.getOperand(2).getReg();
3097     std::optional<int64_t> MaskVal = getIConstantVRegSExtVal(MaskReg, MRI);
3098     // TODO: Implement arbitrary cases
3099     if (!MaskVal || !isShiftedMask_64(*MaskVal))
3100       return false;
3101 
3102     uint64_t Mask = *MaskVal;
3103     I.setDesc(TII.get(AArch64::ANDXri));
3104     I.getOperand(2).ChangeToImmediate(
3105         AArch64_AM::encodeLogicalImmediate(Mask, 64));
3106 
3107     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3108   }
3109   case TargetOpcode::G_PTRTOINT:
3110   case TargetOpcode::G_TRUNC: {
3111     const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3112     const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
3113 
3114     const Register DstReg = I.getOperand(0).getReg();
3115     const Register SrcReg = I.getOperand(1).getReg();
3116 
3117     const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
3118     const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
3119 
3120     if (DstRB.getID() != SrcRB.getID()) {
3121       LLVM_DEBUG(
3122           dbgs() << "G_TRUNC/G_PTRTOINT input/output on different banks\n");
3123       return false;
3124     }
3125 
3126     if (DstRB.getID() == AArch64::GPRRegBankID) {
3127       const TargetRegisterClass *DstRC = getRegClassForTypeOnBank(DstTy, DstRB);
3128       if (!DstRC)
3129         return false;
3130 
3131       const TargetRegisterClass *SrcRC = getRegClassForTypeOnBank(SrcTy, SrcRB);
3132       if (!SrcRC)
3133         return false;
3134 
3135       if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
3136           !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
3137         LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC/G_PTRTOINT\n");
3138         return false;
3139       }
3140 
3141       if (DstRC == SrcRC) {
3142         // Nothing to be done
3143       } else if (Opcode == TargetOpcode::G_TRUNC && DstTy == LLT::scalar(32) &&
3144                  SrcTy == LLT::scalar(64)) {
3145         llvm_unreachable("TableGen can import this case");
3146         return false;
3147       } else if (DstRC == &AArch64::GPR32RegClass &&
3148                  SrcRC == &AArch64::GPR64RegClass) {
3149         I.getOperand(1).setSubReg(AArch64::sub_32);
3150       } else {
3151         LLVM_DEBUG(
3152             dbgs() << "Unhandled mismatched classes in G_TRUNC/G_PTRTOINT\n");
3153         return false;
3154       }
3155 
3156       I.setDesc(TII.get(TargetOpcode::COPY));
3157       return true;
3158     } else if (DstRB.getID() == AArch64::FPRRegBankID) {
3159       if (DstTy == LLT::fixed_vector(4, 16) &&
3160           SrcTy == LLT::fixed_vector(4, 32)) {
3161         I.setDesc(TII.get(AArch64::XTNv4i16));
3162         constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3163         return true;
3164       }
3165 
3166       if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128) {
3167         MachineInstr *Extract = emitExtractVectorElt(
3168             DstReg, DstRB, LLT::scalar(DstTy.getSizeInBits()), SrcReg, 0, MIB);
3169         if (!Extract)
3170           return false;
3171         I.eraseFromParent();
3172         return true;
3173       }
3174 
3175       // We might have a vector G_PTRTOINT, in which case just emit a COPY.
3176       if (Opcode == TargetOpcode::G_PTRTOINT) {
3177         assert(DstTy.isVector() && "Expected an FPR ptrtoint to be a vector");
3178         I.setDesc(TII.get(TargetOpcode::COPY));
3179         return selectCopy(I, TII, MRI, TRI, RBI);
3180       }
3181     }
3182 
3183     return false;
3184   }
3185 
3186   case TargetOpcode::G_ANYEXT: {
3187     if (selectUSMovFromExtend(I, MRI))
3188       return true;
3189 
3190     const Register DstReg = I.getOperand(0).getReg();
3191     const Register SrcReg = I.getOperand(1).getReg();
3192 
3193     const RegisterBank &RBDst = *RBI.getRegBank(DstReg, MRI, TRI);
3194     if (RBDst.getID() != AArch64::GPRRegBankID) {
3195       LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBDst
3196                         << ", expected: GPR\n");
3197       return false;
3198     }
3199 
3200     const RegisterBank &RBSrc = *RBI.getRegBank(SrcReg, MRI, TRI);
3201     if (RBSrc.getID() != AArch64::GPRRegBankID) {
3202       LLVM_DEBUG(dbgs() << "G_ANYEXT on bank: " << RBSrc
3203                         << ", expected: GPR\n");
3204       return false;
3205     }
3206 
3207     const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
3208 
3209     if (DstSize == 0) {
3210       LLVM_DEBUG(dbgs() << "G_ANYEXT operand has no size, not a gvreg?\n");
3211       return false;
3212     }
3213 
3214     if (DstSize != 64 && DstSize > 32) {
3215       LLVM_DEBUG(dbgs() << "G_ANYEXT to size: " << DstSize
3216                         << ", expected: 32 or 64\n");
3217       return false;
3218     }
3219     // At this point G_ANYEXT is just like a plain COPY, but we need
3220     // to explicitly form the 64-bit value if any.
3221     if (DstSize > 32) {
3222       Register ExtSrc = MRI.createVirtualRegister(&AArch64::GPR64allRegClass);
3223       BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::SUBREG_TO_REG))
3224           .addDef(ExtSrc)
3225           .addImm(0)
3226           .addUse(SrcReg)
3227           .addImm(AArch64::sub_32);
3228       I.getOperand(1).setReg(ExtSrc);
3229     }
3230     return selectCopy(I, TII, MRI, TRI, RBI);
3231   }
3232 
3233   case TargetOpcode::G_ZEXT:
3234   case TargetOpcode::G_SEXT_INREG:
3235   case TargetOpcode::G_SEXT: {
3236     if (selectUSMovFromExtend(I, MRI))
3237       return true;
3238 
3239     unsigned Opcode = I.getOpcode();
3240     const bool IsSigned = Opcode != TargetOpcode::G_ZEXT;
3241     const Register DefReg = I.getOperand(0).getReg();
3242     Register SrcReg = I.getOperand(1).getReg();
3243     const LLT DstTy = MRI.getType(DefReg);
3244     const LLT SrcTy = MRI.getType(SrcReg);
3245     unsigned DstSize = DstTy.getSizeInBits();
3246     unsigned SrcSize = SrcTy.getSizeInBits();
3247 
3248     // SEXT_INREG has the same src reg size as dst, the size of the value to be
3249     // extended is encoded in the imm.
3250     if (Opcode == TargetOpcode::G_SEXT_INREG)
3251       SrcSize = I.getOperand(2).getImm();
3252 
3253     if (DstTy.isVector())
3254       return false; // Should be handled by imported patterns.
3255 
3256     assert((*RBI.getRegBank(DefReg, MRI, TRI)).getID() ==
3257                AArch64::GPRRegBankID &&
3258            "Unexpected ext regbank");
3259 
3260     MachineInstr *ExtI;
3261 
3262     // First check if we're extending the result of a load which has a dest type
3263     // smaller than 32 bits, then this zext is redundant. GPR32 is the smallest
3264     // GPR register on AArch64 and all loads which are smaller automatically
3265     // zero-extend the upper bits. E.g.
3266     // %v(s8) = G_LOAD %p, :: (load 1)
3267     // %v2(s32) = G_ZEXT %v(s8)
3268     if (!IsSigned) {
3269       auto *LoadMI = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI);
3270       bool IsGPR =
3271           RBI.getRegBank(SrcReg, MRI, TRI)->getID() == AArch64::GPRRegBankID;
3272       if (LoadMI && IsGPR) {
3273         const MachineMemOperand *MemOp = *LoadMI->memoperands_begin();
3274         unsigned BytesLoaded = MemOp->getSize();
3275         if (BytesLoaded < 4 && SrcTy.getSizeInBytes() == BytesLoaded)
3276           return selectCopy(I, TII, MRI, TRI, RBI);
3277       }
3278 
3279       // For the 32-bit -> 64-bit case, we can emit a mov (ORRWrs)
3280       // + SUBREG_TO_REG.
3281       if (IsGPR && SrcSize == 32 && DstSize == 64) {
3282         Register SubregToRegSrc =
3283             MRI.createVirtualRegister(&AArch64::GPR32RegClass);
3284         const Register ZReg = AArch64::WZR;
3285         MIB.buildInstr(AArch64::ORRWrs, {SubregToRegSrc}, {ZReg, SrcReg})
3286             .addImm(0);
3287 
3288         MIB.buildInstr(AArch64::SUBREG_TO_REG, {DefReg}, {})
3289             .addImm(0)
3290             .addUse(SubregToRegSrc)
3291             .addImm(AArch64::sub_32);
3292 
3293         if (!RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass,
3294                                           MRI)) {
3295           LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT destination\n");
3296           return false;
3297         }
3298 
3299         if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass,
3300                                           MRI)) {
3301           LLVM_DEBUG(dbgs() << "Failed to constrain G_ZEXT source\n");
3302           return false;
3303         }
3304 
3305         I.eraseFromParent();
3306         return true;
3307       }
3308     }
3309 
3310     if (DstSize == 64) {
3311       if (Opcode != TargetOpcode::G_SEXT_INREG) {
3312         // FIXME: Can we avoid manually doing this?
3313         if (!RBI.constrainGenericRegister(SrcReg, AArch64::GPR32RegClass,
3314                                           MRI)) {
3315           LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(Opcode)
3316                             << " operand\n");
3317           return false;
3318         }
3319         SrcReg = MIB.buildInstr(AArch64::SUBREG_TO_REG,
3320                                 {&AArch64::GPR64RegClass}, {})
3321                      .addImm(0)
3322                      .addUse(SrcReg)
3323                      .addImm(AArch64::sub_32)
3324                      .getReg(0);
3325       }
3326 
3327       ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMXri : AArch64::UBFMXri,
3328                              {DefReg}, {SrcReg})
3329                   .addImm(0)
3330                   .addImm(SrcSize - 1);
3331     } else if (DstSize <= 32) {
3332       ExtI = MIB.buildInstr(IsSigned ? AArch64::SBFMWri : AArch64::UBFMWri,
3333                              {DefReg}, {SrcReg})
3334                   .addImm(0)
3335                   .addImm(SrcSize - 1);
3336     } else {
3337       return false;
3338     }
3339 
3340     constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
3341     I.eraseFromParent();
3342     return true;
3343   }
3344 
3345   case TargetOpcode::G_SITOFP:
3346   case TargetOpcode::G_UITOFP:
3347   case TargetOpcode::G_FPTOSI:
3348   case TargetOpcode::G_FPTOUI: {
3349     const LLT DstTy = MRI.getType(I.getOperand(0).getReg()),
3350               SrcTy = MRI.getType(I.getOperand(1).getReg());
3351     const unsigned NewOpc = selectFPConvOpc(Opcode, DstTy, SrcTy);
3352     if (NewOpc == Opcode)
3353       return false;
3354 
3355     I.setDesc(TII.get(NewOpc));
3356     constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3357     I.setFlags(MachineInstr::NoFPExcept);
3358 
3359     return true;
3360   }
3361 
3362   case TargetOpcode::G_FREEZE:
3363     return selectCopy(I, TII, MRI, TRI, RBI);
3364 
3365   case TargetOpcode::G_INTTOPTR:
3366     // The importer is currently unable to import pointer types since they
3367     // didn't exist in SelectionDAG.
3368     return selectCopy(I, TII, MRI, TRI, RBI);
3369 
3370   case TargetOpcode::G_BITCAST:
3371     // Imported SelectionDAG rules can handle every bitcast except those that
3372     // bitcast from a type to the same type. Ideally, these shouldn't occur
3373     // but we might not run an optimizer that deletes them. The other exception
3374     // is bitcasts involving pointer types, as SelectionDAG has no knowledge
3375     // of them.
3376     return selectCopy(I, TII, MRI, TRI, RBI);
3377 
3378   case TargetOpcode::G_SELECT: {
3379     auto &Sel = cast<GSelect>(I);
3380     const Register CondReg = Sel.getCondReg();
3381     const Register TReg = Sel.getTrueReg();
3382     const Register FReg = Sel.getFalseReg();
3383 
3384     if (tryOptSelect(Sel))
3385       return true;
3386 
3387     // Make sure to use an unused vreg instead of wzr, so that the peephole
3388     // optimizations will be able to optimize these.
3389     Register DeadVReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
3390     auto TstMI = MIB.buildInstr(AArch64::ANDSWri, {DeadVReg}, {CondReg})
3391                      .addImm(AArch64_AM::encodeLogicalImmediate(1, 32));
3392     constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
3393     if (!emitSelect(Sel.getReg(0), TReg, FReg, AArch64CC::NE, MIB))
3394       return false;
3395     Sel.eraseFromParent();
3396     return true;
3397   }
3398   case TargetOpcode::G_ICMP: {
3399     if (Ty.isVector())
3400       return selectVectorICmp(I, MRI);
3401 
3402     if (Ty != LLT::scalar(32)) {
3403       LLVM_DEBUG(dbgs() << "G_ICMP result has type: " << Ty
3404                         << ", expected: " << LLT::scalar(32) << '\n');
3405       return false;
3406     }
3407 
3408     auto Pred = static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate());
3409     const AArch64CC::CondCode InvCC =
3410         changeICMPPredToAArch64CC(CmpInst::getInversePredicate(Pred));
3411     emitIntegerCompare(I.getOperand(2), I.getOperand(3), I.getOperand(1), MIB);
3412     emitCSINC(/*Dst=*/I.getOperand(0).getReg(), /*Src1=*/AArch64::WZR,
3413               /*Src2=*/AArch64::WZR, InvCC, MIB);
3414     I.eraseFromParent();
3415     return true;
3416   }
3417 
3418   case TargetOpcode::G_FCMP: {
3419     CmpInst::Predicate Pred =
3420         static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate());
3421     if (!emitFPCompare(I.getOperand(2).getReg(), I.getOperand(3).getReg(), MIB,
3422                        Pred) ||
3423         !emitCSetForFCmp(I.getOperand(0).getReg(), Pred, MIB))
3424       return false;
3425     I.eraseFromParent();
3426     return true;
3427   }
3428   case TargetOpcode::G_VASTART:
3429     return STI.isTargetDarwin() ? selectVaStartDarwin(I, MF, MRI)
3430                                 : selectVaStartAAPCS(I, MF, MRI);
3431   case TargetOpcode::G_INTRINSIC:
3432     return selectIntrinsic(I, MRI);
3433   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
3434     return selectIntrinsicWithSideEffects(I, MRI);
3435   case TargetOpcode::G_IMPLICIT_DEF: {
3436     I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF));
3437     const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
3438     const Register DstReg = I.getOperand(0).getReg();
3439     const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
3440     const TargetRegisterClass *DstRC = getRegClassForTypeOnBank(DstTy, DstRB);
3441     RBI.constrainGenericRegister(DstReg, *DstRC, MRI);
3442     return true;
3443   }
3444   case TargetOpcode::G_BLOCK_ADDR: {
3445     if (TM.getCodeModel() == CodeModel::Large) {
3446       materializeLargeCMVal(I, I.getOperand(1).getBlockAddress(), 0);
3447       I.eraseFromParent();
3448       return true;
3449     } else {
3450       I.setDesc(TII.get(AArch64::MOVaddrBA));
3451       auto MovMI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(AArch64::MOVaddrBA),
3452                            I.getOperand(0).getReg())
3453                        .addBlockAddress(I.getOperand(1).getBlockAddress(),
3454                                         /* Offset */ 0, AArch64II::MO_PAGE)
3455                        .addBlockAddress(
3456                            I.getOperand(1).getBlockAddress(), /* Offset */ 0,
3457                            AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
3458       I.eraseFromParent();
3459       return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
3460     }
3461   }
3462   case AArch64::G_DUP: {
3463     // When the scalar of G_DUP is an s8/s16 gpr, they can't be selected by
3464     // imported patterns. Do it manually here. Avoiding generating s16 gpr is
3465     // difficult because at RBS we may end up pessimizing the fpr case if we
3466     // decided to add an anyextend to fix this. Manual selection is the most
3467     // robust solution for now.
3468     if (RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
3469         AArch64::GPRRegBankID)
3470       return false; // We expect the fpr regbank case to be imported.
3471     LLT VecTy = MRI.getType(I.getOperand(0).getReg());
3472     if (VecTy == LLT::fixed_vector(8, 8))
3473       I.setDesc(TII.get(AArch64::DUPv8i8gpr));
3474     else if (VecTy == LLT::fixed_vector(16, 8))
3475       I.setDesc(TII.get(AArch64::DUPv16i8gpr));
3476     else if (VecTy == LLT::fixed_vector(4, 16))
3477       I.setDesc(TII.get(AArch64::DUPv4i16gpr));
3478     else if (VecTy == LLT::fixed_vector(8, 16))
3479       I.setDesc(TII.get(AArch64::DUPv8i16gpr));
3480     else
3481       return false;
3482     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3483   }
3484   case TargetOpcode::G_INTRINSIC_TRUNC:
3485     return selectIntrinsicTrunc(I, MRI);
3486   case TargetOpcode::G_INTRINSIC_ROUND:
3487     return selectIntrinsicRound(I, MRI);
3488   case TargetOpcode::G_BUILD_VECTOR:
3489     return selectBuildVector(I, MRI);
3490   case TargetOpcode::G_MERGE_VALUES:
3491     return selectMergeValues(I, MRI);
3492   case TargetOpcode::G_UNMERGE_VALUES:
3493     return selectUnmergeValues(I, MRI);
3494   case TargetOpcode::G_SHUFFLE_VECTOR:
3495     return selectShuffleVector(I, MRI);
3496   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3497     return selectExtractElt(I, MRI);
3498   case TargetOpcode::G_INSERT_VECTOR_ELT:
3499     return selectInsertElt(I, MRI);
3500   case TargetOpcode::G_CONCAT_VECTORS:
3501     return selectConcatVectors(I, MRI);
3502   case TargetOpcode::G_JUMP_TABLE:
3503     return selectJumpTable(I, MRI);
3504   case TargetOpcode::G_VECREDUCE_FADD:
3505   case TargetOpcode::G_VECREDUCE_ADD:
3506     return selectReduction(I, MRI);
3507   case TargetOpcode::G_MEMCPY:
3508   case TargetOpcode::G_MEMCPY_INLINE:
3509   case TargetOpcode::G_MEMMOVE:
3510   case TargetOpcode::G_MEMSET:
3511     assert(STI.hasMOPS() && "Shouldn't get here without +mops feature");
3512     return selectMOPS(I, MRI);
3513   }
3514 
3515   return false;
3516 }
3517 
3518 bool AArch64InstructionSelector::selectReduction(MachineInstr &I,
3519                                                  MachineRegisterInfo &MRI) {
3520   Register VecReg = I.getOperand(1).getReg();
3521   LLT VecTy = MRI.getType(VecReg);
3522   if (I.getOpcode() == TargetOpcode::G_VECREDUCE_ADD) {
3523     // For <2 x i32> ADDPv2i32 generates an FPR64 value, so we need to emit
3524     // a subregister copy afterwards.
3525     if (VecTy == LLT::fixed_vector(2, 32)) {
3526       Register DstReg = I.getOperand(0).getReg();
3527       auto AddP = MIB.buildInstr(AArch64::ADDPv2i32, {&AArch64::FPR64RegClass},
3528                                  {VecReg, VecReg});
3529       auto Copy = MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {})
3530                       .addReg(AddP.getReg(0), 0, AArch64::ssub)
3531                       .getReg(0);
3532       RBI.constrainGenericRegister(Copy, AArch64::FPR32RegClass, MRI);
3533       I.eraseFromParent();
3534       return constrainSelectedInstRegOperands(*AddP, TII, TRI, RBI);
3535     }
3536 
3537     unsigned Opc = 0;
3538     if (VecTy == LLT::fixed_vector(16, 8))
3539       Opc = AArch64::ADDVv16i8v;
3540     else if (VecTy == LLT::fixed_vector(8, 16))
3541       Opc = AArch64::ADDVv8i16v;
3542     else if (VecTy == LLT::fixed_vector(4, 32))
3543       Opc = AArch64::ADDVv4i32v;
3544     else if (VecTy == LLT::fixed_vector(2, 64))
3545       Opc = AArch64::ADDPv2i64p;
3546     else {
3547       LLVM_DEBUG(dbgs() << "Unhandled type for add reduction");
3548       return false;
3549     }
3550     I.setDesc(TII.get(Opc));
3551     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3552   }
3553 
3554   if (I.getOpcode() == TargetOpcode::G_VECREDUCE_FADD) {
3555     unsigned Opc = 0;
3556     if (VecTy == LLT::fixed_vector(2, 32))
3557       Opc = AArch64::FADDPv2i32p;
3558     else if (VecTy == LLT::fixed_vector(2, 64))
3559       Opc = AArch64::FADDPv2i64p;
3560     else {
3561       LLVM_DEBUG(dbgs() << "Unhandled type for fadd reduction");
3562       return false;
3563     }
3564     I.setDesc(TII.get(Opc));
3565     return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3566   }
3567   return false;
3568 }
3569 
3570 bool AArch64InstructionSelector::selectMOPS(MachineInstr &GI,
3571                                             MachineRegisterInfo &MRI) {
3572   unsigned Mopcode;
3573   switch (GI.getOpcode()) {
3574   case TargetOpcode::G_MEMCPY:
3575   case TargetOpcode::G_MEMCPY_INLINE:
3576     Mopcode = AArch64::MOPSMemoryCopyPseudo;
3577     break;
3578   case TargetOpcode::G_MEMMOVE:
3579     Mopcode = AArch64::MOPSMemoryMovePseudo;
3580     break;
3581   case TargetOpcode::G_MEMSET:
3582     // For tagged memset see llvm.aarch64.mops.memset.tag
3583     Mopcode = AArch64::MOPSMemorySetPseudo;
3584     break;
3585   }
3586 
3587   auto &DstPtr = GI.getOperand(0);
3588   auto &SrcOrVal = GI.getOperand(1);
3589   auto &Size = GI.getOperand(2);
3590 
3591   // Create copies of the registers that can be clobbered.
3592   const Register DstPtrCopy = MRI.cloneVirtualRegister(DstPtr.getReg());
3593   const Register SrcValCopy = MRI.cloneVirtualRegister(SrcOrVal.getReg());
3594   const Register SizeCopy = MRI.cloneVirtualRegister(Size.getReg());
3595 
3596   const bool IsSet = Mopcode == AArch64::MOPSMemorySetPseudo;
3597   const auto &SrcValRegClass =
3598       IsSet ? AArch64::GPR64RegClass : AArch64::GPR64commonRegClass;
3599 
3600   // Constrain to specific registers
3601   RBI.constrainGenericRegister(DstPtrCopy, AArch64::GPR64commonRegClass, MRI);
3602   RBI.constrainGenericRegister(SrcValCopy, SrcValRegClass, MRI);
3603   RBI.constrainGenericRegister(SizeCopy, AArch64::GPR64RegClass, MRI);
3604 
3605   MIB.buildCopy(DstPtrCopy, DstPtr);
3606   MIB.buildCopy(SrcValCopy, SrcOrVal);
3607   MIB.buildCopy(SizeCopy, Size);
3608 
3609   // New instruction uses the copied registers because it must update them.
3610   // The defs are not used since they don't exist in G_MEM*. They are still
3611   // tied.
3612   // Note: order of operands is different from G_MEMSET, G_MEMCPY, G_MEMMOVE
3613   Register DefDstPtr = MRI.createVirtualRegister(&AArch64::GPR64commonRegClass);
3614   Register DefSize = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
3615   if (IsSet) {
3616     MIB.buildInstr(Mopcode, {DefDstPtr, DefSize},
3617                    {DstPtrCopy, SizeCopy, SrcValCopy});
3618   } else {
3619     Register DefSrcPtr = MRI.createVirtualRegister(&SrcValRegClass);
3620     MIB.buildInstr(Mopcode, {DefDstPtr, DefSrcPtr, DefSize},
3621                    {DstPtrCopy, SrcValCopy, SizeCopy});
3622   }
3623 
3624   GI.eraseFromParent();
3625   return true;
3626 }
3627 
3628 bool AArch64InstructionSelector::selectBrJT(MachineInstr &I,
3629                                             MachineRegisterInfo &MRI) {
3630   assert(I.getOpcode() == TargetOpcode::G_BRJT && "Expected G_BRJT");
3631   Register JTAddr = I.getOperand(0).getReg();
3632   unsigned JTI = I.getOperand(1).getIndex();
3633   Register Index = I.getOperand(2).getReg();
3634 
3635   Register TargetReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
3636   Register ScratchReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
3637 
3638   MF->getInfo<AArch64FunctionInfo>()->setJumpTableEntryInfo(JTI, 4, nullptr);
3639   auto JumpTableInst = MIB.buildInstr(AArch64::JumpTableDest32,
3640                                       {TargetReg, ScratchReg}, {JTAddr, Index})
3641                            .addJumpTableIndex(JTI);
3642   // Build the indirect branch.
3643   MIB.buildInstr(AArch64::BR, {}, {TargetReg});
3644   I.eraseFromParent();
3645   return constrainSelectedInstRegOperands(*JumpTableInst, TII, TRI, RBI);
3646 }
3647 
3648 bool AArch64InstructionSelector::selectJumpTable(MachineInstr &I,
3649                                                  MachineRegisterInfo &MRI) {
3650   assert(I.getOpcode() == TargetOpcode::G_JUMP_TABLE && "Expected jump table");
3651   assert(I.getOperand(1).isJTI() && "Jump table op should have a JTI!");
3652 
3653   Register DstReg = I.getOperand(0).getReg();
3654   unsigned JTI = I.getOperand(1).getIndex();
3655   // We generate a MOVaddrJT which will get expanded to an ADRP + ADD later.
3656   auto MovMI =
3657     MIB.buildInstr(AArch64::MOVaddrJT, {DstReg}, {})
3658           .addJumpTableIndex(JTI, AArch64II::MO_PAGE)
3659           .addJumpTableIndex(JTI, AArch64II::MO_NC | AArch64II::MO_PAGEOFF);
3660   I.eraseFromParent();
3661   return constrainSelectedInstRegOperands(*MovMI, TII, TRI, RBI);
3662 }
3663 
3664 bool AArch64InstructionSelector::selectTLSGlobalValue(
3665     MachineInstr &I, MachineRegisterInfo &MRI) {
3666   if (!STI.isTargetMachO())
3667     return false;
3668   MachineFunction &MF = *I.getParent()->getParent();
3669   MF.getFrameInfo().setAdjustsStack(true);
3670 
3671   const auto &GlobalOp = I.getOperand(1);
3672   assert(GlobalOp.getOffset() == 0 &&
3673          "Shouldn't have an offset on TLS globals!");
3674   const GlobalValue &GV = *GlobalOp.getGlobal();
3675 
3676   auto LoadGOT =
3677       MIB.buildInstr(AArch64::LOADgot, {&AArch64::GPR64commonRegClass}, {})
3678           .addGlobalAddress(&GV, 0, AArch64II::MO_TLS);
3679 
3680   auto Load = MIB.buildInstr(AArch64::LDRXui, {&AArch64::GPR64commonRegClass},
3681                              {LoadGOT.getReg(0)})
3682                   .addImm(0);
3683 
3684   MIB.buildCopy(Register(AArch64::X0), LoadGOT.getReg(0));
3685   // TLS calls preserve all registers except those that absolutely must be
3686   // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3687   // silly).
3688   MIB.buildInstr(getBLRCallOpcode(MF), {}, {Load})
3689       .addUse(AArch64::X0, RegState::Implicit)
3690       .addDef(AArch64::X0, RegState::Implicit)
3691       .addRegMask(TRI.getTLSCallPreservedMask());
3692 
3693   MIB.buildCopy(I.getOperand(0).getReg(), Register(AArch64::X0));
3694   RBI.constrainGenericRegister(I.getOperand(0).getReg(), AArch64::GPR64RegClass,
3695                                MRI);
3696   I.eraseFromParent();
3697   return true;
3698 }
3699 
3700 bool AArch64InstructionSelector::selectIntrinsicTrunc(
3701     MachineInstr &I, MachineRegisterInfo &MRI) const {
3702   const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
3703 
3704   // Select the correct opcode.
3705   unsigned Opc = 0;
3706   if (!SrcTy.isVector()) {
3707     switch (SrcTy.getSizeInBits()) {
3708     default:
3709     case 16:
3710       Opc = AArch64::FRINTZHr;
3711       break;
3712     case 32:
3713       Opc = AArch64::FRINTZSr;
3714       break;
3715     case 64:
3716       Opc = AArch64::FRINTZDr;
3717       break;
3718     }
3719   } else {
3720     unsigned NumElts = SrcTy.getNumElements();
3721     switch (SrcTy.getElementType().getSizeInBits()) {
3722     default:
3723       break;
3724     case 16:
3725       if (NumElts == 4)
3726         Opc = AArch64::FRINTZv4f16;
3727       else if (NumElts == 8)
3728         Opc = AArch64::FRINTZv8f16;
3729       break;
3730     case 32:
3731       if (NumElts == 2)
3732         Opc = AArch64::FRINTZv2f32;
3733       else if (NumElts == 4)
3734         Opc = AArch64::FRINTZv4f32;
3735       break;
3736     case 64:
3737       if (NumElts == 2)
3738         Opc = AArch64::FRINTZv2f64;
3739       break;
3740     }
3741   }
3742 
3743   if (!Opc) {
3744     // Didn't get an opcode above, bail.
3745     LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_TRUNC!\n");
3746     return false;
3747   }
3748 
3749   // Legalization would have set us up perfectly for this; we just need to
3750   // set the opcode and move on.
3751   I.setDesc(TII.get(Opc));
3752   return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3753 }
3754 
3755 bool AArch64InstructionSelector::selectIntrinsicRound(
3756     MachineInstr &I, MachineRegisterInfo &MRI) const {
3757   const LLT SrcTy = MRI.getType(I.getOperand(0).getReg());
3758 
3759   // Select the correct opcode.
3760   unsigned Opc = 0;
3761   if (!SrcTy.isVector()) {
3762     switch (SrcTy.getSizeInBits()) {
3763     default:
3764     case 16:
3765       Opc = AArch64::FRINTAHr;
3766       break;
3767     case 32:
3768       Opc = AArch64::FRINTASr;
3769       break;
3770     case 64:
3771       Opc = AArch64::FRINTADr;
3772       break;
3773     }
3774   } else {
3775     unsigned NumElts = SrcTy.getNumElements();
3776     switch (SrcTy.getElementType().getSizeInBits()) {
3777     default:
3778       break;
3779     case 16:
3780       if (NumElts == 4)
3781         Opc = AArch64::FRINTAv4f16;
3782       else if (NumElts == 8)
3783         Opc = AArch64::FRINTAv8f16;
3784       break;
3785     case 32:
3786       if (NumElts == 2)
3787         Opc = AArch64::FRINTAv2f32;
3788       else if (NumElts == 4)
3789         Opc = AArch64::FRINTAv4f32;
3790       break;
3791     case 64:
3792       if (NumElts == 2)
3793         Opc = AArch64::FRINTAv2f64;
3794       break;
3795     }
3796   }
3797 
3798   if (!Opc) {
3799     // Didn't get an opcode above, bail.
3800     LLVM_DEBUG(dbgs() << "Unsupported type for G_INTRINSIC_ROUND!\n");
3801     return false;
3802   }
3803 
3804   // Legalization would have set us up perfectly for this; we just need to
3805   // set the opcode and move on.
3806   I.setDesc(TII.get(Opc));
3807   return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
3808 }
3809 
3810 bool AArch64InstructionSelector::selectVectorICmp(
3811     MachineInstr &I, MachineRegisterInfo &MRI) {
3812   Register DstReg = I.getOperand(0).getReg();
3813   LLT DstTy = MRI.getType(DstReg);
3814   Register SrcReg = I.getOperand(2).getReg();
3815   Register Src2Reg = I.getOperand(3).getReg();
3816   LLT SrcTy = MRI.getType(SrcReg);
3817 
3818   unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
3819   unsigned NumElts = DstTy.getNumElements();
3820 
3821   // First index is element size, 0 == 8b, 1 == 16b, 2 == 32b, 3 == 64b
3822   // Second index is num elts, 0 == v2, 1 == v4, 2 == v8, 3 == v16
3823   // Third index is cc opcode:
3824   // 0 == eq
3825   // 1 == ugt
3826   // 2 == uge
3827   // 3 == ult
3828   // 4 == ule
3829   // 5 == sgt
3830   // 6 == sge
3831   // 7 == slt
3832   // 8 == sle
3833   // ne is done by negating 'eq' result.
3834 
3835   // This table below assumes that for some comparisons the operands will be
3836   // commuted.
3837   // ult op == commute + ugt op
3838   // ule op == commute + uge op
3839   // slt op == commute + sgt op
3840   // sle op == commute + sge op
3841   unsigned PredIdx = 0;
3842   bool SwapOperands = false;
3843   CmpInst::Predicate Pred = (CmpInst::Predicate)I.getOperand(1).getPredicate();
3844   switch (Pred) {
3845   case CmpInst::ICMP_NE:
3846   case CmpInst::ICMP_EQ:
3847     PredIdx = 0;
3848     break;
3849   case CmpInst::ICMP_UGT:
3850     PredIdx = 1;
3851     break;
3852   case CmpInst::ICMP_UGE:
3853     PredIdx = 2;
3854     break;
3855   case CmpInst::ICMP_ULT:
3856     PredIdx = 3;
3857     SwapOperands = true;
3858     break;
3859   case CmpInst::ICMP_ULE:
3860     PredIdx = 4;
3861     SwapOperands = true;
3862     break;
3863   case CmpInst::ICMP_SGT:
3864     PredIdx = 5;
3865     break;
3866   case CmpInst::ICMP_SGE:
3867     PredIdx = 6;
3868     break;
3869   case CmpInst::ICMP_SLT:
3870     PredIdx = 7;
3871     SwapOperands = true;
3872     break;
3873   case CmpInst::ICMP_SLE:
3874     PredIdx = 8;
3875     SwapOperands = true;
3876     break;
3877   default:
3878     llvm_unreachable("Unhandled icmp predicate");
3879     return false;
3880   }
3881 
3882   // This table obviously should be tablegen'd when we have our GISel native
3883   // tablegen selector.
3884 
3885   static const unsigned OpcTable[4][4][9] = {
3886       {
3887           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3888            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3889            0 /* invalid */},
3890           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3891            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3892            0 /* invalid */},
3893           {AArch64::CMEQv8i8, AArch64::CMHIv8i8, AArch64::CMHSv8i8,
3894            AArch64::CMHIv8i8, AArch64::CMHSv8i8, AArch64::CMGTv8i8,
3895            AArch64::CMGEv8i8, AArch64::CMGTv8i8, AArch64::CMGEv8i8},
3896           {AArch64::CMEQv16i8, AArch64::CMHIv16i8, AArch64::CMHSv16i8,
3897            AArch64::CMHIv16i8, AArch64::CMHSv16i8, AArch64::CMGTv16i8,
3898            AArch64::CMGEv16i8, AArch64::CMGTv16i8, AArch64::CMGEv16i8}
3899       },
3900       {
3901           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3902            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3903            0 /* invalid */},
3904           {AArch64::CMEQv4i16, AArch64::CMHIv4i16, AArch64::CMHSv4i16,
3905            AArch64::CMHIv4i16, AArch64::CMHSv4i16, AArch64::CMGTv4i16,
3906            AArch64::CMGEv4i16, AArch64::CMGTv4i16, AArch64::CMGEv4i16},
3907           {AArch64::CMEQv8i16, AArch64::CMHIv8i16, AArch64::CMHSv8i16,
3908            AArch64::CMHIv8i16, AArch64::CMHSv8i16, AArch64::CMGTv8i16,
3909            AArch64::CMGEv8i16, AArch64::CMGTv8i16, AArch64::CMGEv8i16},
3910           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3911            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3912            0 /* invalid */}
3913       },
3914       {
3915           {AArch64::CMEQv2i32, AArch64::CMHIv2i32, AArch64::CMHSv2i32,
3916            AArch64::CMHIv2i32, AArch64::CMHSv2i32, AArch64::CMGTv2i32,
3917            AArch64::CMGEv2i32, AArch64::CMGTv2i32, AArch64::CMGEv2i32},
3918           {AArch64::CMEQv4i32, AArch64::CMHIv4i32, AArch64::CMHSv4i32,
3919            AArch64::CMHIv4i32, AArch64::CMHSv4i32, AArch64::CMGTv4i32,
3920            AArch64::CMGEv4i32, AArch64::CMGTv4i32, AArch64::CMGEv4i32},
3921           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3922            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3923            0 /* invalid */},
3924           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3925            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3926            0 /* invalid */}
3927       },
3928       {
3929           {AArch64::CMEQv2i64, AArch64::CMHIv2i64, AArch64::CMHSv2i64,
3930            AArch64::CMHIv2i64, AArch64::CMHSv2i64, AArch64::CMGTv2i64,
3931            AArch64::CMGEv2i64, AArch64::CMGTv2i64, AArch64::CMGEv2i64},
3932           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3933            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3934            0 /* invalid */},
3935           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3936            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3937            0 /* invalid */},
3938           {0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3939            0 /* invalid */, 0 /* invalid */, 0 /* invalid */, 0 /* invalid */,
3940            0 /* invalid */}
3941       },
3942   };
3943   unsigned EltIdx = Log2_32(SrcEltSize / 8);
3944   unsigned NumEltsIdx = Log2_32(NumElts / 2);
3945   unsigned Opc = OpcTable[EltIdx][NumEltsIdx][PredIdx];
3946   if (!Opc) {
3947     LLVM_DEBUG(dbgs() << "Could not map G_ICMP to cmp opcode");
3948     return false;
3949   }
3950 
3951   const RegisterBank &VecRB = *RBI.getRegBank(SrcReg, MRI, TRI);
3952   const TargetRegisterClass *SrcRC =
3953       getRegClassForTypeOnBank(SrcTy, VecRB, true);
3954   if (!SrcRC) {
3955     LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
3956     return false;
3957   }
3958 
3959   unsigned NotOpc = Pred == ICmpInst::ICMP_NE ? AArch64::NOTv8i8 : 0;
3960   if (SrcTy.getSizeInBits() == 128)
3961     NotOpc = NotOpc ? AArch64::NOTv16i8 : 0;
3962 
3963   if (SwapOperands)
3964     std::swap(SrcReg, Src2Reg);
3965 
3966   auto Cmp = MIB.buildInstr(Opc, {SrcRC}, {SrcReg, Src2Reg});
3967   constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
3968 
3969   // Invert if we had a 'ne' cc.
3970   if (NotOpc) {
3971     Cmp = MIB.buildInstr(NotOpc, {DstReg}, {Cmp});
3972     constrainSelectedInstRegOperands(*Cmp, TII, TRI, RBI);
3973   } else {
3974     MIB.buildCopy(DstReg, Cmp.getReg(0));
3975   }
3976   RBI.constrainGenericRegister(DstReg, *SrcRC, MRI);
3977   I.eraseFromParent();
3978   return true;
3979 }
3980 
3981 MachineInstr *AArch64InstructionSelector::emitScalarToVector(
3982     unsigned EltSize, const TargetRegisterClass *DstRC, Register Scalar,
3983     MachineIRBuilder &MIRBuilder) const {
3984   auto Undef = MIRBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstRC}, {});
3985 
3986   auto BuildFn = [&](unsigned SubregIndex) {
3987     auto Ins =
3988         MIRBuilder
3989             .buildInstr(TargetOpcode::INSERT_SUBREG, {DstRC}, {Undef, Scalar})
3990             .addImm(SubregIndex);
3991     constrainSelectedInstRegOperands(*Undef, TII, TRI, RBI);
3992     constrainSelectedInstRegOperands(*Ins, TII, TRI, RBI);
3993     return &*Ins;
3994   };
3995 
3996   switch (EltSize) {
3997   case 16:
3998     return BuildFn(AArch64::hsub);
3999   case 32:
4000     return BuildFn(AArch64::ssub);
4001   case 64:
4002     return BuildFn(AArch64::dsub);
4003   default:
4004     return nullptr;
4005   }
4006 }
4007 
4008 bool AArch64InstructionSelector::selectMergeValues(
4009     MachineInstr &I, MachineRegisterInfo &MRI) {
4010   assert(I.getOpcode() == TargetOpcode::G_MERGE_VALUES && "unexpected opcode");
4011   const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
4012   const LLT SrcTy = MRI.getType(I.getOperand(1).getReg());
4013   assert(!DstTy.isVector() && !SrcTy.isVector() && "invalid merge operation");
4014   const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
4015 
4016   if (I.getNumOperands() != 3)
4017     return false;
4018 
4019   // Merging 2 s64s into an s128.
4020   if (DstTy == LLT::scalar(128)) {
4021     if (SrcTy.getSizeInBits() != 64)
4022       return false;
4023     Register DstReg = I.getOperand(0).getReg();
4024     Register Src1Reg = I.getOperand(1).getReg();
4025     Register Src2Reg = I.getOperand(2).getReg();
4026     auto Tmp = MIB.buildInstr(TargetOpcode::IMPLICIT_DEF, {DstTy}, {});
4027     MachineInstr *InsMI = emitLaneInsert(std::nullopt, Tmp.getReg(0), Src1Reg,
4028                                          /* LaneIdx */ 0, RB, MIB);
4029     if (!InsMI)
4030       return false;
4031     MachineInstr *Ins2MI = emitLaneInsert(DstReg, InsMI->getOperand(0).getReg(),
4032                                           Src2Reg, /* LaneIdx */ 1, RB, MIB);
4033     if (!Ins2MI)
4034       return false;
4035     constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
4036     constrainSelectedInstRegOperands(*Ins2MI, TII, TRI, RBI);
4037     I.eraseFromParent();
4038     return true;
4039   }
4040 
4041   if (RB.getID() != AArch64::GPRRegBankID)
4042     return false;
4043 
4044   if (DstTy.getSizeInBits() != 64 || SrcTy.getSizeInBits() != 32)
4045     return false;
4046 
4047   auto *DstRC = &AArch64::GPR64RegClass;
4048   Register SubToRegDef = MRI.createVirtualRegister(DstRC);
4049   MachineInstr &SubRegMI = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
4050                                     TII.get(TargetOpcode::SUBREG_TO_REG))
4051                                 .addDef(SubToRegDef)
4052                                 .addImm(0)
4053                                 .addUse(I.getOperand(1).getReg())
4054                                 .addImm(AArch64::sub_32);
4055   Register SubToRegDef2 = MRI.createVirtualRegister(DstRC);
4056   // Need to anyext the second scalar before we can use bfm
4057   MachineInstr &SubRegMI2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
4058                                     TII.get(TargetOpcode::SUBREG_TO_REG))
4059                                 .addDef(SubToRegDef2)
4060                                 .addImm(0)
4061                                 .addUse(I.getOperand(2).getReg())
4062                                 .addImm(AArch64::sub_32);
4063   MachineInstr &BFM =
4064       *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AArch64::BFMXri))
4065            .addDef(I.getOperand(0).getReg())
4066            .addUse(SubToRegDef)
4067            .addUse(SubToRegDef2)
4068            .addImm(32)
4069            .addImm(31);
4070   constrainSelectedInstRegOperands(SubRegMI, TII, TRI, RBI);
4071   constrainSelectedInstRegOperands(SubRegMI2, TII, TRI, RBI);
4072   constrainSelectedInstRegOperands(BFM, TII, TRI, RBI);
4073   I.eraseFromParent();
4074   return true;
4075 }
4076 
4077 static bool getLaneCopyOpcode(unsigned &CopyOpc, unsigned &ExtractSubReg,
4078                               const unsigned EltSize) {
4079   // Choose a lane copy opcode and subregister based off of the size of the
4080   // vector's elements.
4081   switch (EltSize) {
4082   case 8:
4083     CopyOpc = AArch64::DUPi8;
4084     ExtractSubReg = AArch64::bsub;
4085     break;
4086   case 16:
4087     CopyOpc = AArch64::DUPi16;
4088     ExtractSubReg = AArch64::hsub;
4089     break;
4090   case 32:
4091     CopyOpc = AArch64::DUPi32;
4092     ExtractSubReg = AArch64::ssub;
4093     break;
4094   case 64:
4095     CopyOpc = AArch64::DUPi64;
4096     ExtractSubReg = AArch64::dsub;
4097     break;
4098   default:
4099     // Unknown size, bail out.
4100     LLVM_DEBUG(dbgs() << "Elt size '" << EltSize << "' unsupported.\n");
4101     return false;
4102   }
4103   return true;
4104 }
4105 
4106 MachineInstr *AArch64InstructionSelector::emitExtractVectorElt(
4107     std::optional<Register> DstReg, const RegisterBank &DstRB, LLT ScalarTy,
4108     Register VecReg, unsigned LaneIdx, MachineIRBuilder &MIRBuilder) const {
4109   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4110   unsigned CopyOpc = 0;
4111   unsigned ExtractSubReg = 0;
4112   if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, ScalarTy.getSizeInBits())) {
4113     LLVM_DEBUG(
4114         dbgs() << "Couldn't determine lane copy opcode for instruction.\n");
4115     return nullptr;
4116   }
4117 
4118   const TargetRegisterClass *DstRC =
4119       getRegClassForTypeOnBank(ScalarTy, DstRB, true);
4120   if (!DstRC) {
4121     LLVM_DEBUG(dbgs() << "Could not determine destination register class.\n");
4122     return nullptr;
4123   }
4124 
4125   const RegisterBank &VecRB = *RBI.getRegBank(VecReg, MRI, TRI);
4126   const LLT &VecTy = MRI.getType(VecReg);
4127   const TargetRegisterClass *VecRC =
4128       getRegClassForTypeOnBank(VecTy, VecRB, true);
4129   if (!VecRC) {
4130     LLVM_DEBUG(dbgs() << "Could not determine source register class.\n");
4131     return nullptr;
4132   }
4133 
4134   // The register that we're going to copy into.
4135   Register InsertReg = VecReg;
4136   if (!DstReg)
4137     DstReg = MRI.createVirtualRegister(DstRC);
4138   // If the lane index is 0, we just use a subregister COPY.
4139   if (LaneIdx == 0) {
4140     auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {*DstReg}, {})
4141                     .addReg(VecReg, 0, ExtractSubReg);
4142     RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
4143     return &*Copy;
4144   }
4145 
4146   // Lane copies require 128-bit wide registers. If we're dealing with an
4147   // unpacked vector, then we need to move up to that width. Insert an implicit
4148   // def and a subregister insert to get us there.
4149   if (VecTy.getSizeInBits() != 128) {
4150     MachineInstr *ScalarToVector = emitScalarToVector(
4151         VecTy.getSizeInBits(), &AArch64::FPR128RegClass, VecReg, MIRBuilder);
4152     if (!ScalarToVector)
4153       return nullptr;
4154     InsertReg = ScalarToVector->getOperand(0).getReg();
4155   }
4156 
4157   MachineInstr *LaneCopyMI =
4158       MIRBuilder.buildInstr(CopyOpc, {*DstReg}, {InsertReg}).addImm(LaneIdx);
4159   constrainSelectedInstRegOperands(*LaneCopyMI, TII, TRI, RBI);
4160 
4161   // Make sure that we actually constrain the initial copy.
4162   RBI.constrainGenericRegister(*DstReg, *DstRC, MRI);
4163   return LaneCopyMI;
4164 }
4165 
4166 bool AArch64InstructionSelector::selectExtractElt(
4167     MachineInstr &I, MachineRegisterInfo &MRI) {
4168   assert(I.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT &&
4169          "unexpected opcode!");
4170   Register DstReg = I.getOperand(0).getReg();
4171   const LLT NarrowTy = MRI.getType(DstReg);
4172   const Register SrcReg = I.getOperand(1).getReg();
4173   const LLT WideTy = MRI.getType(SrcReg);
4174   (void)WideTy;
4175   assert(WideTy.getSizeInBits() >= NarrowTy.getSizeInBits() &&
4176          "source register size too small!");
4177   assert(!NarrowTy.isVector() && "cannot extract vector into vector!");
4178 
4179   // Need the lane index to determine the correct copy opcode.
4180   MachineOperand &LaneIdxOp = I.getOperand(2);
4181   assert(LaneIdxOp.isReg() && "Lane index operand was not a register?");
4182 
4183   if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
4184     LLVM_DEBUG(dbgs() << "Cannot extract into GPR.\n");
4185     return false;
4186   }
4187 
4188   // Find the index to extract from.
4189   auto VRegAndVal = getIConstantVRegValWithLookThrough(LaneIdxOp.getReg(), MRI);
4190   if (!VRegAndVal)
4191     return false;
4192   unsigned LaneIdx = VRegAndVal->Value.getSExtValue();
4193 
4194 
4195   const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
4196   MachineInstr *Extract = emitExtractVectorElt(DstReg, DstRB, NarrowTy, SrcReg,
4197                                                LaneIdx, MIB);
4198   if (!Extract)
4199     return false;
4200 
4201   I.eraseFromParent();
4202   return true;
4203 }
4204 
4205 bool AArch64InstructionSelector::selectSplitVectorUnmerge(
4206     MachineInstr &I, MachineRegisterInfo &MRI) {
4207   unsigned NumElts = I.getNumOperands() - 1;
4208   Register SrcReg = I.getOperand(NumElts).getReg();
4209   const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
4210   const LLT SrcTy = MRI.getType(SrcReg);
4211 
4212   assert(NarrowTy.isVector() && "Expected an unmerge into vectors");
4213   if (SrcTy.getSizeInBits() > 128) {
4214     LLVM_DEBUG(dbgs() << "Unexpected vector type for vec split unmerge");
4215     return false;
4216   }
4217 
4218   // We implement a split vector operation by treating the sub-vectors as
4219   // scalars and extracting them.
4220   const RegisterBank &DstRB =
4221       *RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI);
4222   for (unsigned OpIdx = 0; OpIdx < NumElts; ++OpIdx) {
4223     Register Dst = I.getOperand(OpIdx).getReg();
4224     MachineInstr *Extract =
4225         emitExtractVectorElt(Dst, DstRB, NarrowTy, SrcReg, OpIdx, MIB);
4226     if (!Extract)
4227       return false;
4228   }
4229   I.eraseFromParent();
4230   return true;
4231 }
4232 
4233 bool AArch64InstructionSelector::selectUnmergeValues(MachineInstr &I,
4234                                                      MachineRegisterInfo &MRI) {
4235   assert(I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
4236          "unexpected opcode");
4237 
4238   // TODO: Handle unmerging into GPRs and from scalars to scalars.
4239   if (RBI.getRegBank(I.getOperand(0).getReg(), MRI, TRI)->getID() !=
4240           AArch64::FPRRegBankID ||
4241       RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI)->getID() !=
4242           AArch64::FPRRegBankID) {
4243     LLVM_DEBUG(dbgs() << "Unmerging vector-to-gpr and scalar-to-scalar "
4244                          "currently unsupported.\n");
4245     return false;
4246   }
4247 
4248   // The last operand is the vector source register, and every other operand is
4249   // a register to unpack into.
4250   unsigned NumElts = I.getNumOperands() - 1;
4251   Register SrcReg = I.getOperand(NumElts).getReg();
4252   const LLT NarrowTy = MRI.getType(I.getOperand(0).getReg());
4253   const LLT WideTy = MRI.getType(SrcReg);
4254   (void)WideTy;
4255   assert((WideTy.isVector() || WideTy.getSizeInBits() == 128) &&
4256          "can only unmerge from vector or s128 types!");
4257   assert(WideTy.getSizeInBits() > NarrowTy.getSizeInBits() &&
4258          "source register size too small!");
4259 
4260   if (!NarrowTy.isScalar())
4261     return selectSplitVectorUnmerge(I, MRI);
4262 
4263   // Choose a lane copy opcode and subregister based off of the size of the
4264   // vector's elements.
4265   unsigned CopyOpc = 0;
4266   unsigned ExtractSubReg = 0;
4267   if (!getLaneCopyOpcode(CopyOpc, ExtractSubReg, NarrowTy.getSizeInBits()))
4268     return false;
4269 
4270   // Set up for the lane copies.
4271   MachineBasicBlock &MBB = *I.getParent();
4272 
4273   // Stores the registers we'll be copying from.
4274   SmallVector<Register, 4> InsertRegs;
4275 
4276   // We'll use the first register twice, so we only need NumElts-1 registers.
4277   unsigned NumInsertRegs = NumElts - 1;
4278 
4279   // If our elements fit into exactly 128 bits, then we can copy from the source
4280   // directly. Otherwise, we need to do a bit of setup with some subregister
4281   // inserts.
4282   if (NarrowTy.getSizeInBits() * NumElts == 128) {
4283     InsertRegs = SmallVector<Register, 4>(NumInsertRegs, SrcReg);
4284   } else {
4285     // No. We have to perform subregister inserts. For each insert, create an
4286     // implicit def and a subregister insert, and save the register we create.
4287     const TargetRegisterClass *RC = getRegClassForTypeOnBank(
4288         LLT::fixed_vector(NumElts, WideTy.getScalarSizeInBits()),
4289         *RBI.getRegBank(SrcReg, MRI, TRI));
4290     unsigned SubReg = 0;
4291     bool Found = getSubRegForClass(RC, TRI, SubReg);
4292     (void)Found;
4293     assert(Found && "expected to find last operand's subeg idx");
4294     for (unsigned Idx = 0; Idx < NumInsertRegs; ++Idx) {
4295       Register ImpDefReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
4296       MachineInstr &ImpDefMI =
4297           *BuildMI(MBB, I, I.getDebugLoc(), TII.get(TargetOpcode::IMPLICIT_DEF),
4298                    ImpDefReg);
4299 
4300       // Now, create the subregister insert from SrcReg.
4301       Register InsertReg = MRI.createVirtualRegister(&AArch64::FPR128RegClass);
4302       MachineInstr &InsMI =
4303           *BuildMI(MBB, I, I.getDebugLoc(),
4304                    TII.get(TargetOpcode::INSERT_SUBREG), InsertReg)
4305                .addUse(ImpDefReg)
4306                .addUse(SrcReg)
4307                .addImm(SubReg);
4308 
4309       constrainSelectedInstRegOperands(ImpDefMI, TII, TRI, RBI);
4310       constrainSelectedInstRegOperands(InsMI, TII, TRI, RBI);
4311 
4312       // Save the register so that we can copy from it after.
4313       InsertRegs.push_back(InsertReg);
4314     }
4315   }
4316 
4317   // Now that we've created any necessary subregister inserts, we can
4318   // create the copies.
4319   //
4320   // Perform the first copy separately as a subregister copy.
4321   Register CopyTo = I.getOperand(0).getReg();
4322   auto FirstCopy = MIB.buildInstr(TargetOpcode::COPY, {CopyTo}, {})
4323                        .addReg(InsertRegs[0], 0, ExtractSubReg);
4324   constrainSelectedInstRegOperands(*FirstCopy, TII, TRI, RBI);
4325 
4326   // Now, perform the remaining copies as vector lane copies.
4327   unsigned LaneIdx = 1;
4328   for (Register InsReg : InsertRegs) {
4329     Register CopyTo = I.getOperand(LaneIdx).getReg();
4330     MachineInstr &CopyInst =
4331         *BuildMI(MBB, I, I.getDebugLoc(), TII.get(CopyOpc), CopyTo)
4332              .addUse(InsReg)
4333              .addImm(LaneIdx);
4334     constrainSelectedInstRegOperands(CopyInst, TII, TRI, RBI);
4335     ++LaneIdx;
4336   }
4337 
4338   // Separately constrain the first copy's destination. Because of the
4339   // limitation in constrainOperandRegClass, we can't guarantee that this will
4340   // actually be constrained. So, do it ourselves using the second operand.
4341   const TargetRegisterClass *RC =
4342       MRI.getRegClassOrNull(I.getOperand(1).getReg());
4343   if (!RC) {
4344     LLVM_DEBUG(dbgs() << "Couldn't constrain copy destination.\n");
4345     return false;
4346   }
4347 
4348   RBI.constrainGenericRegister(CopyTo, *RC, MRI);
4349   I.eraseFromParent();
4350   return true;
4351 }
4352 
4353 bool AArch64InstructionSelector::selectConcatVectors(
4354     MachineInstr &I, MachineRegisterInfo &MRI)  {
4355   assert(I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
4356          "Unexpected opcode");
4357   Register Dst = I.getOperand(0).getReg();
4358   Register Op1 = I.getOperand(1).getReg();
4359   Register Op2 = I.getOperand(2).getReg();
4360   MachineInstr *ConcatMI = emitVectorConcat(Dst, Op1, Op2, MIB);
4361   if (!ConcatMI)
4362     return false;
4363   I.eraseFromParent();
4364   return true;
4365 }
4366 
4367 unsigned
4368 AArch64InstructionSelector::emitConstantPoolEntry(const Constant *CPVal,
4369                                                   MachineFunction &MF) const {
4370   Type *CPTy = CPVal->getType();
4371   Align Alignment = MF.getDataLayout().getPrefTypeAlign(CPTy);
4372 
4373   MachineConstantPool *MCP = MF.getConstantPool();
4374   return MCP->getConstantPoolIndex(CPVal, Alignment);
4375 }
4376 
4377 MachineInstr *AArch64InstructionSelector::emitLoadFromConstantPool(
4378     const Constant *CPVal, MachineIRBuilder &MIRBuilder) const {
4379   auto &MF = MIRBuilder.getMF();
4380   unsigned CPIdx = emitConstantPoolEntry(CPVal, MF);
4381 
4382   auto Adrp =
4383       MIRBuilder.buildInstr(AArch64::ADRP, {&AArch64::GPR64RegClass}, {})
4384           .addConstantPoolIndex(CPIdx, 0, AArch64II::MO_PAGE);
4385 
4386   MachineInstr *LoadMI = nullptr;
4387   MachinePointerInfo PtrInfo = MachinePointerInfo::getConstantPool(MF);
4388   unsigned Size = MIRBuilder.getDataLayout().getTypeStoreSize(CPVal->getType());
4389   switch (Size) {
4390   case 16:
4391     LoadMI =
4392         &*MIRBuilder
4393               .buildInstr(AArch64::LDRQui, {&AArch64::FPR128RegClass}, {Adrp})
4394               .addConstantPoolIndex(CPIdx, 0,
4395                                     AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4396     break;
4397   case 8:
4398     LoadMI =
4399         &*MIRBuilder
4400               .buildInstr(AArch64::LDRDui, {&AArch64::FPR64RegClass}, {Adrp})
4401               .addConstantPoolIndex(CPIdx, 0,
4402                                     AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4403     break;
4404   case 4:
4405     LoadMI =
4406         &*MIRBuilder
4407               .buildInstr(AArch64::LDRSui, {&AArch64::FPR32RegClass}, {Adrp})
4408               .addConstantPoolIndex(CPIdx, 0,
4409                                     AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4410     break;
4411   case 2:
4412     LoadMI =
4413         &*MIRBuilder
4414               .buildInstr(AArch64::LDRHui, {&AArch64::FPR16RegClass}, {Adrp})
4415               .addConstantPoolIndex(CPIdx, 0,
4416                                     AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4417     break;
4418   default:
4419     LLVM_DEBUG(dbgs() << "Could not load from constant pool of type "
4420                       << *CPVal->getType());
4421     return nullptr;
4422   }
4423   LoadMI->addMemOperand(MF, MF.getMachineMemOperand(PtrInfo,
4424                                                     MachineMemOperand::MOLoad,
4425                                                     Size, Align(Size)));
4426   constrainSelectedInstRegOperands(*Adrp, TII, TRI, RBI);
4427   constrainSelectedInstRegOperands(*LoadMI, TII, TRI, RBI);
4428   return LoadMI;
4429 }
4430 
4431 /// Return an <Opcode, SubregIndex> pair to do an vector elt insert of a given
4432 /// size and RB.
4433 static std::pair<unsigned, unsigned>
4434 getInsertVecEltOpInfo(const RegisterBank &RB, unsigned EltSize) {
4435   unsigned Opc, SubregIdx;
4436   if (RB.getID() == AArch64::GPRRegBankID) {
4437     if (EltSize == 16) {
4438       Opc = AArch64::INSvi16gpr;
4439       SubregIdx = AArch64::ssub;
4440     } else if (EltSize == 32) {
4441       Opc = AArch64::INSvi32gpr;
4442       SubregIdx = AArch64::ssub;
4443     } else if (EltSize == 64) {
4444       Opc = AArch64::INSvi64gpr;
4445       SubregIdx = AArch64::dsub;
4446     } else {
4447       llvm_unreachable("invalid elt size!");
4448     }
4449   } else {
4450     if (EltSize == 8) {
4451       Opc = AArch64::INSvi8lane;
4452       SubregIdx = AArch64::bsub;
4453     } else if (EltSize == 16) {
4454       Opc = AArch64::INSvi16lane;
4455       SubregIdx = AArch64::hsub;
4456     } else if (EltSize == 32) {
4457       Opc = AArch64::INSvi32lane;
4458       SubregIdx = AArch64::ssub;
4459     } else if (EltSize == 64) {
4460       Opc = AArch64::INSvi64lane;
4461       SubregIdx = AArch64::dsub;
4462     } else {
4463       llvm_unreachable("invalid elt size!");
4464     }
4465   }
4466   return std::make_pair(Opc, SubregIdx);
4467 }
4468 
4469 MachineInstr *AArch64InstructionSelector::emitInstr(
4470     unsigned Opcode, std::initializer_list<llvm::DstOp> DstOps,
4471     std::initializer_list<llvm::SrcOp> SrcOps, MachineIRBuilder &MIRBuilder,
4472     const ComplexRendererFns &RenderFns) const {
4473   assert(Opcode && "Expected an opcode?");
4474   assert(!isPreISelGenericOpcode(Opcode) &&
4475          "Function should only be used to produce selected instructions!");
4476   auto MI = MIRBuilder.buildInstr(Opcode, DstOps, SrcOps);
4477   if (RenderFns)
4478     for (auto &Fn : *RenderFns)
4479       Fn(MI);
4480   constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
4481   return &*MI;
4482 }
4483 
4484 MachineInstr *AArch64InstructionSelector::emitAddSub(
4485     const std::array<std::array<unsigned, 2>, 5> &AddrModeAndSizeToOpcode,
4486     Register Dst, MachineOperand &LHS, MachineOperand &RHS,
4487     MachineIRBuilder &MIRBuilder) const {
4488   MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4489   assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
4490   auto Ty = MRI.getType(LHS.getReg());
4491   assert(!Ty.isVector() && "Expected a scalar or pointer?");
4492   unsigned Size = Ty.getSizeInBits();
4493   assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit type only");
4494   bool Is32Bit = Size == 32;
4495 
4496   // INSTRri form with positive arithmetic immediate.
4497   if (auto Fns = selectArithImmed(RHS))
4498     return emitInstr(AddrModeAndSizeToOpcode[0][Is32Bit], {Dst}, {LHS},
4499                      MIRBuilder, Fns);
4500 
4501   // INSTRri form with negative arithmetic immediate.
4502   if (auto Fns = selectNegArithImmed(RHS))
4503     return emitInstr(AddrModeAndSizeToOpcode[3][Is32Bit], {Dst}, {LHS},
4504                      MIRBuilder, Fns);
4505 
4506   // INSTRrx form.
4507   if (auto Fns = selectArithExtendedRegister(RHS))
4508     return emitInstr(AddrModeAndSizeToOpcode[4][Is32Bit], {Dst}, {LHS},
4509                      MIRBuilder, Fns);
4510 
4511   // INSTRrs form.
4512   if (auto Fns = selectShiftedRegister(RHS))
4513     return emitInstr(AddrModeAndSizeToOpcode[1][Is32Bit], {Dst}, {LHS},
4514                      MIRBuilder, Fns);
4515   return emitInstr(AddrModeAndSizeToOpcode[2][Is32Bit], {Dst}, {LHS, RHS},
4516                    MIRBuilder);
4517 }
4518 
4519 MachineInstr *
4520 AArch64InstructionSelector::emitADD(Register DefReg, MachineOperand &LHS,
4521                                     MachineOperand &RHS,
4522                                     MachineIRBuilder &MIRBuilder) const {
4523   const std::array<std::array<unsigned, 2>, 5> OpcTable{
4524       {{AArch64::ADDXri, AArch64::ADDWri},
4525        {AArch64::ADDXrs, AArch64::ADDWrs},
4526        {AArch64::ADDXrr, AArch64::ADDWrr},
4527        {AArch64::SUBXri, AArch64::SUBWri},
4528        {AArch64::ADDXrx, AArch64::ADDWrx}}};
4529   return emitAddSub(OpcTable, DefReg, LHS, RHS, MIRBuilder);
4530 }
4531 
4532 MachineInstr *
4533 AArch64InstructionSelector::emitADDS(Register Dst, MachineOperand &LHS,
4534                                      MachineOperand &RHS,
4535                                      MachineIRBuilder &MIRBuilder) const {
4536   const std::array<std::array<unsigned, 2>, 5> OpcTable{
4537       {{AArch64::ADDSXri, AArch64::ADDSWri},
4538        {AArch64::ADDSXrs, AArch64::ADDSWrs},
4539        {AArch64::ADDSXrr, AArch64::ADDSWrr},
4540        {AArch64::SUBSXri, AArch64::SUBSWri},
4541        {AArch64::ADDSXrx, AArch64::ADDSWrx}}};
4542   return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder);
4543 }
4544 
4545 MachineInstr *
4546 AArch64InstructionSelector::emitSUBS(Register Dst, MachineOperand &LHS,
4547                                      MachineOperand &RHS,
4548                                      MachineIRBuilder &MIRBuilder) const {
4549   const std::array<std::array<unsigned, 2>, 5> OpcTable{
4550       {{AArch64::SUBSXri, AArch64::SUBSWri},
4551        {AArch64::SUBSXrs, AArch64::SUBSWrs},
4552        {AArch64::SUBSXrr, AArch64::SUBSWrr},
4553        {AArch64::ADDSXri, AArch64::ADDSWri},
4554        {AArch64::SUBSXrx, AArch64::SUBSWrx}}};
4555   return emitAddSub(OpcTable, Dst, LHS, RHS, MIRBuilder);
4556 }
4557 
4558 MachineInstr *
4559 AArch64InstructionSelector::emitCMN(MachineOperand &LHS, MachineOperand &RHS,
4560                                     MachineIRBuilder &MIRBuilder) const {
4561   MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4562   bool Is32Bit = (MRI.getType(LHS.getReg()).getSizeInBits() == 32);
4563   auto RC = Is32Bit ? &AArch64::GPR32RegClass : &AArch64::GPR64RegClass;
4564   return emitADDS(MRI.createVirtualRegister(RC), LHS, RHS, MIRBuilder);
4565 }
4566 
4567 MachineInstr *
4568 AArch64InstructionSelector::emitTST(MachineOperand &LHS, MachineOperand &RHS,
4569                                     MachineIRBuilder &MIRBuilder) const {
4570   assert(LHS.isReg() && RHS.isReg() && "Expected register operands?");
4571   MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4572   LLT Ty = MRI.getType(LHS.getReg());
4573   unsigned RegSize = Ty.getSizeInBits();
4574   bool Is32Bit = (RegSize == 32);
4575   const unsigned OpcTable[3][2] = {{AArch64::ANDSXri, AArch64::ANDSWri},
4576                                    {AArch64::ANDSXrs, AArch64::ANDSWrs},
4577                                    {AArch64::ANDSXrr, AArch64::ANDSWrr}};
4578   // ANDS needs a logical immediate for its immediate form. Check if we can
4579   // fold one in.
4580   if (auto ValAndVReg = getIConstantVRegValWithLookThrough(RHS.getReg(), MRI)) {
4581     int64_t Imm = ValAndVReg->Value.getSExtValue();
4582 
4583     if (AArch64_AM::isLogicalImmediate(Imm, RegSize)) {
4584       auto TstMI = MIRBuilder.buildInstr(OpcTable[0][Is32Bit], {Ty}, {LHS});
4585       TstMI.addImm(AArch64_AM::encodeLogicalImmediate(Imm, RegSize));
4586       constrainSelectedInstRegOperands(*TstMI, TII, TRI, RBI);
4587       return &*TstMI;
4588     }
4589   }
4590 
4591   if (auto Fns = selectLogicalShiftedRegister(RHS))
4592     return emitInstr(OpcTable[1][Is32Bit], {Ty}, {LHS}, MIRBuilder, Fns);
4593   return emitInstr(OpcTable[2][Is32Bit], {Ty}, {LHS, RHS}, MIRBuilder);
4594 }
4595 
4596 MachineInstr *AArch64InstructionSelector::emitIntegerCompare(
4597     MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
4598     MachineIRBuilder &MIRBuilder) const {
4599   assert(LHS.isReg() && RHS.isReg() && "Expected LHS and RHS to be registers!");
4600   assert(Predicate.isPredicate() && "Expected predicate?");
4601   MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4602   LLT CmpTy = MRI.getType(LHS.getReg());
4603   assert(!CmpTy.isVector() && "Expected scalar or pointer");
4604   unsigned Size = CmpTy.getSizeInBits();
4605   (void)Size;
4606   assert((Size == 32 || Size == 64) && "Expected a 32-bit or 64-bit LHS/RHS?");
4607   // Fold the compare into a cmn or tst if possible.
4608   if (auto FoldCmp = tryFoldIntegerCompare(LHS, RHS, Predicate, MIRBuilder))
4609     return FoldCmp;
4610   auto Dst = MRI.cloneVirtualRegister(LHS.getReg());
4611   return emitSUBS(Dst, LHS, RHS, MIRBuilder);
4612 }
4613 
4614 MachineInstr *AArch64InstructionSelector::emitCSetForFCmp(
4615     Register Dst, CmpInst::Predicate Pred, MachineIRBuilder &MIRBuilder) const {
4616   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4617 #ifndef NDEBUG
4618   LLT Ty = MRI.getType(Dst);
4619   assert(!Ty.isVector() && Ty.getSizeInBits() == 32 &&
4620          "Expected a 32-bit scalar register?");
4621 #endif
4622   const Register ZReg = AArch64::WZR;
4623   AArch64CC::CondCode CC1, CC2;
4624   changeFCMPPredToAArch64CC(Pred, CC1, CC2);
4625   auto InvCC1 = AArch64CC::getInvertedCondCode(CC1);
4626   if (CC2 == AArch64CC::AL)
4627     return emitCSINC(/*Dst=*/Dst, /*Src1=*/ZReg, /*Src2=*/ZReg, InvCC1,
4628                      MIRBuilder);
4629   const TargetRegisterClass *RC = &AArch64::GPR32RegClass;
4630   Register Def1Reg = MRI.createVirtualRegister(RC);
4631   Register Def2Reg = MRI.createVirtualRegister(RC);
4632   auto InvCC2 = AArch64CC::getInvertedCondCode(CC2);
4633   emitCSINC(/*Dst=*/Def1Reg, /*Src1=*/ZReg, /*Src2=*/ZReg, InvCC1, MIRBuilder);
4634   emitCSINC(/*Dst=*/Def2Reg, /*Src1=*/ZReg, /*Src2=*/ZReg, InvCC2, MIRBuilder);
4635   auto OrMI = MIRBuilder.buildInstr(AArch64::ORRWrr, {Dst}, {Def1Reg, Def2Reg});
4636   constrainSelectedInstRegOperands(*OrMI, TII, TRI, RBI);
4637   return &*OrMI;
4638 }
4639 
4640 MachineInstr *AArch64InstructionSelector::emitFPCompare(
4641     Register LHS, Register RHS, MachineIRBuilder &MIRBuilder,
4642     std::optional<CmpInst::Predicate> Pred) const {
4643   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
4644   LLT Ty = MRI.getType(LHS);
4645   if (Ty.isVector())
4646     return nullptr;
4647   unsigned OpSize = Ty.getSizeInBits();
4648   if (OpSize != 32 && OpSize != 64)
4649     return nullptr;
4650 
4651   // If this is a compare against +0.0, then we don't have
4652   // to explicitly materialize a constant.
4653   const ConstantFP *FPImm = getConstantFPVRegVal(RHS, MRI);
4654   bool ShouldUseImm = FPImm && (FPImm->isZero() && !FPImm->isNegative());
4655 
4656   auto IsEqualityPred = [](CmpInst::Predicate P) {
4657     return P == CmpInst::FCMP_OEQ || P == CmpInst::FCMP_ONE ||
4658            P == CmpInst::FCMP_UEQ || P == CmpInst::FCMP_UNE;
4659   };
4660   if (!ShouldUseImm && Pred && IsEqualityPred(*Pred)) {
4661     // Try commutating the operands.
4662     const ConstantFP *LHSImm = getConstantFPVRegVal(LHS, MRI);
4663     if (LHSImm && (LHSImm->isZero() && !LHSImm->isNegative())) {
4664       ShouldUseImm = true;
4665       std::swap(LHS, RHS);
4666     }
4667   }
4668   unsigned CmpOpcTbl[2][2] = {{AArch64::FCMPSrr, AArch64::FCMPDrr},
4669                               {AArch64::FCMPSri, AArch64::FCMPDri}};
4670   unsigned CmpOpc = CmpOpcTbl[ShouldUseImm][OpSize == 64];
4671 
4672   // Partially build the compare. Decide if we need to add a use for the
4673   // third operand based off whether or not we're comparing against 0.0.
4674   auto CmpMI = MIRBuilder.buildInstr(CmpOpc).addUse(LHS);
4675   CmpMI.setMIFlags(MachineInstr::NoFPExcept);
4676   if (!ShouldUseImm)
4677     CmpMI.addUse(RHS);
4678   constrainSelectedInstRegOperands(*CmpMI, TII, TRI, RBI);
4679   return &*CmpMI;
4680 }
4681 
4682 MachineInstr *AArch64InstructionSelector::emitVectorConcat(
4683     std::optional<Register> Dst, Register Op1, Register Op2,
4684     MachineIRBuilder &MIRBuilder) const {
4685   // We implement a vector concat by:
4686   // 1. Use scalar_to_vector to insert the lower vector into the larger dest
4687   // 2. Insert the upper vector into the destination's upper element
4688   // TODO: some of this code is common with G_BUILD_VECTOR handling.
4689   MachineRegisterInfo &MRI = MIRBuilder.getMF().getRegInfo();
4690 
4691   const LLT Op1Ty = MRI.getType(Op1);
4692   const LLT Op2Ty = MRI.getType(Op2);
4693 
4694   if (Op1Ty != Op2Ty) {
4695     LLVM_DEBUG(dbgs() << "Could not do vector concat of differing vector tys");
4696     return nullptr;
4697   }
4698   assert(Op1Ty.isVector() && "Expected a vector for vector concat");
4699 
4700   if (Op1Ty.getSizeInBits() >= 128) {
4701     LLVM_DEBUG(dbgs() << "Vector concat not supported for full size vectors");
4702     return nullptr;
4703   }
4704 
4705   // At the moment we just support 64 bit vector concats.
4706   if (Op1Ty.getSizeInBits() != 64) {
4707     LLVM_DEBUG(dbgs() << "Vector concat supported for 64b vectors");
4708     return nullptr;
4709   }
4710 
4711   const LLT ScalarTy = LLT::scalar(Op1Ty.getSizeInBits());
4712   const RegisterBank &FPRBank = *RBI.getRegBank(Op1, MRI, TRI);
4713   const TargetRegisterClass *DstRC =
4714       getRegClassForTypeOnBank(Op1Ty.multiplyElements(2), FPRBank);
4715 
4716   MachineInstr *WidenedOp1 =
4717       emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op1, MIRBuilder);
4718   MachineInstr *WidenedOp2 =
4719       emitScalarToVector(ScalarTy.getSizeInBits(), DstRC, Op2, MIRBuilder);
4720   if (!WidenedOp1 || !WidenedOp2) {
4721     LLVM_DEBUG(dbgs() << "Could not emit a vector from scalar value");
4722     return nullptr;
4723   }
4724 
4725   // Now do the insert of the upper element.
4726   unsigned InsertOpc, InsSubRegIdx;
4727   std::tie(InsertOpc, InsSubRegIdx) =
4728       getInsertVecEltOpInfo(FPRBank, ScalarTy.getSizeInBits());
4729 
4730   if (!Dst)
4731     Dst = MRI.createVirtualRegister(DstRC);
4732   auto InsElt =
4733       MIRBuilder
4734           .buildInstr(InsertOpc, {*Dst}, {WidenedOp1->getOperand(0).getReg()})
4735           .addImm(1) /* Lane index */
4736           .addUse(WidenedOp2->getOperand(0).getReg())
4737           .addImm(0);
4738   constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
4739   return &*InsElt;
4740 }
4741 
4742 MachineInstr *
4743 AArch64InstructionSelector::emitCSINC(Register Dst, Register Src1,
4744                                       Register Src2, AArch64CC::CondCode Pred,
4745                                       MachineIRBuilder &MIRBuilder) const {
4746   auto &MRI = *MIRBuilder.getMRI();
4747   const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Dst);
4748   // If we used a register class, then this won't necessarily have an LLT.
4749   // Compute the size based off whether or not we have a class or bank.
4750   unsigned Size;
4751   if (const auto *RC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>())
4752     Size = TRI.getRegSizeInBits(*RC);
4753   else
4754     Size = MRI.getType(Dst).getSizeInBits();
4755   // Some opcodes use s1.
4756   assert(Size <= 64 && "Expected 64 bits or less only!");
4757   static const unsigned OpcTable[2] = {AArch64::CSINCWr, AArch64::CSINCXr};
4758   unsigned Opc = OpcTable[Size == 64];
4759   auto CSINC = MIRBuilder.buildInstr(Opc, {Dst}, {Src1, Src2}).addImm(Pred);
4760   constrainSelectedInstRegOperands(*CSINC, TII, TRI, RBI);
4761   return &*CSINC;
4762 }
4763 
4764 std::pair<MachineInstr *, AArch64CC::CondCode>
4765 AArch64InstructionSelector::emitOverflowOp(unsigned Opcode, Register Dst,
4766                                            MachineOperand &LHS,
4767                                            MachineOperand &RHS,
4768                                            MachineIRBuilder &MIRBuilder) const {
4769   switch (Opcode) {
4770   default:
4771     llvm_unreachable("Unexpected opcode!");
4772   case TargetOpcode::G_SADDO:
4773     return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
4774   case TargetOpcode::G_UADDO:
4775     return std::make_pair(emitADDS(Dst, LHS, RHS, MIRBuilder), AArch64CC::HS);
4776   case TargetOpcode::G_SSUBO:
4777     return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::VS);
4778   case TargetOpcode::G_USUBO:
4779     return std::make_pair(emitSUBS(Dst, LHS, RHS, MIRBuilder), AArch64CC::LO);
4780   }
4781 }
4782 
4783 /// Returns true if @p Val is a tree of AND/OR/CMP operations that can be
4784 /// expressed as a conjunction.
4785 /// \param CanNegate    Set to true if we can negate the whole sub-tree just by
4786 ///                     changing the conditions on the CMP tests.
4787 ///                     (this means we can call emitConjunctionRec() with
4788 ///                      Negate==true on this sub-tree)
4789 /// \param MustBeFirst  Set to true if this subtree needs to be negated and we
4790 ///                     cannot do the negation naturally. We are required to
4791 ///                     emit the subtree first in this case.
4792 /// \param WillNegate   Is true if are called when the result of this
4793 ///                     subexpression must be negated. This happens when the
4794 ///                     outer expression is an OR. We can use this fact to know
4795 ///                     that we have a double negation (or (or ...) ...) that
4796 ///                     can be implemented for free.
4797 static bool canEmitConjunction(Register Val, bool &CanNegate, bool &MustBeFirst,
4798                                bool WillNegate, MachineRegisterInfo &MRI,
4799                                unsigned Depth = 0) {
4800   if (!MRI.hasOneNonDBGUse(Val))
4801     return false;
4802   MachineInstr *ValDef = MRI.getVRegDef(Val);
4803   unsigned Opcode = ValDef->getOpcode();
4804   if (isa<GAnyCmp>(ValDef)) {
4805     CanNegate = true;
4806     MustBeFirst = false;
4807     return true;
4808   }
4809   // Protect against exponential runtime and stack overflow.
4810   if (Depth > 6)
4811     return false;
4812   if (Opcode == TargetOpcode::G_AND || Opcode == TargetOpcode::G_OR) {
4813     bool IsOR = Opcode == TargetOpcode::G_OR;
4814     Register O0 = ValDef->getOperand(1).getReg();
4815     Register O1 = ValDef->getOperand(2).getReg();
4816     bool CanNegateL;
4817     bool MustBeFirstL;
4818     if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, MRI, Depth + 1))
4819       return false;
4820     bool CanNegateR;
4821     bool MustBeFirstR;
4822     if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, MRI, Depth + 1))
4823       return false;
4824 
4825     if (MustBeFirstL && MustBeFirstR)
4826       return false;
4827 
4828     if (IsOR) {
4829       // For an OR expression we need to be able to naturally negate at least
4830       // one side or we cannot do the transformation at all.
4831       if (!CanNegateL && !CanNegateR)
4832         return false;
4833       // If we the result of the OR will be negated and we can naturally negate
4834       // the leaves, then this sub-tree as a whole negates naturally.
4835       CanNegate = WillNegate && CanNegateL && CanNegateR;
4836       // If we cannot naturally negate the whole sub-tree, then this must be
4837       // emitted first.
4838       MustBeFirst = !CanNegate;
4839     } else {
4840       assert(Opcode == TargetOpcode::G_AND && "Must be G_AND");
4841       // We cannot naturally negate an AND operation.
4842       CanNegate = false;
4843       MustBeFirst = MustBeFirstL || MustBeFirstR;
4844     }
4845     return true;
4846   }
4847   return false;
4848 }
4849 
4850 MachineInstr *AArch64InstructionSelector::emitConditionalComparison(
4851     Register LHS, Register RHS, CmpInst::Predicate CC,
4852     AArch64CC::CondCode Predicate, AArch64CC::CondCode OutCC,
4853     MachineIRBuilder &MIB) const {
4854   // TODO: emit CMN as an optimization.
4855   auto &MRI = *MIB.getMRI();
4856   LLT OpTy = MRI.getType(LHS);
4857   assert(OpTy.getSizeInBits() == 32 || OpTy.getSizeInBits() == 64);
4858   unsigned CCmpOpc;
4859   std::optional<ValueAndVReg> C;
4860   if (CmpInst::isIntPredicate(CC)) {
4861     C = getIConstantVRegValWithLookThrough(RHS, MRI);
4862     if (C && C->Value.ult(32))
4863       CCmpOpc = OpTy.getSizeInBits() == 32 ? AArch64::CCMPWi : AArch64::CCMPXi;
4864     else
4865       CCmpOpc = OpTy.getSizeInBits() == 32 ? AArch64::CCMPWr : AArch64::CCMPXr;
4866   } else {
4867     switch (OpTy.getSizeInBits()) {
4868     case 16:
4869       CCmpOpc = AArch64::FCCMPHrr;
4870       break;
4871     case 32:
4872       CCmpOpc = AArch64::FCCMPSrr;
4873       break;
4874     case 64:
4875       CCmpOpc = AArch64::FCCMPDrr;
4876       break;
4877     default:
4878       return nullptr;
4879     }
4880   }
4881   AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
4882   unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
4883   auto CCmp =
4884       MIB.buildInstr(CCmpOpc, {}, {LHS});
4885   if (CCmpOpc == AArch64::CCMPWi || CCmpOpc == AArch64::CCMPXi)
4886     CCmp.addImm(C->Value.getZExtValue());
4887   else
4888     CCmp.addReg(RHS);
4889   CCmp.addImm(NZCV).addImm(Predicate);
4890   constrainSelectedInstRegOperands(*CCmp, TII, TRI, RBI);
4891   return &*CCmp;
4892 }
4893 
4894 MachineInstr *AArch64InstructionSelector::emitConjunctionRec(
4895     Register Val, AArch64CC::CondCode &OutCC, bool Negate, Register CCOp,
4896     AArch64CC::CondCode Predicate, MachineIRBuilder &MIB) const {
4897   // We're at a tree leaf, produce a conditional comparison operation.
4898   auto &MRI = *MIB.getMRI();
4899   MachineInstr *ValDef = MRI.getVRegDef(Val);
4900   unsigned Opcode = ValDef->getOpcode();
4901   if (auto *Cmp = dyn_cast<GAnyCmp>(ValDef)) {
4902     Register LHS = Cmp->getLHSReg();
4903     Register RHS = Cmp->getRHSReg();
4904     CmpInst::Predicate CC = Cmp->getCond();
4905     if (Negate)
4906       CC = CmpInst::getInversePredicate(CC);
4907     if (isa<GICmp>(Cmp)) {
4908       OutCC = changeICMPPredToAArch64CC(CC);
4909     } else {
4910       // Handle special FP cases.
4911       AArch64CC::CondCode ExtraCC;
4912       changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
4913       // Some floating point conditions can't be tested with a single condition
4914       // code. Construct an additional comparison in this case.
4915       if (ExtraCC != AArch64CC::AL) {
4916         MachineInstr *ExtraCmp;
4917         if (!CCOp)
4918           ExtraCmp = emitFPCompare(LHS, RHS, MIB, CC);
4919         else
4920           ExtraCmp =
4921               emitConditionalComparison(LHS, RHS, CC, Predicate, ExtraCC, MIB);
4922         CCOp = ExtraCmp->getOperand(0).getReg();
4923         Predicate = ExtraCC;
4924       }
4925     }
4926 
4927     // Produce a normal comparison if we are first in the chain
4928     if (!CCOp) {
4929       auto Dst = MRI.cloneVirtualRegister(LHS);
4930       if (isa<GICmp>(Cmp))
4931         return emitSUBS(Dst, Cmp->getOperand(2), Cmp->getOperand(3), MIB);
4932       return emitFPCompare(Cmp->getOperand(2).getReg(),
4933                            Cmp->getOperand(3).getReg(), MIB);
4934     }
4935     // Otherwise produce a ccmp.
4936     return emitConditionalComparison(LHS, RHS, CC, Predicate, OutCC, MIB);
4937   }
4938   assert(MRI.hasOneNonDBGUse(Val) && "Valid conjunction/disjunction tree");
4939 
4940   bool IsOR = Opcode == TargetOpcode::G_OR;
4941 
4942   Register LHS = ValDef->getOperand(1).getReg();
4943   bool CanNegateL;
4944   bool MustBeFirstL;
4945   bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR, MRI);
4946   assert(ValidL && "Valid conjunction/disjunction tree");
4947   (void)ValidL;
4948 
4949   Register RHS = ValDef->getOperand(2).getReg();
4950   bool CanNegateR;
4951   bool MustBeFirstR;
4952   bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR, MRI);
4953   assert(ValidR && "Valid conjunction/disjunction tree");
4954   (void)ValidR;
4955 
4956   // Swap sub-tree that must come first to the right side.
4957   if (MustBeFirstL) {
4958     assert(!MustBeFirstR && "Valid conjunction/disjunction tree");
4959     std::swap(LHS, RHS);
4960     std::swap(CanNegateL, CanNegateR);
4961     std::swap(MustBeFirstL, MustBeFirstR);
4962   }
4963 
4964   bool NegateR;
4965   bool NegateAfterR;
4966   bool NegateL;
4967   bool NegateAfterAll;
4968   if (Opcode == TargetOpcode::G_OR) {
4969     // Swap the sub-tree that we can negate naturally to the left.
4970     if (!CanNegateL) {
4971       assert(CanNegateR && "at least one side must be negatable");
4972       assert(!MustBeFirstR && "invalid conjunction/disjunction tree");
4973       assert(!Negate);
4974       std::swap(LHS, RHS);
4975       NegateR = false;
4976       NegateAfterR = true;
4977     } else {
4978       // Negate the left sub-tree if possible, otherwise negate the result.
4979       NegateR = CanNegateR;
4980       NegateAfterR = !CanNegateR;
4981     }
4982     NegateL = true;
4983     NegateAfterAll = !Negate;
4984   } else {
4985     assert(Opcode == TargetOpcode::G_AND &&
4986            "Valid conjunction/disjunction tree");
4987     assert(!Negate && "Valid conjunction/disjunction tree");
4988 
4989     NegateL = false;
4990     NegateR = false;
4991     NegateAfterR = false;
4992     NegateAfterAll = false;
4993   }
4994 
4995   // Emit sub-trees.
4996   AArch64CC::CondCode RHSCC;
4997   MachineInstr *CmpR =
4998       emitConjunctionRec(RHS, RHSCC, NegateR, CCOp, Predicate, MIB);
4999   if (NegateAfterR)
5000     RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
5001   MachineInstr *CmpL = emitConjunctionRec(
5002       LHS, OutCC, NegateL, CmpR->getOperand(0).getReg(), RHSCC, MIB);
5003   if (NegateAfterAll)
5004     OutCC = AArch64CC::getInvertedCondCode(OutCC);
5005   return CmpL;
5006 }
5007 
5008 MachineInstr *AArch64InstructionSelector::emitConjunction(
5009     Register Val, AArch64CC::CondCode &OutCC, MachineIRBuilder &MIB) const {
5010   bool DummyCanNegate;
5011   bool DummyMustBeFirst;
5012   if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false,
5013                           *MIB.getMRI()))
5014     return nullptr;
5015   return emitConjunctionRec(Val, OutCC, false, Register(), AArch64CC::AL, MIB);
5016 }
5017 
5018 bool AArch64InstructionSelector::tryOptSelectConjunction(GSelect &SelI,
5019                                                          MachineInstr &CondMI) {
5020   AArch64CC::CondCode AArch64CC;
5021   MachineInstr *ConjMI = emitConjunction(SelI.getCondReg(), AArch64CC, MIB);
5022   if (!ConjMI)
5023     return false;
5024 
5025   emitSelect(SelI.getReg(0), SelI.getTrueReg(), SelI.getFalseReg(), AArch64CC, MIB);
5026   SelI.eraseFromParent();
5027   return true;
5028 }
5029 
5030 bool AArch64InstructionSelector::tryOptSelect(GSelect &I) {
5031   MachineRegisterInfo &MRI = *MIB.getMRI();
5032   // We want to recognize this pattern:
5033   //
5034   // $z = G_FCMP pred, $x, $y
5035   // ...
5036   // $w = G_SELECT $z, $a, $b
5037   //
5038   // Where the value of $z is *only* ever used by the G_SELECT (possibly with
5039   // some copies/truncs in between.)
5040   //
5041   // If we see this, then we can emit something like this:
5042   //
5043   // fcmp $x, $y
5044   // fcsel $w, $a, $b, pred
5045   //
5046   // Rather than emitting both of the rather long sequences in the standard
5047   // G_FCMP/G_SELECT select methods.
5048 
5049   // First, check if the condition is defined by a compare.
5050   MachineInstr *CondDef = MRI.getVRegDef(I.getOperand(1).getReg());
5051 
5052   // We can only fold if all of the defs have one use.
5053   Register CondDefReg = CondDef->getOperand(0).getReg();
5054   if (!MRI.hasOneNonDBGUse(CondDefReg)) {
5055     // Unless it's another select.
5056     for (const MachineInstr &UI : MRI.use_nodbg_instructions(CondDefReg)) {
5057       if (CondDef == &UI)
5058         continue;
5059       if (UI.getOpcode() != TargetOpcode::G_SELECT)
5060         return false;
5061     }
5062   }
5063 
5064   // Is the condition defined by a compare?
5065   unsigned CondOpc = CondDef->getOpcode();
5066   if (CondOpc != TargetOpcode::G_ICMP && CondOpc != TargetOpcode::G_FCMP) {
5067     if (tryOptSelectConjunction(I, *CondDef))
5068       return true;
5069     return false;
5070   }
5071 
5072   AArch64CC::CondCode CondCode;
5073   if (CondOpc == TargetOpcode::G_ICMP) {
5074     auto Pred =
5075         static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate());
5076     CondCode = changeICMPPredToAArch64CC(Pred);
5077     emitIntegerCompare(CondDef->getOperand(2), CondDef->getOperand(3),
5078                        CondDef->getOperand(1), MIB);
5079   } else {
5080     // Get the condition code for the select.
5081     auto Pred =
5082         static_cast<CmpInst::Predicate>(CondDef->getOperand(1).getPredicate());
5083     AArch64CC::CondCode CondCode2;
5084     changeFCMPPredToAArch64CC(Pred, CondCode, CondCode2);
5085 
5086     // changeFCMPPredToAArch64CC sets CondCode2 to AL when we require two
5087     // instructions to emit the comparison.
5088     // TODO: Handle FCMP_UEQ and FCMP_ONE. After that, this check will be
5089     // unnecessary.
5090     if (CondCode2 != AArch64CC::AL)
5091       return false;
5092 
5093     if (!emitFPCompare(CondDef->getOperand(2).getReg(),
5094                        CondDef->getOperand(3).getReg(), MIB)) {
5095       LLVM_DEBUG(dbgs() << "Couldn't emit compare for select!\n");
5096       return false;
5097     }
5098   }
5099 
5100   // Emit the select.
5101   emitSelect(I.getOperand(0).getReg(), I.getOperand(2).getReg(),
5102              I.getOperand(3).getReg(), CondCode, MIB);
5103   I.eraseFromParent();
5104   return true;
5105 }
5106 
5107 MachineInstr *AArch64InstructionSelector::tryFoldIntegerCompare(
5108     MachineOperand &LHS, MachineOperand &RHS, MachineOperand &Predicate,
5109     MachineIRBuilder &MIRBuilder) const {
5110   assert(LHS.isReg() && RHS.isReg() && Predicate.isPredicate() &&
5111          "Unexpected MachineOperand");
5112   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
5113   // We want to find this sort of thing:
5114   // x = G_SUB 0, y
5115   // G_ICMP z, x
5116   //
5117   // In this case, we can fold the G_SUB into the G_ICMP using a CMN instead.
5118   // e.g:
5119   //
5120   // cmn z, y
5121 
5122   // Check if the RHS or LHS of the G_ICMP is defined by a SUB
5123   MachineInstr *LHSDef = getDefIgnoringCopies(LHS.getReg(), MRI);
5124   MachineInstr *RHSDef = getDefIgnoringCopies(RHS.getReg(), MRI);
5125   auto P = static_cast<CmpInst::Predicate>(Predicate.getPredicate());
5126   // Given this:
5127   //
5128   // x = G_SUB 0, y
5129   // G_ICMP x, z
5130   //
5131   // Produce this:
5132   //
5133   // cmn y, z
5134   if (isCMN(LHSDef, P, MRI))
5135     return emitCMN(LHSDef->getOperand(2), RHS, MIRBuilder);
5136 
5137   // Same idea here, but with the RHS of the compare instead:
5138   //
5139   // Given this:
5140   //
5141   // x = G_SUB 0, y
5142   // G_ICMP z, x
5143   //
5144   // Produce this:
5145   //
5146   // cmn z, y
5147   if (isCMN(RHSDef, P, MRI))
5148     return emitCMN(LHS, RHSDef->getOperand(2), MIRBuilder);
5149 
5150   // Given this:
5151   //
5152   // z = G_AND x, y
5153   // G_ICMP z, 0
5154   //
5155   // Produce this if the compare is signed:
5156   //
5157   // tst x, y
5158   if (!CmpInst::isUnsigned(P) && LHSDef &&
5159       LHSDef->getOpcode() == TargetOpcode::G_AND) {
5160     // Make sure that the RHS is 0.
5161     auto ValAndVReg = getIConstantVRegValWithLookThrough(RHS.getReg(), MRI);
5162     if (!ValAndVReg || ValAndVReg->Value != 0)
5163       return nullptr;
5164 
5165     return emitTST(LHSDef->getOperand(1),
5166                    LHSDef->getOperand(2), MIRBuilder);
5167   }
5168 
5169   return nullptr;
5170 }
5171 
5172 bool AArch64InstructionSelector::selectShuffleVector(
5173     MachineInstr &I, MachineRegisterInfo &MRI) {
5174   const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
5175   Register Src1Reg = I.getOperand(1).getReg();
5176   const LLT Src1Ty = MRI.getType(Src1Reg);
5177   Register Src2Reg = I.getOperand(2).getReg();
5178   const LLT Src2Ty = MRI.getType(Src2Reg);
5179   ArrayRef<int> Mask = I.getOperand(3).getShuffleMask();
5180 
5181   MachineBasicBlock &MBB = *I.getParent();
5182   MachineFunction &MF = *MBB.getParent();
5183   LLVMContext &Ctx = MF.getFunction().getContext();
5184 
5185   // G_SHUFFLE_VECTOR is weird in that the source operands can be scalars, if
5186   // it's originated from a <1 x T> type. Those should have been lowered into
5187   // G_BUILD_VECTOR earlier.
5188   if (!Src1Ty.isVector() || !Src2Ty.isVector()) {
5189     LLVM_DEBUG(dbgs() << "Could not select a \"scalar\" G_SHUFFLE_VECTOR\n");
5190     return false;
5191   }
5192 
5193   unsigned BytesPerElt = DstTy.getElementType().getSizeInBits() / 8;
5194 
5195   SmallVector<Constant *, 64> CstIdxs;
5196   for (int Val : Mask) {
5197     // For now, any undef indexes we'll just assume to be 0. This should be
5198     // optimized in future, e.g. to select DUP etc.
5199     Val = Val < 0 ? 0 : Val;
5200     for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5201       unsigned Offset = Byte + Val * BytesPerElt;
5202       CstIdxs.emplace_back(ConstantInt::get(Type::getInt8Ty(Ctx), Offset));
5203     }
5204   }
5205 
5206   // Use a constant pool to load the index vector for TBL.
5207   Constant *CPVal = ConstantVector::get(CstIdxs);
5208   MachineInstr *IndexLoad = emitLoadFromConstantPool(CPVal, MIB);
5209   if (!IndexLoad) {
5210     LLVM_DEBUG(dbgs() << "Could not load from a constant pool");
5211     return false;
5212   }
5213 
5214   if (DstTy.getSizeInBits() != 128) {
5215     assert(DstTy.getSizeInBits() == 64 && "Unexpected shuffle result ty");
5216     // This case can be done with TBL1.
5217     MachineInstr *Concat =
5218         emitVectorConcat(std::nullopt, Src1Reg, Src2Reg, MIB);
5219     if (!Concat) {
5220       LLVM_DEBUG(dbgs() << "Could not do vector concat for tbl1");
5221       return false;
5222     }
5223 
5224     // The constant pool load will be 64 bits, so need to convert to FPR128 reg.
5225     IndexLoad = emitScalarToVector(64, &AArch64::FPR128RegClass,
5226                                    IndexLoad->getOperand(0).getReg(), MIB);
5227 
5228     auto TBL1 = MIB.buildInstr(
5229         AArch64::TBLv16i8One, {&AArch64::FPR128RegClass},
5230         {Concat->getOperand(0).getReg(), IndexLoad->getOperand(0).getReg()});
5231     constrainSelectedInstRegOperands(*TBL1, TII, TRI, RBI);
5232 
5233     auto Copy =
5234         MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(0).getReg()}, {})
5235             .addReg(TBL1.getReg(0), 0, AArch64::dsub);
5236     RBI.constrainGenericRegister(Copy.getReg(0), AArch64::FPR64RegClass, MRI);
5237     I.eraseFromParent();
5238     return true;
5239   }
5240 
5241   // For TBL2 we need to emit a REG_SEQUENCE to tie together two consecutive
5242   // Q registers for regalloc.
5243   SmallVector<Register, 2> Regs = {Src1Reg, Src2Reg};
5244   auto RegSeq = createQTuple(Regs, MIB);
5245   auto TBL2 = MIB.buildInstr(AArch64::TBLv16i8Two, {I.getOperand(0)},
5246                              {RegSeq, IndexLoad->getOperand(0)});
5247   constrainSelectedInstRegOperands(*TBL2, TII, TRI, RBI);
5248   I.eraseFromParent();
5249   return true;
5250 }
5251 
5252 MachineInstr *AArch64InstructionSelector::emitLaneInsert(
5253     std::optional<Register> DstReg, Register SrcReg, Register EltReg,
5254     unsigned LaneIdx, const RegisterBank &RB,
5255     MachineIRBuilder &MIRBuilder) const {
5256   MachineInstr *InsElt = nullptr;
5257   const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
5258   MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
5259 
5260   // Create a register to define with the insert if one wasn't passed in.
5261   if (!DstReg)
5262     DstReg = MRI.createVirtualRegister(DstRC);
5263 
5264   unsigned EltSize = MRI.getType(EltReg).getSizeInBits();
5265   unsigned Opc = getInsertVecEltOpInfo(RB, EltSize).first;
5266 
5267   if (RB.getID() == AArch64::FPRRegBankID) {
5268     auto InsSub = emitScalarToVector(EltSize, DstRC, EltReg, MIRBuilder);
5269     InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
5270                  .addImm(LaneIdx)
5271                  .addUse(InsSub->getOperand(0).getReg())
5272                  .addImm(0);
5273   } else {
5274     InsElt = MIRBuilder.buildInstr(Opc, {*DstReg}, {SrcReg})
5275                  .addImm(LaneIdx)
5276                  .addUse(EltReg);
5277   }
5278 
5279   constrainSelectedInstRegOperands(*InsElt, TII, TRI, RBI);
5280   return InsElt;
5281 }
5282 
5283 bool AArch64InstructionSelector::selectUSMovFromExtend(
5284     MachineInstr &MI, MachineRegisterInfo &MRI) {
5285   if (MI.getOpcode() != TargetOpcode::G_SEXT &&
5286       MI.getOpcode() != TargetOpcode::G_ZEXT &&
5287       MI.getOpcode() != TargetOpcode::G_ANYEXT)
5288     return false;
5289   bool IsSigned = MI.getOpcode() == TargetOpcode::G_SEXT;
5290   const Register DefReg = MI.getOperand(0).getReg();
5291   const LLT DstTy = MRI.getType(DefReg);
5292   unsigned DstSize = DstTy.getSizeInBits();
5293 
5294   if (DstSize != 32 && DstSize != 64)
5295     return false;
5296 
5297   MachineInstr *Extract = getOpcodeDef(TargetOpcode::G_EXTRACT_VECTOR_ELT,
5298                                        MI.getOperand(1).getReg(), MRI);
5299   int64_t Lane;
5300   if (!Extract || !mi_match(Extract->getOperand(2).getReg(), MRI, m_ICst(Lane)))
5301     return false;
5302   Register Src0 = Extract->getOperand(1).getReg();
5303 
5304   const LLT &VecTy = MRI.getType(Src0);
5305 
5306   if (VecTy.getSizeInBits() != 128) {
5307     const MachineInstr *ScalarToVector = emitScalarToVector(
5308         VecTy.getSizeInBits(), &AArch64::FPR128RegClass, Src0, MIB);
5309     assert(ScalarToVector && "Didn't expect emitScalarToVector to fail!");
5310     Src0 = ScalarToVector->getOperand(0).getReg();
5311   }
5312 
5313   unsigned Opcode;
5314   if (DstSize == 64 && VecTy.getScalarSizeInBits() == 32)
5315     Opcode = IsSigned ? AArch64::SMOVvi32to64 : AArch64::UMOVvi32;
5316   else if (DstSize == 64 && VecTy.getScalarSizeInBits() == 16)
5317     Opcode = IsSigned ? AArch64::SMOVvi16to64 : AArch64::UMOVvi16;
5318   else if (DstSize == 64 && VecTy.getScalarSizeInBits() == 8)
5319     Opcode = IsSigned ? AArch64::SMOVvi8to64 : AArch64::UMOVvi8;
5320   else if (DstSize == 32 && VecTy.getScalarSizeInBits() == 16)
5321     Opcode = IsSigned ? AArch64::SMOVvi16to32 : AArch64::UMOVvi16;
5322   else if (DstSize == 32 && VecTy.getScalarSizeInBits() == 8)
5323     Opcode = IsSigned ? AArch64::SMOVvi8to32 : AArch64::UMOVvi8;
5324   else
5325     llvm_unreachable("Unexpected type combo for S/UMov!");
5326 
5327   // We may need to generate one of these, depending on the type and sign of the
5328   // input:
5329   //  DstReg = SMOV Src0, Lane;
5330   //  NewReg = UMOV Src0, Lane; DstReg = SUBREG_TO_REG NewReg, sub_32;
5331   MachineInstr *ExtI = nullptr;
5332   if (DstSize == 64 && !IsSigned) {
5333     Register NewReg = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
5334     MIB.buildInstr(Opcode, {NewReg}, {Src0}).addImm(Lane);
5335     ExtI = MIB.buildInstr(AArch64::SUBREG_TO_REG, {DefReg}, {})
5336                .addImm(0)
5337                .addUse(NewReg)
5338                .addImm(AArch64::sub_32);
5339     RBI.constrainGenericRegister(DefReg, AArch64::GPR64RegClass, MRI);
5340   } else
5341     ExtI = MIB.buildInstr(Opcode, {DefReg}, {Src0}).addImm(Lane);
5342 
5343   constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
5344   MI.eraseFromParent();
5345   return true;
5346 }
5347 
5348 bool AArch64InstructionSelector::selectInsertElt(MachineInstr &I,
5349                                                  MachineRegisterInfo &MRI) {
5350   assert(I.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT);
5351 
5352   // Get information on the destination.
5353   Register DstReg = I.getOperand(0).getReg();
5354   const LLT DstTy = MRI.getType(DstReg);
5355   unsigned VecSize = DstTy.getSizeInBits();
5356 
5357   // Get information on the element we want to insert into the destination.
5358   Register EltReg = I.getOperand(2).getReg();
5359   const LLT EltTy = MRI.getType(EltReg);
5360   unsigned EltSize = EltTy.getSizeInBits();
5361   if (EltSize < 16 || EltSize > 64)
5362     return false; // Don't support all element types yet.
5363 
5364   // Find the definition of the index. Bail out if it's not defined by a
5365   // G_CONSTANT.
5366   Register IdxReg = I.getOperand(3).getReg();
5367   auto VRegAndVal = getIConstantVRegValWithLookThrough(IdxReg, MRI);
5368   if (!VRegAndVal)
5369     return false;
5370   unsigned LaneIdx = VRegAndVal->Value.getSExtValue();
5371 
5372   // Perform the lane insert.
5373   Register SrcReg = I.getOperand(1).getReg();
5374   const RegisterBank &EltRB = *RBI.getRegBank(EltReg, MRI, TRI);
5375 
5376   if (VecSize < 128) {
5377     // If the vector we're inserting into is smaller than 128 bits, widen it
5378     // to 128 to do the insert.
5379     MachineInstr *ScalarToVec =
5380         emitScalarToVector(VecSize, &AArch64::FPR128RegClass, SrcReg, MIB);
5381     if (!ScalarToVec)
5382       return false;
5383     SrcReg = ScalarToVec->getOperand(0).getReg();
5384   }
5385 
5386   // Create an insert into a new FPR128 register.
5387   // Note that if our vector is already 128 bits, we end up emitting an extra
5388   // register.
5389   MachineInstr *InsMI =
5390       emitLaneInsert(std::nullopt, SrcReg, EltReg, LaneIdx, EltRB, MIB);
5391 
5392   if (VecSize < 128) {
5393     // If we had to widen to perform the insert, then we have to demote back to
5394     // the original size to get the result we want.
5395     Register DemoteVec = InsMI->getOperand(0).getReg();
5396     const TargetRegisterClass *RC =
5397         getRegClassForTypeOnBank(DstTy, *RBI.getRegBank(DemoteVec, MRI, TRI));
5398     if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
5399       LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
5400       return false;
5401     }
5402     unsigned SubReg = 0;
5403     if (!getSubRegForClass(RC, TRI, SubReg))
5404       return false;
5405     if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
5406       LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << VecSize
5407                         << "\n");
5408       return false;
5409     }
5410     MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {})
5411         .addReg(DemoteVec, 0, SubReg);
5412     RBI.constrainGenericRegister(DstReg, *RC, MRI);
5413   } else {
5414     // No widening needed.
5415     InsMI->getOperand(0).setReg(DstReg);
5416     constrainSelectedInstRegOperands(*InsMI, TII, TRI, RBI);
5417   }
5418 
5419   I.eraseFromParent();
5420   return true;
5421 }
5422 
5423 MachineInstr *
5424 AArch64InstructionSelector::emitConstantVector(Register Dst, Constant *CV,
5425                                                MachineIRBuilder &MIRBuilder,
5426                                                MachineRegisterInfo &MRI) {
5427   LLT DstTy = MRI.getType(Dst);
5428   unsigned DstSize = DstTy.getSizeInBits();
5429   if (CV->isNullValue()) {
5430     if (DstSize == 128) {
5431       auto Mov =
5432           MIRBuilder.buildInstr(AArch64::MOVIv2d_ns, {Dst}, {}).addImm(0);
5433       constrainSelectedInstRegOperands(*Mov, TII, TRI, RBI);
5434       return &*Mov;
5435     }
5436 
5437     if (DstSize == 64) {
5438       auto Mov =
5439           MIRBuilder
5440               .buildInstr(AArch64::MOVIv2d_ns, {&AArch64::FPR128RegClass}, {})
5441               .addImm(0);
5442       auto Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, {Dst}, {})
5443                       .addReg(Mov.getReg(0), 0, AArch64::dsub);
5444       RBI.constrainGenericRegister(Dst, AArch64::FPR64RegClass, MRI);
5445       return &*Copy;
5446     }
5447   }
5448 
5449   auto *CPLoad = emitLoadFromConstantPool(CV, MIRBuilder);
5450   if (!CPLoad) {
5451     LLVM_DEBUG(dbgs() << "Could not generate cp load for constant vector!");
5452     return nullptr;
5453   }
5454 
5455   auto Copy = MIRBuilder.buildCopy(Dst, CPLoad->getOperand(0));
5456   RBI.constrainGenericRegister(
5457       Dst, *MRI.getRegClass(CPLoad->getOperand(0).getReg()), MRI);
5458   return &*Copy;
5459 }
5460 
5461 bool AArch64InstructionSelector::tryOptConstantBuildVec(
5462     MachineInstr &I, LLT DstTy, MachineRegisterInfo &MRI) {
5463   assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
5464   unsigned DstSize = DstTy.getSizeInBits();
5465   assert(DstSize <= 128 && "Unexpected build_vec type!");
5466   if (DstSize < 32)
5467     return false;
5468   // Check if we're building a constant vector, in which case we want to
5469   // generate a constant pool load instead of a vector insert sequence.
5470   SmallVector<Constant *, 16> Csts;
5471   for (unsigned Idx = 1; Idx < I.getNumOperands(); ++Idx) {
5472     // Try to find G_CONSTANT or G_FCONSTANT
5473     auto *OpMI =
5474         getOpcodeDef(TargetOpcode::G_CONSTANT, I.getOperand(Idx).getReg(), MRI);
5475     if (OpMI)
5476       Csts.emplace_back(
5477           const_cast<ConstantInt *>(OpMI->getOperand(1).getCImm()));
5478     else if ((OpMI = getOpcodeDef(TargetOpcode::G_FCONSTANT,
5479                                   I.getOperand(Idx).getReg(), MRI)))
5480       Csts.emplace_back(
5481           const_cast<ConstantFP *>(OpMI->getOperand(1).getFPImm()));
5482     else
5483       return false;
5484   }
5485   Constant *CV = ConstantVector::get(Csts);
5486   if (!emitConstantVector(I.getOperand(0).getReg(), CV, MIB, MRI))
5487     return false;
5488   I.eraseFromParent();
5489   return true;
5490 }
5491 
5492 bool AArch64InstructionSelector::tryOptBuildVecToSubregToReg(
5493     MachineInstr &I, MachineRegisterInfo &MRI) {
5494   // Given:
5495   //  %vec = G_BUILD_VECTOR %elt, %undef, %undef, ... %undef
5496   //
5497   // Select the G_BUILD_VECTOR as a SUBREG_TO_REG from %elt.
5498   Register Dst = I.getOperand(0).getReg();
5499   Register EltReg = I.getOperand(1).getReg();
5500   LLT EltTy = MRI.getType(EltReg);
5501   // If the index isn't on the same bank as its elements, then this can't be a
5502   // SUBREG_TO_REG.
5503   const RegisterBank &EltRB = *RBI.getRegBank(EltReg, MRI, TRI);
5504   const RegisterBank &DstRB = *RBI.getRegBank(Dst, MRI, TRI);
5505   if (EltRB != DstRB)
5506     return false;
5507   if (any_of(make_range(I.operands_begin() + 2, I.operands_end()),
5508              [&MRI](const MachineOperand &Op) {
5509                return !getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, Op.getReg(),
5510                                     MRI);
5511              }))
5512     return false;
5513   unsigned SubReg;
5514   const TargetRegisterClass *EltRC = getRegClassForTypeOnBank(EltTy, EltRB);
5515   if (!EltRC)
5516     return false;
5517   const TargetRegisterClass *DstRC =
5518       getRegClassForTypeOnBank(MRI.getType(Dst), DstRB);
5519   if (!DstRC)
5520     return false;
5521   if (!getSubRegForClass(EltRC, TRI, SubReg))
5522     return false;
5523   auto SubregToReg = MIB.buildInstr(AArch64::SUBREG_TO_REG, {Dst}, {})
5524                          .addImm(0)
5525                          .addUse(EltReg)
5526                          .addImm(SubReg);
5527   I.eraseFromParent();
5528   constrainSelectedInstRegOperands(*SubregToReg, TII, TRI, RBI);
5529   return RBI.constrainGenericRegister(Dst, *DstRC, MRI);
5530 }
5531 
5532 bool AArch64InstructionSelector::selectBuildVector(MachineInstr &I,
5533                                                    MachineRegisterInfo &MRI) {
5534   assert(I.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
5535   // Until we port more of the optimized selections, for now just use a vector
5536   // insert sequence.
5537   const LLT DstTy = MRI.getType(I.getOperand(0).getReg());
5538   const LLT EltTy = MRI.getType(I.getOperand(1).getReg());
5539   unsigned EltSize = EltTy.getSizeInBits();
5540 
5541   if (tryOptConstantBuildVec(I, DstTy, MRI))
5542     return true;
5543   if (tryOptBuildVecToSubregToReg(I, MRI))
5544     return true;
5545 
5546   if (EltSize < 16 || EltSize > 64)
5547     return false; // Don't support all element types yet.
5548   const RegisterBank &RB = *RBI.getRegBank(I.getOperand(1).getReg(), MRI, TRI);
5549 
5550   const TargetRegisterClass *DstRC = &AArch64::FPR128RegClass;
5551   MachineInstr *ScalarToVec =
5552       emitScalarToVector(DstTy.getElementType().getSizeInBits(), DstRC,
5553                          I.getOperand(1).getReg(), MIB);
5554   if (!ScalarToVec)
5555     return false;
5556 
5557   Register DstVec = ScalarToVec->getOperand(0).getReg();
5558   unsigned DstSize = DstTy.getSizeInBits();
5559 
5560   // Keep track of the last MI we inserted. Later on, we might be able to save
5561   // a copy using it.
5562   MachineInstr *PrevMI = nullptr;
5563   for (unsigned i = 2, e = DstSize / EltSize + 1; i < e; ++i) {
5564     // Note that if we don't do a subregister copy, we can end up making an
5565     // extra register.
5566     PrevMI = &*emitLaneInsert(std::nullopt, DstVec, I.getOperand(i).getReg(),
5567                               i - 1, RB, MIB);
5568     DstVec = PrevMI->getOperand(0).getReg();
5569   }
5570 
5571   // If DstTy's size in bits is less than 128, then emit a subregister copy
5572   // from DstVec to the last register we've defined.
5573   if (DstSize < 128) {
5574     // Force this to be FPR using the destination vector.
5575     const TargetRegisterClass *RC =
5576         getRegClassForTypeOnBank(DstTy, *RBI.getRegBank(DstVec, MRI, TRI));
5577     if (!RC)
5578       return false;
5579     if (RC != &AArch64::FPR32RegClass && RC != &AArch64::FPR64RegClass) {
5580       LLVM_DEBUG(dbgs() << "Unsupported register class!\n");
5581       return false;
5582     }
5583 
5584     unsigned SubReg = 0;
5585     if (!getSubRegForClass(RC, TRI, SubReg))
5586       return false;
5587     if (SubReg != AArch64::ssub && SubReg != AArch64::dsub) {
5588       LLVM_DEBUG(dbgs() << "Unsupported destination size! (" << DstSize
5589                         << "\n");
5590       return false;
5591     }
5592 
5593     Register Reg = MRI.createVirtualRegister(RC);
5594     Register DstReg = I.getOperand(0).getReg();
5595 
5596     MIB.buildInstr(TargetOpcode::COPY, {DstReg}, {}).addReg(DstVec, 0, SubReg);
5597     MachineOperand &RegOp = I.getOperand(1);
5598     RegOp.setReg(Reg);
5599     RBI.constrainGenericRegister(DstReg, *RC, MRI);
5600   } else {
5601     // We don't need a subregister copy. Save a copy by re-using the
5602     // destination register on the final insert.
5603     assert(PrevMI && "PrevMI was null?");
5604     PrevMI->getOperand(0).setReg(I.getOperand(0).getReg());
5605     constrainSelectedInstRegOperands(*PrevMI, TII, TRI, RBI);
5606   }
5607 
5608   I.eraseFromParent();
5609   return true;
5610 }
5611 
5612 bool AArch64InstructionSelector::selectVectorLoadIntrinsic(unsigned Opc,
5613                                                            unsigned NumVecs,
5614                                                            MachineInstr &I) {
5615   assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
5616   assert(Opc && "Expected an opcode?");
5617   assert(NumVecs > 1 && NumVecs < 5 && "Only support 2, 3, or 4 vectors");
5618   auto &MRI = *MIB.getMRI();
5619   LLT Ty = MRI.getType(I.getOperand(0).getReg());
5620   unsigned Size = Ty.getSizeInBits();
5621   assert((Size == 64 || Size == 128) &&
5622          "Destination must be 64 bits or 128 bits?");
5623   unsigned SubReg = Size == 64 ? AArch64::dsub0 : AArch64::qsub0;
5624   auto Ptr = I.getOperand(I.getNumOperands() - 1).getReg();
5625   assert(MRI.getType(Ptr).isPointer() && "Expected a pointer type?");
5626   auto Load = MIB.buildInstr(Opc, {Ty}, {Ptr});
5627   Load.cloneMemRefs(I);
5628   constrainSelectedInstRegOperands(*Load, TII, TRI, RBI);
5629   Register SelectedLoadDst = Load->getOperand(0).getReg();
5630   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
5631     auto Vec = MIB.buildInstr(TargetOpcode::COPY, {I.getOperand(Idx)}, {})
5632                    .addReg(SelectedLoadDst, 0, SubReg + Idx);
5633     // Emit the subreg copies and immediately select them.
5634     // FIXME: We should refactor our copy code into an emitCopy helper and
5635     // clean up uses of this pattern elsewhere in the selector.
5636     selectCopy(*Vec, TII, MRI, TRI, RBI);
5637   }
5638   return true;
5639 }
5640 
5641 bool AArch64InstructionSelector::selectIntrinsicWithSideEffects(
5642     MachineInstr &I, MachineRegisterInfo &MRI) {
5643   // Find the intrinsic ID.
5644   unsigned IntrinID = I.getIntrinsicID();
5645 
5646   const LLT S8 = LLT::scalar(8);
5647   const LLT S16 = LLT::scalar(16);
5648   const LLT S32 = LLT::scalar(32);
5649   const LLT S64 = LLT::scalar(64);
5650   const LLT P0 = LLT::pointer(0, 64);
5651   // Select the instruction.
5652   switch (IntrinID) {
5653   default:
5654     return false;
5655   case Intrinsic::aarch64_ldxp:
5656   case Intrinsic::aarch64_ldaxp: {
5657     auto NewI = MIB.buildInstr(
5658         IntrinID == Intrinsic::aarch64_ldxp ? AArch64::LDXPX : AArch64::LDAXPX,
5659         {I.getOperand(0).getReg(), I.getOperand(1).getReg()},
5660         {I.getOperand(3)});
5661     NewI.cloneMemRefs(I);
5662     constrainSelectedInstRegOperands(*NewI, TII, TRI, RBI);
5663     break;
5664   }
5665   case Intrinsic::trap:
5666     MIB.buildInstr(AArch64::BRK, {}, {}).addImm(1);
5667     break;
5668   case Intrinsic::debugtrap:
5669     MIB.buildInstr(AArch64::BRK, {}, {}).addImm(0xF000);
5670     break;
5671   case Intrinsic::ubsantrap:
5672     MIB.buildInstr(AArch64::BRK, {}, {})
5673         .addImm(I.getOperand(1).getImm() | ('U' << 8));
5674     break;
5675   case Intrinsic::aarch64_neon_ld2: {
5676     LLT Ty = MRI.getType(I.getOperand(0).getReg());
5677     unsigned Opc = 0;
5678     if (Ty == LLT::fixed_vector(8, S8))
5679       Opc = AArch64::LD2Twov8b;
5680     else if (Ty == LLT::fixed_vector(16, S8))
5681       Opc = AArch64::LD2Twov16b;
5682     else if (Ty == LLT::fixed_vector(4, S16))
5683       Opc = AArch64::LD2Twov4h;
5684     else if (Ty == LLT::fixed_vector(8, S16))
5685       Opc = AArch64::LD2Twov8h;
5686     else if (Ty == LLT::fixed_vector(2, S32))
5687       Opc = AArch64::LD2Twov2s;
5688     else if (Ty == LLT::fixed_vector(4, S32))
5689       Opc = AArch64::LD2Twov4s;
5690     else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
5691       Opc = AArch64::LD2Twov2d;
5692     else if (Ty == S64 || Ty == P0)
5693       Opc = AArch64::LD1Twov1d;
5694     else
5695       llvm_unreachable("Unexpected type for ld2!");
5696     selectVectorLoadIntrinsic(Opc, 2, I);
5697     break;
5698   }
5699   case Intrinsic::aarch64_neon_ld4: {
5700     LLT Ty = MRI.getType(I.getOperand(0).getReg());
5701     unsigned Opc = 0;
5702     if (Ty == LLT::fixed_vector(8, S8))
5703       Opc = AArch64::LD4Fourv8b;
5704     else if (Ty == LLT::fixed_vector(16, S8))
5705       Opc = AArch64::LD4Fourv16b;
5706     else if (Ty == LLT::fixed_vector(4, S16))
5707       Opc = AArch64::LD4Fourv4h;
5708     else if (Ty == LLT::fixed_vector(8, S16))
5709       Opc = AArch64::LD4Fourv8h;
5710     else if (Ty == LLT::fixed_vector(2, S32))
5711       Opc = AArch64::LD4Fourv2s;
5712     else if (Ty == LLT::fixed_vector(4, S32))
5713       Opc = AArch64::LD4Fourv4s;
5714     else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
5715       Opc = AArch64::LD4Fourv2d;
5716     else if (Ty == S64 || Ty == P0)
5717       Opc = AArch64::LD1Fourv1d;
5718     else
5719       llvm_unreachable("Unexpected type for ld4!");
5720     selectVectorLoadIntrinsic(Opc, 4, I);
5721     break;
5722   }
5723   case Intrinsic::aarch64_neon_st2: {
5724     Register Src1 = I.getOperand(1).getReg();
5725     Register Src2 = I.getOperand(2).getReg();
5726     Register Ptr = I.getOperand(3).getReg();
5727     LLT Ty = MRI.getType(Src1);
5728     unsigned Opc;
5729     if (Ty == LLT::fixed_vector(8, S8))
5730       Opc = AArch64::ST2Twov8b;
5731     else if (Ty == LLT::fixed_vector(16, S8))
5732       Opc = AArch64::ST2Twov16b;
5733     else if (Ty == LLT::fixed_vector(4, S16))
5734       Opc = AArch64::ST2Twov4h;
5735     else if (Ty == LLT::fixed_vector(8, S16))
5736       Opc = AArch64::ST2Twov8h;
5737     else if (Ty == LLT::fixed_vector(2, S32))
5738       Opc = AArch64::ST2Twov2s;
5739     else if (Ty == LLT::fixed_vector(4, S32))
5740       Opc = AArch64::ST2Twov4s;
5741     else if (Ty == LLT::fixed_vector(2, S64) || Ty == LLT::fixed_vector(2, P0))
5742       Opc = AArch64::ST2Twov2d;
5743     else if (Ty == S64 || Ty == P0)
5744       Opc = AArch64::ST1Twov1d;
5745     else
5746       llvm_unreachable("Unexpected type for st2!");
5747     SmallVector<Register, 2> Regs = {Src1, Src2};
5748     Register Tuple = Ty.getSizeInBits() == 128 ? createQTuple(Regs, MIB)
5749                                                : createDTuple(Regs, MIB);
5750     auto Store = MIB.buildInstr(Opc, {}, {Tuple, Ptr});
5751     Store.cloneMemRefs(I);
5752     constrainSelectedInstRegOperands(*Store, TII, TRI, RBI);
5753     break;
5754   }
5755   case Intrinsic::aarch64_mops_memset_tag: {
5756     // Transform
5757     //    %dst:gpr(p0) = \
5758     //      G_INTRINSIC_W_SIDE_EFFECTS intrinsic(@llvm.aarch64.mops.memset.tag),
5759     //      \ %dst:gpr(p0), %val:gpr(s64), %n:gpr(s64)
5760     // where %dst is updated, into
5761     //    %Rd:GPR64common, %Rn:GPR64) = \
5762     //      MOPSMemorySetTaggingPseudo \
5763     //      %Rd:GPR64common, %Rn:GPR64, %Rm:GPR64
5764     // where Rd and Rn are tied.
5765     // It is expected that %val has been extended to s64 in legalization.
5766     // Note that the order of the size/value operands are swapped.
5767 
5768     Register DstDef = I.getOperand(0).getReg();
5769     // I.getOperand(1) is the intrinsic function
5770     Register DstUse = I.getOperand(2).getReg();
5771     Register ValUse = I.getOperand(3).getReg();
5772     Register SizeUse = I.getOperand(4).getReg();
5773 
5774     // MOPSMemorySetTaggingPseudo has two defs; the intrinsic call has only one.
5775     // Therefore an additional virtual register is requried for the updated size
5776     // operand. This value is not accessible via the semantics of the intrinsic.
5777     Register SizeDef = MRI.createGenericVirtualRegister(LLT::scalar(64));
5778 
5779     auto Memset = MIB.buildInstr(AArch64::MOPSMemorySetTaggingPseudo,
5780                                  {DstDef, SizeDef}, {DstUse, SizeUse, ValUse});
5781     Memset.cloneMemRefs(I);
5782     constrainSelectedInstRegOperands(*Memset, TII, TRI, RBI);
5783     break;
5784   }
5785   }
5786 
5787   I.eraseFromParent();
5788   return true;
5789 }
5790 
5791 bool AArch64InstructionSelector::selectIntrinsic(MachineInstr &I,
5792                                                  MachineRegisterInfo &MRI) {
5793   unsigned IntrinID = I.getIntrinsicID();
5794 
5795   switch (IntrinID) {
5796   default:
5797     break;
5798   case Intrinsic::aarch64_crypto_sha1h: {
5799     Register DstReg = I.getOperand(0).getReg();
5800     Register SrcReg = I.getOperand(2).getReg();
5801 
5802     // FIXME: Should this be an assert?
5803     if (MRI.getType(DstReg).getSizeInBits() != 32 ||
5804         MRI.getType(SrcReg).getSizeInBits() != 32)
5805       return false;
5806 
5807     // The operation has to happen on FPRs. Set up some new FPR registers for
5808     // the source and destination if they are on GPRs.
5809     if (RBI.getRegBank(SrcReg, MRI, TRI)->getID() != AArch64::FPRRegBankID) {
5810       SrcReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
5811       MIB.buildCopy({SrcReg}, {I.getOperand(2)});
5812 
5813       // Make sure the copy ends up getting constrained properly.
5814       RBI.constrainGenericRegister(I.getOperand(2).getReg(),
5815                                    AArch64::GPR32RegClass, MRI);
5816     }
5817 
5818     if (RBI.getRegBank(DstReg, MRI, TRI)->getID() != AArch64::FPRRegBankID)
5819       DstReg = MRI.createVirtualRegister(&AArch64::FPR32RegClass);
5820 
5821     // Actually insert the instruction.
5822     auto SHA1Inst = MIB.buildInstr(AArch64::SHA1Hrr, {DstReg}, {SrcReg});
5823     constrainSelectedInstRegOperands(*SHA1Inst, TII, TRI, RBI);
5824 
5825     // Did we create a new register for the destination?
5826     if (DstReg != I.getOperand(0).getReg()) {
5827       // Yep. Copy the result of the instruction back into the original
5828       // destination.
5829       MIB.buildCopy({I.getOperand(0)}, {DstReg});
5830       RBI.constrainGenericRegister(I.getOperand(0).getReg(),
5831                                    AArch64::GPR32RegClass, MRI);
5832     }
5833 
5834     I.eraseFromParent();
5835     return true;
5836   }
5837   case Intrinsic::ptrauth_sign: {
5838     Register DstReg = I.getOperand(0).getReg();
5839     Register ValReg = I.getOperand(2).getReg();
5840     uint64_t Key = I.getOperand(3).getImm();
5841     Register DiscReg = I.getOperand(4).getReg();
5842     auto DiscVal = getIConstantVRegVal(DiscReg, MRI);
5843     bool IsDiscZero = DiscVal && DiscVal->isNullValue();
5844 
5845     if (Key > AArch64PACKey::LAST)
5846       return false;
5847 
5848     unsigned Opcodes[][4] = {
5849         {AArch64::PACIA, AArch64::PACIB, AArch64::PACDA, AArch64::PACDB},
5850         {AArch64::PACIZA, AArch64::PACIZB, AArch64::PACDZA, AArch64::PACDZB}};
5851     unsigned Opcode = Opcodes[IsDiscZero][Key];
5852 
5853     auto PAC = MIB.buildInstr(Opcode, {DstReg}, {ValReg});
5854 
5855     if (!IsDiscZero) {
5856       PAC.addUse(DiscReg);
5857       RBI.constrainGenericRegister(DiscReg, AArch64::GPR64spRegClass, MRI);
5858     }
5859 
5860     RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI);
5861     I.eraseFromParent();
5862     return true;
5863   }
5864   case Intrinsic::ptrauth_strip: {
5865     Register DstReg = I.getOperand(0).getReg();
5866     Register ValReg = I.getOperand(2).getReg();
5867     uint64_t Key = I.getOperand(3).getImm();
5868 
5869     if (Key > AArch64PACKey::LAST)
5870       return false;
5871     unsigned Opcode = getXPACOpcodeForKey((AArch64PACKey::ID)Key);
5872 
5873     MIB.buildInstr(Opcode, {DstReg}, {ValReg});
5874 
5875     RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI);
5876     RBI.constrainGenericRegister(ValReg, AArch64::GPR64RegClass, MRI);
5877     I.eraseFromParent();
5878     return true;
5879   }
5880   case Intrinsic::frameaddress:
5881   case Intrinsic::returnaddress: {
5882     MachineFunction &MF = *I.getParent()->getParent();
5883     MachineFrameInfo &MFI = MF.getFrameInfo();
5884 
5885     unsigned Depth = I.getOperand(2).getImm();
5886     Register DstReg = I.getOperand(0).getReg();
5887     RBI.constrainGenericRegister(DstReg, AArch64::GPR64RegClass, MRI);
5888 
5889     if (Depth == 0 && IntrinID == Intrinsic::returnaddress) {
5890       if (!MFReturnAddr) {
5891         // Insert the copy from LR/X30 into the entry block, before it can be
5892         // clobbered by anything.
5893         MFI.setReturnAddressIsTaken(true);
5894         MFReturnAddr = getFunctionLiveInPhysReg(
5895             MF, TII, AArch64::LR, AArch64::GPR64RegClass, I.getDebugLoc());
5896       }
5897 
5898       if (STI.hasPAuth()) {
5899         MIB.buildInstr(AArch64::XPACI, {DstReg}, {MFReturnAddr});
5900       } else {
5901         MIB.buildCopy({Register(AArch64::LR)}, {MFReturnAddr});
5902         MIB.buildInstr(AArch64::XPACLRI);
5903         MIB.buildCopy({DstReg}, {Register(AArch64::LR)});
5904       }
5905 
5906       I.eraseFromParent();
5907       return true;
5908     }
5909 
5910     MFI.setFrameAddressIsTaken(true);
5911     Register FrameAddr(AArch64::FP);
5912     while (Depth--) {
5913       Register NextFrame = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
5914       auto Ldr =
5915           MIB.buildInstr(AArch64::LDRXui, {NextFrame}, {FrameAddr}).addImm(0);
5916       constrainSelectedInstRegOperands(*Ldr, TII, TRI, RBI);
5917       FrameAddr = NextFrame;
5918     }
5919 
5920     if (IntrinID == Intrinsic::frameaddress)
5921       MIB.buildCopy({DstReg}, {FrameAddr});
5922     else {
5923       MFI.setReturnAddressIsTaken(true);
5924 
5925       if (STI.hasPAuth()) {
5926         Register TmpReg = MRI.createVirtualRegister(&AArch64::GPR64RegClass);
5927         MIB.buildInstr(AArch64::LDRXui, {TmpReg}, {FrameAddr}).addImm(1);
5928         MIB.buildInstr(AArch64::XPACI, {DstReg}, {TmpReg});
5929       } else {
5930         MIB.buildInstr(AArch64::LDRXui, {Register(AArch64::LR)}, {FrameAddr})
5931             .addImm(1);
5932         MIB.buildInstr(AArch64::XPACLRI);
5933         MIB.buildCopy({DstReg}, {Register(AArch64::LR)});
5934       }
5935     }
5936 
5937     I.eraseFromParent();
5938     return true;
5939   }
5940   case Intrinsic::swift_async_context_addr:
5941     auto Sub = MIB.buildInstr(AArch64::SUBXri, {I.getOperand(0).getReg()},
5942                               {Register(AArch64::FP)})
5943                    .addImm(8)
5944                    .addImm(0);
5945     constrainSelectedInstRegOperands(*Sub, TII, TRI, RBI);
5946 
5947     MF->getFrameInfo().setFrameAddressIsTaken(true);
5948     MF->getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);
5949     I.eraseFromParent();
5950     return true;
5951   }
5952   return false;
5953 }
5954 
5955 InstructionSelector::ComplexRendererFns
5956 AArch64InstructionSelector::selectShiftA_32(const MachineOperand &Root) const {
5957   auto MaybeImmed = getImmedFromMO(Root);
5958   if (MaybeImmed == std::nullopt || *MaybeImmed > 31)
5959     return std::nullopt;
5960   uint64_t Enc = (32 - *MaybeImmed) & 0x1f;
5961   return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
5962 }
5963 
5964 InstructionSelector::ComplexRendererFns
5965 AArch64InstructionSelector::selectShiftB_32(const MachineOperand &Root) const {
5966   auto MaybeImmed = getImmedFromMO(Root);
5967   if (MaybeImmed == std::nullopt || *MaybeImmed > 31)
5968     return std::nullopt;
5969   uint64_t Enc = 31 - *MaybeImmed;
5970   return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
5971 }
5972 
5973 InstructionSelector::ComplexRendererFns
5974 AArch64InstructionSelector::selectShiftA_64(const MachineOperand &Root) const {
5975   auto MaybeImmed = getImmedFromMO(Root);
5976   if (MaybeImmed == std::nullopt || *MaybeImmed > 63)
5977     return std::nullopt;
5978   uint64_t Enc = (64 - *MaybeImmed) & 0x3f;
5979   return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
5980 }
5981 
5982 InstructionSelector::ComplexRendererFns
5983 AArch64InstructionSelector::selectShiftB_64(const MachineOperand &Root) const {
5984   auto MaybeImmed = getImmedFromMO(Root);
5985   if (MaybeImmed == std::nullopt || *MaybeImmed > 63)
5986     return std::nullopt;
5987   uint64_t Enc = 63 - *MaybeImmed;
5988   return {{[=](MachineInstrBuilder &MIB) { MIB.addImm(Enc); }}};
5989 }
5990 
5991 /// Helper to select an immediate value that can be represented as a 12-bit
5992 /// value shifted left by either 0 or 12. If it is possible to do so, return
5993 /// the immediate and shift value. If not, return std::nullopt.
5994 ///
5995 /// Used by selectArithImmed and selectNegArithImmed.
5996 InstructionSelector::ComplexRendererFns
5997 AArch64InstructionSelector::select12BitValueWithLeftShift(
5998     uint64_t Immed) const {
5999   unsigned ShiftAmt;
6000   if (Immed >> 12 == 0) {
6001     ShiftAmt = 0;
6002   } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
6003     ShiftAmt = 12;
6004     Immed = Immed >> 12;
6005   } else
6006     return std::nullopt;
6007 
6008   unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
6009   return {{
6010       [=](MachineInstrBuilder &MIB) { MIB.addImm(Immed); },
6011       [=](MachineInstrBuilder &MIB) { MIB.addImm(ShVal); },
6012   }};
6013 }
6014 
6015 /// SelectArithImmed - Select an immediate value that can be represented as
6016 /// a 12-bit value shifted left by either 0 or 12.  If so, return true with
6017 /// Val set to the 12-bit value and Shift set to the shifter operand.
6018 InstructionSelector::ComplexRendererFns
6019 AArch64InstructionSelector::selectArithImmed(MachineOperand &Root) const {
6020   // This function is called from the addsub_shifted_imm ComplexPattern,
6021   // which lists [imm] as the list of opcode it's interested in, however
6022   // we still need to check whether the operand is actually an immediate
6023   // here because the ComplexPattern opcode list is only used in
6024   // root-level opcode matching.
6025   auto MaybeImmed = getImmedFromMO(Root);
6026   if (MaybeImmed == std::nullopt)
6027     return std::nullopt;
6028   return select12BitValueWithLeftShift(*MaybeImmed);
6029 }
6030 
6031 /// SelectNegArithImmed - As above, but negates the value before trying to
6032 /// select it.
6033 InstructionSelector::ComplexRendererFns
6034 AArch64InstructionSelector::selectNegArithImmed(MachineOperand &Root) const {
6035   // We need a register here, because we need to know if we have a 64 or 32
6036   // bit immediate.
6037   if (!Root.isReg())
6038     return std::nullopt;
6039   auto MaybeImmed = getImmedFromMO(Root);
6040   if (MaybeImmed == std::nullopt)
6041     return std::nullopt;
6042   uint64_t Immed = *MaybeImmed;
6043 
6044   // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
6045   // have the opposite effect on the C flag, so this pattern mustn't match under
6046   // those circumstances.
6047   if (Immed == 0)
6048     return std::nullopt;
6049 
6050   // Check if we're dealing with a 32-bit type on the root or a 64-bit type on
6051   // the root.
6052   MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
6053   if (MRI.getType(Root.getReg()).getSizeInBits() == 32)
6054     Immed = ~((uint32_t)Immed) + 1;
6055   else
6056     Immed = ~Immed + 1ULL;
6057 
6058   if (Immed & 0xFFFFFFFFFF000000ULL)
6059     return std::nullopt;
6060 
6061   Immed &= 0xFFFFFFULL;
6062   return select12BitValueWithLeftShift(Immed);
6063 }
6064 
6065 /// Return true if it is worth folding MI into an extended register. That is,
6066 /// if it's safe to pull it into the addressing mode of a load or store as a
6067 /// shift.
6068 bool AArch64InstructionSelector::isWorthFoldingIntoExtendedReg(
6069     MachineInstr &MI, const MachineRegisterInfo &MRI) const {
6070   // Always fold if there is one use, or if we're optimizing for size.
6071   Register DefReg = MI.getOperand(0).getReg();
6072   if (MRI.hasOneNonDBGUse(DefReg) ||
6073       MI.getParent()->getParent()->getFunction().hasOptSize())
6074     return true;
6075 
6076   // It's better to avoid folding and recomputing shifts when we don't have a
6077   // fastpath.
6078   if (!STI.hasLSLFast())
6079     return false;
6080 
6081   // We have a fastpath, so folding a shift in and potentially computing it
6082   // many times may be beneficial. Check if this is only used in memory ops.
6083   // If it is, then we should fold.
6084   return all_of(MRI.use_nodbg_instructions(DefReg),
6085                 [](MachineInstr &Use) { return Use.mayLoadOrStore(); });
6086 }
6087 
6088 static bool isSignExtendShiftType(AArch64_AM::ShiftExtendType Type) {
6089   switch (Type) {
6090   case AArch64_AM::SXTB:
6091   case AArch64_AM::SXTH:
6092   case AArch64_AM::SXTW:
6093     return true;
6094   default:
6095     return false;
6096   }
6097 }
6098 
6099 InstructionSelector::ComplexRendererFns
6100 AArch64InstructionSelector::selectExtendedSHL(
6101     MachineOperand &Root, MachineOperand &Base, MachineOperand &Offset,
6102     unsigned SizeInBytes, bool WantsExt) const {
6103   assert(Base.isReg() && "Expected base to be a register operand");
6104   assert(Offset.isReg() && "Expected offset to be a register operand");
6105 
6106   MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
6107   MachineInstr *OffsetInst = MRI.getVRegDef(Offset.getReg());
6108 
6109   unsigned OffsetOpc = OffsetInst->getOpcode();
6110   bool LookedThroughZExt = false;
6111   if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL) {
6112     // Try to look through a ZEXT.
6113     if (OffsetOpc != TargetOpcode::G_ZEXT || !WantsExt)
6114       return std::nullopt;
6115 
6116     OffsetInst = MRI.getVRegDef(OffsetInst->getOperand(1).getReg());
6117     OffsetOpc = OffsetInst->getOpcode();
6118     LookedThroughZExt = true;
6119 
6120     if (OffsetOpc != TargetOpcode::G_SHL && OffsetOpc != TargetOpcode::G_MUL)
6121       return std::nullopt;
6122   }
6123   // Make sure that the memory op is a valid size.
6124   int64_t LegalShiftVal = Log2_32(SizeInBytes);
6125   if (LegalShiftVal == 0)
6126     return std::nullopt;
6127   if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
6128     return std::nullopt;
6129 
6130   // Now, try to find the specific G_CONSTANT. Start by assuming that the
6131   // register we will offset is the LHS, and the register containing the
6132   // constant is the RHS.
6133   Register OffsetReg = OffsetInst->getOperand(1).getReg();
6134   Register ConstantReg = OffsetInst->getOperand(2).getReg();
6135   auto ValAndVReg = getIConstantVRegValWithLookThrough(ConstantReg, MRI);
6136   if (!ValAndVReg) {
6137     // We didn't get a constant on the RHS. If the opcode is a shift, then
6138     // we're done.
6139     if (OffsetOpc == TargetOpcode::G_SHL)
6140       return std::nullopt;
6141 
6142     // If we have a G_MUL, we can use either register. Try looking at the RHS.
6143     std::swap(OffsetReg, ConstantReg);
6144     ValAndVReg = getIConstantVRegValWithLookThrough(ConstantReg, MRI);
6145     if (!ValAndVReg)
6146       return std::nullopt;
6147   }
6148 
6149   // The value must fit into 3 bits, and must be positive. Make sure that is
6150   // true.
6151   int64_t ImmVal = ValAndVReg->Value.getSExtValue();
6152 
6153   // Since we're going to pull this into a shift, the constant value must be
6154   // a power of 2. If we got a multiply, then we need to check this.
6155   if (OffsetOpc == TargetOpcode::G_MUL) {
6156     if (!isPowerOf2_32(ImmVal))
6157       return std::nullopt;
6158 
6159     // Got a power of 2. So, the amount we'll shift is the log base-2 of that.
6160     ImmVal = Log2_32(ImmVal);
6161   }
6162 
6163   if ((ImmVal & 0x7) != ImmVal)
6164     return std::nullopt;
6165 
6166   // We are only allowed to shift by LegalShiftVal. This shift value is built
6167   // into the instruction, so we can't just use whatever we want.
6168   if (ImmVal != LegalShiftVal)
6169     return std::nullopt;
6170 
6171   unsigned SignExtend = 0;
6172   if (WantsExt) {
6173     // Check if the offset is defined by an extend, unless we looked through a
6174     // G_ZEXT earlier.
6175     if (!LookedThroughZExt) {
6176       MachineInstr *ExtInst = getDefIgnoringCopies(OffsetReg, MRI);
6177       auto Ext = getExtendTypeForInst(*ExtInst, MRI, true);
6178       if (Ext == AArch64_AM::InvalidShiftExtend)
6179         return std::nullopt;
6180 
6181       SignExtend = isSignExtendShiftType(Ext) ? 1 : 0;
6182       // We only support SXTW for signed extension here.
6183       if (SignExtend && Ext != AArch64_AM::SXTW)
6184         return std::nullopt;
6185       OffsetReg = ExtInst->getOperand(1).getReg();
6186     }
6187 
6188     // Need a 32-bit wide register here.
6189     MachineIRBuilder MIB(*MRI.getVRegDef(Root.getReg()));
6190     OffsetReg = moveScalarRegClass(OffsetReg, AArch64::GPR32RegClass, MIB);
6191   }
6192 
6193   // We can use the LHS of the GEP as the base, and the LHS of the shift as an
6194   // offset. Signify that we are shifting by setting the shift flag to 1.
6195   return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(Base.getReg()); },
6196            [=](MachineInstrBuilder &MIB) { MIB.addUse(OffsetReg); },
6197            [=](MachineInstrBuilder &MIB) {
6198              // Need to add both immediates here to make sure that they are both
6199              // added to the instruction.
6200              MIB.addImm(SignExtend);
6201              MIB.addImm(1);
6202            }}};
6203 }
6204 
6205 /// This is used for computing addresses like this:
6206 ///
6207 /// ldr x1, [x2, x3, lsl #3]
6208 ///
6209 /// Where x2 is the base register, and x3 is an offset register. The shift-left
6210 /// is a constant value specific to this load instruction. That is, we'll never
6211 /// see anything other than a 3 here (which corresponds to the size of the
6212 /// element being loaded.)
6213 InstructionSelector::ComplexRendererFns
6214 AArch64InstructionSelector::selectAddrModeShiftedExtendXReg(
6215     MachineOperand &Root, unsigned SizeInBytes) const {
6216   if (!Root.isReg())
6217     return std::nullopt;
6218   MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
6219 
6220   // We want to find something like this:
6221   //
6222   // val = G_CONSTANT LegalShiftVal
6223   // shift = G_SHL off_reg val
6224   // ptr = G_PTR_ADD base_reg shift
6225   // x = G_LOAD ptr
6226   //
6227   // And fold it into this addressing mode:
6228   //
6229   // ldr x, [base_reg, off_reg, lsl #LegalShiftVal]
6230 
6231   // Check if we can find the G_PTR_ADD.
6232   MachineInstr *PtrAdd =
6233       getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
6234   if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI))
6235     return std::nullopt;
6236 
6237   // Now, try to match an opcode which will match our specific offset.
6238   // We want a G_SHL or a G_MUL.
6239   MachineInstr *OffsetInst =
6240       getDefIgnoringCopies(PtrAdd->getOperand(2).getReg(), MRI);
6241   return selectExtendedSHL(Root, PtrAdd->getOperand(1),
6242                            OffsetInst->getOperand(0), SizeInBytes,
6243                            /*WantsExt=*/false);
6244 }
6245 
6246 /// This is used for computing addresses like this:
6247 ///
6248 /// ldr x1, [x2, x3]
6249 ///
6250 /// Where x2 is the base register, and x3 is an offset register.
6251 ///
6252 /// When possible (or profitable) to fold a G_PTR_ADD into the address
6253 /// calculation, this will do so. Otherwise, it will return std::nullopt.
6254 InstructionSelector::ComplexRendererFns
6255 AArch64InstructionSelector::selectAddrModeRegisterOffset(
6256     MachineOperand &Root) const {
6257   MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
6258 
6259   // We need a GEP.
6260   MachineInstr *Gep = MRI.getVRegDef(Root.getReg());
6261   if (Gep->getOpcode() != TargetOpcode::G_PTR_ADD)
6262     return std::nullopt;
6263 
6264   // If this is used more than once, let's not bother folding.
6265   // TODO: Check if they are memory ops. If they are, then we can still fold
6266   // without having to recompute anything.
6267   if (!MRI.hasOneNonDBGUse(Gep->getOperand(0).getReg()))
6268     return std::nullopt;
6269 
6270   // Base is the GEP's LHS, offset is its RHS.
6271   return {{[=](MachineInstrBuilder &MIB) {
6272              MIB.addUse(Gep->getOperand(1).getReg());
6273            },
6274            [=](MachineInstrBuilder &MIB) {
6275              MIB.addUse(Gep->getOperand(2).getReg());
6276            },
6277            [=](MachineInstrBuilder &MIB) {
6278              // Need to add both immediates here to make sure that they are both
6279              // added to the instruction.
6280              MIB.addImm(0);
6281              MIB.addImm(0);
6282            }}};
6283 }
6284 
6285 /// This is intended to be equivalent to selectAddrModeXRO in
6286 /// AArch64ISelDAGtoDAG. It's used for selecting X register offset loads.
6287 InstructionSelector::ComplexRendererFns
6288 AArch64InstructionSelector::selectAddrModeXRO(MachineOperand &Root,
6289                                               unsigned SizeInBytes) const {
6290   MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
6291   if (!Root.isReg())
6292     return std::nullopt;
6293   MachineInstr *PtrAdd =
6294       getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
6295   if (!PtrAdd)
6296     return std::nullopt;
6297 
6298   // Check for an immediates which cannot be encoded in the [base + imm]
6299   // addressing mode, and can't be encoded in an add/sub. If this happens, we'll
6300   // end up with code like:
6301   //
6302   // mov x0, wide
6303   // add x1 base, x0
6304   // ldr x2, [x1, x0]
6305   //
6306   // In this situation, we can use the [base, xreg] addressing mode to save an
6307   // add/sub:
6308   //
6309   // mov x0, wide
6310   // ldr x2, [base, x0]
6311   auto ValAndVReg =
6312       getIConstantVRegValWithLookThrough(PtrAdd->getOperand(2).getReg(), MRI);
6313   if (ValAndVReg) {
6314     unsigned Scale = Log2_32(SizeInBytes);
6315     int64_t ImmOff = ValAndVReg->Value.getSExtValue();
6316 
6317     // Skip immediates that can be selected in the load/store addresing
6318     // mode.
6319     if (ImmOff % SizeInBytes == 0 && ImmOff >= 0 &&
6320         ImmOff < (0x1000 << Scale))
6321       return std::nullopt;
6322 
6323     // Helper lambda to decide whether or not it is preferable to emit an add.
6324     auto isPreferredADD = [](int64_t ImmOff) {
6325       // Constants in [0x0, 0xfff] can be encoded in an add.
6326       if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
6327         return true;
6328 
6329       // Can it be encoded in an add lsl #12?
6330       if ((ImmOff & 0xffffffffff000fffLL) != 0x0LL)
6331         return false;
6332 
6333       // It can be encoded in an add lsl #12, but we may not want to. If it is
6334       // possible to select this as a single movz, then prefer that. A single
6335       // movz is faster than an add with a shift.
6336       return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
6337              (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
6338     };
6339 
6340     // If the immediate can be encoded in a single add/sub, then bail out.
6341     if (isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
6342       return std::nullopt;
6343   }
6344 
6345   // Try to fold shifts into the addressing mode.
6346   auto AddrModeFns = selectAddrModeShiftedExtendXReg(Root, SizeInBytes);
6347   if (AddrModeFns)
6348     return AddrModeFns;
6349 
6350   // If that doesn't work, see if it's possible to fold in registers from
6351   // a GEP.
6352   return selectAddrModeRegisterOffset(Root);
6353 }
6354 
6355 /// This is used for computing addresses like this:
6356 ///
6357 /// ldr x0, [xBase, wOffset, sxtw #LegalShiftVal]
6358 ///
6359 /// Where we have a 64-bit base register, a 32-bit offset register, and an
6360 /// extend (which may or may not be signed).
6361 InstructionSelector::ComplexRendererFns
6362 AArch64InstructionSelector::selectAddrModeWRO(MachineOperand &Root,
6363                                               unsigned SizeInBytes) const {
6364   MachineRegisterInfo &MRI = Root.getParent()->getMF()->getRegInfo();
6365 
6366   MachineInstr *PtrAdd =
6367       getOpcodeDef(TargetOpcode::G_PTR_ADD, Root.getReg(), MRI);
6368   if (!PtrAdd || !isWorthFoldingIntoExtendedReg(*PtrAdd, MRI))
6369     return std::nullopt;
6370 
6371   MachineOperand &LHS = PtrAdd->getOperand(1);
6372   MachineOperand &RHS = PtrAdd->getOperand(2);
6373   MachineInstr *OffsetInst = getDefIgnoringCopies(RHS.getReg(), MRI);
6374 
6375   // The first case is the same as selectAddrModeXRO, except we need an extend.
6376   // In this case, we try to find a shift and extend, and fold them into the
6377   // addressing mode.
6378   //
6379   // E.g.
6380   //
6381   // off_reg = G_Z/S/ANYEXT ext_reg
6382   // val = G_CONSTANT LegalShiftVal
6383   // shift = G_SHL off_reg val
6384   // ptr = G_PTR_ADD base_reg shift
6385   // x = G_LOAD ptr
6386   //
6387   // In this case we can get a load like this:
6388   //
6389   // ldr x0, [base_reg, ext_reg, sxtw #LegalShiftVal]
6390   auto ExtendedShl = selectExtendedSHL(Root, LHS, OffsetInst->getOperand(0),
6391                                        SizeInBytes, /*WantsExt=*/true);
6392   if (ExtendedShl)
6393     return ExtendedShl;
6394 
6395   // There was no shift. We can try and fold a G_Z/S/ANYEXT in alone though.
6396   //
6397   // e.g.
6398   // ldr something, [base_reg, ext_reg, sxtw]
6399   if (!isWorthFoldingIntoExtendedReg(*OffsetInst, MRI))
6400     return std::nullopt;
6401 
6402   // Check if this is an extend. We'll get an extend type if it is.
6403   AArch64_AM::ShiftExtendType Ext =
6404       getExtendTypeForInst(*OffsetInst, MRI, /*IsLoadStore=*/true);
6405   if (Ext == AArch64_AM::InvalidShiftExtend)
6406     return std::nullopt;
6407 
6408   // Need a 32-bit wide register.
6409   MachineIRBuilder MIB(*PtrAdd);
6410   Register ExtReg = moveScalarRegClass(OffsetInst->getOperand(1).getReg(),
6411                                        AArch64::GPR32RegClass, MIB);
6412   unsigned SignExtend = Ext == AArch64_AM::SXTW;
6413 
6414   // Base is LHS, offset is ExtReg.
6415   return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(LHS.getReg()); },
6416            [=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
6417            [=](MachineInstrBuilder &MIB) {
6418              MIB.addImm(SignExtend);
6419              MIB.addImm(0);
6420            }}};
6421 }
6422 
6423 /// Select a "register plus unscaled signed 9-bit immediate" address.  This
6424 /// should only match when there is an offset that is not valid for a scaled
6425 /// immediate addressing mode.  The "Size" argument is the size in bytes of the
6426 /// memory reference, which is needed here to know what is valid for a scaled
6427 /// immediate.
6428 InstructionSelector::ComplexRendererFns
6429 AArch64InstructionSelector::selectAddrModeUnscaled(MachineOperand &Root,
6430                                                    unsigned Size) const {
6431   MachineRegisterInfo &MRI =
6432       Root.getParent()->getParent()->getParent()->getRegInfo();
6433 
6434   if (!Root.isReg())
6435     return std::nullopt;
6436 
6437   if (!isBaseWithConstantOffset(Root, MRI))
6438     return std::nullopt;
6439 
6440   MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
6441 
6442   MachineOperand &OffImm = RootDef->getOperand(2);
6443   if (!OffImm.isReg())
6444     return std::nullopt;
6445   MachineInstr *RHS = MRI.getVRegDef(OffImm.getReg());
6446   if (RHS->getOpcode() != TargetOpcode::G_CONSTANT)
6447     return std::nullopt;
6448   int64_t RHSC;
6449   MachineOperand &RHSOp1 = RHS->getOperand(1);
6450   if (!RHSOp1.isCImm() || RHSOp1.getCImm()->getBitWidth() > 64)
6451     return std::nullopt;
6452   RHSC = RHSOp1.getCImm()->getSExtValue();
6453 
6454   // If the offset is valid as a scaled immediate, don't match here.
6455   if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Log2_32(Size)))
6456     return std::nullopt;
6457   if (RHSC >= -256 && RHSC < 256) {
6458     MachineOperand &Base = RootDef->getOperand(1);
6459     return {{
6460         [=](MachineInstrBuilder &MIB) { MIB.add(Base); },
6461         [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC); },
6462     }};
6463   }
6464   return std::nullopt;
6465 }
6466 
6467 InstructionSelector::ComplexRendererFns
6468 AArch64InstructionSelector::tryFoldAddLowIntoImm(MachineInstr &RootDef,
6469                                                  unsigned Size,
6470                                                  MachineRegisterInfo &MRI) const {
6471   if (RootDef.getOpcode() != AArch64::G_ADD_LOW)
6472     return std::nullopt;
6473   MachineInstr &Adrp = *MRI.getVRegDef(RootDef.getOperand(1).getReg());
6474   if (Adrp.getOpcode() != AArch64::ADRP)
6475     return std::nullopt;
6476 
6477   // TODO: add heuristics like isWorthFoldingADDlow() from SelectionDAG.
6478   auto Offset = Adrp.getOperand(1).getOffset();
6479   if (Offset % Size != 0)
6480     return std::nullopt;
6481 
6482   auto GV = Adrp.getOperand(1).getGlobal();
6483   if (GV->isThreadLocal())
6484     return std::nullopt;
6485 
6486   auto &MF = *RootDef.getParent()->getParent();
6487   if (GV->getPointerAlignment(MF.getDataLayout()) < Size)
6488     return std::nullopt;
6489 
6490   unsigned OpFlags = STI.ClassifyGlobalReference(GV, MF.getTarget());
6491   MachineIRBuilder MIRBuilder(RootDef);
6492   Register AdrpReg = Adrp.getOperand(0).getReg();
6493   return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(AdrpReg); },
6494            [=](MachineInstrBuilder &MIB) {
6495              MIB.addGlobalAddress(GV, Offset,
6496                                   OpFlags | AArch64II::MO_PAGEOFF |
6497                                       AArch64II::MO_NC);
6498            }}};
6499 }
6500 
6501 /// Select a "register plus scaled unsigned 12-bit immediate" address.  The
6502 /// "Size" argument is the size in bytes of the memory reference, which
6503 /// determines the scale.
6504 InstructionSelector::ComplexRendererFns
6505 AArch64InstructionSelector::selectAddrModeIndexed(MachineOperand &Root,
6506                                                   unsigned Size) const {
6507   MachineFunction &MF = *Root.getParent()->getParent()->getParent();
6508   MachineRegisterInfo &MRI = MF.getRegInfo();
6509 
6510   if (!Root.isReg())
6511     return std::nullopt;
6512 
6513   MachineInstr *RootDef = MRI.getVRegDef(Root.getReg());
6514   if (RootDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
6515     return {{
6516         [=](MachineInstrBuilder &MIB) { MIB.add(RootDef->getOperand(1)); },
6517         [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
6518     }};
6519   }
6520 
6521   CodeModel::Model CM = MF.getTarget().getCodeModel();
6522   // Check if we can fold in the ADD of small code model ADRP + ADD address.
6523   if (CM == CodeModel::Small) {
6524     auto OpFns = tryFoldAddLowIntoImm(*RootDef, Size, MRI);
6525     if (OpFns)
6526       return OpFns;
6527   }
6528 
6529   if (isBaseWithConstantOffset(Root, MRI)) {
6530     MachineOperand &LHS = RootDef->getOperand(1);
6531     MachineOperand &RHS = RootDef->getOperand(2);
6532     MachineInstr *LHSDef = MRI.getVRegDef(LHS.getReg());
6533     MachineInstr *RHSDef = MRI.getVRegDef(RHS.getReg());
6534 
6535     int64_t RHSC = (int64_t)RHSDef->getOperand(1).getCImm()->getZExtValue();
6536     unsigned Scale = Log2_32(Size);
6537     if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
6538       if (LHSDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
6539         return {{
6540             [=](MachineInstrBuilder &MIB) { MIB.add(LHSDef->getOperand(1)); },
6541             [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
6542         }};
6543 
6544       return {{
6545           [=](MachineInstrBuilder &MIB) { MIB.add(LHS); },
6546           [=](MachineInstrBuilder &MIB) { MIB.addImm(RHSC >> Scale); },
6547       }};
6548     }
6549   }
6550 
6551   // Before falling back to our general case, check if the unscaled
6552   // instructions can handle this. If so, that's preferable.
6553   if (selectAddrModeUnscaled(Root, Size))
6554     return std::nullopt;
6555 
6556   return {{
6557       [=](MachineInstrBuilder &MIB) { MIB.add(Root); },
6558       [=](MachineInstrBuilder &MIB) { MIB.addImm(0); },
6559   }};
6560 }
6561 
6562 /// Given a shift instruction, return the correct shift type for that
6563 /// instruction.
6564 static AArch64_AM::ShiftExtendType getShiftTypeForInst(MachineInstr &MI) {
6565   switch (MI.getOpcode()) {
6566   default:
6567     return AArch64_AM::InvalidShiftExtend;
6568   case TargetOpcode::G_SHL:
6569     return AArch64_AM::LSL;
6570   case TargetOpcode::G_LSHR:
6571     return AArch64_AM::LSR;
6572   case TargetOpcode::G_ASHR:
6573     return AArch64_AM::ASR;
6574   case TargetOpcode::G_ROTR:
6575     return AArch64_AM::ROR;
6576   }
6577 }
6578 
6579 /// Select a "shifted register" operand. If the value is not shifted, set the
6580 /// shift operand to a default value of "lsl 0".
6581 InstructionSelector::ComplexRendererFns
6582 AArch64InstructionSelector::selectShiftedRegister(MachineOperand &Root,
6583                                                   bool AllowROR) const {
6584   if (!Root.isReg())
6585     return std::nullopt;
6586   MachineRegisterInfo &MRI =
6587       Root.getParent()->getParent()->getParent()->getRegInfo();
6588 
6589   // Check if the operand is defined by an instruction which corresponds to
6590   // a ShiftExtendType. E.g. a G_SHL, G_LSHR, etc.
6591   MachineInstr *ShiftInst = MRI.getVRegDef(Root.getReg());
6592   AArch64_AM::ShiftExtendType ShType = getShiftTypeForInst(*ShiftInst);
6593   if (ShType == AArch64_AM::InvalidShiftExtend)
6594     return std::nullopt;
6595   if (ShType == AArch64_AM::ROR && !AllowROR)
6596     return std::nullopt;
6597   if (!isWorthFoldingIntoExtendedReg(*ShiftInst, MRI))
6598     return std::nullopt;
6599 
6600   // Need an immediate on the RHS.
6601   MachineOperand &ShiftRHS = ShiftInst->getOperand(2);
6602   auto Immed = getImmedFromMO(ShiftRHS);
6603   if (!Immed)
6604     return std::nullopt;
6605 
6606   // We have something that we can fold. Fold in the shift's LHS and RHS into
6607   // the instruction.
6608   MachineOperand &ShiftLHS = ShiftInst->getOperand(1);
6609   Register ShiftReg = ShiftLHS.getReg();
6610 
6611   unsigned NumBits = MRI.getType(ShiftReg).getSizeInBits();
6612   unsigned Val = *Immed & (NumBits - 1);
6613   unsigned ShiftVal = AArch64_AM::getShifterImm(ShType, Val);
6614 
6615   return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ShiftReg); },
6616            [=](MachineInstrBuilder &MIB) { MIB.addImm(ShiftVal); }}};
6617 }
6618 
6619 AArch64_AM::ShiftExtendType AArch64InstructionSelector::getExtendTypeForInst(
6620     MachineInstr &MI, MachineRegisterInfo &MRI, bool IsLoadStore) const {
6621   unsigned Opc = MI.getOpcode();
6622 
6623   // Handle explicit extend instructions first.
6624   if (Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG) {
6625     unsigned Size;
6626     if (Opc == TargetOpcode::G_SEXT)
6627       Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
6628     else
6629       Size = MI.getOperand(2).getImm();
6630     assert(Size != 64 && "Extend from 64 bits?");
6631     switch (Size) {
6632     case 8:
6633       return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::SXTB;
6634     case 16:
6635       return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::SXTH;
6636     case 32:
6637       return AArch64_AM::SXTW;
6638     default:
6639       return AArch64_AM::InvalidShiftExtend;
6640     }
6641   }
6642 
6643   if (Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_ANYEXT) {
6644     unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
6645     assert(Size != 64 && "Extend from 64 bits?");
6646     switch (Size) {
6647     case 8:
6648       return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::UXTB;
6649     case 16:
6650       return IsLoadStore ? AArch64_AM::InvalidShiftExtend : AArch64_AM::UXTH;
6651     case 32:
6652       return AArch64_AM::UXTW;
6653     default:
6654       return AArch64_AM::InvalidShiftExtend;
6655     }
6656   }
6657 
6658   // Don't have an explicit extend. Try to handle a G_AND with a constant mask
6659   // on the RHS.
6660   if (Opc != TargetOpcode::G_AND)
6661     return AArch64_AM::InvalidShiftExtend;
6662 
6663   std::optional<uint64_t> MaybeAndMask = getImmedFromMO(MI.getOperand(2));
6664   if (!MaybeAndMask)
6665     return AArch64_AM::InvalidShiftExtend;
6666   uint64_t AndMask = *MaybeAndMask;
6667   switch (AndMask) {
6668   default:
6669     return AArch64_AM::InvalidShiftExtend;
6670   case 0xFF:
6671     return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
6672   case 0xFFFF:
6673     return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
6674   case 0xFFFFFFFF:
6675     return AArch64_AM::UXTW;
6676   }
6677 }
6678 
6679 Register AArch64InstructionSelector::moveScalarRegClass(
6680     Register Reg, const TargetRegisterClass &RC, MachineIRBuilder &MIB) const {
6681   MachineRegisterInfo &MRI = *MIB.getMRI();
6682   auto Ty = MRI.getType(Reg);
6683   assert(!Ty.isVector() && "Expected scalars only!");
6684   if (Ty.getSizeInBits() == TRI.getRegSizeInBits(RC))
6685     return Reg;
6686 
6687   // Create a copy and immediately select it.
6688   // FIXME: We should have an emitCopy function?
6689   auto Copy = MIB.buildCopy({&RC}, {Reg});
6690   selectCopy(*Copy, TII, MRI, TRI, RBI);
6691   return Copy.getReg(0);
6692 }
6693 
6694 /// Select an "extended register" operand. This operand folds in an extend
6695 /// followed by an optional left shift.
6696 InstructionSelector::ComplexRendererFns
6697 AArch64InstructionSelector::selectArithExtendedRegister(
6698     MachineOperand &Root) const {
6699   if (!Root.isReg())
6700     return std::nullopt;
6701   MachineRegisterInfo &MRI =
6702       Root.getParent()->getParent()->getParent()->getRegInfo();
6703 
6704   uint64_t ShiftVal = 0;
6705   Register ExtReg;
6706   AArch64_AM::ShiftExtendType Ext;
6707   MachineInstr *RootDef = getDefIgnoringCopies(Root.getReg(), MRI);
6708   if (!RootDef)
6709     return std::nullopt;
6710 
6711   if (!isWorthFoldingIntoExtendedReg(*RootDef, MRI))
6712     return std::nullopt;
6713 
6714   // Check if we can fold a shift and an extend.
6715   if (RootDef->getOpcode() == TargetOpcode::G_SHL) {
6716     // Look for a constant on the RHS of the shift.
6717     MachineOperand &RHS = RootDef->getOperand(2);
6718     std::optional<uint64_t> MaybeShiftVal = getImmedFromMO(RHS);
6719     if (!MaybeShiftVal)
6720       return std::nullopt;
6721     ShiftVal = *MaybeShiftVal;
6722     if (ShiftVal > 4)
6723       return std::nullopt;
6724     // Look for a valid extend instruction on the LHS of the shift.
6725     MachineOperand &LHS = RootDef->getOperand(1);
6726     MachineInstr *ExtDef = getDefIgnoringCopies(LHS.getReg(), MRI);
6727     if (!ExtDef)
6728       return std::nullopt;
6729     Ext = getExtendTypeForInst(*ExtDef, MRI);
6730     if (Ext == AArch64_AM::InvalidShiftExtend)
6731       return std::nullopt;
6732     ExtReg = ExtDef->getOperand(1).getReg();
6733   } else {
6734     // Didn't get a shift. Try just folding an extend.
6735     Ext = getExtendTypeForInst(*RootDef, MRI);
6736     if (Ext == AArch64_AM::InvalidShiftExtend)
6737       return std::nullopt;
6738     ExtReg = RootDef->getOperand(1).getReg();
6739 
6740     // If we have a 32 bit instruction which zeroes out the high half of a
6741     // register, we get an implicit zero extend for free. Check if we have one.
6742     // FIXME: We actually emit the extend right now even though we don't have
6743     // to.
6744     if (Ext == AArch64_AM::UXTW && MRI.getType(ExtReg).getSizeInBits() == 32) {
6745       MachineInstr *ExtInst = MRI.getVRegDef(ExtReg);
6746       if (isDef32(*ExtInst))
6747         return std::nullopt;
6748     }
6749   }
6750 
6751   // We require a GPR32 here. Narrow the ExtReg if needed using a subregister
6752   // copy.
6753   MachineIRBuilder MIB(*RootDef);
6754   ExtReg = moveScalarRegClass(ExtReg, AArch64::GPR32RegClass, MIB);
6755 
6756   return {{[=](MachineInstrBuilder &MIB) { MIB.addUse(ExtReg); },
6757            [=](MachineInstrBuilder &MIB) {
6758              MIB.addImm(getArithExtendImm(Ext, ShiftVal));
6759            }}};
6760 }
6761 
6762 void AArch64InstructionSelector::renderTruncImm(MachineInstrBuilder &MIB,
6763                                                 const MachineInstr &MI,
6764                                                 int OpIdx) const {
6765   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
6766   assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
6767          "Expected G_CONSTANT");
6768   std::optional<int64_t> CstVal =
6769       getIConstantVRegSExtVal(MI.getOperand(0).getReg(), MRI);
6770   assert(CstVal && "Expected constant value");
6771   MIB.addImm(*CstVal);
6772 }
6773 
6774 void AArch64InstructionSelector::renderLogicalImm32(
6775   MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
6776   assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
6777          "Expected G_CONSTANT");
6778   uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
6779   uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 32);
6780   MIB.addImm(Enc);
6781 }
6782 
6783 void AArch64InstructionSelector::renderLogicalImm64(
6784   MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const {
6785   assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
6786          "Expected G_CONSTANT");
6787   uint64_t CstVal = I.getOperand(1).getCImm()->getZExtValue();
6788   uint64_t Enc = AArch64_AM::encodeLogicalImmediate(CstVal, 64);
6789   MIB.addImm(Enc);
6790 }
6791 
6792 void AArch64InstructionSelector::renderFPImm16(MachineInstrBuilder &MIB,
6793                                                const MachineInstr &MI,
6794                                                int OpIdx) const {
6795   assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
6796          "Expected G_FCONSTANT");
6797   MIB.addImm(
6798       AArch64_AM::getFP16Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
6799 }
6800 
6801 void AArch64InstructionSelector::renderFPImm32(MachineInstrBuilder &MIB,
6802                                                const MachineInstr &MI,
6803                                                int OpIdx) const {
6804   assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
6805          "Expected G_FCONSTANT");
6806   MIB.addImm(
6807       AArch64_AM::getFP32Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
6808 }
6809 
6810 void AArch64InstructionSelector::renderFPImm64(MachineInstrBuilder &MIB,
6811                                                const MachineInstr &MI,
6812                                                int OpIdx) const {
6813   assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
6814          "Expected G_FCONSTANT");
6815   MIB.addImm(
6816       AArch64_AM::getFP64Imm(MI.getOperand(1).getFPImm()->getValueAPF()));
6817 }
6818 
6819 void AArch64InstructionSelector::renderFPImm32SIMDModImmType4(
6820     MachineInstrBuilder &MIB, const MachineInstr &MI, int OpIdx) const {
6821   assert(MI.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 &&
6822          "Expected G_FCONSTANT");
6823   MIB.addImm(AArch64_AM::encodeAdvSIMDModImmType4(MI.getOperand(1)
6824                                                       .getFPImm()
6825                                                       ->getValueAPF()
6826                                                       .bitcastToAPInt()
6827                                                       .getZExtValue()));
6828 }
6829 
6830 bool AArch64InstructionSelector::isLoadStoreOfNumBytes(
6831     const MachineInstr &MI, unsigned NumBytes) const {
6832   if (!MI.mayLoadOrStore())
6833     return false;
6834   assert(MI.hasOneMemOperand() &&
6835          "Expected load/store to have only one mem op!");
6836   return (*MI.memoperands_begin())->getSize() == NumBytes;
6837 }
6838 
6839 bool AArch64InstructionSelector::isDef32(const MachineInstr &MI) const {
6840   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
6841   if (MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() != 32)
6842     return false;
6843 
6844   // Only return true if we know the operation will zero-out the high half of
6845   // the 64-bit register. Truncates can be subregister copies, which don't
6846   // zero out the high bits. Copies and other copy-like instructions can be
6847   // fed by truncates, or could be lowered as subregister copies.
6848   switch (MI.getOpcode()) {
6849   default:
6850     return true;
6851   case TargetOpcode::COPY:
6852   case TargetOpcode::G_BITCAST:
6853   case TargetOpcode::G_TRUNC:
6854   case TargetOpcode::G_PHI:
6855     return false;
6856   }
6857 }
6858 
6859 
6860 // Perform fixups on the given PHI instruction's operands to force them all
6861 // to be the same as the destination regbank.
6862 static void fixupPHIOpBanks(MachineInstr &MI, MachineRegisterInfo &MRI,
6863                             const AArch64RegisterBankInfo &RBI) {
6864   assert(MI.getOpcode() == TargetOpcode::G_PHI && "Expected a G_PHI");
6865   Register DstReg = MI.getOperand(0).getReg();
6866   const RegisterBank *DstRB = MRI.getRegBankOrNull(DstReg);
6867   assert(DstRB && "Expected PHI dst to have regbank assigned");
6868   MachineIRBuilder MIB(MI);
6869 
6870   // Go through each operand and ensure it has the same regbank.
6871   for (MachineOperand &MO : llvm::drop_begin(MI.operands())) {
6872     if (!MO.isReg())
6873       continue;
6874     Register OpReg = MO.getReg();
6875     const RegisterBank *RB = MRI.getRegBankOrNull(OpReg);
6876     if (RB != DstRB) {
6877       // Insert a cross-bank copy.
6878       auto *OpDef = MRI.getVRegDef(OpReg);
6879       const LLT &Ty = MRI.getType(OpReg);
6880       MachineBasicBlock &OpDefBB = *OpDef->getParent();
6881 
6882       // Any instruction we insert must appear after all PHIs in the block
6883       // for the block to be valid MIR.
6884       MachineBasicBlock::iterator InsertPt = std::next(OpDef->getIterator());
6885       if (InsertPt != OpDefBB.end() && InsertPt->isPHI())
6886         InsertPt = OpDefBB.getFirstNonPHI();
6887       MIB.setInsertPt(*OpDef->getParent(), InsertPt);
6888       auto Copy = MIB.buildCopy(Ty, OpReg);
6889       MRI.setRegBank(Copy.getReg(0), *DstRB);
6890       MO.setReg(Copy.getReg(0));
6891     }
6892   }
6893 }
6894 
6895 void AArch64InstructionSelector::processPHIs(MachineFunction &MF) {
6896   // We're looking for PHIs, build a list so we don't invalidate iterators.
6897   MachineRegisterInfo &MRI = MF.getRegInfo();
6898   SmallVector<MachineInstr *, 32> Phis;
6899   for (auto &BB : MF) {
6900     for (auto &MI : BB) {
6901       if (MI.getOpcode() == TargetOpcode::G_PHI)
6902         Phis.emplace_back(&MI);
6903     }
6904   }
6905 
6906   for (auto *MI : Phis) {
6907     // We need to do some work here if the operand types are < 16 bit and they
6908     // are split across fpr/gpr banks. Since all types <32b on gpr
6909     // end up being assigned gpr32 regclasses, we can end up with PHIs here
6910     // which try to select between a gpr32 and an fpr16. Ideally RBS shouldn't
6911     // be selecting heterogenous regbanks for operands if possible, but we
6912     // still need to be able to deal with it here.
6913     //
6914     // To fix this, if we have a gpr-bank operand < 32b in size and at least
6915     // one other operand is on the fpr bank, then we add cross-bank copies
6916     // to homogenize the operand banks. For simplicity the bank that we choose
6917     // to settle on is whatever bank the def operand has. For example:
6918     //
6919     // %endbb:
6920     //   %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2:fpr(s16), %bb2
6921     //  =>
6922     // %bb2:
6923     //   ...
6924     //   %in2_copy:gpr(s16) = COPY %in2:fpr(s16)
6925     //   ...
6926     // %endbb:
6927     //   %dst:gpr(s16) = G_PHI %in1:gpr(s16), %bb1, %in2_copy:gpr(s16), %bb2
6928     bool HasGPROp = false, HasFPROp = false;
6929     for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) {
6930       if (!MO.isReg())
6931         continue;
6932       const LLT &Ty = MRI.getType(MO.getReg());
6933       if (!Ty.isValid() || !Ty.isScalar())
6934         break;
6935       if (Ty.getSizeInBits() >= 32)
6936         break;
6937       const RegisterBank *RB = MRI.getRegBankOrNull(MO.getReg());
6938       // If for some reason we don't have a regbank yet. Don't try anything.
6939       if (!RB)
6940         break;
6941 
6942       if (RB->getID() == AArch64::GPRRegBankID)
6943         HasGPROp = true;
6944       else
6945         HasFPROp = true;
6946     }
6947     // We have heterogenous regbanks, need to fixup.
6948     if (HasGPROp && HasFPROp)
6949       fixupPHIOpBanks(*MI, MRI, RBI);
6950   }
6951 }
6952 
6953 namespace llvm {
6954 InstructionSelector *
6955 createAArch64InstructionSelector(const AArch64TargetMachine &TM,
6956                                  AArch64Subtarget &Subtarget,
6957                                  AArch64RegisterBankInfo &RBI) {
6958   return new AArch64InstructionSelector(TM, Subtarget, RBI);
6959 }
6960 }
6961