xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/GISel/AArch64CallLowering.cpp (revision d5e3895ea4fe4ef9db8823774e07b4368180a23e)
1 //===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AArch64CallLowering.h"
16 #include "AArch64ISelLowering.h"
17 #include "AArch64MachineFunctionInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/GlobalISel/Utils.h"
25 #include "llvm/CodeGen/LowLevelType.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 
47 #define DEBUG_TYPE "aarch64-call-lowering"
48 
49 using namespace llvm;
50 
51 AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
52   : CallLowering(&TLI) {}
53 
54 namespace {
55 struct IncomingArgHandler : public CallLowering::ValueHandler {
56   IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
57                      CCAssignFn *AssignFn)
58       : ValueHandler(MIRBuilder, MRI, AssignFn), StackUsed(0) {}
59 
60   Register getStackAddress(uint64_t Size, int64_t Offset,
61                            MachinePointerInfo &MPO) override {
62     auto &MFI = MIRBuilder.getMF().getFrameInfo();
63     int FI = MFI.CreateFixedObject(Size, Offset, true);
64     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
65     auto AddrReg = MIRBuilder.buildFrameIndex(LLT::pointer(0, 64), FI);
66     StackUsed = std::max(StackUsed, Size + Offset);
67     return AddrReg.getReg(0);
68   }
69 
70   void assignValueToReg(Register ValVReg, Register PhysReg,
71                         CCValAssign &VA) override {
72     markPhysRegUsed(PhysReg);
73     switch (VA.getLocInfo()) {
74     default:
75       MIRBuilder.buildCopy(ValVReg, PhysReg);
76       break;
77     case CCValAssign::LocInfo::SExt:
78     case CCValAssign::LocInfo::ZExt:
79     case CCValAssign::LocInfo::AExt: {
80       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
81       MIRBuilder.buildTrunc(ValVReg, Copy);
82       break;
83     }
84     }
85   }
86 
87   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
88                             MachinePointerInfo &MPO, CCValAssign &VA) override {
89     MachineFunction &MF = MIRBuilder.getMF();
90     auto MMO = MF.getMachineMemOperand(
91         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size,
92         inferAlignFromPtrInfo(MF, MPO));
93     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
94   }
95 
96   /// How the physical register gets marked varies between formal
97   /// parameters (it's a basic-block live-in), and a call instruction
98   /// (it's an implicit-def of the BL).
99   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
100 
101   bool isIncomingArgumentHandler() const override { return true; }
102 
103   uint64_t StackUsed;
104 };
105 
106 struct FormalArgHandler : public IncomingArgHandler {
107   FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
108                    CCAssignFn *AssignFn)
109     : IncomingArgHandler(MIRBuilder, MRI, AssignFn) {}
110 
111   void markPhysRegUsed(unsigned PhysReg) override {
112     MIRBuilder.getMRI()->addLiveIn(PhysReg);
113     MIRBuilder.getMBB().addLiveIn(PhysReg);
114   }
115 };
116 
117 struct CallReturnHandler : public IncomingArgHandler {
118   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
119                     MachineInstrBuilder MIB, CCAssignFn *AssignFn)
120     : IncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
121 
122   void markPhysRegUsed(unsigned PhysReg) override {
123     MIB.addDef(PhysReg, RegState::Implicit);
124   }
125 
126   MachineInstrBuilder MIB;
127 };
128 
129 struct OutgoingArgHandler : public CallLowering::ValueHandler {
130   OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
131                      MachineInstrBuilder MIB, CCAssignFn *AssignFn,
132                      CCAssignFn *AssignFnVarArg, bool IsTailCall = false,
133                      int FPDiff = 0)
134       : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB),
135         AssignFnVarArg(AssignFnVarArg), IsTailCall(IsTailCall), FPDiff(FPDiff),
136         StackSize(0), SPReg(0) {}
137 
138   bool isIncomingArgumentHandler() const override { return false; }
139 
140   Register getStackAddress(uint64_t Size, int64_t Offset,
141                            MachinePointerInfo &MPO) override {
142     MachineFunction &MF = MIRBuilder.getMF();
143     LLT p0 = LLT::pointer(0, 64);
144     LLT s64 = LLT::scalar(64);
145 
146     if (IsTailCall) {
147       Offset += FPDiff;
148       int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
149       auto FIReg = MIRBuilder.buildFrameIndex(p0, FI);
150       MPO = MachinePointerInfo::getFixedStack(MF, FI);
151       return FIReg.getReg(0);
152     }
153 
154     if (!SPReg)
155       SPReg = MIRBuilder.buildCopy(p0, Register(AArch64::SP)).getReg(0);
156 
157     auto OffsetReg = MIRBuilder.buildConstant(s64, Offset);
158 
159     auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg);
160 
161     MPO = MachinePointerInfo::getStack(MF, Offset);
162     return AddrReg.getReg(0);
163   }
164 
165   void assignValueToReg(Register ValVReg, Register PhysReg,
166                         CCValAssign &VA) override {
167     MIB.addUse(PhysReg, RegState::Implicit);
168     Register ExtReg = extendRegister(ValVReg, VA);
169     MIRBuilder.buildCopy(PhysReg, ExtReg);
170   }
171 
172   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
173                             MachinePointerInfo &MPO, CCValAssign &VA) override {
174     MachineFunction &MF = MIRBuilder.getMF();
175     auto MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore, Size,
176                                        inferAlignFromPtrInfo(MF, MPO));
177     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
178   }
179 
180   void assignValueToAddress(const CallLowering::ArgInfo &Arg, Register Addr,
181                             uint64_t Size, MachinePointerInfo &MPO,
182                             CCValAssign &VA) override {
183     unsigned MaxSize = Size * 8;
184     // For varargs, we always want to extend them to 8 bytes, in which case
185     // we disable setting a max.
186     if (!Arg.IsFixed)
187       MaxSize = 0;
188 
189     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
190                            ? extendRegister(Arg.Regs[0], VA, MaxSize)
191                            : Arg.Regs[0];
192 
193     // If we extended we might need to adjust the MMO's Size.
194     const LLT RegTy = MRI.getType(ValVReg);
195     if (RegTy.getSizeInBytes() > Size)
196       Size = RegTy.getSizeInBytes();
197 
198     assignValueToAddress(ValVReg, Addr, Size, MPO, VA);
199   }
200 
201   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
202                  CCValAssign::LocInfo LocInfo,
203                  const CallLowering::ArgInfo &Info,
204                  ISD::ArgFlagsTy Flags,
205                  CCState &State) override {
206     bool Res;
207     if (Info.IsFixed)
208       Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
209     else
210       Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State);
211 
212     StackSize = State.getNextStackOffset();
213     return Res;
214   }
215 
216   MachineInstrBuilder MIB;
217   CCAssignFn *AssignFnVarArg;
218   bool IsTailCall;
219 
220   /// For tail calls, the byte offset of the call's argument area from the
221   /// callee's. Unused elsewhere.
222   int FPDiff;
223   uint64_t StackSize;
224 
225   // Cache the SP register vreg if we need it more than once in this call site.
226   Register SPReg;
227 };
228 } // namespace
229 
230 static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) {
231   return CallConv == CallingConv::Fast && TailCallOpt;
232 }
233 
234 void AArch64CallLowering::splitToValueTypes(
235     const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
236     const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv) const {
237   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
238   LLVMContext &Ctx = OrigArg.Ty->getContext();
239 
240   SmallVector<EVT, 4> SplitVTs;
241   SmallVector<uint64_t, 4> Offsets;
242   ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
243 
244   if (SplitVTs.size() == 0)
245     return;
246 
247   if (SplitVTs.size() == 1) {
248     // No splitting to do, but we want to replace the original type (e.g. [1 x
249     // double] -> double).
250     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
251                            OrigArg.Flags[0], OrigArg.IsFixed);
252     return;
253   }
254 
255   // Create one ArgInfo for each virtual register in the original ArgInfo.
256   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
257 
258   bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
259       OrigArg.Ty, CallConv, false);
260   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
261     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
262     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
263                            OrigArg.IsFixed);
264     if (NeedsRegBlock)
265       SplitArgs.back().Flags[0].setInConsecutiveRegs();
266   }
267 
268   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
269 }
270 
271 bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
272                                       const Value *Val,
273                                       ArrayRef<Register> VRegs,
274                                       Register SwiftErrorVReg) const {
275   auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR);
276   assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
277          "Return value without a vreg");
278 
279   bool Success = true;
280   if (!VRegs.empty()) {
281     MachineFunction &MF = MIRBuilder.getMF();
282     const Function &F = MF.getFunction();
283 
284     MachineRegisterInfo &MRI = MF.getRegInfo();
285     const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
286     CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
287     auto &DL = F.getParent()->getDataLayout();
288     LLVMContext &Ctx = Val->getType()->getContext();
289 
290     SmallVector<EVT, 4> SplitEVTs;
291     ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
292     assert(VRegs.size() == SplitEVTs.size() &&
293            "For each split Type there should be exactly one VReg.");
294 
295     SmallVector<ArgInfo, 8> SplitArgs;
296     CallingConv::ID CC = F.getCallingConv();
297 
298     for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
299       if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) > 1) {
300         LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split");
301         return false;
302       }
303 
304       Register CurVReg = VRegs[i];
305       ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx)};
306       setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
307 
308       // i1 is a special case because SDAG i1 true is naturally zero extended
309       // when widened using ANYEXT. We need to do it explicitly here.
310       if (MRI.getType(CurVReg).getSizeInBits() == 1) {
311         CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
312       } else {
313         // Some types will need extending as specified by the CC.
314         MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
315         if (EVT(NewVT) != SplitEVTs[i]) {
316           unsigned ExtendOp = TargetOpcode::G_ANYEXT;
317           if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
318                                              Attribute::SExt))
319             ExtendOp = TargetOpcode::G_SEXT;
320           else if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
321                                                   Attribute::ZExt))
322             ExtendOp = TargetOpcode::G_ZEXT;
323 
324           LLT NewLLT(NewVT);
325           LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
326           CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
327           // Instead of an extend, we might have a vector type which needs
328           // padding with more elements, e.g. <2 x half> -> <4 x half>.
329           if (NewVT.isVector()) {
330             if (OldLLT.isVector()) {
331               if (NewLLT.getNumElements() > OldLLT.getNumElements()) {
332                 // We don't handle VA types which are not exactly twice the
333                 // size, but can easily be done in future.
334                 if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) {
335                   LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
336                   return false;
337                 }
338                 auto Undef = MIRBuilder.buildUndef({OldLLT});
339                 CurVReg =
340                     MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef}).getReg(0);
341               } else {
342                 // Just do a vector extend.
343                 CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
344                               .getReg(0);
345               }
346             } else if (NewLLT.getNumElements() == 2) {
347               // We need to pad a <1 x S> type to <2 x S>. Since we don't have
348               // <1 x S> vector types in GISel we use a build_vector instead
349               // of a vector merge/concat.
350               auto Undef = MIRBuilder.buildUndef({OldLLT});
351               CurVReg =
352                   MIRBuilder
353                       .buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)})
354                       .getReg(0);
355             } else {
356               LLVM_DEBUG(dbgs() << "Could not handle ret ty");
357               return false;
358             }
359           } else {
360             // A scalar extend.
361             CurVReg =
362                 MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}).getReg(0);
363           }
364         }
365       }
366       if (CurVReg != CurArgInfo.Regs[0]) {
367         CurArgInfo.Regs[0] = CurVReg;
368         // Reset the arg flags after modifying CurVReg.
369         setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
370       }
371      splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI, CC);
372     }
373 
374     OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFn, AssignFn);
375     Success = handleAssignments(MIRBuilder, SplitArgs, Handler);
376   }
377 
378   if (SwiftErrorVReg) {
379     MIB.addUse(AArch64::X21, RegState::Implicit);
380     MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg);
381   }
382 
383   MIRBuilder.insertInstr(MIB);
384   return Success;
385 }
386 
387 /// Helper function to compute forwarded registers for musttail calls. Computes
388 /// the forwarded registers, sets MBB liveness, and emits COPY instructions that
389 /// can be used to save + restore registers later.
390 static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder,
391                                              CCAssignFn *AssignFn) {
392   MachineBasicBlock &MBB = MIRBuilder.getMBB();
393   MachineFunction &MF = MIRBuilder.getMF();
394   MachineFrameInfo &MFI = MF.getFrameInfo();
395 
396   if (!MFI.hasMustTailInVarArgFunc())
397     return;
398 
399   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
400   const Function &F = MF.getFunction();
401   assert(F.isVarArg() && "Expected F to be vararg?");
402 
403   // Compute the set of forwarded registers. The rest are scratch.
404   SmallVector<CCValAssign, 16> ArgLocs;
405   CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs,
406                  F.getContext());
407   SmallVector<MVT, 2> RegParmTypes;
408   RegParmTypes.push_back(MVT::i64);
409   RegParmTypes.push_back(MVT::f128);
410 
411   // Later on, we can use this vector to restore the registers if necessary.
412   SmallVectorImpl<ForwardedRegister> &Forwards =
413       FuncInfo->getForwardedMustTailRegParms();
414   CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn);
415 
416   // Conservatively forward X8, since it might be used for an aggregate
417   // return.
418   if (!CCInfo.isAllocated(AArch64::X8)) {
419     unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
420     Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
421   }
422 
423   // Add the forwards to the MachineBasicBlock and MachineFunction.
424   for (const auto &F : Forwards) {
425     MBB.addLiveIn(F.PReg);
426     MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg));
427   }
428 }
429 
430 bool AArch64CallLowering::fallBackToDAGISel(const Function &F) const {
431   if (isa<ScalableVectorType>(F.getReturnType()))
432     return true;
433   return llvm::any_of(F.args(), [](const Argument &A) {
434     return isa<ScalableVectorType>(A.getType());
435   });
436 }
437 
438 bool AArch64CallLowering::lowerFormalArguments(
439     MachineIRBuilder &MIRBuilder, const Function &F,
440     ArrayRef<ArrayRef<Register>> VRegs) const {
441   MachineFunction &MF = MIRBuilder.getMF();
442   MachineBasicBlock &MBB = MIRBuilder.getMBB();
443   MachineRegisterInfo &MRI = MF.getRegInfo();
444   auto &DL = F.getParent()->getDataLayout();
445 
446   SmallVector<ArgInfo, 8> SplitArgs;
447   unsigned i = 0;
448   for (auto &Arg : F.args()) {
449     if (DL.getTypeStoreSize(Arg.getType()).isZero())
450       continue;
451 
452     ArgInfo OrigArg{VRegs[i], Arg.getType()};
453     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F);
454 
455     splitToValueTypes(OrigArg, SplitArgs, DL, MRI, F.getCallingConv());
456     ++i;
457   }
458 
459   if (!MBB.empty())
460     MIRBuilder.setInstr(*MBB.begin());
461 
462   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
463   CCAssignFn *AssignFn =
464       TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false);
465 
466   FormalArgHandler Handler(MIRBuilder, MRI, AssignFn);
467   if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
468     return false;
469 
470   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
471   uint64_t StackOffset = Handler.StackUsed;
472   if (F.isVarArg()) {
473     auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
474     if (!Subtarget.isTargetDarwin()) {
475         // FIXME: we need to reimplement saveVarArgsRegisters from
476       // AArch64ISelLowering.
477       return false;
478     }
479 
480     // We currently pass all varargs at 8-byte alignment, or 4 in ILP32.
481     StackOffset = alignTo(Handler.StackUsed, Subtarget.isTargetILP32() ? 4 : 8);
482 
483     auto &MFI = MIRBuilder.getMF().getFrameInfo();
484     FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
485   }
486 
487   if (doesCalleeRestoreStack(F.getCallingConv(),
488                              MF.getTarget().Options.GuaranteedTailCallOpt)) {
489     // We have a non-standard ABI, so why not make full use of the stack that
490     // we're going to pop? It must be aligned to 16 B in any case.
491     StackOffset = alignTo(StackOffset, 16);
492 
493     // If we're expected to restore the stack (e.g. fastcc), then we'll be
494     // adding a multiple of 16.
495     FuncInfo->setArgumentStackToRestore(StackOffset);
496 
497     // Our own callers will guarantee that the space is free by giving an
498     // aligned value to CALLSEQ_START.
499   }
500 
501   // When we tail call, we need to check if the callee's arguments
502   // will fit on the caller's stack. So, whenever we lower formal arguments,
503   // we should keep track of this information, since we might lower a tail call
504   // in this function later.
505   FuncInfo->setBytesInStackArgArea(StackOffset);
506 
507   auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
508   if (Subtarget.hasCustomCallingConv())
509     Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
510 
511   handleMustTailForwardedRegisters(MIRBuilder, AssignFn);
512 
513   // Move back to the end of the basic block.
514   MIRBuilder.setMBB(MBB);
515 
516   return true;
517 }
518 
519 /// Return true if the calling convention is one that we can guarantee TCO for.
520 static bool canGuaranteeTCO(CallingConv::ID CC) {
521   return CC == CallingConv::Fast;
522 }
523 
524 /// Return true if we might ever do TCO for calls with this calling convention.
525 static bool mayTailCallThisCC(CallingConv::ID CC) {
526   switch (CC) {
527   case CallingConv::C:
528   case CallingConv::PreserveMost:
529   case CallingConv::Swift:
530     return true;
531   default:
532     return canGuaranteeTCO(CC);
533   }
534 }
535 
536 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
537 /// CC.
538 static std::pair<CCAssignFn *, CCAssignFn *>
539 getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) {
540   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
541 }
542 
543 bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay(
544     CallLoweringInfo &Info, MachineFunction &MF,
545     SmallVectorImpl<ArgInfo> &InArgs) const {
546   const Function &CallerF = MF.getFunction();
547   CallingConv::ID CalleeCC = Info.CallConv;
548   CallingConv::ID CallerCC = CallerF.getCallingConv();
549 
550   // If the calling conventions match, then everything must be the same.
551   if (CalleeCC == CallerCC)
552     return true;
553 
554   // Check if the caller and callee will handle arguments in the same way.
555   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
556   CCAssignFn *CalleeAssignFnFixed;
557   CCAssignFn *CalleeAssignFnVarArg;
558   std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
559       getAssignFnsForCC(CalleeCC, TLI);
560 
561   CCAssignFn *CallerAssignFnFixed;
562   CCAssignFn *CallerAssignFnVarArg;
563   std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
564       getAssignFnsForCC(CallerCC, TLI);
565 
566   if (!resultsCompatible(Info, MF, InArgs, *CalleeAssignFnFixed,
567                          *CalleeAssignFnVarArg, *CallerAssignFnFixed,
568                          *CallerAssignFnVarArg))
569     return false;
570 
571   // Make sure that the caller and callee preserve all of the same registers.
572   auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
573   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
574   const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
575   if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) {
576     TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
577     TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
578   }
579 
580   return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved);
581 }
582 
583 bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable(
584     CallLoweringInfo &Info, MachineFunction &MF,
585     SmallVectorImpl<ArgInfo> &OutArgs) const {
586   // If there are no outgoing arguments, then we are done.
587   if (OutArgs.empty())
588     return true;
589 
590   const Function &CallerF = MF.getFunction();
591   CallingConv::ID CalleeCC = Info.CallConv;
592   CallingConv::ID CallerCC = CallerF.getCallingConv();
593   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
594 
595   CCAssignFn *AssignFnFixed;
596   CCAssignFn *AssignFnVarArg;
597   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
598 
599   // We have outgoing arguments. Make sure that we can tail call with them.
600   SmallVector<CCValAssign, 16> OutLocs;
601   CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
602 
603   if (!analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg)) {
604     LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
605     return false;
606   }
607 
608   // Make sure that they can fit on the caller's stack.
609   const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
610   if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
611     LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
612     return false;
613   }
614 
615   // Verify that the parameters in callee-saved registers match.
616   // TODO: Port this over to CallLowering as general code once swiftself is
617   // supported.
618   auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
619   const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
620   MachineRegisterInfo &MRI = MF.getRegInfo();
621 
622   for (unsigned i = 0; i < OutLocs.size(); ++i) {
623     auto &ArgLoc = OutLocs[i];
624     // If it's not a register, it's fine.
625     if (!ArgLoc.isRegLoc()) {
626       if (Info.IsVarArg) {
627         // Be conservative and disallow variadic memory operands to match SDAG's
628         // behaviour.
629         // FIXME: If the caller's calling convention is C, then we can
630         // potentially use its argument area. However, for cases like fastcc,
631         // we can't do anything.
632         LLVM_DEBUG(
633             dbgs()
634             << "... Cannot tail call vararg function with stack arguments\n");
635         return false;
636       }
637       continue;
638     }
639 
640     Register Reg = ArgLoc.getLocReg();
641 
642     // Only look at callee-saved registers.
643     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
644       continue;
645 
646     LLVM_DEBUG(
647         dbgs()
648         << "... Call has an argument passed in a callee-saved register.\n");
649 
650     // Check if it was copied from.
651     ArgInfo &OutInfo = OutArgs[i];
652 
653     if (OutInfo.Regs.size() > 1) {
654       LLVM_DEBUG(
655           dbgs() << "... Cannot handle arguments in multiple registers.\n");
656       return false;
657     }
658 
659     // Check if we copy the register, walking through copies from virtual
660     // registers. Note that getDefIgnoringCopies does not ignore copies from
661     // physical registers.
662     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
663     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
664       LLVM_DEBUG(
665           dbgs()
666           << "... Parameter was not copied into a VReg, cannot tail call.\n");
667       return false;
668     }
669 
670     // Got a copy. Verify that it's the same as the register we want.
671     Register CopyRHS = RegDef->getOperand(1).getReg();
672     if (CopyRHS != Reg) {
673       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
674                            "VReg, cannot tail call.\n");
675       return false;
676     }
677   }
678 
679   return true;
680 }
681 
682 bool AArch64CallLowering::isEligibleForTailCallOptimization(
683     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
684     SmallVectorImpl<ArgInfo> &InArgs,
685     SmallVectorImpl<ArgInfo> &OutArgs) const {
686 
687   // Must pass all target-independent checks in order to tail call optimize.
688   if (!Info.IsTailCall)
689     return false;
690 
691   CallingConv::ID CalleeCC = Info.CallConv;
692   MachineFunction &MF = MIRBuilder.getMF();
693   const Function &CallerF = MF.getFunction();
694 
695   LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n");
696 
697   if (Info.SwiftErrorVReg) {
698     // TODO: We should handle this.
699     // Note that this is also handled by the check for no outgoing arguments.
700     // Proactively disabling this though, because the swifterror handling in
701     // lowerCall inserts a COPY *after* the location of the call.
702     LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n");
703     return false;
704   }
705 
706   if (!mayTailCallThisCC(CalleeCC)) {
707     LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
708     return false;
709   }
710 
711   // Byval parameters hand the function a pointer directly into the stack area
712   // we want to reuse during a tail call. Working around this *is* possible (see
713   // X86).
714   //
715   // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try
716   // it?
717   //
718   // On Windows, "inreg" attributes signify non-aggregate indirect returns.
719   // In this case, it is necessary to save/restore X0 in the callee. Tail
720   // call opt interferes with this. So we disable tail call opt when the
721   // caller has an argument with "inreg" attribute.
722   //
723   // FIXME: Check whether the callee also has an "inreg" argument.
724   //
725   // When the caller has a swifterror argument, we don't want to tail call
726   // because would have to move into the swifterror register before the
727   // tail call.
728   if (any_of(CallerF.args(), [](const Argument &A) {
729         return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr();
730       })) {
731     LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, "
732                          "inreg, or swifterror arguments\n");
733     return false;
734   }
735 
736   // Externally-defined functions with weak linkage should not be
737   // tail-called on AArch64 when the OS does not support dynamic
738   // pre-emption of symbols, as the AAELF spec requires normal calls
739   // to undefined weak functions to be replaced with a NOP or jump to the
740   // next instruction. The behaviour of branch instructions in this
741   // situation (as used for tail calls) is implementation-defined, so we
742   // cannot rely on the linker replacing the tail call with a return.
743   if (Info.Callee.isGlobal()) {
744     const GlobalValue *GV = Info.Callee.getGlobal();
745     const Triple &TT = MF.getTarget().getTargetTriple();
746     if (GV->hasExternalWeakLinkage() &&
747         (!TT.isOSWindows() || TT.isOSBinFormatELF() ||
748          TT.isOSBinFormatMachO())) {
749       LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function "
750                            "with weak linkage for this OS.\n");
751       return false;
752     }
753   }
754 
755   // If we have -tailcallopt, then we're done.
756   if (MF.getTarget().Options.GuaranteedTailCallOpt)
757     return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
758 
759   // We don't have -tailcallopt, so we're allowed to change the ABI (sibcall).
760   // Try to find cases where we can do that.
761 
762   // I want anyone implementing a new calling convention to think long and hard
763   // about this assert.
764   assert((!Info.IsVarArg || CalleeCC == CallingConv::C) &&
765          "Unexpected variadic calling convention");
766 
767   // Verify that the incoming and outgoing arguments from the callee are
768   // safe to tail call.
769   if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
770     LLVM_DEBUG(
771         dbgs()
772         << "... Caller and callee have incompatible calling conventions.\n");
773     return false;
774   }
775 
776   if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
777     return false;
778 
779   LLVM_DEBUG(
780       dbgs() << "... Call is eligible for tail call optimization.\n");
781   return true;
782 }
783 
784 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
785                               bool IsTailCall) {
786   if (!IsTailCall)
787     return IsIndirect ? getBLRCallOpcode(CallerF) : (unsigned)AArch64::BL;
788 
789   if (!IsIndirect)
790     return AArch64::TCRETURNdi;
791 
792   // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use
793   // x16 or x17.
794   if (CallerF.getFunction().hasFnAttribute("branch-target-enforcement"))
795     return AArch64::TCRETURNriBTI;
796 
797   return AArch64::TCRETURNri;
798 }
799 
800 bool AArch64CallLowering::lowerTailCall(
801     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
802     SmallVectorImpl<ArgInfo> &OutArgs) const {
803   MachineFunction &MF = MIRBuilder.getMF();
804   const Function &F = MF.getFunction();
805   MachineRegisterInfo &MRI = MF.getRegInfo();
806   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
807   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
808 
809   // True when we're tail calling, but without -tailcallopt.
810   bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
811 
812   // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64
813   // register class. Until we can do that, we should fall back here.
814   if (F.hasFnAttribute("branch-target-enforcement")) {
815     LLVM_DEBUG(
816         dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n");
817     return false;
818   }
819 
820   // Find out which ABI gets to decide where things go.
821   CallingConv::ID CalleeCC = Info.CallConv;
822   CCAssignFn *AssignFnFixed;
823   CCAssignFn *AssignFnVarArg;
824   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
825 
826   MachineInstrBuilder CallSeqStart;
827   if (!IsSibCall)
828     CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
829 
830   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true);
831   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
832   MIB.add(Info.Callee);
833 
834   // Byte offset for the tail call. When we are sibcalling, this will always
835   // be 0.
836   MIB.addImm(0);
837 
838   // Tell the call which registers are clobbered.
839   auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
840   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
841   if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
842     TRI->UpdateCustomCallPreservedMask(MF, &Mask);
843   MIB.addRegMask(Mask);
844 
845   if (TRI->isAnyArgRegReserved(MF))
846     TRI->emitReservedArgRegCallError(MF);
847 
848   // FPDiff is the byte offset of the call's argument area from the callee's.
849   // Stores to callee stack arguments will be placed in FixedStackSlots offset
850   // by this amount for a tail call. In a sibling call it must be 0 because the
851   // caller will deallocate the entire stack and the callee still expects its
852   // arguments to begin at SP+0.
853   int FPDiff = 0;
854 
855   // This will be 0 for sibcalls, potentially nonzero for tail calls produced
856   // by -tailcallopt. For sibcalls, the memory operands for the call are
857   // already available in the caller's incoming argument space.
858   unsigned NumBytes = 0;
859   if (!IsSibCall) {
860     // We aren't sibcalling, so we need to compute FPDiff. We need to do this
861     // before handling assignments, because FPDiff must be known for memory
862     // arguments.
863     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
864     SmallVector<CCValAssign, 16> OutLocs;
865     CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
866     analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg);
867 
868     // The callee will pop the argument stack as a tail call. Thus, we must
869     // keep it 16-byte aligned.
870     NumBytes = alignTo(OutInfo.getNextStackOffset(), 16);
871 
872     // FPDiff will be negative if this tail call requires more space than we
873     // would automatically have in our incoming argument space. Positive if we
874     // actually shrink the stack.
875     FPDiff = NumReusableBytes - NumBytes;
876 
877     // The stack pointer must be 16-byte aligned at all times it's used for a
878     // memory operation, which in practice means at *all* times and in
879     // particular across call boundaries. Therefore our own arguments started at
880     // a 16-byte aligned SP and the delta applied for the tail call should
881     // satisfy the same constraint.
882     assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
883   }
884 
885   const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
886 
887   // Do the actual argument marshalling.
888   OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
889                              AssignFnVarArg, true, FPDiff);
890   if (!handleAssignments(MIRBuilder, OutArgs, Handler))
891     return false;
892 
893   if (Info.IsVarArg && Info.IsMustTailCall) {
894     // Now we know what's being passed to the function. Add uses to the call for
895     // the forwarded registers that we *aren't* passing as parameters. This will
896     // preserve the copies we build earlier.
897     for (const auto &F : Forwards) {
898       Register ForwardedReg = F.PReg;
899       // If the register is already passed, or aliases a register which is
900       // already being passed, then skip it.
901       if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) {
902             if (!Use.isReg())
903               return false;
904             return TRI->regsOverlap(Use.getReg(), ForwardedReg);
905           }))
906         continue;
907 
908       // We aren't passing it already, so we should add it to the call.
909       MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg));
910       MIB.addReg(ForwardedReg, RegState::Implicit);
911     }
912   }
913 
914   // If we have -tailcallopt, we need to adjust the stack. We'll do the call
915   // sequence start and end here.
916   if (!IsSibCall) {
917     MIB->getOperand(1).setImm(FPDiff);
918     CallSeqStart.addImm(NumBytes).addImm(0);
919     // End the call sequence *before* emitting the call. Normally, we would
920     // tidy the frame up after the call. However, here, we've laid out the
921     // parameters so that when SP is reset, they will be in the correct
922     // location.
923     MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(NumBytes).addImm(0);
924   }
925 
926   // Now we can add the actual call instruction to the correct basic block.
927   MIRBuilder.insertInstr(MIB);
928 
929   // If Callee is a reg, since it is used by a target specific instruction,
930   // it must have a register class matching the constraint of that instruction.
931   if (Info.Callee.isReg())
932     MIB->getOperand(0).setReg(constrainOperandRegClass(
933         MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
934         *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
935         0));
936 
937   MF.getFrameInfo().setHasTailCall();
938   Info.LoweredTailCall = true;
939   return true;
940 }
941 
942 bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
943                                     CallLoweringInfo &Info) const {
944   MachineFunction &MF = MIRBuilder.getMF();
945   const Function &F = MF.getFunction();
946   MachineRegisterInfo &MRI = MF.getRegInfo();
947   auto &DL = F.getParent()->getDataLayout();
948   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
949 
950   SmallVector<ArgInfo, 8> OutArgs;
951   for (auto &OrigArg : Info.OrigArgs) {
952     splitToValueTypes(OrigArg, OutArgs, DL, MRI, Info.CallConv);
953     // AAPCS requires that we zero-extend i1 to 8 bits by the caller.
954     if (OrigArg.Ty->isIntegerTy(1))
955       OutArgs.back().Flags[0].setZExt();
956   }
957 
958   SmallVector<ArgInfo, 8> InArgs;
959   if (!Info.OrigRet.Ty->isVoidTy())
960     splitToValueTypes(Info.OrigRet, InArgs, DL, MRI, F.getCallingConv());
961 
962   // If we can lower as a tail call, do that instead.
963   bool CanTailCallOpt =
964       isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
965 
966   // We must emit a tail call if we have musttail.
967   if (Info.IsMustTailCall && !CanTailCallOpt) {
968     // There are types of incoming/outgoing arguments we can't handle yet, so
969     // it doesn't make sense to actually die here like in ISelLowering. Instead,
970     // fall back to SelectionDAG and let it try to handle this.
971     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
972     return false;
973   }
974 
975   if (CanTailCallOpt)
976     return lowerTailCall(MIRBuilder, Info, OutArgs);
977 
978   // Find out which ABI gets to decide where things go.
979   CCAssignFn *AssignFnFixed;
980   CCAssignFn *AssignFnVarArg;
981   std::tie(AssignFnFixed, AssignFnVarArg) =
982       getAssignFnsForCC(Info.CallConv, TLI);
983 
984   MachineInstrBuilder CallSeqStart;
985   CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
986 
987   // Create a temporarily-floating call instruction so we can add the implicit
988   // uses of arg registers.
989   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
990 
991   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
992   MIB.add(Info.Callee);
993 
994   // Tell the call which registers are clobbered.
995   auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
996   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
997   if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
998     TRI->UpdateCustomCallPreservedMask(MF, &Mask);
999   MIB.addRegMask(Mask);
1000 
1001   if (TRI->isAnyArgRegReserved(MF))
1002     TRI->emitReservedArgRegCallError(MF);
1003 
1004   // Do the actual argument marshalling.
1005   OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
1006                              AssignFnVarArg, false);
1007   if (!handleAssignments(MIRBuilder, OutArgs, Handler))
1008     return false;
1009 
1010   // Now we can add the actual call instruction to the correct basic block.
1011   MIRBuilder.insertInstr(MIB);
1012 
1013   // If Callee is a reg, since it is used by a target specific
1014   // instruction, it must have a register class matching the
1015   // constraint of that instruction.
1016   if (Info.Callee.isReg())
1017     MIB->getOperand(0).setReg(constrainOperandRegClass(
1018         MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
1019         *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
1020         0));
1021 
1022   // Finally we can copy the returned value back into its virtual-register. In
1023   // symmetry with the arguments, the physical register must be an
1024   // implicit-define of the call instruction.
1025   if (!Info.OrigRet.Ty->isVoidTy()) {
1026     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv);
1027     CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1028     if (!handleAssignments(MIRBuilder, InArgs, Handler))
1029       return false;
1030   }
1031 
1032   if (Info.SwiftErrorVReg) {
1033     MIB.addDef(AArch64::X21, RegState::Implicit);
1034     MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21));
1035   }
1036 
1037   uint64_t CalleePopBytes =
1038       doesCalleeRestoreStack(Info.CallConv,
1039                              MF.getTarget().Options.GuaranteedTailCallOpt)
1040           ? alignTo(Handler.StackSize, 16)
1041           : 0;
1042 
1043   CallSeqStart.addImm(Handler.StackSize).addImm(0);
1044   MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP)
1045       .addImm(Handler.StackSize)
1046       .addImm(CalleePopBytes);
1047 
1048   return true;
1049 }
1050