1 //===--- AArch64CallLowering.cpp - Call lowering --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64CallLowering.h" 16 #include "AArch64ISelLowering.h" 17 #include "AArch64MachineFunctionInfo.h" 18 #include "AArch64Subtarget.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/CodeGen/GlobalISel/Utils.h" 25 #include "llvm/CodeGen/LowLevelType.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/TargetRegisterInfo.h" 34 #include "llvm/CodeGen/TargetSubtargetInfo.h" 35 #include "llvm/CodeGen/ValueTypes.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/Support/MachineValueType.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstdint> 45 #include <iterator> 46 47 #define DEBUG_TYPE "aarch64-call-lowering" 48 49 using namespace llvm; 50 51 AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI) 52 : CallLowering(&TLI) {} 53 54 namespace { 55 struct IncomingArgHandler : public CallLowering::ValueHandler { 56 IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 57 CCAssignFn *AssignFn) 58 : ValueHandler(MIRBuilder, MRI, AssignFn), StackUsed(0) {} 59 60 Register getStackAddress(uint64_t Size, int64_t Offset, 61 MachinePointerInfo &MPO) override { 62 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 63 int FI = MFI.CreateFixedObject(Size, Offset, true); 64 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 65 auto AddrReg = MIRBuilder.buildFrameIndex(LLT::pointer(0, 64), FI); 66 StackUsed = std::max(StackUsed, Size + Offset); 67 return AddrReg.getReg(0); 68 } 69 70 void assignValueToReg(Register ValVReg, Register PhysReg, 71 CCValAssign &VA) override { 72 markPhysRegUsed(PhysReg); 73 switch (VA.getLocInfo()) { 74 default: 75 MIRBuilder.buildCopy(ValVReg, PhysReg); 76 break; 77 case CCValAssign::LocInfo::SExt: 78 case CCValAssign::LocInfo::ZExt: 79 case CCValAssign::LocInfo::AExt: { 80 auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg); 81 MIRBuilder.buildTrunc(ValVReg, Copy); 82 break; 83 } 84 } 85 } 86 87 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize, 88 MachinePointerInfo &MPO, CCValAssign &VA) override { 89 MachineFunction &MF = MIRBuilder.getMF(); 90 91 // The reported memory location may be wider than the value. 92 const LLT RegTy = MRI.getType(ValVReg); 93 MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize); 94 95 auto MMO = MF.getMachineMemOperand( 96 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize, 97 inferAlignFromPtrInfo(MF, MPO)); 98 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 99 } 100 101 /// How the physical register gets marked varies between formal 102 /// parameters (it's a basic-block live-in), and a call instruction 103 /// (it's an implicit-def of the BL). 104 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 105 106 bool isIncomingArgumentHandler() const override { return true; } 107 108 uint64_t StackUsed; 109 }; 110 111 struct FormalArgHandler : public IncomingArgHandler { 112 FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 113 CCAssignFn *AssignFn) 114 : IncomingArgHandler(MIRBuilder, MRI, AssignFn) {} 115 116 void markPhysRegUsed(unsigned PhysReg) override { 117 MIRBuilder.getMRI()->addLiveIn(PhysReg); 118 MIRBuilder.getMBB().addLiveIn(PhysReg); 119 } 120 }; 121 122 struct CallReturnHandler : public IncomingArgHandler { 123 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 124 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 125 : IncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} 126 127 void markPhysRegUsed(unsigned PhysReg) override { 128 MIB.addDef(PhysReg, RegState::Implicit); 129 } 130 131 MachineInstrBuilder MIB; 132 }; 133 134 struct OutgoingArgHandler : public CallLowering::ValueHandler { 135 OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 136 MachineInstrBuilder MIB, CCAssignFn *AssignFn, 137 CCAssignFn *AssignFnVarArg, bool IsTailCall = false, 138 int FPDiff = 0) 139 : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB), 140 AssignFnVarArg(AssignFnVarArg), IsTailCall(IsTailCall), FPDiff(FPDiff), 141 StackSize(0), SPReg(0) {} 142 143 bool isIncomingArgumentHandler() const override { return false; } 144 145 Register getStackAddress(uint64_t Size, int64_t Offset, 146 MachinePointerInfo &MPO) override { 147 MachineFunction &MF = MIRBuilder.getMF(); 148 LLT p0 = LLT::pointer(0, 64); 149 LLT s64 = LLT::scalar(64); 150 151 if (IsTailCall) { 152 Offset += FPDiff; 153 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); 154 auto FIReg = MIRBuilder.buildFrameIndex(p0, FI); 155 MPO = MachinePointerInfo::getFixedStack(MF, FI); 156 return FIReg.getReg(0); 157 } 158 159 if (!SPReg) 160 SPReg = MIRBuilder.buildCopy(p0, Register(AArch64::SP)).getReg(0); 161 162 auto OffsetReg = MIRBuilder.buildConstant(s64, Offset); 163 164 auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg); 165 166 MPO = MachinePointerInfo::getStack(MF, Offset); 167 return AddrReg.getReg(0); 168 } 169 170 void assignValueToReg(Register ValVReg, Register PhysReg, 171 CCValAssign &VA) override { 172 MIB.addUse(PhysReg, RegState::Implicit); 173 Register ExtReg = extendRegister(ValVReg, VA); 174 MIRBuilder.buildCopy(PhysReg, ExtReg); 175 } 176 177 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 178 MachinePointerInfo &MPO, CCValAssign &VA) override { 179 MachineFunction &MF = MIRBuilder.getMF(); 180 auto MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore, Size, 181 inferAlignFromPtrInfo(MF, MPO)); 182 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 183 } 184 185 void assignValueToAddress(const CallLowering::ArgInfo &Arg, Register Addr, 186 uint64_t Size, MachinePointerInfo &MPO, 187 CCValAssign &VA) override { 188 unsigned MaxSize = Size * 8; 189 // For varargs, we always want to extend them to 8 bytes, in which case 190 // we disable setting a max. 191 if (!Arg.IsFixed) 192 MaxSize = 0; 193 194 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 195 ? extendRegister(Arg.Regs[0], VA, MaxSize) 196 : Arg.Regs[0]; 197 198 // If we extended we might need to adjust the MMO's Size. 199 const LLT RegTy = MRI.getType(ValVReg); 200 if (RegTy.getSizeInBytes() > Size) 201 Size = RegTy.getSizeInBytes(); 202 203 assignValueToAddress(ValVReg, Addr, Size, MPO, VA); 204 } 205 206 bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT, 207 CCValAssign::LocInfo LocInfo, 208 const CallLowering::ArgInfo &Info, 209 ISD::ArgFlagsTy Flags, 210 CCState &State) override { 211 bool Res; 212 if (Info.IsFixed) 213 Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State); 214 else 215 Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State); 216 217 StackSize = State.getNextStackOffset(); 218 return Res; 219 } 220 221 MachineInstrBuilder MIB; 222 CCAssignFn *AssignFnVarArg; 223 bool IsTailCall; 224 225 /// For tail calls, the byte offset of the call's argument area from the 226 /// callee's. Unused elsewhere. 227 int FPDiff; 228 uint64_t StackSize; 229 230 // Cache the SP register vreg if we need it more than once in this call site. 231 Register SPReg; 232 }; 233 } // namespace 234 235 static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) { 236 return CallConv == CallingConv::Fast && TailCallOpt; 237 } 238 239 void AArch64CallLowering::splitToValueTypes( 240 const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs, 241 const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv) const { 242 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 243 LLVMContext &Ctx = OrigArg.Ty->getContext(); 244 245 SmallVector<EVT, 4> SplitVTs; 246 SmallVector<uint64_t, 4> Offsets; 247 ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0); 248 249 if (SplitVTs.size() == 0) 250 return; 251 252 if (SplitVTs.size() == 1) { 253 // No splitting to do, but we want to replace the original type (e.g. [1 x 254 // double] -> double). 255 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 256 OrigArg.Flags[0], OrigArg.IsFixed); 257 return; 258 } 259 260 // Create one ArgInfo for each virtual register in the original ArgInfo. 261 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 262 263 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 264 OrigArg.Ty, CallConv, false); 265 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 266 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 267 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0], 268 OrigArg.IsFixed); 269 if (NeedsRegBlock) 270 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 271 } 272 273 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 274 } 275 276 bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder, 277 const Value *Val, 278 ArrayRef<Register> VRegs, 279 Register SwiftErrorVReg) const { 280 auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR); 281 assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) && 282 "Return value without a vreg"); 283 284 bool Success = true; 285 if (!VRegs.empty()) { 286 MachineFunction &MF = MIRBuilder.getMF(); 287 const Function &F = MF.getFunction(); 288 289 MachineRegisterInfo &MRI = MF.getRegInfo(); 290 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 291 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv()); 292 auto &DL = F.getParent()->getDataLayout(); 293 LLVMContext &Ctx = Val->getType()->getContext(); 294 295 SmallVector<EVT, 4> SplitEVTs; 296 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 297 assert(VRegs.size() == SplitEVTs.size() && 298 "For each split Type there should be exactly one VReg."); 299 300 SmallVector<ArgInfo, 8> SplitArgs; 301 CallingConv::ID CC = F.getCallingConv(); 302 303 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 304 if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) > 1) { 305 LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split"); 306 return false; 307 } 308 309 Register CurVReg = VRegs[i]; 310 ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx)}; 311 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F); 312 313 // i1 is a special case because SDAG i1 true is naturally zero extended 314 // when widened using ANYEXT. We need to do it explicitly here. 315 if (MRI.getType(CurVReg).getSizeInBits() == 1) { 316 CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0); 317 } else { 318 // Some types will need extending as specified by the CC. 319 MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]); 320 if (EVT(NewVT) != SplitEVTs[i]) { 321 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 322 if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex, 323 Attribute::SExt)) 324 ExtendOp = TargetOpcode::G_SEXT; 325 else if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex, 326 Attribute::ZExt)) 327 ExtendOp = TargetOpcode::G_ZEXT; 328 329 LLT NewLLT(NewVT); 330 LLT OldLLT(MVT::getVT(CurArgInfo.Ty)); 331 CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx); 332 // Instead of an extend, we might have a vector type which needs 333 // padding with more elements, e.g. <2 x half> -> <4 x half>. 334 if (NewVT.isVector()) { 335 if (OldLLT.isVector()) { 336 if (NewLLT.getNumElements() > OldLLT.getNumElements()) { 337 // We don't handle VA types which are not exactly twice the 338 // size, but can easily be done in future. 339 if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) { 340 LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts"); 341 return false; 342 } 343 auto Undef = MIRBuilder.buildUndef({OldLLT}); 344 CurVReg = 345 MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef}).getReg(0); 346 } else { 347 // Just do a vector extend. 348 CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}) 349 .getReg(0); 350 } 351 } else if (NewLLT.getNumElements() == 2) { 352 // We need to pad a <1 x S> type to <2 x S>. Since we don't have 353 // <1 x S> vector types in GISel we use a build_vector instead 354 // of a vector merge/concat. 355 auto Undef = MIRBuilder.buildUndef({OldLLT}); 356 CurVReg = 357 MIRBuilder 358 .buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)}) 359 .getReg(0); 360 } else { 361 LLVM_DEBUG(dbgs() << "Could not handle ret ty"); 362 return false; 363 } 364 } else { 365 // A scalar extend. 366 CurVReg = 367 MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}).getReg(0); 368 } 369 } 370 } 371 if (CurVReg != CurArgInfo.Regs[0]) { 372 CurArgInfo.Regs[0] = CurVReg; 373 // Reset the arg flags after modifying CurVReg. 374 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F); 375 } 376 splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI, CC); 377 } 378 379 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFn, AssignFn); 380 Success = handleAssignments(MIRBuilder, SplitArgs, Handler); 381 } 382 383 if (SwiftErrorVReg) { 384 MIB.addUse(AArch64::X21, RegState::Implicit); 385 MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg); 386 } 387 388 MIRBuilder.insertInstr(MIB); 389 return Success; 390 } 391 392 /// Helper function to compute forwarded registers for musttail calls. Computes 393 /// the forwarded registers, sets MBB liveness, and emits COPY instructions that 394 /// can be used to save + restore registers later. 395 static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder, 396 CCAssignFn *AssignFn) { 397 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 398 MachineFunction &MF = MIRBuilder.getMF(); 399 MachineFrameInfo &MFI = MF.getFrameInfo(); 400 401 if (!MFI.hasMustTailInVarArgFunc()) 402 return; 403 404 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 405 const Function &F = MF.getFunction(); 406 assert(F.isVarArg() && "Expected F to be vararg?"); 407 408 // Compute the set of forwarded registers. The rest are scratch. 409 SmallVector<CCValAssign, 16> ArgLocs; 410 CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs, 411 F.getContext()); 412 SmallVector<MVT, 2> RegParmTypes; 413 RegParmTypes.push_back(MVT::i64); 414 RegParmTypes.push_back(MVT::f128); 415 416 // Later on, we can use this vector to restore the registers if necessary. 417 SmallVectorImpl<ForwardedRegister> &Forwards = 418 FuncInfo->getForwardedMustTailRegParms(); 419 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn); 420 421 // Conservatively forward X8, since it might be used for an aggregate 422 // return. 423 if (!CCInfo.isAllocated(AArch64::X8)) { 424 unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass); 425 Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64)); 426 } 427 428 // Add the forwards to the MachineBasicBlock and MachineFunction. 429 for (const auto &F : Forwards) { 430 MBB.addLiveIn(F.PReg); 431 MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg)); 432 } 433 } 434 435 bool AArch64CallLowering::fallBackToDAGISel(const Function &F) const { 436 if (isa<ScalableVectorType>(F.getReturnType())) 437 return true; 438 return llvm::any_of(F.args(), [](const Argument &A) { 439 return isa<ScalableVectorType>(A.getType()); 440 }); 441 } 442 443 bool AArch64CallLowering::lowerFormalArguments( 444 MachineIRBuilder &MIRBuilder, const Function &F, 445 ArrayRef<ArrayRef<Register>> VRegs) const { 446 MachineFunction &MF = MIRBuilder.getMF(); 447 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 448 MachineRegisterInfo &MRI = MF.getRegInfo(); 449 auto &DL = F.getParent()->getDataLayout(); 450 451 SmallVector<ArgInfo, 8> SplitArgs; 452 unsigned i = 0; 453 for (auto &Arg : F.args()) { 454 if (DL.getTypeStoreSize(Arg.getType()).isZero()) 455 continue; 456 457 ArgInfo OrigArg{VRegs[i], Arg.getType()}; 458 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F); 459 460 splitToValueTypes(OrigArg, SplitArgs, DL, MRI, F.getCallingConv()); 461 ++i; 462 } 463 464 if (!MBB.empty()) 465 MIRBuilder.setInstr(*MBB.begin()); 466 467 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 468 CCAssignFn *AssignFn = 469 TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false); 470 471 FormalArgHandler Handler(MIRBuilder, MRI, AssignFn); 472 if (!handleAssignments(MIRBuilder, SplitArgs, Handler)) 473 return false; 474 475 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 476 uint64_t StackOffset = Handler.StackUsed; 477 if (F.isVarArg()) { 478 auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 479 if (!Subtarget.isTargetDarwin()) { 480 // FIXME: we need to reimplement saveVarArgsRegisters from 481 // AArch64ISelLowering. 482 return false; 483 } 484 485 // We currently pass all varargs at 8-byte alignment, or 4 in ILP32. 486 StackOffset = alignTo(Handler.StackUsed, Subtarget.isTargetILP32() ? 4 : 8); 487 488 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 489 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true)); 490 } 491 492 if (doesCalleeRestoreStack(F.getCallingConv(), 493 MF.getTarget().Options.GuaranteedTailCallOpt)) { 494 // We have a non-standard ABI, so why not make full use of the stack that 495 // we're going to pop? It must be aligned to 16 B in any case. 496 StackOffset = alignTo(StackOffset, 16); 497 498 // If we're expected to restore the stack (e.g. fastcc), then we'll be 499 // adding a multiple of 16. 500 FuncInfo->setArgumentStackToRestore(StackOffset); 501 502 // Our own callers will guarantee that the space is free by giving an 503 // aligned value to CALLSEQ_START. 504 } 505 506 // When we tail call, we need to check if the callee's arguments 507 // will fit on the caller's stack. So, whenever we lower formal arguments, 508 // we should keep track of this information, since we might lower a tail call 509 // in this function later. 510 FuncInfo->setBytesInStackArgArea(StackOffset); 511 512 auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 513 if (Subtarget.hasCustomCallingConv()) 514 Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF); 515 516 handleMustTailForwardedRegisters(MIRBuilder, AssignFn); 517 518 // Move back to the end of the basic block. 519 MIRBuilder.setMBB(MBB); 520 521 return true; 522 } 523 524 /// Return true if the calling convention is one that we can guarantee TCO for. 525 static bool canGuaranteeTCO(CallingConv::ID CC) { 526 return CC == CallingConv::Fast; 527 } 528 529 /// Return true if we might ever do TCO for calls with this calling convention. 530 static bool mayTailCallThisCC(CallingConv::ID CC) { 531 switch (CC) { 532 case CallingConv::C: 533 case CallingConv::PreserveMost: 534 case CallingConv::Swift: 535 return true; 536 default: 537 return canGuaranteeTCO(CC); 538 } 539 } 540 541 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 542 /// CC. 543 static std::pair<CCAssignFn *, CCAssignFn *> 544 getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) { 545 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 546 } 547 548 bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay( 549 CallLoweringInfo &Info, MachineFunction &MF, 550 SmallVectorImpl<ArgInfo> &InArgs) const { 551 const Function &CallerF = MF.getFunction(); 552 CallingConv::ID CalleeCC = Info.CallConv; 553 CallingConv::ID CallerCC = CallerF.getCallingConv(); 554 555 // If the calling conventions match, then everything must be the same. 556 if (CalleeCC == CallerCC) 557 return true; 558 559 // Check if the caller and callee will handle arguments in the same way. 560 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 561 CCAssignFn *CalleeAssignFnFixed; 562 CCAssignFn *CalleeAssignFnVarArg; 563 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) = 564 getAssignFnsForCC(CalleeCC, TLI); 565 566 CCAssignFn *CallerAssignFnFixed; 567 CCAssignFn *CallerAssignFnVarArg; 568 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) = 569 getAssignFnsForCC(CallerCC, TLI); 570 571 if (!resultsCompatible(Info, MF, InArgs, *CalleeAssignFnFixed, 572 *CalleeAssignFnVarArg, *CallerAssignFnFixed, 573 *CallerAssignFnVarArg)) 574 return false; 575 576 // Make sure that the caller and callee preserve all of the same registers. 577 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); 578 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 579 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 580 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) { 581 TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved); 582 TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved); 583 } 584 585 return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved); 586 } 587 588 bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable( 589 CallLoweringInfo &Info, MachineFunction &MF, 590 SmallVectorImpl<ArgInfo> &OutArgs) const { 591 // If there are no outgoing arguments, then we are done. 592 if (OutArgs.empty()) 593 return true; 594 595 const Function &CallerF = MF.getFunction(); 596 CallingConv::ID CalleeCC = Info.CallConv; 597 CallingConv::ID CallerCC = CallerF.getCallingConv(); 598 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 599 600 CCAssignFn *AssignFnFixed; 601 CCAssignFn *AssignFnVarArg; 602 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 603 604 // We have outgoing arguments. Make sure that we can tail call with them. 605 SmallVector<CCValAssign, 16> OutLocs; 606 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext()); 607 608 if (!analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg)) { 609 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); 610 return false; 611 } 612 613 // Make sure that they can fit on the caller's stack. 614 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 615 if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) { 616 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); 617 return false; 618 } 619 620 // Verify that the parameters in callee-saved registers match. 621 // TODO: Port this over to CallLowering as general code once swiftself is 622 // supported. 623 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); 624 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); 625 MachineRegisterInfo &MRI = MF.getRegInfo(); 626 627 for (unsigned i = 0; i < OutLocs.size(); ++i) { 628 auto &ArgLoc = OutLocs[i]; 629 // If it's not a register, it's fine. 630 if (!ArgLoc.isRegLoc()) { 631 if (Info.IsVarArg) { 632 // Be conservative and disallow variadic memory operands to match SDAG's 633 // behaviour. 634 // FIXME: If the caller's calling convention is C, then we can 635 // potentially use its argument area. However, for cases like fastcc, 636 // we can't do anything. 637 LLVM_DEBUG( 638 dbgs() 639 << "... Cannot tail call vararg function with stack arguments\n"); 640 return false; 641 } 642 continue; 643 } 644 645 Register Reg = ArgLoc.getLocReg(); 646 647 // Only look at callee-saved registers. 648 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 649 continue; 650 651 LLVM_DEBUG( 652 dbgs() 653 << "... Call has an argument passed in a callee-saved register.\n"); 654 655 // Check if it was copied from. 656 ArgInfo &OutInfo = OutArgs[i]; 657 658 if (OutInfo.Regs.size() > 1) { 659 LLVM_DEBUG( 660 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 661 return false; 662 } 663 664 // Check if we copy the register, walking through copies from virtual 665 // registers. Note that getDefIgnoringCopies does not ignore copies from 666 // physical registers. 667 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 668 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 669 LLVM_DEBUG( 670 dbgs() 671 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 672 return false; 673 } 674 675 // Got a copy. Verify that it's the same as the register we want. 676 Register CopyRHS = RegDef->getOperand(1).getReg(); 677 if (CopyRHS != Reg) { 678 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 679 "VReg, cannot tail call.\n"); 680 return false; 681 } 682 } 683 684 return true; 685 } 686 687 bool AArch64CallLowering::isEligibleForTailCallOptimization( 688 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 689 SmallVectorImpl<ArgInfo> &InArgs, 690 SmallVectorImpl<ArgInfo> &OutArgs) const { 691 692 // Must pass all target-independent checks in order to tail call optimize. 693 if (!Info.IsTailCall) 694 return false; 695 696 CallingConv::ID CalleeCC = Info.CallConv; 697 MachineFunction &MF = MIRBuilder.getMF(); 698 const Function &CallerF = MF.getFunction(); 699 700 LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n"); 701 702 if (Info.SwiftErrorVReg) { 703 // TODO: We should handle this. 704 // Note that this is also handled by the check for no outgoing arguments. 705 // Proactively disabling this though, because the swifterror handling in 706 // lowerCall inserts a COPY *after* the location of the call. 707 LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n"); 708 return false; 709 } 710 711 if (!mayTailCallThisCC(CalleeCC)) { 712 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); 713 return false; 714 } 715 716 // Byval parameters hand the function a pointer directly into the stack area 717 // we want to reuse during a tail call. Working around this *is* possible (see 718 // X86). 719 // 720 // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try 721 // it? 722 // 723 // On Windows, "inreg" attributes signify non-aggregate indirect returns. 724 // In this case, it is necessary to save/restore X0 in the callee. Tail 725 // call opt interferes with this. So we disable tail call opt when the 726 // caller has an argument with "inreg" attribute. 727 // 728 // FIXME: Check whether the callee also has an "inreg" argument. 729 // 730 // When the caller has a swifterror argument, we don't want to tail call 731 // because would have to move into the swifterror register before the 732 // tail call. 733 if (any_of(CallerF.args(), [](const Argument &A) { 734 return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr(); 735 })) { 736 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, " 737 "inreg, or swifterror arguments\n"); 738 return false; 739 } 740 741 // Externally-defined functions with weak linkage should not be 742 // tail-called on AArch64 when the OS does not support dynamic 743 // pre-emption of symbols, as the AAELF spec requires normal calls 744 // to undefined weak functions to be replaced with a NOP or jump to the 745 // next instruction. The behaviour of branch instructions in this 746 // situation (as used for tail calls) is implementation-defined, so we 747 // cannot rely on the linker replacing the tail call with a return. 748 if (Info.Callee.isGlobal()) { 749 const GlobalValue *GV = Info.Callee.getGlobal(); 750 const Triple &TT = MF.getTarget().getTargetTriple(); 751 if (GV->hasExternalWeakLinkage() && 752 (!TT.isOSWindows() || TT.isOSBinFormatELF() || 753 TT.isOSBinFormatMachO())) { 754 LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function " 755 "with weak linkage for this OS.\n"); 756 return false; 757 } 758 } 759 760 // If we have -tailcallopt, then we're done. 761 if (MF.getTarget().Options.GuaranteedTailCallOpt) 762 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv(); 763 764 // We don't have -tailcallopt, so we're allowed to change the ABI (sibcall). 765 // Try to find cases where we can do that. 766 767 // I want anyone implementing a new calling convention to think long and hard 768 // about this assert. 769 assert((!Info.IsVarArg || CalleeCC == CallingConv::C) && 770 "Unexpected variadic calling convention"); 771 772 // Verify that the incoming and outgoing arguments from the callee are 773 // safe to tail call. 774 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { 775 LLVM_DEBUG( 776 dbgs() 777 << "... Caller and callee have incompatible calling conventions.\n"); 778 return false; 779 } 780 781 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) 782 return false; 783 784 LLVM_DEBUG( 785 dbgs() << "... Call is eligible for tail call optimization.\n"); 786 return true; 787 } 788 789 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 790 bool IsTailCall) { 791 if (!IsTailCall) 792 return IsIndirect ? getBLRCallOpcode(CallerF) : (unsigned)AArch64::BL; 793 794 if (!IsIndirect) 795 return AArch64::TCRETURNdi; 796 797 // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use 798 // x16 or x17. 799 if (CallerF.getFunction().hasFnAttribute("branch-target-enforcement")) 800 return AArch64::TCRETURNriBTI; 801 802 return AArch64::TCRETURNri; 803 } 804 805 bool AArch64CallLowering::lowerTailCall( 806 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 807 SmallVectorImpl<ArgInfo> &OutArgs) const { 808 MachineFunction &MF = MIRBuilder.getMF(); 809 const Function &F = MF.getFunction(); 810 MachineRegisterInfo &MRI = MF.getRegInfo(); 811 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 812 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 813 814 // True when we're tail calling, but without -tailcallopt. 815 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt; 816 817 // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64 818 // register class. Until we can do that, we should fall back here. 819 if (F.hasFnAttribute("branch-target-enforcement")) { 820 LLVM_DEBUG( 821 dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n"); 822 return false; 823 } 824 825 // Find out which ABI gets to decide where things go. 826 CallingConv::ID CalleeCC = Info.CallConv; 827 CCAssignFn *AssignFnFixed; 828 CCAssignFn *AssignFnVarArg; 829 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 830 831 MachineInstrBuilder CallSeqStart; 832 if (!IsSibCall) 833 CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN); 834 835 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true); 836 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 837 MIB.add(Info.Callee); 838 839 // Byte offset for the tail call. When we are sibcalling, this will always 840 // be 0. 841 MIB.addImm(0); 842 843 // Tell the call which registers are clobbered. 844 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); 845 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); 846 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) 847 TRI->UpdateCustomCallPreservedMask(MF, &Mask); 848 MIB.addRegMask(Mask); 849 850 if (TRI->isAnyArgRegReserved(MF)) 851 TRI->emitReservedArgRegCallError(MF); 852 853 // FPDiff is the byte offset of the call's argument area from the callee's. 854 // Stores to callee stack arguments will be placed in FixedStackSlots offset 855 // by this amount for a tail call. In a sibling call it must be 0 because the 856 // caller will deallocate the entire stack and the callee still expects its 857 // arguments to begin at SP+0. 858 int FPDiff = 0; 859 860 // This will be 0 for sibcalls, potentially nonzero for tail calls produced 861 // by -tailcallopt. For sibcalls, the memory operands for the call are 862 // already available in the caller's incoming argument space. 863 unsigned NumBytes = 0; 864 if (!IsSibCall) { 865 // We aren't sibcalling, so we need to compute FPDiff. We need to do this 866 // before handling assignments, because FPDiff must be known for memory 867 // arguments. 868 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 869 SmallVector<CCValAssign, 16> OutLocs; 870 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); 871 analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg); 872 873 // The callee will pop the argument stack as a tail call. Thus, we must 874 // keep it 16-byte aligned. 875 NumBytes = alignTo(OutInfo.getNextStackOffset(), 16); 876 877 // FPDiff will be negative if this tail call requires more space than we 878 // would automatically have in our incoming argument space. Positive if we 879 // actually shrink the stack. 880 FPDiff = NumReusableBytes - NumBytes; 881 882 // The stack pointer must be 16-byte aligned at all times it's used for a 883 // memory operation, which in practice means at *all* times and in 884 // particular across call boundaries. Therefore our own arguments started at 885 // a 16-byte aligned SP and the delta applied for the tail call should 886 // satisfy the same constraint. 887 assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); 888 } 889 890 const auto &Forwards = FuncInfo->getForwardedMustTailRegParms(); 891 892 // Do the actual argument marshalling. 893 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed, 894 AssignFnVarArg, true, FPDiff); 895 if (!handleAssignments(MIRBuilder, OutArgs, Handler)) 896 return false; 897 898 if (Info.IsVarArg && Info.IsMustTailCall) { 899 // Now we know what's being passed to the function. Add uses to the call for 900 // the forwarded registers that we *aren't* passing as parameters. This will 901 // preserve the copies we build earlier. 902 for (const auto &F : Forwards) { 903 Register ForwardedReg = F.PReg; 904 // If the register is already passed, or aliases a register which is 905 // already being passed, then skip it. 906 if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) { 907 if (!Use.isReg()) 908 return false; 909 return TRI->regsOverlap(Use.getReg(), ForwardedReg); 910 })) 911 continue; 912 913 // We aren't passing it already, so we should add it to the call. 914 MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg)); 915 MIB.addReg(ForwardedReg, RegState::Implicit); 916 } 917 } 918 919 // If we have -tailcallopt, we need to adjust the stack. We'll do the call 920 // sequence start and end here. 921 if (!IsSibCall) { 922 MIB->getOperand(1).setImm(FPDiff); 923 CallSeqStart.addImm(NumBytes).addImm(0); 924 // End the call sequence *before* emitting the call. Normally, we would 925 // tidy the frame up after the call. However, here, we've laid out the 926 // parameters so that when SP is reset, they will be in the correct 927 // location. 928 MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(NumBytes).addImm(0); 929 } 930 931 // Now we can add the actual call instruction to the correct basic block. 932 MIRBuilder.insertInstr(MIB); 933 934 // If Callee is a reg, since it is used by a target specific instruction, 935 // it must have a register class matching the constraint of that instruction. 936 if (Info.Callee.isReg()) 937 MIB->getOperand(0).setReg(constrainOperandRegClass( 938 MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(), 939 *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee, 940 0)); 941 942 MF.getFrameInfo().setHasTailCall(); 943 Info.LoweredTailCall = true; 944 return true; 945 } 946 947 bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 948 CallLoweringInfo &Info) const { 949 MachineFunction &MF = MIRBuilder.getMF(); 950 const Function &F = MF.getFunction(); 951 MachineRegisterInfo &MRI = MF.getRegInfo(); 952 auto &DL = F.getParent()->getDataLayout(); 953 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 954 955 SmallVector<ArgInfo, 8> OutArgs; 956 for (auto &OrigArg : Info.OrigArgs) { 957 splitToValueTypes(OrigArg, OutArgs, DL, MRI, Info.CallConv); 958 // AAPCS requires that we zero-extend i1 to 8 bits by the caller. 959 if (OrigArg.Ty->isIntegerTy(1)) 960 OutArgs.back().Flags[0].setZExt(); 961 } 962 963 SmallVector<ArgInfo, 8> InArgs; 964 if (!Info.OrigRet.Ty->isVoidTy()) 965 splitToValueTypes(Info.OrigRet, InArgs, DL, MRI, F.getCallingConv()); 966 967 // If we can lower as a tail call, do that instead. 968 bool CanTailCallOpt = 969 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs); 970 971 // We must emit a tail call if we have musttail. 972 if (Info.IsMustTailCall && !CanTailCallOpt) { 973 // There are types of incoming/outgoing arguments we can't handle yet, so 974 // it doesn't make sense to actually die here like in ISelLowering. Instead, 975 // fall back to SelectionDAG and let it try to handle this. 976 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 977 return false; 978 } 979 980 if (CanTailCallOpt) 981 return lowerTailCall(MIRBuilder, Info, OutArgs); 982 983 // Find out which ABI gets to decide where things go. 984 CCAssignFn *AssignFnFixed; 985 CCAssignFn *AssignFnVarArg; 986 std::tie(AssignFnFixed, AssignFnVarArg) = 987 getAssignFnsForCC(Info.CallConv, TLI); 988 989 MachineInstrBuilder CallSeqStart; 990 CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN); 991 992 // Create a temporarily-floating call instruction so we can add the implicit 993 // uses of arg registers. 994 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 995 996 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 997 MIB.add(Info.Callee); 998 999 // Tell the call which registers are clobbered. 1000 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); 1001 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 1002 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) 1003 TRI->UpdateCustomCallPreservedMask(MF, &Mask); 1004 MIB.addRegMask(Mask); 1005 1006 if (TRI->isAnyArgRegReserved(MF)) 1007 TRI->emitReservedArgRegCallError(MF); 1008 1009 // Do the actual argument marshalling. 1010 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed, 1011 AssignFnVarArg, false); 1012 if (!handleAssignments(MIRBuilder, OutArgs, Handler)) 1013 return false; 1014 1015 // Now we can add the actual call instruction to the correct basic block. 1016 MIRBuilder.insertInstr(MIB); 1017 1018 // If Callee is a reg, since it is used by a target specific 1019 // instruction, it must have a register class matching the 1020 // constraint of that instruction. 1021 if (Info.Callee.isReg()) 1022 MIB->getOperand(0).setReg(constrainOperandRegClass( 1023 MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(), 1024 *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee, 1025 0)); 1026 1027 // Finally we can copy the returned value back into its virtual-register. In 1028 // symmetry with the arguments, the physical register must be an 1029 // implicit-define of the call instruction. 1030 if (!Info.OrigRet.Ty->isVoidTy()) { 1031 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv); 1032 CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn); 1033 if (!handleAssignments(MIRBuilder, InArgs, Handler)) 1034 return false; 1035 } 1036 1037 if (Info.SwiftErrorVReg) { 1038 MIB.addDef(AArch64::X21, RegState::Implicit); 1039 MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21)); 1040 } 1041 1042 uint64_t CalleePopBytes = 1043 doesCalleeRestoreStack(Info.CallConv, 1044 MF.getTarget().Options.GuaranteedTailCallOpt) 1045 ? alignTo(Handler.StackSize, 16) 1046 : 0; 1047 1048 CallSeqStart.addImm(Handler.StackSize).addImm(0); 1049 MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP) 1050 .addImm(Handler.StackSize) 1051 .addImm(CalleePopBytes); 1052 1053 return true; 1054 } 1055