xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/GISel/AArch64CallLowering.cpp (revision ca53e5aedfebcc1b4091b68e01b2d5cae923f85e)
1 //===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AArch64CallLowering.h"
16 #include "AArch64ISelLowering.h"
17 #include "AArch64MachineFunctionInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/GlobalISel/Utils.h"
25 #include "llvm/CodeGen/LowLevelType.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 
47 #define DEBUG_TYPE "aarch64-call-lowering"
48 
49 using namespace llvm;
50 
51 AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
52   : CallLowering(&TLI) {}
53 
54 namespace {
55 struct IncomingArgHandler : public CallLowering::ValueHandler {
56   IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
57                      CCAssignFn *AssignFn)
58       : ValueHandler(MIRBuilder, MRI, AssignFn), StackUsed(0) {}
59 
60   Register getStackAddress(uint64_t Size, int64_t Offset,
61                            MachinePointerInfo &MPO) override {
62     auto &MFI = MIRBuilder.getMF().getFrameInfo();
63     int FI = MFI.CreateFixedObject(Size, Offset, true);
64     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
65     auto AddrReg = MIRBuilder.buildFrameIndex(LLT::pointer(0, 64), FI);
66     StackUsed = std::max(StackUsed, Size + Offset);
67     return AddrReg.getReg(0);
68   }
69 
70   void assignValueToReg(Register ValVReg, Register PhysReg,
71                         CCValAssign &VA) override {
72     markPhysRegUsed(PhysReg);
73     switch (VA.getLocInfo()) {
74     default:
75       MIRBuilder.buildCopy(ValVReg, PhysReg);
76       break;
77     case CCValAssign::LocInfo::SExt:
78     case CCValAssign::LocInfo::ZExt:
79     case CCValAssign::LocInfo::AExt: {
80       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
81       MIRBuilder.buildTrunc(ValVReg, Copy);
82       break;
83     }
84     }
85   }
86 
87   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
88                             MachinePointerInfo &MPO, CCValAssign &VA) override {
89     MachineFunction &MF = MIRBuilder.getMF();
90 
91     // The reported memory location may be wider than the value.
92     const LLT RegTy = MRI.getType(ValVReg);
93     MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
94 
95     auto MMO = MF.getMachineMemOperand(
96         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
97         inferAlignFromPtrInfo(MF, MPO));
98     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
99   }
100 
101   /// How the physical register gets marked varies between formal
102   /// parameters (it's a basic-block live-in), and a call instruction
103   /// (it's an implicit-def of the BL).
104   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
105 
106   bool isIncomingArgumentHandler() const override { return true; }
107 
108   uint64_t StackUsed;
109 };
110 
111 struct FormalArgHandler : public IncomingArgHandler {
112   FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
113                    CCAssignFn *AssignFn)
114     : IncomingArgHandler(MIRBuilder, MRI, AssignFn) {}
115 
116   void markPhysRegUsed(unsigned PhysReg) override {
117     MIRBuilder.getMRI()->addLiveIn(PhysReg);
118     MIRBuilder.getMBB().addLiveIn(PhysReg);
119   }
120 };
121 
122 struct CallReturnHandler : public IncomingArgHandler {
123   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
124                     MachineInstrBuilder MIB, CCAssignFn *AssignFn)
125     : IncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
126 
127   void markPhysRegUsed(unsigned PhysReg) override {
128     MIB.addDef(PhysReg, RegState::Implicit);
129   }
130 
131   MachineInstrBuilder MIB;
132 };
133 
134 struct OutgoingArgHandler : public CallLowering::ValueHandler {
135   OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
136                      MachineInstrBuilder MIB, CCAssignFn *AssignFn,
137                      CCAssignFn *AssignFnVarArg, bool IsTailCall = false,
138                      int FPDiff = 0)
139       : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB),
140         AssignFnVarArg(AssignFnVarArg), IsTailCall(IsTailCall), FPDiff(FPDiff),
141         StackSize(0), SPReg(0) {}
142 
143   bool isIncomingArgumentHandler() const override { return false; }
144 
145   Register getStackAddress(uint64_t Size, int64_t Offset,
146                            MachinePointerInfo &MPO) override {
147     MachineFunction &MF = MIRBuilder.getMF();
148     LLT p0 = LLT::pointer(0, 64);
149     LLT s64 = LLT::scalar(64);
150 
151     if (IsTailCall) {
152       Offset += FPDiff;
153       int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
154       auto FIReg = MIRBuilder.buildFrameIndex(p0, FI);
155       MPO = MachinePointerInfo::getFixedStack(MF, FI);
156       return FIReg.getReg(0);
157     }
158 
159     if (!SPReg)
160       SPReg = MIRBuilder.buildCopy(p0, Register(AArch64::SP)).getReg(0);
161 
162     auto OffsetReg = MIRBuilder.buildConstant(s64, Offset);
163 
164     auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg);
165 
166     MPO = MachinePointerInfo::getStack(MF, Offset);
167     return AddrReg.getReg(0);
168   }
169 
170   void assignValueToReg(Register ValVReg, Register PhysReg,
171                         CCValAssign &VA) override {
172     MIB.addUse(PhysReg, RegState::Implicit);
173     Register ExtReg = extendRegister(ValVReg, VA);
174     MIRBuilder.buildCopy(PhysReg, ExtReg);
175   }
176 
177   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
178                             MachinePointerInfo &MPO, CCValAssign &VA) override {
179     MachineFunction &MF = MIRBuilder.getMF();
180     auto MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore, Size,
181                                        inferAlignFromPtrInfo(MF, MPO));
182     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
183   }
184 
185   void assignValueToAddress(const CallLowering::ArgInfo &Arg, Register Addr,
186                             uint64_t Size, MachinePointerInfo &MPO,
187                             CCValAssign &VA) override {
188     unsigned MaxSize = Size * 8;
189     // For varargs, we always want to extend them to 8 bytes, in which case
190     // we disable setting a max.
191     if (!Arg.IsFixed)
192       MaxSize = 0;
193 
194     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
195                            ? extendRegister(Arg.Regs[0], VA, MaxSize)
196                            : Arg.Regs[0];
197 
198     // If we extended we might need to adjust the MMO's Size.
199     const LLT RegTy = MRI.getType(ValVReg);
200     if (RegTy.getSizeInBytes() > Size)
201       Size = RegTy.getSizeInBytes();
202 
203     assignValueToAddress(ValVReg, Addr, Size, MPO, VA);
204   }
205 
206   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
207                  CCValAssign::LocInfo LocInfo,
208                  const CallLowering::ArgInfo &Info,
209                  ISD::ArgFlagsTy Flags,
210                  CCState &State) override {
211     bool Res;
212     if (Info.IsFixed)
213       Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
214     else
215       Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State);
216 
217     StackSize = State.getNextStackOffset();
218     return Res;
219   }
220 
221   MachineInstrBuilder MIB;
222   CCAssignFn *AssignFnVarArg;
223   bool IsTailCall;
224 
225   /// For tail calls, the byte offset of the call's argument area from the
226   /// callee's. Unused elsewhere.
227   int FPDiff;
228   uint64_t StackSize;
229 
230   // Cache the SP register vreg if we need it more than once in this call site.
231   Register SPReg;
232 };
233 } // namespace
234 
235 static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) {
236   return CallConv == CallingConv::Fast && TailCallOpt;
237 }
238 
239 void AArch64CallLowering::splitToValueTypes(
240     const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
241     const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv) const {
242   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
243   LLVMContext &Ctx = OrigArg.Ty->getContext();
244 
245   SmallVector<EVT, 4> SplitVTs;
246   SmallVector<uint64_t, 4> Offsets;
247   ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
248 
249   if (SplitVTs.size() == 0)
250     return;
251 
252   if (SplitVTs.size() == 1) {
253     // No splitting to do, but we want to replace the original type (e.g. [1 x
254     // double] -> double).
255     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
256                            OrigArg.Flags[0], OrigArg.IsFixed);
257     return;
258   }
259 
260   // Create one ArgInfo for each virtual register in the original ArgInfo.
261   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
262 
263   bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
264       OrigArg.Ty, CallConv, false);
265   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
266     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
267     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
268                            OrigArg.IsFixed);
269     if (NeedsRegBlock)
270       SplitArgs.back().Flags[0].setInConsecutiveRegs();
271   }
272 
273   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
274 }
275 
276 bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
277                                       const Value *Val,
278                                       ArrayRef<Register> VRegs,
279                                       Register SwiftErrorVReg) const {
280   auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR);
281   assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
282          "Return value without a vreg");
283 
284   bool Success = true;
285   if (!VRegs.empty()) {
286     MachineFunction &MF = MIRBuilder.getMF();
287     const Function &F = MF.getFunction();
288 
289     MachineRegisterInfo &MRI = MF.getRegInfo();
290     const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
291     CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
292     auto &DL = F.getParent()->getDataLayout();
293     LLVMContext &Ctx = Val->getType()->getContext();
294 
295     SmallVector<EVT, 4> SplitEVTs;
296     ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
297     assert(VRegs.size() == SplitEVTs.size() &&
298            "For each split Type there should be exactly one VReg.");
299 
300     SmallVector<ArgInfo, 8> SplitArgs;
301     CallingConv::ID CC = F.getCallingConv();
302 
303     for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
304       if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) > 1) {
305         LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split");
306         return false;
307       }
308 
309       Register CurVReg = VRegs[i];
310       ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx)};
311       setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
312 
313       // i1 is a special case because SDAG i1 true is naturally zero extended
314       // when widened using ANYEXT. We need to do it explicitly here.
315       if (MRI.getType(CurVReg).getSizeInBits() == 1) {
316         CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
317       } else {
318         // Some types will need extending as specified by the CC.
319         MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
320         if (EVT(NewVT) != SplitEVTs[i]) {
321           unsigned ExtendOp = TargetOpcode::G_ANYEXT;
322           if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
323                                              Attribute::SExt))
324             ExtendOp = TargetOpcode::G_SEXT;
325           else if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
326                                                   Attribute::ZExt))
327             ExtendOp = TargetOpcode::G_ZEXT;
328 
329           LLT NewLLT(NewVT);
330           LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
331           CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
332           // Instead of an extend, we might have a vector type which needs
333           // padding with more elements, e.g. <2 x half> -> <4 x half>.
334           if (NewVT.isVector()) {
335             if (OldLLT.isVector()) {
336               if (NewLLT.getNumElements() > OldLLT.getNumElements()) {
337                 // We don't handle VA types which are not exactly twice the
338                 // size, but can easily be done in future.
339                 if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) {
340                   LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
341                   return false;
342                 }
343                 auto Undef = MIRBuilder.buildUndef({OldLLT});
344                 CurVReg =
345                     MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef}).getReg(0);
346               } else {
347                 // Just do a vector extend.
348                 CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
349                               .getReg(0);
350               }
351             } else if (NewLLT.getNumElements() == 2) {
352               // We need to pad a <1 x S> type to <2 x S>. Since we don't have
353               // <1 x S> vector types in GISel we use a build_vector instead
354               // of a vector merge/concat.
355               auto Undef = MIRBuilder.buildUndef({OldLLT});
356               CurVReg =
357                   MIRBuilder
358                       .buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)})
359                       .getReg(0);
360             } else {
361               LLVM_DEBUG(dbgs() << "Could not handle ret ty");
362               return false;
363             }
364           } else {
365             // A scalar extend.
366             CurVReg =
367                 MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}).getReg(0);
368           }
369         }
370       }
371       if (CurVReg != CurArgInfo.Regs[0]) {
372         CurArgInfo.Regs[0] = CurVReg;
373         // Reset the arg flags after modifying CurVReg.
374         setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
375       }
376      splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI, CC);
377     }
378 
379     OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFn, AssignFn);
380     Success = handleAssignments(MIRBuilder, SplitArgs, Handler);
381   }
382 
383   if (SwiftErrorVReg) {
384     MIB.addUse(AArch64::X21, RegState::Implicit);
385     MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg);
386   }
387 
388   MIRBuilder.insertInstr(MIB);
389   return Success;
390 }
391 
392 /// Helper function to compute forwarded registers for musttail calls. Computes
393 /// the forwarded registers, sets MBB liveness, and emits COPY instructions that
394 /// can be used to save + restore registers later.
395 static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder,
396                                              CCAssignFn *AssignFn) {
397   MachineBasicBlock &MBB = MIRBuilder.getMBB();
398   MachineFunction &MF = MIRBuilder.getMF();
399   MachineFrameInfo &MFI = MF.getFrameInfo();
400 
401   if (!MFI.hasMustTailInVarArgFunc())
402     return;
403 
404   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
405   const Function &F = MF.getFunction();
406   assert(F.isVarArg() && "Expected F to be vararg?");
407 
408   // Compute the set of forwarded registers. The rest are scratch.
409   SmallVector<CCValAssign, 16> ArgLocs;
410   CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs,
411                  F.getContext());
412   SmallVector<MVT, 2> RegParmTypes;
413   RegParmTypes.push_back(MVT::i64);
414   RegParmTypes.push_back(MVT::f128);
415 
416   // Later on, we can use this vector to restore the registers if necessary.
417   SmallVectorImpl<ForwardedRegister> &Forwards =
418       FuncInfo->getForwardedMustTailRegParms();
419   CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn);
420 
421   // Conservatively forward X8, since it might be used for an aggregate
422   // return.
423   if (!CCInfo.isAllocated(AArch64::X8)) {
424     unsigned X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
425     Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
426   }
427 
428   // Add the forwards to the MachineBasicBlock and MachineFunction.
429   for (const auto &F : Forwards) {
430     MBB.addLiveIn(F.PReg);
431     MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg));
432   }
433 }
434 
435 bool AArch64CallLowering::fallBackToDAGISel(const Function &F) const {
436   if (isa<ScalableVectorType>(F.getReturnType()))
437     return true;
438   return llvm::any_of(F.args(), [](const Argument &A) {
439     return isa<ScalableVectorType>(A.getType());
440   });
441 }
442 
443 bool AArch64CallLowering::lowerFormalArguments(
444     MachineIRBuilder &MIRBuilder, const Function &F,
445     ArrayRef<ArrayRef<Register>> VRegs) const {
446   MachineFunction &MF = MIRBuilder.getMF();
447   MachineBasicBlock &MBB = MIRBuilder.getMBB();
448   MachineRegisterInfo &MRI = MF.getRegInfo();
449   auto &DL = F.getParent()->getDataLayout();
450 
451   SmallVector<ArgInfo, 8> SplitArgs;
452   unsigned i = 0;
453   for (auto &Arg : F.args()) {
454     if (DL.getTypeStoreSize(Arg.getType()).isZero())
455       continue;
456 
457     ArgInfo OrigArg{VRegs[i], Arg.getType()};
458     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F);
459 
460     splitToValueTypes(OrigArg, SplitArgs, DL, MRI, F.getCallingConv());
461     ++i;
462   }
463 
464   if (!MBB.empty())
465     MIRBuilder.setInstr(*MBB.begin());
466 
467   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
468   CCAssignFn *AssignFn =
469       TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false);
470 
471   FormalArgHandler Handler(MIRBuilder, MRI, AssignFn);
472   if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
473     return false;
474 
475   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
476   uint64_t StackOffset = Handler.StackUsed;
477   if (F.isVarArg()) {
478     auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
479     if (!Subtarget.isTargetDarwin()) {
480         // FIXME: we need to reimplement saveVarArgsRegisters from
481       // AArch64ISelLowering.
482       return false;
483     }
484 
485     // We currently pass all varargs at 8-byte alignment, or 4 in ILP32.
486     StackOffset = alignTo(Handler.StackUsed, Subtarget.isTargetILP32() ? 4 : 8);
487 
488     auto &MFI = MIRBuilder.getMF().getFrameInfo();
489     FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
490   }
491 
492   if (doesCalleeRestoreStack(F.getCallingConv(),
493                              MF.getTarget().Options.GuaranteedTailCallOpt)) {
494     // We have a non-standard ABI, so why not make full use of the stack that
495     // we're going to pop? It must be aligned to 16 B in any case.
496     StackOffset = alignTo(StackOffset, 16);
497 
498     // If we're expected to restore the stack (e.g. fastcc), then we'll be
499     // adding a multiple of 16.
500     FuncInfo->setArgumentStackToRestore(StackOffset);
501 
502     // Our own callers will guarantee that the space is free by giving an
503     // aligned value to CALLSEQ_START.
504   }
505 
506   // When we tail call, we need to check if the callee's arguments
507   // will fit on the caller's stack. So, whenever we lower formal arguments,
508   // we should keep track of this information, since we might lower a tail call
509   // in this function later.
510   FuncInfo->setBytesInStackArgArea(StackOffset);
511 
512   auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
513   if (Subtarget.hasCustomCallingConv())
514     Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
515 
516   handleMustTailForwardedRegisters(MIRBuilder, AssignFn);
517 
518   // Move back to the end of the basic block.
519   MIRBuilder.setMBB(MBB);
520 
521   return true;
522 }
523 
524 /// Return true if the calling convention is one that we can guarantee TCO for.
525 static bool canGuaranteeTCO(CallingConv::ID CC) {
526   return CC == CallingConv::Fast;
527 }
528 
529 /// Return true if we might ever do TCO for calls with this calling convention.
530 static bool mayTailCallThisCC(CallingConv::ID CC) {
531   switch (CC) {
532   case CallingConv::C:
533   case CallingConv::PreserveMost:
534   case CallingConv::Swift:
535     return true;
536   default:
537     return canGuaranteeTCO(CC);
538   }
539 }
540 
541 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
542 /// CC.
543 static std::pair<CCAssignFn *, CCAssignFn *>
544 getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) {
545   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
546 }
547 
548 bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay(
549     CallLoweringInfo &Info, MachineFunction &MF,
550     SmallVectorImpl<ArgInfo> &InArgs) const {
551   const Function &CallerF = MF.getFunction();
552   CallingConv::ID CalleeCC = Info.CallConv;
553   CallingConv::ID CallerCC = CallerF.getCallingConv();
554 
555   // If the calling conventions match, then everything must be the same.
556   if (CalleeCC == CallerCC)
557     return true;
558 
559   // Check if the caller and callee will handle arguments in the same way.
560   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
561   CCAssignFn *CalleeAssignFnFixed;
562   CCAssignFn *CalleeAssignFnVarArg;
563   std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
564       getAssignFnsForCC(CalleeCC, TLI);
565 
566   CCAssignFn *CallerAssignFnFixed;
567   CCAssignFn *CallerAssignFnVarArg;
568   std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
569       getAssignFnsForCC(CallerCC, TLI);
570 
571   if (!resultsCompatible(Info, MF, InArgs, *CalleeAssignFnFixed,
572                          *CalleeAssignFnVarArg, *CallerAssignFnFixed,
573                          *CallerAssignFnVarArg))
574     return false;
575 
576   // Make sure that the caller and callee preserve all of the same registers.
577   auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
578   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
579   const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
580   if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) {
581     TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
582     TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
583   }
584 
585   return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved);
586 }
587 
588 bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable(
589     CallLoweringInfo &Info, MachineFunction &MF,
590     SmallVectorImpl<ArgInfo> &OutArgs) const {
591   // If there are no outgoing arguments, then we are done.
592   if (OutArgs.empty())
593     return true;
594 
595   const Function &CallerF = MF.getFunction();
596   CallingConv::ID CalleeCC = Info.CallConv;
597   CallingConv::ID CallerCC = CallerF.getCallingConv();
598   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
599 
600   CCAssignFn *AssignFnFixed;
601   CCAssignFn *AssignFnVarArg;
602   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
603 
604   // We have outgoing arguments. Make sure that we can tail call with them.
605   SmallVector<CCValAssign, 16> OutLocs;
606   CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
607 
608   if (!analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg)) {
609     LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
610     return false;
611   }
612 
613   // Make sure that they can fit on the caller's stack.
614   const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
615   if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
616     LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
617     return false;
618   }
619 
620   // Verify that the parameters in callee-saved registers match.
621   // TODO: Port this over to CallLowering as general code once swiftself is
622   // supported.
623   auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
624   const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
625   MachineRegisterInfo &MRI = MF.getRegInfo();
626 
627   for (unsigned i = 0; i < OutLocs.size(); ++i) {
628     auto &ArgLoc = OutLocs[i];
629     // If it's not a register, it's fine.
630     if (!ArgLoc.isRegLoc()) {
631       if (Info.IsVarArg) {
632         // Be conservative and disallow variadic memory operands to match SDAG's
633         // behaviour.
634         // FIXME: If the caller's calling convention is C, then we can
635         // potentially use its argument area. However, for cases like fastcc,
636         // we can't do anything.
637         LLVM_DEBUG(
638             dbgs()
639             << "... Cannot tail call vararg function with stack arguments\n");
640         return false;
641       }
642       continue;
643     }
644 
645     Register Reg = ArgLoc.getLocReg();
646 
647     // Only look at callee-saved registers.
648     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
649       continue;
650 
651     LLVM_DEBUG(
652         dbgs()
653         << "... Call has an argument passed in a callee-saved register.\n");
654 
655     // Check if it was copied from.
656     ArgInfo &OutInfo = OutArgs[i];
657 
658     if (OutInfo.Regs.size() > 1) {
659       LLVM_DEBUG(
660           dbgs() << "... Cannot handle arguments in multiple registers.\n");
661       return false;
662     }
663 
664     // Check if we copy the register, walking through copies from virtual
665     // registers. Note that getDefIgnoringCopies does not ignore copies from
666     // physical registers.
667     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
668     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
669       LLVM_DEBUG(
670           dbgs()
671           << "... Parameter was not copied into a VReg, cannot tail call.\n");
672       return false;
673     }
674 
675     // Got a copy. Verify that it's the same as the register we want.
676     Register CopyRHS = RegDef->getOperand(1).getReg();
677     if (CopyRHS != Reg) {
678       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
679                            "VReg, cannot tail call.\n");
680       return false;
681     }
682   }
683 
684   return true;
685 }
686 
687 bool AArch64CallLowering::isEligibleForTailCallOptimization(
688     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
689     SmallVectorImpl<ArgInfo> &InArgs,
690     SmallVectorImpl<ArgInfo> &OutArgs) const {
691 
692   // Must pass all target-independent checks in order to tail call optimize.
693   if (!Info.IsTailCall)
694     return false;
695 
696   CallingConv::ID CalleeCC = Info.CallConv;
697   MachineFunction &MF = MIRBuilder.getMF();
698   const Function &CallerF = MF.getFunction();
699 
700   LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n");
701 
702   if (Info.SwiftErrorVReg) {
703     // TODO: We should handle this.
704     // Note that this is also handled by the check for no outgoing arguments.
705     // Proactively disabling this though, because the swifterror handling in
706     // lowerCall inserts a COPY *after* the location of the call.
707     LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n");
708     return false;
709   }
710 
711   if (!mayTailCallThisCC(CalleeCC)) {
712     LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
713     return false;
714   }
715 
716   // Byval parameters hand the function a pointer directly into the stack area
717   // we want to reuse during a tail call. Working around this *is* possible (see
718   // X86).
719   //
720   // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try
721   // it?
722   //
723   // On Windows, "inreg" attributes signify non-aggregate indirect returns.
724   // In this case, it is necessary to save/restore X0 in the callee. Tail
725   // call opt interferes with this. So we disable tail call opt when the
726   // caller has an argument with "inreg" attribute.
727   //
728   // FIXME: Check whether the callee also has an "inreg" argument.
729   //
730   // When the caller has a swifterror argument, we don't want to tail call
731   // because would have to move into the swifterror register before the
732   // tail call.
733   if (any_of(CallerF.args(), [](const Argument &A) {
734         return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr();
735       })) {
736     LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, "
737                          "inreg, or swifterror arguments\n");
738     return false;
739   }
740 
741   // Externally-defined functions with weak linkage should not be
742   // tail-called on AArch64 when the OS does not support dynamic
743   // pre-emption of symbols, as the AAELF spec requires normal calls
744   // to undefined weak functions to be replaced with a NOP or jump to the
745   // next instruction. The behaviour of branch instructions in this
746   // situation (as used for tail calls) is implementation-defined, so we
747   // cannot rely on the linker replacing the tail call with a return.
748   if (Info.Callee.isGlobal()) {
749     const GlobalValue *GV = Info.Callee.getGlobal();
750     const Triple &TT = MF.getTarget().getTargetTriple();
751     if (GV->hasExternalWeakLinkage() &&
752         (!TT.isOSWindows() || TT.isOSBinFormatELF() ||
753          TT.isOSBinFormatMachO())) {
754       LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function "
755                            "with weak linkage for this OS.\n");
756       return false;
757     }
758   }
759 
760   // If we have -tailcallopt, then we're done.
761   if (MF.getTarget().Options.GuaranteedTailCallOpt)
762     return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
763 
764   // We don't have -tailcallopt, so we're allowed to change the ABI (sibcall).
765   // Try to find cases where we can do that.
766 
767   // I want anyone implementing a new calling convention to think long and hard
768   // about this assert.
769   assert((!Info.IsVarArg || CalleeCC == CallingConv::C) &&
770          "Unexpected variadic calling convention");
771 
772   // Verify that the incoming and outgoing arguments from the callee are
773   // safe to tail call.
774   if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
775     LLVM_DEBUG(
776         dbgs()
777         << "... Caller and callee have incompatible calling conventions.\n");
778     return false;
779   }
780 
781   if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
782     return false;
783 
784   LLVM_DEBUG(
785       dbgs() << "... Call is eligible for tail call optimization.\n");
786   return true;
787 }
788 
789 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
790                               bool IsTailCall) {
791   if (!IsTailCall)
792     return IsIndirect ? getBLRCallOpcode(CallerF) : (unsigned)AArch64::BL;
793 
794   if (!IsIndirect)
795     return AArch64::TCRETURNdi;
796 
797   // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use
798   // x16 or x17.
799   if (CallerF.getFunction().hasFnAttribute("branch-target-enforcement"))
800     return AArch64::TCRETURNriBTI;
801 
802   return AArch64::TCRETURNri;
803 }
804 
805 bool AArch64CallLowering::lowerTailCall(
806     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
807     SmallVectorImpl<ArgInfo> &OutArgs) const {
808   MachineFunction &MF = MIRBuilder.getMF();
809   const Function &F = MF.getFunction();
810   MachineRegisterInfo &MRI = MF.getRegInfo();
811   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
812   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
813 
814   // True when we're tail calling, but without -tailcallopt.
815   bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
816 
817   // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64
818   // register class. Until we can do that, we should fall back here.
819   if (F.hasFnAttribute("branch-target-enforcement")) {
820     LLVM_DEBUG(
821         dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n");
822     return false;
823   }
824 
825   // Find out which ABI gets to decide where things go.
826   CallingConv::ID CalleeCC = Info.CallConv;
827   CCAssignFn *AssignFnFixed;
828   CCAssignFn *AssignFnVarArg;
829   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
830 
831   MachineInstrBuilder CallSeqStart;
832   if (!IsSibCall)
833     CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
834 
835   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true);
836   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
837   MIB.add(Info.Callee);
838 
839   // Byte offset for the tail call. When we are sibcalling, this will always
840   // be 0.
841   MIB.addImm(0);
842 
843   // Tell the call which registers are clobbered.
844   auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
845   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
846   if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
847     TRI->UpdateCustomCallPreservedMask(MF, &Mask);
848   MIB.addRegMask(Mask);
849 
850   if (TRI->isAnyArgRegReserved(MF))
851     TRI->emitReservedArgRegCallError(MF);
852 
853   // FPDiff is the byte offset of the call's argument area from the callee's.
854   // Stores to callee stack arguments will be placed in FixedStackSlots offset
855   // by this amount for a tail call. In a sibling call it must be 0 because the
856   // caller will deallocate the entire stack and the callee still expects its
857   // arguments to begin at SP+0.
858   int FPDiff = 0;
859 
860   // This will be 0 for sibcalls, potentially nonzero for tail calls produced
861   // by -tailcallopt. For sibcalls, the memory operands for the call are
862   // already available in the caller's incoming argument space.
863   unsigned NumBytes = 0;
864   if (!IsSibCall) {
865     // We aren't sibcalling, so we need to compute FPDiff. We need to do this
866     // before handling assignments, because FPDiff must be known for memory
867     // arguments.
868     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
869     SmallVector<CCValAssign, 16> OutLocs;
870     CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
871     analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg);
872 
873     // The callee will pop the argument stack as a tail call. Thus, we must
874     // keep it 16-byte aligned.
875     NumBytes = alignTo(OutInfo.getNextStackOffset(), 16);
876 
877     // FPDiff will be negative if this tail call requires more space than we
878     // would automatically have in our incoming argument space. Positive if we
879     // actually shrink the stack.
880     FPDiff = NumReusableBytes - NumBytes;
881 
882     // The stack pointer must be 16-byte aligned at all times it's used for a
883     // memory operation, which in practice means at *all* times and in
884     // particular across call boundaries. Therefore our own arguments started at
885     // a 16-byte aligned SP and the delta applied for the tail call should
886     // satisfy the same constraint.
887     assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
888   }
889 
890   const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
891 
892   // Do the actual argument marshalling.
893   OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
894                              AssignFnVarArg, true, FPDiff);
895   if (!handleAssignments(MIRBuilder, OutArgs, Handler))
896     return false;
897 
898   if (Info.IsVarArg && Info.IsMustTailCall) {
899     // Now we know what's being passed to the function. Add uses to the call for
900     // the forwarded registers that we *aren't* passing as parameters. This will
901     // preserve the copies we build earlier.
902     for (const auto &F : Forwards) {
903       Register ForwardedReg = F.PReg;
904       // If the register is already passed, or aliases a register which is
905       // already being passed, then skip it.
906       if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) {
907             if (!Use.isReg())
908               return false;
909             return TRI->regsOverlap(Use.getReg(), ForwardedReg);
910           }))
911         continue;
912 
913       // We aren't passing it already, so we should add it to the call.
914       MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg));
915       MIB.addReg(ForwardedReg, RegState::Implicit);
916     }
917   }
918 
919   // If we have -tailcallopt, we need to adjust the stack. We'll do the call
920   // sequence start and end here.
921   if (!IsSibCall) {
922     MIB->getOperand(1).setImm(FPDiff);
923     CallSeqStart.addImm(NumBytes).addImm(0);
924     // End the call sequence *before* emitting the call. Normally, we would
925     // tidy the frame up after the call. However, here, we've laid out the
926     // parameters so that when SP is reset, they will be in the correct
927     // location.
928     MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(NumBytes).addImm(0);
929   }
930 
931   // Now we can add the actual call instruction to the correct basic block.
932   MIRBuilder.insertInstr(MIB);
933 
934   // If Callee is a reg, since it is used by a target specific instruction,
935   // it must have a register class matching the constraint of that instruction.
936   if (Info.Callee.isReg())
937     MIB->getOperand(0).setReg(constrainOperandRegClass(
938         MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
939         *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
940         0));
941 
942   MF.getFrameInfo().setHasTailCall();
943   Info.LoweredTailCall = true;
944   return true;
945 }
946 
947 bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
948                                     CallLoweringInfo &Info) const {
949   MachineFunction &MF = MIRBuilder.getMF();
950   const Function &F = MF.getFunction();
951   MachineRegisterInfo &MRI = MF.getRegInfo();
952   auto &DL = F.getParent()->getDataLayout();
953   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
954 
955   SmallVector<ArgInfo, 8> OutArgs;
956   for (auto &OrigArg : Info.OrigArgs) {
957     splitToValueTypes(OrigArg, OutArgs, DL, MRI, Info.CallConv);
958     // AAPCS requires that we zero-extend i1 to 8 bits by the caller.
959     if (OrigArg.Ty->isIntegerTy(1))
960       OutArgs.back().Flags[0].setZExt();
961   }
962 
963   SmallVector<ArgInfo, 8> InArgs;
964   if (!Info.OrigRet.Ty->isVoidTy())
965     splitToValueTypes(Info.OrigRet, InArgs, DL, MRI, F.getCallingConv());
966 
967   // If we can lower as a tail call, do that instead.
968   bool CanTailCallOpt =
969       isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
970 
971   // We must emit a tail call if we have musttail.
972   if (Info.IsMustTailCall && !CanTailCallOpt) {
973     // There are types of incoming/outgoing arguments we can't handle yet, so
974     // it doesn't make sense to actually die here like in ISelLowering. Instead,
975     // fall back to SelectionDAG and let it try to handle this.
976     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
977     return false;
978   }
979 
980   if (CanTailCallOpt)
981     return lowerTailCall(MIRBuilder, Info, OutArgs);
982 
983   // Find out which ABI gets to decide where things go.
984   CCAssignFn *AssignFnFixed;
985   CCAssignFn *AssignFnVarArg;
986   std::tie(AssignFnFixed, AssignFnVarArg) =
987       getAssignFnsForCC(Info.CallConv, TLI);
988 
989   MachineInstrBuilder CallSeqStart;
990   CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
991 
992   // Create a temporarily-floating call instruction so we can add the implicit
993   // uses of arg registers.
994   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
995 
996   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
997   MIB.add(Info.Callee);
998 
999   // Tell the call which registers are clobbered.
1000   auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
1001   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1002   if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
1003     TRI->UpdateCustomCallPreservedMask(MF, &Mask);
1004   MIB.addRegMask(Mask);
1005 
1006   if (TRI->isAnyArgRegReserved(MF))
1007     TRI->emitReservedArgRegCallError(MF);
1008 
1009   // Do the actual argument marshalling.
1010   OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
1011                              AssignFnVarArg, false);
1012   if (!handleAssignments(MIRBuilder, OutArgs, Handler))
1013     return false;
1014 
1015   // Now we can add the actual call instruction to the correct basic block.
1016   MIRBuilder.insertInstr(MIB);
1017 
1018   // If Callee is a reg, since it is used by a target specific
1019   // instruction, it must have a register class matching the
1020   // constraint of that instruction.
1021   if (Info.Callee.isReg())
1022     MIB->getOperand(0).setReg(constrainOperandRegClass(
1023         MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
1024         *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
1025         0));
1026 
1027   // Finally we can copy the returned value back into its virtual-register. In
1028   // symmetry with the arguments, the physical register must be an
1029   // implicit-define of the call instruction.
1030   if (!Info.OrigRet.Ty->isVoidTy()) {
1031     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv);
1032     CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1033     if (!handleAssignments(MIRBuilder, InArgs, Handler))
1034       return false;
1035   }
1036 
1037   if (Info.SwiftErrorVReg) {
1038     MIB.addDef(AArch64::X21, RegState::Implicit);
1039     MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21));
1040   }
1041 
1042   uint64_t CalleePopBytes =
1043       doesCalleeRestoreStack(Info.CallConv,
1044                              MF.getTarget().Options.GuaranteedTailCallOpt)
1045           ? alignTo(Handler.StackSize, 16)
1046           : 0;
1047 
1048   CallSeqStart.addImm(Handler.StackSize).addImm(0);
1049   MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP)
1050       .addImm(Handler.StackSize)
1051       .addImm(CalleePopBytes);
1052 
1053   return true;
1054 }
1055