1 //===--- AArch64CallLowering.cpp - Call lowering --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64CallLowering.h" 16 #include "AArch64ISelLowering.h" 17 #include "AArch64MachineFunctionInfo.h" 18 #include "AArch64RegisterInfo.h" 19 #include "AArch64Subtarget.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/Analysis/ObjCARCUtil.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 27 #include "llvm/CodeGen/GlobalISel/Utils.h" 28 #include "llvm/CodeGen/LowLevelTypeUtils.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/MachineValueType.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/CodeGen/ValueTypes.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/Value.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstdint> 48 #include <iterator> 49 50 #define DEBUG_TYPE "aarch64-call-lowering" 51 52 using namespace llvm; 53 54 AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI) 55 : CallLowering(&TLI) {} 56 57 static void applyStackPassedSmallTypeDAGHack(EVT OrigVT, MVT &ValVT, 58 MVT &LocVT) { 59 // If ValVT is i1/i8/i16, we should set LocVT to i8/i8/i16. This is a legacy 60 // hack because the DAG calls the assignment function with pre-legalized 61 // register typed values, not the raw type. 62 // 63 // This hack is not applied to return values which are not passed on the 64 // stack. 65 if (OrigVT == MVT::i1 || OrigVT == MVT::i8) 66 ValVT = LocVT = MVT::i8; 67 else if (OrigVT == MVT::i16) 68 ValVT = LocVT = MVT::i16; 69 } 70 71 // Account for i1/i8/i16 stack passed value hack 72 static LLT getStackValueStoreTypeHack(const CCValAssign &VA) { 73 const MVT ValVT = VA.getValVT(); 74 return (ValVT == MVT::i8 || ValVT == MVT::i16) ? LLT(ValVT) 75 : LLT(VA.getLocVT()); 76 } 77 78 namespace { 79 80 struct AArch64IncomingValueAssigner 81 : public CallLowering::IncomingValueAssigner { 82 AArch64IncomingValueAssigner(CCAssignFn *AssignFn_, 83 CCAssignFn *AssignFnVarArg_) 84 : IncomingValueAssigner(AssignFn_, AssignFnVarArg_) {} 85 86 bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT, 87 CCValAssign::LocInfo LocInfo, 88 const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags, 89 CCState &State) override { 90 applyStackPassedSmallTypeDAGHack(OrigVT, ValVT, LocVT); 91 return IncomingValueAssigner::assignArg(ValNo, OrigVT, ValVT, LocVT, 92 LocInfo, Info, Flags, State); 93 } 94 }; 95 96 struct AArch64OutgoingValueAssigner 97 : public CallLowering::OutgoingValueAssigner { 98 const AArch64Subtarget &Subtarget; 99 100 /// Track if this is used for a return instead of function argument 101 /// passing. We apply a hack to i1/i8/i16 stack passed values, but do not use 102 /// stack passed returns for them and cannot apply the type adjustment. 103 bool IsReturn; 104 105 AArch64OutgoingValueAssigner(CCAssignFn *AssignFn_, 106 CCAssignFn *AssignFnVarArg_, 107 const AArch64Subtarget &Subtarget_, 108 bool IsReturn) 109 : OutgoingValueAssigner(AssignFn_, AssignFnVarArg_), 110 Subtarget(Subtarget_), IsReturn(IsReturn) {} 111 112 bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT, 113 CCValAssign::LocInfo LocInfo, 114 const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags, 115 CCState &State) override { 116 bool IsCalleeWin = Subtarget.isCallingConvWin64(State.getCallingConv()); 117 bool UseVarArgsCCForFixed = IsCalleeWin && State.isVarArg(); 118 119 bool Res; 120 if (Info.IsFixed && !UseVarArgsCCForFixed) { 121 if (!IsReturn) 122 applyStackPassedSmallTypeDAGHack(OrigVT, ValVT, LocVT); 123 Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State); 124 } else 125 Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State); 126 127 StackSize = State.getStackSize(); 128 return Res; 129 } 130 }; 131 132 struct IncomingArgHandler : public CallLowering::IncomingValueHandler { 133 IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI) 134 : IncomingValueHandler(MIRBuilder, MRI) {} 135 136 Register getStackAddress(uint64_t Size, int64_t Offset, 137 MachinePointerInfo &MPO, 138 ISD::ArgFlagsTy Flags) override { 139 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 140 141 // Byval is assumed to be writable memory, but other stack passed arguments 142 // are not. 143 const bool IsImmutable = !Flags.isByVal(); 144 145 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); 146 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 147 auto AddrReg = MIRBuilder.buildFrameIndex(LLT::pointer(0, 64), FI); 148 return AddrReg.getReg(0); 149 } 150 151 LLT getStackValueStoreType(const DataLayout &DL, const CCValAssign &VA, 152 ISD::ArgFlagsTy Flags) const override { 153 // For pointers, we just need to fixup the integer types reported in the 154 // CCValAssign. 155 if (Flags.isPointer()) 156 return CallLowering::ValueHandler::getStackValueStoreType(DL, VA, Flags); 157 return getStackValueStoreTypeHack(VA); 158 } 159 160 void assignValueToReg(Register ValVReg, Register PhysReg, 161 CCValAssign VA) override { 162 markPhysRegUsed(PhysReg); 163 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); 164 } 165 166 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 167 MachinePointerInfo &MPO, CCValAssign &VA) override { 168 MachineFunction &MF = MIRBuilder.getMF(); 169 170 LLT ValTy(VA.getValVT()); 171 LLT LocTy(VA.getLocVT()); 172 173 // Fixup the types for the DAG compatibility hack. 174 if (VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16) 175 std::swap(ValTy, LocTy); 176 else { 177 // The calling code knows if this is a pointer or not, we're only touching 178 // the LocTy for the i8/i16 hack. 179 assert(LocTy.getSizeInBits() == MemTy.getSizeInBits()); 180 LocTy = MemTy; 181 } 182 183 auto MMO = MF.getMachineMemOperand( 184 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, LocTy, 185 inferAlignFromPtrInfo(MF, MPO)); 186 187 switch (VA.getLocInfo()) { 188 case CCValAssign::LocInfo::ZExt: 189 MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, ValVReg, Addr, *MMO); 190 return; 191 case CCValAssign::LocInfo::SExt: 192 MIRBuilder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, ValVReg, Addr, *MMO); 193 return; 194 default: 195 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 196 return; 197 } 198 } 199 200 /// How the physical register gets marked varies between formal 201 /// parameters (it's a basic-block live-in), and a call instruction 202 /// (it's an implicit-def of the BL). 203 virtual void markPhysRegUsed(MCRegister PhysReg) = 0; 204 }; 205 206 struct FormalArgHandler : public IncomingArgHandler { 207 FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI) 208 : IncomingArgHandler(MIRBuilder, MRI) {} 209 210 void markPhysRegUsed(MCRegister PhysReg) override { 211 MIRBuilder.getMRI()->addLiveIn(PhysReg); 212 MIRBuilder.getMBB().addLiveIn(PhysReg); 213 } 214 }; 215 216 struct CallReturnHandler : public IncomingArgHandler { 217 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 218 MachineInstrBuilder MIB) 219 : IncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {} 220 221 void markPhysRegUsed(MCRegister PhysReg) override { 222 MIB.addDef(PhysReg, RegState::Implicit); 223 } 224 225 MachineInstrBuilder MIB; 226 }; 227 228 /// A special return arg handler for "returned" attribute arg calls. 229 struct ReturnedArgCallReturnHandler : public CallReturnHandler { 230 ReturnedArgCallReturnHandler(MachineIRBuilder &MIRBuilder, 231 MachineRegisterInfo &MRI, 232 MachineInstrBuilder MIB) 233 : CallReturnHandler(MIRBuilder, MRI, MIB) {} 234 235 void markPhysRegUsed(MCRegister PhysReg) override {} 236 }; 237 238 struct OutgoingArgHandler : public CallLowering::OutgoingValueHandler { 239 OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 240 MachineInstrBuilder MIB, bool IsTailCall = false, 241 int FPDiff = 0) 242 : OutgoingValueHandler(MIRBuilder, MRI), MIB(MIB), IsTailCall(IsTailCall), 243 FPDiff(FPDiff), 244 Subtarget(MIRBuilder.getMF().getSubtarget<AArch64Subtarget>()) {} 245 246 Register getStackAddress(uint64_t Size, int64_t Offset, 247 MachinePointerInfo &MPO, 248 ISD::ArgFlagsTy Flags) override { 249 MachineFunction &MF = MIRBuilder.getMF(); 250 LLT p0 = LLT::pointer(0, 64); 251 LLT s64 = LLT::scalar(64); 252 253 if (IsTailCall) { 254 assert(!Flags.isByVal() && "byval unhandled with tail calls"); 255 256 Offset += FPDiff; 257 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); 258 auto FIReg = MIRBuilder.buildFrameIndex(p0, FI); 259 MPO = MachinePointerInfo::getFixedStack(MF, FI); 260 return FIReg.getReg(0); 261 } 262 263 if (!SPReg) 264 SPReg = MIRBuilder.buildCopy(p0, Register(AArch64::SP)).getReg(0); 265 266 auto OffsetReg = MIRBuilder.buildConstant(s64, Offset); 267 268 auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg); 269 270 MPO = MachinePointerInfo::getStack(MF, Offset); 271 return AddrReg.getReg(0); 272 } 273 274 /// We need to fixup the reported store size for certain value types because 275 /// we invert the interpretation of ValVT and LocVT in certain cases. This is 276 /// for compatability with the DAG call lowering implementation, which we're 277 /// currently building on top of. 278 LLT getStackValueStoreType(const DataLayout &DL, const CCValAssign &VA, 279 ISD::ArgFlagsTy Flags) const override { 280 if (Flags.isPointer()) 281 return CallLowering::ValueHandler::getStackValueStoreType(DL, VA, Flags); 282 return getStackValueStoreTypeHack(VA); 283 } 284 285 void assignValueToReg(Register ValVReg, Register PhysReg, 286 CCValAssign VA) override { 287 MIB.addUse(PhysReg, RegState::Implicit); 288 Register ExtReg = extendRegister(ValVReg, VA); 289 MIRBuilder.buildCopy(PhysReg, ExtReg); 290 } 291 292 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 293 MachinePointerInfo &MPO, CCValAssign &VA) override { 294 MachineFunction &MF = MIRBuilder.getMF(); 295 auto MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore, MemTy, 296 inferAlignFromPtrInfo(MF, MPO)); 297 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 298 } 299 300 void assignValueToAddress(const CallLowering::ArgInfo &Arg, unsigned RegIndex, 301 Register Addr, LLT MemTy, MachinePointerInfo &MPO, 302 CCValAssign &VA) override { 303 unsigned MaxSize = MemTy.getSizeInBytes() * 8; 304 // For varargs, we always want to extend them to 8 bytes, in which case 305 // we disable setting a max. 306 if (!Arg.IsFixed) 307 MaxSize = 0; 308 309 Register ValVReg = Arg.Regs[RegIndex]; 310 if (VA.getLocInfo() != CCValAssign::LocInfo::FPExt) { 311 MVT LocVT = VA.getLocVT(); 312 MVT ValVT = VA.getValVT(); 313 314 if (VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16) { 315 std::swap(ValVT, LocVT); 316 MemTy = LLT(VA.getValVT()); 317 } 318 319 ValVReg = extendRegister(ValVReg, VA, MaxSize); 320 } else { 321 // The store does not cover the full allocated stack slot. 322 MemTy = LLT(VA.getValVT()); 323 } 324 325 assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA); 326 } 327 328 MachineInstrBuilder MIB; 329 330 bool IsTailCall; 331 332 /// For tail calls, the byte offset of the call's argument area from the 333 /// callee's. Unused elsewhere. 334 int FPDiff; 335 336 // Cache the SP register vreg if we need it more than once in this call site. 337 Register SPReg; 338 339 const AArch64Subtarget &Subtarget; 340 }; 341 } // namespace 342 343 static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) { 344 return (CallConv == CallingConv::Fast && TailCallOpt) || 345 CallConv == CallingConv::Tail || CallConv == CallingConv::SwiftTail; 346 } 347 348 bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder, 349 const Value *Val, 350 ArrayRef<Register> VRegs, 351 FunctionLoweringInfo &FLI, 352 Register SwiftErrorVReg) const { 353 auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR); 354 assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) && 355 "Return value without a vreg"); 356 357 bool Success = true; 358 if (!FLI.CanLowerReturn) { 359 insertSRetStores(MIRBuilder, Val->getType(), VRegs, FLI.DemoteRegister); 360 } else if (!VRegs.empty()) { 361 MachineFunction &MF = MIRBuilder.getMF(); 362 const Function &F = MF.getFunction(); 363 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 364 365 MachineRegisterInfo &MRI = MF.getRegInfo(); 366 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 367 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv()); 368 auto &DL = F.getParent()->getDataLayout(); 369 LLVMContext &Ctx = Val->getType()->getContext(); 370 371 SmallVector<EVT, 4> SplitEVTs; 372 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 373 assert(VRegs.size() == SplitEVTs.size() && 374 "For each split Type there should be exactly one VReg."); 375 376 SmallVector<ArgInfo, 8> SplitArgs; 377 CallingConv::ID CC = F.getCallingConv(); 378 379 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 380 Register CurVReg = VRegs[i]; 381 ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx), 0}; 382 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F); 383 384 // i1 is a special case because SDAG i1 true is naturally zero extended 385 // when widened using ANYEXT. We need to do it explicitly here. 386 auto &Flags = CurArgInfo.Flags[0]; 387 if (MRI.getType(CurVReg).getSizeInBits() == 1 && !Flags.isSExt() && 388 !Flags.isZExt()) { 389 CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0); 390 } else if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) == 391 1) { 392 // Some types will need extending as specified by the CC. 393 MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]); 394 if (EVT(NewVT) != SplitEVTs[i]) { 395 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 396 if (F.getAttributes().hasRetAttr(Attribute::SExt)) 397 ExtendOp = TargetOpcode::G_SEXT; 398 else if (F.getAttributes().hasRetAttr(Attribute::ZExt)) 399 ExtendOp = TargetOpcode::G_ZEXT; 400 401 LLT NewLLT(NewVT); 402 LLT OldLLT(MVT::getVT(CurArgInfo.Ty)); 403 CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx); 404 // Instead of an extend, we might have a vector type which needs 405 // padding with more elements, e.g. <2 x half> -> <4 x half>. 406 if (NewVT.isVector()) { 407 if (OldLLT.isVector()) { 408 if (NewLLT.getNumElements() > OldLLT.getNumElements()) { 409 410 CurVReg = 411 MIRBuilder.buildPadVectorWithUndefElements(NewLLT, CurVReg) 412 .getReg(0); 413 } else { 414 // Just do a vector extend. 415 CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}) 416 .getReg(0); 417 } 418 } else if (NewLLT.getNumElements() >= 2 && 419 NewLLT.getNumElements() <= 8) { 420 // We need to pad a <1 x S> type to <2/4/8 x S>. Since we don't 421 // have <1 x S> vector types in GISel we use a build_vector 422 // instead of a vector merge/concat. 423 CurVReg = 424 MIRBuilder.buildPadVectorWithUndefElements(NewLLT, CurVReg) 425 .getReg(0); 426 } else { 427 LLVM_DEBUG(dbgs() << "Could not handle ret ty\n"); 428 return false; 429 } 430 } else { 431 // If the split EVT was a <1 x T> vector, and NewVT is T, then we 432 // don't have to do anything since we don't distinguish between the 433 // two. 434 if (NewLLT != MRI.getType(CurVReg)) { 435 // A scalar extend. 436 CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}) 437 .getReg(0); 438 } 439 } 440 } 441 } 442 if (CurVReg != CurArgInfo.Regs[0]) { 443 CurArgInfo.Regs[0] = CurVReg; 444 // Reset the arg flags after modifying CurVReg. 445 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F); 446 } 447 splitToValueTypes(CurArgInfo, SplitArgs, DL, CC); 448 } 449 450 AArch64OutgoingValueAssigner Assigner(AssignFn, AssignFn, Subtarget, 451 /*IsReturn*/ true); 452 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB); 453 Success = determineAndHandleAssignments(Handler, Assigner, SplitArgs, 454 MIRBuilder, CC, F.isVarArg()); 455 } 456 457 if (SwiftErrorVReg) { 458 MIB.addUse(AArch64::X21, RegState::Implicit); 459 MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg); 460 } 461 462 MIRBuilder.insertInstr(MIB); 463 return Success; 464 } 465 466 bool AArch64CallLowering::canLowerReturn(MachineFunction &MF, 467 CallingConv::ID CallConv, 468 SmallVectorImpl<BaseArgInfo> &Outs, 469 bool IsVarArg) const { 470 SmallVector<CCValAssign, 16> ArgLocs; 471 const auto &TLI = *getTLI<AArch64TargetLowering>(); 472 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 473 MF.getFunction().getContext()); 474 475 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv)); 476 } 477 478 /// Helper function to compute forwarded registers for musttail calls. Computes 479 /// the forwarded registers, sets MBB liveness, and emits COPY instructions that 480 /// can be used to save + restore registers later. 481 static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder, 482 CCAssignFn *AssignFn) { 483 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 484 MachineFunction &MF = MIRBuilder.getMF(); 485 MachineFrameInfo &MFI = MF.getFrameInfo(); 486 487 if (!MFI.hasMustTailInVarArgFunc()) 488 return; 489 490 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 491 const Function &F = MF.getFunction(); 492 assert(F.isVarArg() && "Expected F to be vararg?"); 493 494 // Compute the set of forwarded registers. The rest are scratch. 495 SmallVector<CCValAssign, 16> ArgLocs; 496 CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs, 497 F.getContext()); 498 SmallVector<MVT, 2> RegParmTypes; 499 RegParmTypes.push_back(MVT::i64); 500 RegParmTypes.push_back(MVT::f128); 501 502 // Later on, we can use this vector to restore the registers if necessary. 503 SmallVectorImpl<ForwardedRegister> &Forwards = 504 FuncInfo->getForwardedMustTailRegParms(); 505 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn); 506 507 // Conservatively forward X8, since it might be used for an aggregate 508 // return. 509 if (!CCInfo.isAllocated(AArch64::X8)) { 510 Register X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass); 511 Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64)); 512 } 513 514 // Add the forwards to the MachineBasicBlock and MachineFunction. 515 for (const auto &F : Forwards) { 516 MBB.addLiveIn(F.PReg); 517 MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg)); 518 } 519 } 520 521 bool AArch64CallLowering::fallBackToDAGISel(const MachineFunction &MF) const { 522 auto &F = MF.getFunction(); 523 if (F.getReturnType()->isScalableTy() || 524 llvm::any_of(F.args(), [](const Argument &A) { 525 return A.getType()->isScalableTy(); 526 })) 527 return true; 528 const auto &ST = MF.getSubtarget<AArch64Subtarget>(); 529 if (!ST.hasNEON() || !ST.hasFPARMv8()) { 530 LLVM_DEBUG(dbgs() << "Falling back to SDAG because we don't support no-NEON\n"); 531 return true; 532 } 533 534 SMEAttrs Attrs(F); 535 if (Attrs.hasNewZAInterface() || 536 (!Attrs.hasStreamingInterface() && Attrs.hasStreamingBody())) 537 return true; 538 539 return false; 540 } 541 542 void AArch64CallLowering::saveVarArgRegisters( 543 MachineIRBuilder &MIRBuilder, CallLowering::IncomingValueHandler &Handler, 544 CCState &CCInfo) const { 545 auto GPRArgRegs = AArch64::getGPRArgRegs(); 546 auto FPRArgRegs = AArch64::getFPRArgRegs(); 547 548 MachineFunction &MF = MIRBuilder.getMF(); 549 MachineRegisterInfo &MRI = MF.getRegInfo(); 550 MachineFrameInfo &MFI = MF.getFrameInfo(); 551 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 552 auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 553 bool IsWin64CC = 554 Subtarget.isCallingConvWin64(CCInfo.getCallingConv()); 555 const LLT p0 = LLT::pointer(0, 64); 556 const LLT s64 = LLT::scalar(64); 557 558 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs); 559 unsigned NumVariadicGPRArgRegs = GPRArgRegs.size() - FirstVariadicGPR + 1; 560 561 unsigned GPRSaveSize = 8 * (GPRArgRegs.size() - FirstVariadicGPR); 562 int GPRIdx = 0; 563 if (GPRSaveSize != 0) { 564 if (IsWin64CC) { 565 GPRIdx = MFI.CreateFixedObject(GPRSaveSize, 566 -static_cast<int>(GPRSaveSize), false); 567 if (GPRSaveSize & 15) 568 // The extra size here, if triggered, will always be 8. 569 MFI.CreateFixedObject(16 - (GPRSaveSize & 15), 570 -static_cast<int>(alignTo(GPRSaveSize, 16)), 571 false); 572 } else 573 GPRIdx = MFI.CreateStackObject(GPRSaveSize, Align(8), false); 574 575 auto FIN = MIRBuilder.buildFrameIndex(p0, GPRIdx); 576 auto Offset = 577 MIRBuilder.buildConstant(MRI.createGenericVirtualRegister(s64), 8); 578 579 for (unsigned i = FirstVariadicGPR; i < GPRArgRegs.size(); ++i) { 580 Register Val = MRI.createGenericVirtualRegister(s64); 581 Handler.assignValueToReg( 582 Val, GPRArgRegs[i], 583 CCValAssign::getReg(i + MF.getFunction().getNumOperands(), MVT::i64, 584 GPRArgRegs[i], MVT::i64, CCValAssign::Full)); 585 auto MPO = IsWin64CC ? MachinePointerInfo::getFixedStack( 586 MF, GPRIdx, (i - FirstVariadicGPR) * 8) 587 : MachinePointerInfo::getStack(MF, i * 8); 588 MIRBuilder.buildStore(Val, FIN, MPO, inferAlignFromPtrInfo(MF, MPO)); 589 590 FIN = MIRBuilder.buildPtrAdd(MRI.createGenericVirtualRegister(p0), 591 FIN.getReg(0), Offset); 592 } 593 } 594 FuncInfo->setVarArgsGPRIndex(GPRIdx); 595 FuncInfo->setVarArgsGPRSize(GPRSaveSize); 596 597 if (Subtarget.hasFPARMv8() && !IsWin64CC) { 598 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs); 599 600 unsigned FPRSaveSize = 16 * (FPRArgRegs.size() - FirstVariadicFPR); 601 int FPRIdx = 0; 602 if (FPRSaveSize != 0) { 603 FPRIdx = MFI.CreateStackObject(FPRSaveSize, Align(16), false); 604 605 auto FIN = MIRBuilder.buildFrameIndex(p0, FPRIdx); 606 auto Offset = 607 MIRBuilder.buildConstant(MRI.createGenericVirtualRegister(s64), 16); 608 609 for (unsigned i = FirstVariadicFPR; i < FPRArgRegs.size(); ++i) { 610 Register Val = MRI.createGenericVirtualRegister(LLT::scalar(128)); 611 Handler.assignValueToReg( 612 Val, FPRArgRegs[i], 613 CCValAssign::getReg( 614 i + MF.getFunction().getNumOperands() + NumVariadicGPRArgRegs, 615 MVT::f128, FPRArgRegs[i], MVT::f128, CCValAssign::Full)); 616 617 auto MPO = MachinePointerInfo::getStack(MF, i * 16); 618 MIRBuilder.buildStore(Val, FIN, MPO, inferAlignFromPtrInfo(MF, MPO)); 619 620 FIN = MIRBuilder.buildPtrAdd(MRI.createGenericVirtualRegister(p0), 621 FIN.getReg(0), Offset); 622 } 623 } 624 FuncInfo->setVarArgsFPRIndex(FPRIdx); 625 FuncInfo->setVarArgsFPRSize(FPRSaveSize); 626 } 627 } 628 629 bool AArch64CallLowering::lowerFormalArguments( 630 MachineIRBuilder &MIRBuilder, const Function &F, 631 ArrayRef<ArrayRef<Register>> VRegs, FunctionLoweringInfo &FLI) const { 632 MachineFunction &MF = MIRBuilder.getMF(); 633 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 634 MachineRegisterInfo &MRI = MF.getRegInfo(); 635 auto &DL = F.getParent()->getDataLayout(); 636 auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 637 // TODO: Support Arm64EC 638 bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv()) && !Subtarget.isWindowsArm64EC(); 639 640 SmallVector<ArgInfo, 8> SplitArgs; 641 SmallVector<std::pair<Register, Register>> BoolArgs; 642 643 // Insert the hidden sret parameter if the return value won't fit in the 644 // return registers. 645 if (!FLI.CanLowerReturn) 646 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 647 648 unsigned i = 0; 649 for (auto &Arg : F.args()) { 650 if (DL.getTypeStoreSize(Arg.getType()).isZero()) 651 continue; 652 653 ArgInfo OrigArg{VRegs[i], Arg, i}; 654 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F); 655 656 // i1 arguments are zero-extended to i8 by the caller. Emit a 657 // hint to reflect this. 658 if (OrigArg.Ty->isIntegerTy(1)) { 659 assert(OrigArg.Regs.size() == 1 && 660 MRI.getType(OrigArg.Regs[0]).getSizeInBits() == 1 && 661 "Unexpected registers used for i1 arg"); 662 663 auto &Flags = OrigArg.Flags[0]; 664 if (!Flags.isZExt() && !Flags.isSExt()) { 665 // Lower i1 argument as i8, and insert AssertZExt + Trunc later. 666 Register OrigReg = OrigArg.Regs[0]; 667 Register WideReg = MRI.createGenericVirtualRegister(LLT::scalar(8)); 668 OrigArg.Regs[0] = WideReg; 669 BoolArgs.push_back({OrigReg, WideReg}); 670 } 671 } 672 673 if (Arg.hasAttribute(Attribute::SwiftAsync)) 674 MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true); 675 676 splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv()); 677 ++i; 678 } 679 680 if (!MBB.empty()) 681 MIRBuilder.setInstr(*MBB.begin()); 682 683 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 684 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(F.getCallingConv(), IsWin64 && F.isVarArg()); 685 686 AArch64IncomingValueAssigner Assigner(AssignFn, AssignFn); 687 FormalArgHandler Handler(MIRBuilder, MRI); 688 SmallVector<CCValAssign, 16> ArgLocs; 689 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 690 if (!determineAssignments(Assigner, SplitArgs, CCInfo) || 691 !handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, MIRBuilder)) 692 return false; 693 694 if (!BoolArgs.empty()) { 695 for (auto &KV : BoolArgs) { 696 Register OrigReg = KV.first; 697 Register WideReg = KV.second; 698 LLT WideTy = MRI.getType(WideReg); 699 assert(MRI.getType(OrigReg).getScalarSizeInBits() == 1 && 700 "Unexpected bit size of a bool arg"); 701 MIRBuilder.buildTrunc( 702 OrigReg, MIRBuilder.buildAssertZExt(WideTy, WideReg, 1).getReg(0)); 703 } 704 } 705 706 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 707 uint64_t StackSize = Assigner.StackSize; 708 if (F.isVarArg()) { 709 if ((!Subtarget.isTargetDarwin() && !Subtarget.isWindowsArm64EC()) || IsWin64) { 710 // The AAPCS variadic function ABI is identical to the non-variadic 711 // one. As a result there may be more arguments in registers and we should 712 // save them for future reference. 713 // Win64 variadic functions also pass arguments in registers, but all 714 // float arguments are passed in integer registers. 715 saveVarArgRegisters(MIRBuilder, Handler, CCInfo); 716 } else if (Subtarget.isWindowsArm64EC()) { 717 return false; 718 } 719 720 // We currently pass all varargs at 8-byte alignment, or 4 in ILP32. 721 StackSize = alignTo(Assigner.StackSize, Subtarget.isTargetILP32() ? 4 : 8); 722 723 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 724 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackSize, true)); 725 } 726 727 if (doesCalleeRestoreStack(F.getCallingConv(), 728 MF.getTarget().Options.GuaranteedTailCallOpt)) { 729 // We have a non-standard ABI, so why not make full use of the stack that 730 // we're going to pop? It must be aligned to 16 B in any case. 731 StackSize = alignTo(StackSize, 16); 732 733 // If we're expected to restore the stack (e.g. fastcc), then we'll be 734 // adding a multiple of 16. 735 FuncInfo->setArgumentStackToRestore(StackSize); 736 737 // Our own callers will guarantee that the space is free by giving an 738 // aligned value to CALLSEQ_START. 739 } 740 741 // When we tail call, we need to check if the callee's arguments 742 // will fit on the caller's stack. So, whenever we lower formal arguments, 743 // we should keep track of this information, since we might lower a tail call 744 // in this function later. 745 FuncInfo->setBytesInStackArgArea(StackSize); 746 747 if (Subtarget.hasCustomCallingConv()) 748 Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF); 749 750 handleMustTailForwardedRegisters(MIRBuilder, AssignFn); 751 752 // Move back to the end of the basic block. 753 MIRBuilder.setMBB(MBB); 754 755 return true; 756 } 757 758 /// Return true if the calling convention is one that we can guarantee TCO for. 759 static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) { 760 return (CC == CallingConv::Fast && GuaranteeTailCalls) || 761 CC == CallingConv::Tail || CC == CallingConv::SwiftTail; 762 } 763 764 /// Return true if we might ever do TCO for calls with this calling convention. 765 static bool mayTailCallThisCC(CallingConv::ID CC) { 766 switch (CC) { 767 case CallingConv::C: 768 case CallingConv::PreserveMost: 769 case CallingConv::PreserveAll: 770 case CallingConv::Swift: 771 case CallingConv::SwiftTail: 772 case CallingConv::Tail: 773 case CallingConv::Fast: 774 return true; 775 default: 776 return false; 777 } 778 } 779 780 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 781 /// CC. 782 static std::pair<CCAssignFn *, CCAssignFn *> 783 getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) { 784 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 785 } 786 787 bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay( 788 CallLoweringInfo &Info, MachineFunction &MF, 789 SmallVectorImpl<ArgInfo> &InArgs) const { 790 const Function &CallerF = MF.getFunction(); 791 CallingConv::ID CalleeCC = Info.CallConv; 792 CallingConv::ID CallerCC = CallerF.getCallingConv(); 793 794 // If the calling conventions match, then everything must be the same. 795 if (CalleeCC == CallerCC) 796 return true; 797 798 // Check if the caller and callee will handle arguments in the same way. 799 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 800 CCAssignFn *CalleeAssignFnFixed; 801 CCAssignFn *CalleeAssignFnVarArg; 802 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) = 803 getAssignFnsForCC(CalleeCC, TLI); 804 805 CCAssignFn *CallerAssignFnFixed; 806 CCAssignFn *CallerAssignFnVarArg; 807 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) = 808 getAssignFnsForCC(CallerCC, TLI); 809 810 AArch64IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed, 811 CalleeAssignFnVarArg); 812 AArch64IncomingValueAssigner CallerAssigner(CallerAssignFnFixed, 813 CallerAssignFnVarArg); 814 815 if (!resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner)) 816 return false; 817 818 // Make sure that the caller and callee preserve all of the same registers. 819 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); 820 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 821 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 822 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) { 823 TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved); 824 TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved); 825 } 826 827 return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved); 828 } 829 830 bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable( 831 CallLoweringInfo &Info, MachineFunction &MF, 832 SmallVectorImpl<ArgInfo> &OrigOutArgs) const { 833 // If there are no outgoing arguments, then we are done. 834 if (OrigOutArgs.empty()) 835 return true; 836 837 const Function &CallerF = MF.getFunction(); 838 LLVMContext &Ctx = CallerF.getContext(); 839 CallingConv::ID CalleeCC = Info.CallConv; 840 CallingConv::ID CallerCC = CallerF.getCallingConv(); 841 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 842 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 843 844 CCAssignFn *AssignFnFixed; 845 CCAssignFn *AssignFnVarArg; 846 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 847 848 // We have outgoing arguments. Make sure that we can tail call with them. 849 SmallVector<CCValAssign, 16> OutLocs; 850 CCState OutInfo(CalleeCC, false, MF, OutLocs, Ctx); 851 852 AArch64OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg, 853 Subtarget, /*IsReturn*/ false); 854 // determineAssignments() may modify argument flags, so make a copy. 855 SmallVector<ArgInfo, 8> OutArgs; 856 append_range(OutArgs, OrigOutArgs); 857 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) { 858 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); 859 return false; 860 } 861 862 // Make sure that they can fit on the caller's stack. 863 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 864 if (OutInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) { 865 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); 866 return false; 867 } 868 869 // Verify that the parameters in callee-saved registers match. 870 // TODO: Port this over to CallLowering as general code once swiftself is 871 // supported. 872 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); 873 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); 874 MachineRegisterInfo &MRI = MF.getRegInfo(); 875 876 if (Info.IsVarArg) { 877 // Be conservative and disallow variadic memory operands to match SDAG's 878 // behaviour. 879 // FIXME: If the caller's calling convention is C, then we can 880 // potentially use its argument area. However, for cases like fastcc, 881 // we can't do anything. 882 for (unsigned i = 0; i < OutLocs.size(); ++i) { 883 auto &ArgLoc = OutLocs[i]; 884 if (ArgLoc.isRegLoc()) 885 continue; 886 887 LLVM_DEBUG( 888 dbgs() 889 << "... Cannot tail call vararg function with stack arguments\n"); 890 return false; 891 } 892 } 893 894 return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs); 895 } 896 897 bool AArch64CallLowering::isEligibleForTailCallOptimization( 898 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 899 SmallVectorImpl<ArgInfo> &InArgs, 900 SmallVectorImpl<ArgInfo> &OutArgs) const { 901 902 // Must pass all target-independent checks in order to tail call optimize. 903 if (!Info.IsTailCall) 904 return false; 905 906 CallingConv::ID CalleeCC = Info.CallConv; 907 MachineFunction &MF = MIRBuilder.getMF(); 908 const Function &CallerF = MF.getFunction(); 909 910 LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n"); 911 912 if (Info.SwiftErrorVReg) { 913 // TODO: We should handle this. 914 // Note that this is also handled by the check for no outgoing arguments. 915 // Proactively disabling this though, because the swifterror handling in 916 // lowerCall inserts a COPY *after* the location of the call. 917 LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n"); 918 return false; 919 } 920 921 if (!mayTailCallThisCC(CalleeCC)) { 922 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); 923 return false; 924 } 925 926 // Byval parameters hand the function a pointer directly into the stack area 927 // we want to reuse during a tail call. Working around this *is* possible (see 928 // X86). 929 // 930 // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try 931 // it? 932 // 933 // On Windows, "inreg" attributes signify non-aggregate indirect returns. 934 // In this case, it is necessary to save/restore X0 in the callee. Tail 935 // call opt interferes with this. So we disable tail call opt when the 936 // caller has an argument with "inreg" attribute. 937 // 938 // FIXME: Check whether the callee also has an "inreg" argument. 939 // 940 // When the caller has a swifterror argument, we don't want to tail call 941 // because would have to move into the swifterror register before the 942 // tail call. 943 if (any_of(CallerF.args(), [](const Argument &A) { 944 return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr(); 945 })) { 946 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, " 947 "inreg, or swifterror arguments\n"); 948 return false; 949 } 950 951 // Externally-defined functions with weak linkage should not be 952 // tail-called on AArch64 when the OS does not support dynamic 953 // pre-emption of symbols, as the AAELF spec requires normal calls 954 // to undefined weak functions to be replaced with a NOP or jump to the 955 // next instruction. The behaviour of branch instructions in this 956 // situation (as used for tail calls) is implementation-defined, so we 957 // cannot rely on the linker replacing the tail call with a return. 958 if (Info.Callee.isGlobal()) { 959 const GlobalValue *GV = Info.Callee.getGlobal(); 960 const Triple &TT = MF.getTarget().getTargetTriple(); 961 if (GV->hasExternalWeakLinkage() && 962 (!TT.isOSWindows() || TT.isOSBinFormatELF() || 963 TT.isOSBinFormatMachO())) { 964 LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function " 965 "with weak linkage for this OS.\n"); 966 return false; 967 } 968 } 969 970 // If we have -tailcallopt, then we're done. 971 if (canGuaranteeTCO(CalleeCC, MF.getTarget().Options.GuaranteedTailCallOpt)) 972 return CalleeCC == CallerF.getCallingConv(); 973 974 // We don't have -tailcallopt, so we're allowed to change the ABI (sibcall). 975 // Try to find cases where we can do that. 976 977 // I want anyone implementing a new calling convention to think long and hard 978 // about this assert. 979 assert((!Info.IsVarArg || CalleeCC == CallingConv::C) && 980 "Unexpected variadic calling convention"); 981 982 // Verify that the incoming and outgoing arguments from the callee are 983 // safe to tail call. 984 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { 985 LLVM_DEBUG( 986 dbgs() 987 << "... Caller and callee have incompatible calling conventions.\n"); 988 return false; 989 } 990 991 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) 992 return false; 993 994 LLVM_DEBUG( 995 dbgs() << "... Call is eligible for tail call optimization.\n"); 996 return true; 997 } 998 999 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 1000 bool IsTailCall) { 1001 if (!IsTailCall) 1002 return IsIndirect ? getBLRCallOpcode(CallerF) : (unsigned)AArch64::BL; 1003 1004 if (!IsIndirect) 1005 return AArch64::TCRETURNdi; 1006 1007 // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use 1008 // x16 or x17. 1009 if (CallerF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement()) 1010 return AArch64::TCRETURNriBTI; 1011 1012 return AArch64::TCRETURNri; 1013 } 1014 1015 static const uint32_t * 1016 getMaskForArgs(SmallVectorImpl<AArch64CallLowering::ArgInfo> &OutArgs, 1017 AArch64CallLowering::CallLoweringInfo &Info, 1018 const AArch64RegisterInfo &TRI, MachineFunction &MF) { 1019 const uint32_t *Mask; 1020 if (!OutArgs.empty() && OutArgs[0].Flags[0].isReturned()) { 1021 // For 'this' returns, use the X0-preserving mask if applicable 1022 Mask = TRI.getThisReturnPreservedMask(MF, Info.CallConv); 1023 if (!Mask) { 1024 OutArgs[0].Flags[0].setReturned(false); 1025 Mask = TRI.getCallPreservedMask(MF, Info.CallConv); 1026 } 1027 } else { 1028 Mask = TRI.getCallPreservedMask(MF, Info.CallConv); 1029 } 1030 return Mask; 1031 } 1032 1033 bool AArch64CallLowering::lowerTailCall( 1034 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 1035 SmallVectorImpl<ArgInfo> &OutArgs) const { 1036 MachineFunction &MF = MIRBuilder.getMF(); 1037 const Function &F = MF.getFunction(); 1038 MachineRegisterInfo &MRI = MF.getRegInfo(); 1039 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 1040 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 1041 1042 // True when we're tail calling, but without -tailcallopt. 1043 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt && 1044 Info.CallConv != CallingConv::Tail && 1045 Info.CallConv != CallingConv::SwiftTail; 1046 1047 // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64 1048 // register class. Until we can do that, we should fall back here. 1049 if (MF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement()) { 1050 LLVM_DEBUG( 1051 dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n"); 1052 return false; 1053 } 1054 1055 // Find out which ABI gets to decide where things go. 1056 CallingConv::ID CalleeCC = Info.CallConv; 1057 CCAssignFn *AssignFnFixed; 1058 CCAssignFn *AssignFnVarArg; 1059 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1060 1061 MachineInstrBuilder CallSeqStart; 1062 if (!IsSibCall) 1063 CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN); 1064 1065 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true); 1066 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1067 MIB.add(Info.Callee); 1068 1069 // Byte offset for the tail call. When we are sibcalling, this will always 1070 // be 0. 1071 MIB.addImm(0); 1072 1073 // Tell the call which registers are clobbered. 1074 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1075 auto TRI = Subtarget.getRegisterInfo(); 1076 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); 1077 if (Subtarget.hasCustomCallingConv()) 1078 TRI->UpdateCustomCallPreservedMask(MF, &Mask); 1079 MIB.addRegMask(Mask); 1080 1081 if (Info.CFIType) 1082 MIB->setCFIType(MF, Info.CFIType->getZExtValue()); 1083 1084 if (TRI->isAnyArgRegReserved(MF)) 1085 TRI->emitReservedArgRegCallError(MF); 1086 1087 // FPDiff is the byte offset of the call's argument area from the callee's. 1088 // Stores to callee stack arguments will be placed in FixedStackSlots offset 1089 // by this amount for a tail call. In a sibling call it must be 0 because the 1090 // caller will deallocate the entire stack and the callee still expects its 1091 // arguments to begin at SP+0. 1092 int FPDiff = 0; 1093 1094 // This will be 0 for sibcalls, potentially nonzero for tail calls produced 1095 // by -tailcallopt. For sibcalls, the memory operands for the call are 1096 // already available in the caller's incoming argument space. 1097 unsigned NumBytes = 0; 1098 if (!IsSibCall) { 1099 // We aren't sibcalling, so we need to compute FPDiff. We need to do this 1100 // before handling assignments, because FPDiff must be known for memory 1101 // arguments. 1102 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 1103 SmallVector<CCValAssign, 16> OutLocs; 1104 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); 1105 1106 AArch64OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg, 1107 Subtarget, /*IsReturn*/ false); 1108 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) 1109 return false; 1110 1111 // The callee will pop the argument stack as a tail call. Thus, we must 1112 // keep it 16-byte aligned. 1113 NumBytes = alignTo(OutInfo.getStackSize(), 16); 1114 1115 // FPDiff will be negative if this tail call requires more space than we 1116 // would automatically have in our incoming argument space. Positive if we 1117 // actually shrink the stack. 1118 FPDiff = NumReusableBytes - NumBytes; 1119 1120 // Update the required reserved area if this is the tail call requiring the 1121 // most argument stack space. 1122 if (FPDiff < 0 && FuncInfo->getTailCallReservedStack() < (unsigned)-FPDiff) 1123 FuncInfo->setTailCallReservedStack(-FPDiff); 1124 1125 // The stack pointer must be 16-byte aligned at all times it's used for a 1126 // memory operation, which in practice means at *all* times and in 1127 // particular across call boundaries. Therefore our own arguments started at 1128 // a 16-byte aligned SP and the delta applied for the tail call should 1129 // satisfy the same constraint. 1130 assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); 1131 } 1132 1133 const auto &Forwards = FuncInfo->getForwardedMustTailRegParms(); 1134 1135 AArch64OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg, 1136 Subtarget, /*IsReturn*/ false); 1137 1138 // Do the actual argument marshalling. 1139 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, 1140 /*IsTailCall*/ true, FPDiff); 1141 if (!determineAndHandleAssignments(Handler, Assigner, OutArgs, MIRBuilder, 1142 CalleeCC, Info.IsVarArg)) 1143 return false; 1144 1145 Mask = getMaskForArgs(OutArgs, Info, *TRI, MF); 1146 1147 if (Info.IsVarArg && Info.IsMustTailCall) { 1148 // Now we know what's being passed to the function. Add uses to the call for 1149 // the forwarded registers that we *aren't* passing as parameters. This will 1150 // preserve the copies we build earlier. 1151 for (const auto &F : Forwards) { 1152 Register ForwardedReg = F.PReg; 1153 // If the register is already passed, or aliases a register which is 1154 // already being passed, then skip it. 1155 if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) { 1156 if (!Use.isReg()) 1157 return false; 1158 return TRI->regsOverlap(Use.getReg(), ForwardedReg); 1159 })) 1160 continue; 1161 1162 // We aren't passing it already, so we should add it to the call. 1163 MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg)); 1164 MIB.addReg(ForwardedReg, RegState::Implicit); 1165 } 1166 } 1167 1168 // If we have -tailcallopt, we need to adjust the stack. We'll do the call 1169 // sequence start and end here. 1170 if (!IsSibCall) { 1171 MIB->getOperand(1).setImm(FPDiff); 1172 CallSeqStart.addImm(0).addImm(0); 1173 // End the call sequence *before* emitting the call. Normally, we would 1174 // tidy the frame up after the call. However, here, we've laid out the 1175 // parameters so that when SP is reset, they will be in the correct 1176 // location. 1177 MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(0).addImm(0); 1178 } 1179 1180 // Now we can add the actual call instruction to the correct basic block. 1181 MIRBuilder.insertInstr(MIB); 1182 1183 // If Callee is a reg, since it is used by a target specific instruction, 1184 // it must have a register class matching the constraint of that instruction. 1185 if (MIB->getOperand(0).isReg()) 1186 constrainOperandRegClass(MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(), 1187 *MF.getSubtarget().getRegBankInfo(), *MIB, 1188 MIB->getDesc(), MIB->getOperand(0), 0); 1189 1190 MF.getFrameInfo().setHasTailCall(); 1191 Info.LoweredTailCall = true; 1192 return true; 1193 } 1194 1195 bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 1196 CallLoweringInfo &Info) const { 1197 MachineFunction &MF = MIRBuilder.getMF(); 1198 const Function &F = MF.getFunction(); 1199 MachineRegisterInfo &MRI = MF.getRegInfo(); 1200 auto &DL = F.getParent()->getDataLayout(); 1201 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 1202 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1203 1204 // Arm64EC has extra requirements for varargs calls; bail out for now. 1205 if (Info.IsVarArg && Subtarget.isWindowsArm64EC()) 1206 return false; 1207 1208 SmallVector<ArgInfo, 8> OutArgs; 1209 for (auto &OrigArg : Info.OrigArgs) { 1210 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); 1211 // AAPCS requires that we zero-extend i1 to 8 bits by the caller. 1212 auto &Flags = OrigArg.Flags[0]; 1213 if (OrigArg.Ty->isIntegerTy(1) && !Flags.isSExt() && !Flags.isZExt()) { 1214 ArgInfo &OutArg = OutArgs.back(); 1215 assert(OutArg.Regs.size() == 1 && 1216 MRI.getType(OutArg.Regs[0]).getSizeInBits() == 1 && 1217 "Unexpected registers used for i1 arg"); 1218 1219 // We cannot use a ZExt ArgInfo flag here, because it will 1220 // zero-extend the argument to i32 instead of just i8. 1221 OutArg.Regs[0] = 1222 MIRBuilder.buildZExt(LLT::scalar(8), OutArg.Regs[0]).getReg(0); 1223 LLVMContext &Ctx = MF.getFunction().getContext(); 1224 OutArg.Ty = Type::getInt8Ty(Ctx); 1225 } 1226 } 1227 1228 SmallVector<ArgInfo, 8> InArgs; 1229 if (!Info.OrigRet.Ty->isVoidTy()) 1230 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); 1231 1232 // If we can lower as a tail call, do that instead. 1233 bool CanTailCallOpt = 1234 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs); 1235 1236 // We must emit a tail call if we have musttail. 1237 if (Info.IsMustTailCall && !CanTailCallOpt) { 1238 // There are types of incoming/outgoing arguments we can't handle yet, so 1239 // it doesn't make sense to actually die here like in ISelLowering. Instead, 1240 // fall back to SelectionDAG and let it try to handle this. 1241 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 1242 return false; 1243 } 1244 1245 Info.IsTailCall = CanTailCallOpt; 1246 if (CanTailCallOpt) 1247 return lowerTailCall(MIRBuilder, Info, OutArgs); 1248 1249 // Find out which ABI gets to decide where things go. 1250 CCAssignFn *AssignFnFixed; 1251 CCAssignFn *AssignFnVarArg; 1252 std::tie(AssignFnFixed, AssignFnVarArg) = 1253 getAssignFnsForCC(Info.CallConv, TLI); 1254 1255 MachineInstrBuilder CallSeqStart; 1256 CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN); 1257 1258 // Create a temporarily-floating call instruction so we can add the implicit 1259 // uses of arg registers. 1260 1261 unsigned Opc = 0; 1262 // Calls with operand bundle "clang.arc.attachedcall" are special. They should 1263 // be expanded to the call, directly followed by a special marker sequence and 1264 // a call to an ObjC library function. 1265 if (Info.CB && objcarc::hasAttachedCallOpBundle(Info.CB)) 1266 Opc = AArch64::BLR_RVMARKER; 1267 // A call to a returns twice function like setjmp must be followed by a bti 1268 // instruction. 1269 else if (Info.CB && Info.CB->hasFnAttr(Attribute::ReturnsTwice) && 1270 !Subtarget.noBTIAtReturnTwice() && 1271 MF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement()) 1272 Opc = AArch64::BLR_BTI; 1273 else 1274 Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 1275 1276 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1277 unsigned CalleeOpNo = 0; 1278 1279 if (Opc == AArch64::BLR_RVMARKER) { 1280 // Add a target global address for the retainRV/claimRV runtime function 1281 // just before the call target. 1282 Function *ARCFn = *objcarc::getAttachedARCFunction(Info.CB); 1283 MIB.addGlobalAddress(ARCFn); 1284 ++CalleeOpNo; 1285 } else if (Info.CFIType) { 1286 MIB->setCFIType(MF, Info.CFIType->getZExtValue()); 1287 } 1288 1289 MIB.add(Info.Callee); 1290 1291 // Tell the call which registers are clobbered. 1292 const uint32_t *Mask; 1293 const auto *TRI = Subtarget.getRegisterInfo(); 1294 1295 AArch64OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg, 1296 Subtarget, /*IsReturn*/ false); 1297 // Do the actual argument marshalling. 1298 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, /*IsReturn*/ false); 1299 if (!determineAndHandleAssignments(Handler, Assigner, OutArgs, MIRBuilder, 1300 Info.CallConv, Info.IsVarArg)) 1301 return false; 1302 1303 Mask = getMaskForArgs(OutArgs, Info, *TRI, MF); 1304 1305 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) 1306 TRI->UpdateCustomCallPreservedMask(MF, &Mask); 1307 MIB.addRegMask(Mask); 1308 1309 if (TRI->isAnyArgRegReserved(MF)) 1310 TRI->emitReservedArgRegCallError(MF); 1311 1312 // Now we can add the actual call instruction to the correct basic block. 1313 MIRBuilder.insertInstr(MIB); 1314 1315 uint64_t CalleePopBytes = 1316 doesCalleeRestoreStack(Info.CallConv, 1317 MF.getTarget().Options.GuaranteedTailCallOpt) 1318 ? alignTo(Assigner.StackSize, 16) 1319 : 0; 1320 1321 CallSeqStart.addImm(Assigner.StackSize).addImm(0); 1322 MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP) 1323 .addImm(Assigner.StackSize) 1324 .addImm(CalleePopBytes); 1325 1326 // If Callee is a reg, since it is used by a target specific 1327 // instruction, it must have a register class matching the 1328 // constraint of that instruction. 1329 if (MIB->getOperand(CalleeOpNo).isReg()) 1330 constrainOperandRegClass(MF, *TRI, MRI, *Subtarget.getInstrInfo(), 1331 *Subtarget.getRegBankInfo(), *MIB, MIB->getDesc(), 1332 MIB->getOperand(CalleeOpNo), CalleeOpNo); 1333 1334 // Finally we can copy the returned value back into its virtual-register. In 1335 // symmetry with the arguments, the physical register must be an 1336 // implicit-define of the call instruction. 1337 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1338 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv); 1339 CallReturnHandler Handler(MIRBuilder, MRI, MIB); 1340 bool UsingReturnedArg = 1341 !OutArgs.empty() && OutArgs[0].Flags[0].isReturned(); 1342 1343 AArch64OutgoingValueAssigner Assigner(RetAssignFn, RetAssignFn, Subtarget, 1344 /*IsReturn*/ false); 1345 ReturnedArgCallReturnHandler ReturnedArgHandler(MIRBuilder, MRI, MIB); 1346 if (!determineAndHandleAssignments( 1347 UsingReturnedArg ? ReturnedArgHandler : Handler, Assigner, InArgs, 1348 MIRBuilder, Info.CallConv, Info.IsVarArg, 1349 UsingReturnedArg ? ArrayRef(OutArgs[0].Regs) : std::nullopt)) 1350 return false; 1351 } 1352 1353 if (Info.SwiftErrorVReg) { 1354 MIB.addDef(AArch64::X21, RegState::Implicit); 1355 MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21)); 1356 } 1357 1358 if (!Info.CanLowerReturn) { 1359 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1360 Info.DemoteRegister, Info.DemoteStackIndex); 1361 } 1362 return true; 1363 } 1364 1365 bool AArch64CallLowering::isTypeIsValidForThisReturn(EVT Ty) const { 1366 return Ty.getSizeInBits() == 64; 1367 } 1368