1 //===--- AArch64CallLowering.cpp - Call lowering --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64CallLowering.h" 16 #include "AArch64ISelLowering.h" 17 #include "AArch64MachineFunctionInfo.h" 18 #include "AArch64RegisterInfo.h" 19 #include "AArch64Subtarget.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/Analysis/ObjCARCUtil.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 27 #include "llvm/CodeGen/GlobalISel/Utils.h" 28 #include "llvm/CodeGen/LowLevelTypeUtils.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/MachineValueType.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/CodeGen/ValueTypes.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/Value.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstdint> 48 #include <iterator> 49 50 #define DEBUG_TYPE "aarch64-call-lowering" 51 52 using namespace llvm; 53 54 AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI) 55 : CallLowering(&TLI) {} 56 57 static void applyStackPassedSmallTypeDAGHack(EVT OrigVT, MVT &ValVT, 58 MVT &LocVT) { 59 // If ValVT is i1/i8/i16, we should set LocVT to i8/i8/i16. This is a legacy 60 // hack because the DAG calls the assignment function with pre-legalized 61 // register typed values, not the raw type. 62 // 63 // This hack is not applied to return values which are not passed on the 64 // stack. 65 if (OrigVT == MVT::i1 || OrigVT == MVT::i8) 66 ValVT = LocVT = MVT::i8; 67 else if (OrigVT == MVT::i16) 68 ValVT = LocVT = MVT::i16; 69 } 70 71 // Account for i1/i8/i16 stack passed value hack 72 static LLT getStackValueStoreTypeHack(const CCValAssign &VA) { 73 const MVT ValVT = VA.getValVT(); 74 return (ValVT == MVT::i8 || ValVT == MVT::i16) ? LLT(ValVT) 75 : LLT(VA.getLocVT()); 76 } 77 78 namespace { 79 80 struct AArch64IncomingValueAssigner 81 : public CallLowering::IncomingValueAssigner { 82 AArch64IncomingValueAssigner(CCAssignFn *AssignFn_, 83 CCAssignFn *AssignFnVarArg_) 84 : IncomingValueAssigner(AssignFn_, AssignFnVarArg_) {} 85 86 bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT, 87 CCValAssign::LocInfo LocInfo, 88 const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags, 89 CCState &State) override { 90 applyStackPassedSmallTypeDAGHack(OrigVT, ValVT, LocVT); 91 return IncomingValueAssigner::assignArg(ValNo, OrigVT, ValVT, LocVT, 92 LocInfo, Info, Flags, State); 93 } 94 }; 95 96 struct AArch64OutgoingValueAssigner 97 : public CallLowering::OutgoingValueAssigner { 98 const AArch64Subtarget &Subtarget; 99 100 /// Track if this is used for a return instead of function argument 101 /// passing. We apply a hack to i1/i8/i16 stack passed values, but do not use 102 /// stack passed returns for them and cannot apply the type adjustment. 103 bool IsReturn; 104 105 AArch64OutgoingValueAssigner(CCAssignFn *AssignFn_, 106 CCAssignFn *AssignFnVarArg_, 107 const AArch64Subtarget &Subtarget_, 108 bool IsReturn) 109 : OutgoingValueAssigner(AssignFn_, AssignFnVarArg_), 110 Subtarget(Subtarget_), IsReturn(IsReturn) {} 111 112 bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT, 113 CCValAssign::LocInfo LocInfo, 114 const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags, 115 CCState &State) override { 116 bool IsCalleeWin = Subtarget.isCallingConvWin64(State.getCallingConv()); 117 bool UseVarArgsCCForFixed = IsCalleeWin && State.isVarArg(); 118 119 bool Res; 120 if (Info.IsFixed && !UseVarArgsCCForFixed) { 121 if (!IsReturn) 122 applyStackPassedSmallTypeDAGHack(OrigVT, ValVT, LocVT); 123 Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State); 124 } else 125 Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State); 126 127 StackSize = State.getStackSize(); 128 return Res; 129 } 130 }; 131 132 struct IncomingArgHandler : public CallLowering::IncomingValueHandler { 133 IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI) 134 : IncomingValueHandler(MIRBuilder, MRI) {} 135 136 Register getStackAddress(uint64_t Size, int64_t Offset, 137 MachinePointerInfo &MPO, 138 ISD::ArgFlagsTy Flags) override { 139 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 140 141 // Byval is assumed to be writable memory, but other stack passed arguments 142 // are not. 143 const bool IsImmutable = !Flags.isByVal(); 144 145 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); 146 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 147 auto AddrReg = MIRBuilder.buildFrameIndex(LLT::pointer(0, 64), FI); 148 return AddrReg.getReg(0); 149 } 150 151 LLT getStackValueStoreType(const DataLayout &DL, const CCValAssign &VA, 152 ISD::ArgFlagsTy Flags) const override { 153 // For pointers, we just need to fixup the integer types reported in the 154 // CCValAssign. 155 if (Flags.isPointer()) 156 return CallLowering::ValueHandler::getStackValueStoreType(DL, VA, Flags); 157 return getStackValueStoreTypeHack(VA); 158 } 159 160 void assignValueToReg(Register ValVReg, Register PhysReg, 161 CCValAssign VA) override { 162 markPhysRegUsed(PhysReg); 163 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); 164 } 165 166 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 167 MachinePointerInfo &MPO, CCValAssign &VA) override { 168 MachineFunction &MF = MIRBuilder.getMF(); 169 170 LLT ValTy(VA.getValVT()); 171 LLT LocTy(VA.getLocVT()); 172 173 // Fixup the types for the DAG compatibility hack. 174 if (VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16) 175 std::swap(ValTy, LocTy); 176 else { 177 // The calling code knows if this is a pointer or not, we're only touching 178 // the LocTy for the i8/i16 hack. 179 assert(LocTy.getSizeInBits() == MemTy.getSizeInBits()); 180 LocTy = MemTy; 181 } 182 183 auto MMO = MF.getMachineMemOperand( 184 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, LocTy, 185 inferAlignFromPtrInfo(MF, MPO)); 186 187 switch (VA.getLocInfo()) { 188 case CCValAssign::LocInfo::ZExt: 189 MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, ValVReg, Addr, *MMO); 190 return; 191 case CCValAssign::LocInfo::SExt: 192 MIRBuilder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, ValVReg, Addr, *MMO); 193 return; 194 default: 195 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 196 return; 197 } 198 } 199 200 /// How the physical register gets marked varies between formal 201 /// parameters (it's a basic-block live-in), and a call instruction 202 /// (it's an implicit-def of the BL). 203 virtual void markPhysRegUsed(MCRegister PhysReg) = 0; 204 }; 205 206 struct FormalArgHandler : public IncomingArgHandler { 207 FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI) 208 : IncomingArgHandler(MIRBuilder, MRI) {} 209 210 void markPhysRegUsed(MCRegister PhysReg) override { 211 MIRBuilder.getMRI()->addLiveIn(PhysReg); 212 MIRBuilder.getMBB().addLiveIn(PhysReg); 213 } 214 }; 215 216 struct CallReturnHandler : public IncomingArgHandler { 217 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 218 MachineInstrBuilder MIB) 219 : IncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {} 220 221 void markPhysRegUsed(MCRegister PhysReg) override { 222 MIB.addDef(PhysReg, RegState::Implicit); 223 } 224 225 MachineInstrBuilder MIB; 226 }; 227 228 /// A special return arg handler for "returned" attribute arg calls. 229 struct ReturnedArgCallReturnHandler : public CallReturnHandler { 230 ReturnedArgCallReturnHandler(MachineIRBuilder &MIRBuilder, 231 MachineRegisterInfo &MRI, 232 MachineInstrBuilder MIB) 233 : CallReturnHandler(MIRBuilder, MRI, MIB) {} 234 235 void markPhysRegUsed(MCRegister PhysReg) override {} 236 }; 237 238 struct OutgoingArgHandler : public CallLowering::OutgoingValueHandler { 239 OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 240 MachineInstrBuilder MIB, bool IsTailCall = false, 241 int FPDiff = 0) 242 : OutgoingValueHandler(MIRBuilder, MRI), MIB(MIB), IsTailCall(IsTailCall), 243 FPDiff(FPDiff), 244 Subtarget(MIRBuilder.getMF().getSubtarget<AArch64Subtarget>()) {} 245 246 Register getStackAddress(uint64_t Size, int64_t Offset, 247 MachinePointerInfo &MPO, 248 ISD::ArgFlagsTy Flags) override { 249 MachineFunction &MF = MIRBuilder.getMF(); 250 LLT p0 = LLT::pointer(0, 64); 251 LLT s64 = LLT::scalar(64); 252 253 if (IsTailCall) { 254 assert(!Flags.isByVal() && "byval unhandled with tail calls"); 255 256 Offset += FPDiff; 257 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); 258 auto FIReg = MIRBuilder.buildFrameIndex(p0, FI); 259 MPO = MachinePointerInfo::getFixedStack(MF, FI); 260 return FIReg.getReg(0); 261 } 262 263 if (!SPReg) 264 SPReg = MIRBuilder.buildCopy(p0, Register(AArch64::SP)).getReg(0); 265 266 auto OffsetReg = MIRBuilder.buildConstant(s64, Offset); 267 268 auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg); 269 270 MPO = MachinePointerInfo::getStack(MF, Offset); 271 return AddrReg.getReg(0); 272 } 273 274 /// We need to fixup the reported store size for certain value types because 275 /// we invert the interpretation of ValVT and LocVT in certain cases. This is 276 /// for compatability with the DAG call lowering implementation, which we're 277 /// currently building on top of. 278 LLT getStackValueStoreType(const DataLayout &DL, const CCValAssign &VA, 279 ISD::ArgFlagsTy Flags) const override { 280 if (Flags.isPointer()) 281 return CallLowering::ValueHandler::getStackValueStoreType(DL, VA, Flags); 282 return getStackValueStoreTypeHack(VA); 283 } 284 285 void assignValueToReg(Register ValVReg, Register PhysReg, 286 CCValAssign VA) override { 287 MIB.addUse(PhysReg, RegState::Implicit); 288 Register ExtReg = extendRegister(ValVReg, VA); 289 MIRBuilder.buildCopy(PhysReg, ExtReg); 290 } 291 292 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 293 MachinePointerInfo &MPO, CCValAssign &VA) override { 294 MachineFunction &MF = MIRBuilder.getMF(); 295 auto MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore, MemTy, 296 inferAlignFromPtrInfo(MF, MPO)); 297 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 298 } 299 300 void assignValueToAddress(const CallLowering::ArgInfo &Arg, unsigned RegIndex, 301 Register Addr, LLT MemTy, MachinePointerInfo &MPO, 302 CCValAssign &VA) override { 303 unsigned MaxSize = MemTy.getSizeInBytes() * 8; 304 // For varargs, we always want to extend them to 8 bytes, in which case 305 // we disable setting a max. 306 if (!Arg.IsFixed) 307 MaxSize = 0; 308 309 Register ValVReg = Arg.Regs[RegIndex]; 310 if (VA.getLocInfo() != CCValAssign::LocInfo::FPExt) { 311 MVT LocVT = VA.getLocVT(); 312 MVT ValVT = VA.getValVT(); 313 314 if (VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16) { 315 std::swap(ValVT, LocVT); 316 MemTy = LLT(VA.getValVT()); 317 } 318 319 ValVReg = extendRegister(ValVReg, VA, MaxSize); 320 } else { 321 // The store does not cover the full allocated stack slot. 322 MemTy = LLT(VA.getValVT()); 323 } 324 325 assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA); 326 } 327 328 MachineInstrBuilder MIB; 329 330 bool IsTailCall; 331 332 /// For tail calls, the byte offset of the call's argument area from the 333 /// callee's. Unused elsewhere. 334 int FPDiff; 335 336 // Cache the SP register vreg if we need it more than once in this call site. 337 Register SPReg; 338 339 const AArch64Subtarget &Subtarget; 340 }; 341 } // namespace 342 343 static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) { 344 return (CallConv == CallingConv::Fast && TailCallOpt) || 345 CallConv == CallingConv::Tail || CallConv == CallingConv::SwiftTail; 346 } 347 348 bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder, 349 const Value *Val, 350 ArrayRef<Register> VRegs, 351 FunctionLoweringInfo &FLI, 352 Register SwiftErrorVReg) const { 353 auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR); 354 assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) && 355 "Return value without a vreg"); 356 357 bool Success = true; 358 if (!FLI.CanLowerReturn) { 359 insertSRetStores(MIRBuilder, Val->getType(), VRegs, FLI.DemoteRegister); 360 } else if (!VRegs.empty()) { 361 MachineFunction &MF = MIRBuilder.getMF(); 362 const Function &F = MF.getFunction(); 363 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 364 365 MachineRegisterInfo &MRI = MF.getRegInfo(); 366 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 367 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv()); 368 auto &DL = F.getParent()->getDataLayout(); 369 LLVMContext &Ctx = Val->getType()->getContext(); 370 371 SmallVector<EVT, 4> SplitEVTs; 372 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 373 assert(VRegs.size() == SplitEVTs.size() && 374 "For each split Type there should be exactly one VReg."); 375 376 SmallVector<ArgInfo, 8> SplitArgs; 377 CallingConv::ID CC = F.getCallingConv(); 378 379 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 380 Register CurVReg = VRegs[i]; 381 ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx), 0}; 382 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F); 383 384 // i1 is a special case because SDAG i1 true is naturally zero extended 385 // when widened using ANYEXT. We need to do it explicitly here. 386 auto &Flags = CurArgInfo.Flags[0]; 387 if (MRI.getType(CurVReg).getSizeInBits() == 1 && !Flags.isSExt() && 388 !Flags.isZExt()) { 389 CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0); 390 } else if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) == 391 1) { 392 // Some types will need extending as specified by the CC. 393 MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]); 394 if (EVT(NewVT) != SplitEVTs[i]) { 395 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 396 if (F.getAttributes().hasRetAttr(Attribute::SExt)) 397 ExtendOp = TargetOpcode::G_SEXT; 398 else if (F.getAttributes().hasRetAttr(Attribute::ZExt)) 399 ExtendOp = TargetOpcode::G_ZEXT; 400 401 LLT NewLLT(NewVT); 402 LLT OldLLT(MVT::getVT(CurArgInfo.Ty)); 403 CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx); 404 // Instead of an extend, we might have a vector type which needs 405 // padding with more elements, e.g. <2 x half> -> <4 x half>. 406 if (NewVT.isVector()) { 407 if (OldLLT.isVector()) { 408 if (NewLLT.getNumElements() > OldLLT.getNumElements()) { 409 410 CurVReg = 411 MIRBuilder.buildPadVectorWithUndefElements(NewLLT, CurVReg) 412 .getReg(0); 413 } else { 414 // Just do a vector extend. 415 CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}) 416 .getReg(0); 417 } 418 } else if (NewLLT.getNumElements() >= 2 && 419 NewLLT.getNumElements() <= 8) { 420 // We need to pad a <1 x S> type to <2/4/8 x S>. Since we don't 421 // have <1 x S> vector types in GISel we use a build_vector 422 // instead of a vector merge/concat. 423 CurVReg = 424 MIRBuilder.buildPadVectorWithUndefElements(NewLLT, CurVReg) 425 .getReg(0); 426 } else { 427 LLVM_DEBUG(dbgs() << "Could not handle ret ty\n"); 428 return false; 429 } 430 } else { 431 // If the split EVT was a <1 x T> vector, and NewVT is T, then we 432 // don't have to do anything since we don't distinguish between the 433 // two. 434 if (NewLLT != MRI.getType(CurVReg)) { 435 // A scalar extend. 436 CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}) 437 .getReg(0); 438 } 439 } 440 } 441 } 442 if (CurVReg != CurArgInfo.Regs[0]) { 443 CurArgInfo.Regs[0] = CurVReg; 444 // Reset the arg flags after modifying CurVReg. 445 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F); 446 } 447 splitToValueTypes(CurArgInfo, SplitArgs, DL, CC); 448 } 449 450 AArch64OutgoingValueAssigner Assigner(AssignFn, AssignFn, Subtarget, 451 /*IsReturn*/ true); 452 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB); 453 Success = determineAndHandleAssignments(Handler, Assigner, SplitArgs, 454 MIRBuilder, CC, F.isVarArg()); 455 } 456 457 if (SwiftErrorVReg) { 458 MIB.addUse(AArch64::X21, RegState::Implicit); 459 MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg); 460 } 461 462 MIRBuilder.insertInstr(MIB); 463 return Success; 464 } 465 466 bool AArch64CallLowering::canLowerReturn(MachineFunction &MF, 467 CallingConv::ID CallConv, 468 SmallVectorImpl<BaseArgInfo> &Outs, 469 bool IsVarArg) const { 470 SmallVector<CCValAssign, 16> ArgLocs; 471 const auto &TLI = *getTLI<AArch64TargetLowering>(); 472 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 473 MF.getFunction().getContext()); 474 475 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv)); 476 } 477 478 /// Helper function to compute forwarded registers for musttail calls. Computes 479 /// the forwarded registers, sets MBB liveness, and emits COPY instructions that 480 /// can be used to save + restore registers later. 481 static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder, 482 CCAssignFn *AssignFn) { 483 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 484 MachineFunction &MF = MIRBuilder.getMF(); 485 MachineFrameInfo &MFI = MF.getFrameInfo(); 486 487 if (!MFI.hasMustTailInVarArgFunc()) 488 return; 489 490 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 491 const Function &F = MF.getFunction(); 492 assert(F.isVarArg() && "Expected F to be vararg?"); 493 494 // Compute the set of forwarded registers. The rest are scratch. 495 SmallVector<CCValAssign, 16> ArgLocs; 496 CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs, 497 F.getContext()); 498 SmallVector<MVT, 2> RegParmTypes; 499 RegParmTypes.push_back(MVT::i64); 500 RegParmTypes.push_back(MVT::f128); 501 502 // Later on, we can use this vector to restore the registers if necessary. 503 SmallVectorImpl<ForwardedRegister> &Forwards = 504 FuncInfo->getForwardedMustTailRegParms(); 505 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn); 506 507 // Conservatively forward X8, since it might be used for an aggregate 508 // return. 509 if (!CCInfo.isAllocated(AArch64::X8)) { 510 Register X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass); 511 Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64)); 512 } 513 514 // Add the forwards to the MachineBasicBlock and MachineFunction. 515 for (const auto &F : Forwards) { 516 MBB.addLiveIn(F.PReg); 517 MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg)); 518 } 519 } 520 521 bool AArch64CallLowering::fallBackToDAGISel(const MachineFunction &MF) const { 522 auto &F = MF.getFunction(); 523 if (F.getReturnType()->isScalableTy() || 524 llvm::any_of(F.args(), [](const Argument &A) { 525 return A.getType()->isScalableTy(); 526 })) 527 return true; 528 const auto &ST = MF.getSubtarget<AArch64Subtarget>(); 529 if (!ST.hasNEON() || !ST.hasFPARMv8()) { 530 LLVM_DEBUG(dbgs() << "Falling back to SDAG because we don't support no-NEON\n"); 531 return true; 532 } 533 534 SMEAttrs Attrs(F); 535 if (Attrs.hasNewZAInterface() || 536 (!Attrs.hasStreamingInterface() && Attrs.hasStreamingBody())) 537 return true; 538 539 return false; 540 } 541 542 void AArch64CallLowering::saveVarArgRegisters( 543 MachineIRBuilder &MIRBuilder, CallLowering::IncomingValueHandler &Handler, 544 CCState &CCInfo) const { 545 auto GPRArgRegs = AArch64::getGPRArgRegs(); 546 auto FPRArgRegs = AArch64::getFPRArgRegs(); 547 548 MachineFunction &MF = MIRBuilder.getMF(); 549 MachineRegisterInfo &MRI = MF.getRegInfo(); 550 MachineFrameInfo &MFI = MF.getFrameInfo(); 551 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 552 auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 553 bool IsWin64CC = 554 Subtarget.isCallingConvWin64(CCInfo.getCallingConv()); 555 const LLT p0 = LLT::pointer(0, 64); 556 const LLT s64 = LLT::scalar(64); 557 558 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs); 559 unsigned NumVariadicGPRArgRegs = GPRArgRegs.size() - FirstVariadicGPR + 1; 560 561 unsigned GPRSaveSize = 8 * (GPRArgRegs.size() - FirstVariadicGPR); 562 int GPRIdx = 0; 563 if (GPRSaveSize != 0) { 564 if (IsWin64CC) { 565 GPRIdx = MFI.CreateFixedObject(GPRSaveSize, 566 -static_cast<int>(GPRSaveSize), false); 567 } else 568 GPRIdx = MFI.CreateStackObject(GPRSaveSize, Align(8), false); 569 570 auto FIN = MIRBuilder.buildFrameIndex(p0, GPRIdx); 571 auto Offset = 572 MIRBuilder.buildConstant(MRI.createGenericVirtualRegister(s64), 8); 573 574 for (unsigned i = FirstVariadicGPR; i < GPRArgRegs.size(); ++i) { 575 Register Val = MRI.createGenericVirtualRegister(s64); 576 Handler.assignValueToReg( 577 Val, GPRArgRegs[i], 578 CCValAssign::getReg(i + MF.getFunction().getNumOperands(), MVT::i64, 579 GPRArgRegs[i], MVT::i64, CCValAssign::Full)); 580 auto MPO = IsWin64CC ? MachinePointerInfo::getFixedStack( 581 MF, GPRIdx, (i - FirstVariadicGPR) * 8) 582 : MachinePointerInfo::getStack(MF, i * 8); 583 MIRBuilder.buildStore(Val, FIN, MPO, inferAlignFromPtrInfo(MF, MPO)); 584 585 FIN = MIRBuilder.buildPtrAdd(MRI.createGenericVirtualRegister(p0), 586 FIN.getReg(0), Offset); 587 } 588 } 589 FuncInfo->setVarArgsGPRIndex(GPRIdx); 590 FuncInfo->setVarArgsGPRSize(GPRSaveSize); 591 592 if (Subtarget.hasFPARMv8() && !IsWin64CC) { 593 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs); 594 595 unsigned FPRSaveSize = 16 * (FPRArgRegs.size() - FirstVariadicFPR); 596 int FPRIdx = 0; 597 if (FPRSaveSize != 0) { 598 FPRIdx = MFI.CreateStackObject(FPRSaveSize, Align(16), false); 599 600 auto FIN = MIRBuilder.buildFrameIndex(p0, FPRIdx); 601 auto Offset = 602 MIRBuilder.buildConstant(MRI.createGenericVirtualRegister(s64), 16); 603 604 for (unsigned i = FirstVariadicFPR; i < FPRArgRegs.size(); ++i) { 605 Register Val = MRI.createGenericVirtualRegister(LLT::scalar(128)); 606 Handler.assignValueToReg( 607 Val, FPRArgRegs[i], 608 CCValAssign::getReg( 609 i + MF.getFunction().getNumOperands() + NumVariadicGPRArgRegs, 610 MVT::f128, FPRArgRegs[i], MVT::f128, CCValAssign::Full)); 611 612 auto MPO = MachinePointerInfo::getStack(MF, i * 16); 613 MIRBuilder.buildStore(Val, FIN, MPO, inferAlignFromPtrInfo(MF, MPO)); 614 615 FIN = MIRBuilder.buildPtrAdd(MRI.createGenericVirtualRegister(p0), 616 FIN.getReg(0), Offset); 617 } 618 } 619 FuncInfo->setVarArgsFPRIndex(FPRIdx); 620 FuncInfo->setVarArgsFPRSize(FPRSaveSize); 621 } 622 } 623 624 bool AArch64CallLowering::lowerFormalArguments( 625 MachineIRBuilder &MIRBuilder, const Function &F, 626 ArrayRef<ArrayRef<Register>> VRegs, FunctionLoweringInfo &FLI) const { 627 MachineFunction &MF = MIRBuilder.getMF(); 628 MachineBasicBlock &MBB = MIRBuilder.getMBB(); 629 MachineRegisterInfo &MRI = MF.getRegInfo(); 630 auto &DL = F.getParent()->getDataLayout(); 631 auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 632 // TODO: Support Arm64EC 633 bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv()) && !Subtarget.isWindowsArm64EC(); 634 635 SmallVector<ArgInfo, 8> SplitArgs; 636 SmallVector<std::pair<Register, Register>> BoolArgs; 637 638 // Insert the hidden sret parameter if the return value won't fit in the 639 // return registers. 640 if (!FLI.CanLowerReturn) 641 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 642 643 unsigned i = 0; 644 for (auto &Arg : F.args()) { 645 if (DL.getTypeStoreSize(Arg.getType()).isZero()) 646 continue; 647 648 ArgInfo OrigArg{VRegs[i], Arg, i}; 649 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F); 650 651 // i1 arguments are zero-extended to i8 by the caller. Emit a 652 // hint to reflect this. 653 if (OrigArg.Ty->isIntegerTy(1)) { 654 assert(OrigArg.Regs.size() == 1 && 655 MRI.getType(OrigArg.Regs[0]).getSizeInBits() == 1 && 656 "Unexpected registers used for i1 arg"); 657 658 auto &Flags = OrigArg.Flags[0]; 659 if (!Flags.isZExt() && !Flags.isSExt()) { 660 // Lower i1 argument as i8, and insert AssertZExt + Trunc later. 661 Register OrigReg = OrigArg.Regs[0]; 662 Register WideReg = MRI.createGenericVirtualRegister(LLT::scalar(8)); 663 OrigArg.Regs[0] = WideReg; 664 BoolArgs.push_back({OrigReg, WideReg}); 665 } 666 } 667 668 if (Arg.hasAttribute(Attribute::SwiftAsync)) 669 MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true); 670 671 splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv()); 672 ++i; 673 } 674 675 if (!MBB.empty()) 676 MIRBuilder.setInstr(*MBB.begin()); 677 678 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 679 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(F.getCallingConv(), IsWin64 && F.isVarArg()); 680 681 AArch64IncomingValueAssigner Assigner(AssignFn, AssignFn); 682 FormalArgHandler Handler(MIRBuilder, MRI); 683 SmallVector<CCValAssign, 16> ArgLocs; 684 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 685 if (!determineAssignments(Assigner, SplitArgs, CCInfo) || 686 !handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, MIRBuilder)) 687 return false; 688 689 if (!BoolArgs.empty()) { 690 for (auto &KV : BoolArgs) { 691 Register OrigReg = KV.first; 692 Register WideReg = KV.second; 693 LLT WideTy = MRI.getType(WideReg); 694 assert(MRI.getType(OrigReg).getScalarSizeInBits() == 1 && 695 "Unexpected bit size of a bool arg"); 696 MIRBuilder.buildTrunc( 697 OrigReg, MIRBuilder.buildAssertZExt(WideTy, WideReg, 1).getReg(0)); 698 } 699 } 700 701 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 702 uint64_t StackSize = Assigner.StackSize; 703 if (F.isVarArg()) { 704 if ((!Subtarget.isTargetDarwin() && !Subtarget.isWindowsArm64EC()) || IsWin64) { 705 // The AAPCS variadic function ABI is identical to the non-variadic 706 // one. As a result there may be more arguments in registers and we should 707 // save them for future reference. 708 // Win64 variadic functions also pass arguments in registers, but all 709 // float arguments are passed in integer registers. 710 saveVarArgRegisters(MIRBuilder, Handler, CCInfo); 711 } else if (Subtarget.isWindowsArm64EC()) { 712 return false; 713 } 714 715 // We currently pass all varargs at 8-byte alignment, or 4 in ILP32. 716 StackSize = alignTo(Assigner.StackSize, Subtarget.isTargetILP32() ? 4 : 8); 717 718 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 719 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackSize, true)); 720 } 721 722 if (doesCalleeRestoreStack(F.getCallingConv(), 723 MF.getTarget().Options.GuaranteedTailCallOpt)) { 724 // We have a non-standard ABI, so why not make full use of the stack that 725 // we're going to pop? It must be aligned to 16 B in any case. 726 StackSize = alignTo(StackSize, 16); 727 728 // If we're expected to restore the stack (e.g. fastcc), then we'll be 729 // adding a multiple of 16. 730 FuncInfo->setArgumentStackToRestore(StackSize); 731 732 // Our own callers will guarantee that the space is free by giving an 733 // aligned value to CALLSEQ_START. 734 } 735 736 // When we tail call, we need to check if the callee's arguments 737 // will fit on the caller's stack. So, whenever we lower formal arguments, 738 // we should keep track of this information, since we might lower a tail call 739 // in this function later. 740 FuncInfo->setBytesInStackArgArea(StackSize); 741 742 if (Subtarget.hasCustomCallingConv()) 743 Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF); 744 745 handleMustTailForwardedRegisters(MIRBuilder, AssignFn); 746 747 // Move back to the end of the basic block. 748 MIRBuilder.setMBB(MBB); 749 750 return true; 751 } 752 753 /// Return true if the calling convention is one that we can guarantee TCO for. 754 static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) { 755 return (CC == CallingConv::Fast && GuaranteeTailCalls) || 756 CC == CallingConv::Tail || CC == CallingConv::SwiftTail; 757 } 758 759 /// Return true if we might ever do TCO for calls with this calling convention. 760 static bool mayTailCallThisCC(CallingConv::ID CC) { 761 switch (CC) { 762 case CallingConv::C: 763 case CallingConv::PreserveMost: 764 case CallingConv::PreserveAll: 765 case CallingConv::Swift: 766 case CallingConv::SwiftTail: 767 case CallingConv::Tail: 768 case CallingConv::Fast: 769 return true; 770 default: 771 return false; 772 } 773 } 774 775 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 776 /// CC. 777 static std::pair<CCAssignFn *, CCAssignFn *> 778 getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) { 779 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 780 } 781 782 bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay( 783 CallLoweringInfo &Info, MachineFunction &MF, 784 SmallVectorImpl<ArgInfo> &InArgs) const { 785 const Function &CallerF = MF.getFunction(); 786 CallingConv::ID CalleeCC = Info.CallConv; 787 CallingConv::ID CallerCC = CallerF.getCallingConv(); 788 789 // If the calling conventions match, then everything must be the same. 790 if (CalleeCC == CallerCC) 791 return true; 792 793 // Check if the caller and callee will handle arguments in the same way. 794 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 795 CCAssignFn *CalleeAssignFnFixed; 796 CCAssignFn *CalleeAssignFnVarArg; 797 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) = 798 getAssignFnsForCC(CalleeCC, TLI); 799 800 CCAssignFn *CallerAssignFnFixed; 801 CCAssignFn *CallerAssignFnVarArg; 802 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) = 803 getAssignFnsForCC(CallerCC, TLI); 804 805 AArch64IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed, 806 CalleeAssignFnVarArg); 807 AArch64IncomingValueAssigner CallerAssigner(CallerAssignFnFixed, 808 CallerAssignFnVarArg); 809 810 if (!resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner)) 811 return false; 812 813 // Make sure that the caller and callee preserve all of the same registers. 814 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); 815 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 816 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 817 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) { 818 TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved); 819 TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved); 820 } 821 822 return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved); 823 } 824 825 bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable( 826 CallLoweringInfo &Info, MachineFunction &MF, 827 SmallVectorImpl<ArgInfo> &OutArgs) const { 828 // If there are no outgoing arguments, then we are done. 829 if (OutArgs.empty()) 830 return true; 831 832 const Function &CallerF = MF.getFunction(); 833 LLVMContext &Ctx = CallerF.getContext(); 834 CallingConv::ID CalleeCC = Info.CallConv; 835 CallingConv::ID CallerCC = CallerF.getCallingConv(); 836 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 837 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 838 839 CCAssignFn *AssignFnFixed; 840 CCAssignFn *AssignFnVarArg; 841 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 842 843 // We have outgoing arguments. Make sure that we can tail call with them. 844 SmallVector<CCValAssign, 16> OutLocs; 845 CCState OutInfo(CalleeCC, false, MF, OutLocs, Ctx); 846 847 AArch64OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg, 848 Subtarget, /*IsReturn*/ false); 849 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) { 850 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); 851 return false; 852 } 853 854 // Make sure that they can fit on the caller's stack. 855 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 856 if (OutInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) { 857 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); 858 return false; 859 } 860 861 // Verify that the parameters in callee-saved registers match. 862 // TODO: Port this over to CallLowering as general code once swiftself is 863 // supported. 864 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); 865 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); 866 MachineRegisterInfo &MRI = MF.getRegInfo(); 867 868 if (Info.IsVarArg) { 869 // Be conservative and disallow variadic memory operands to match SDAG's 870 // behaviour. 871 // FIXME: If the caller's calling convention is C, then we can 872 // potentially use its argument area. However, for cases like fastcc, 873 // we can't do anything. 874 for (unsigned i = 0; i < OutLocs.size(); ++i) { 875 auto &ArgLoc = OutLocs[i]; 876 if (ArgLoc.isRegLoc()) 877 continue; 878 879 LLVM_DEBUG( 880 dbgs() 881 << "... Cannot tail call vararg function with stack arguments\n"); 882 return false; 883 } 884 } 885 886 return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs); 887 } 888 889 bool AArch64CallLowering::isEligibleForTailCallOptimization( 890 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 891 SmallVectorImpl<ArgInfo> &InArgs, 892 SmallVectorImpl<ArgInfo> &OutArgs) const { 893 894 // Must pass all target-independent checks in order to tail call optimize. 895 if (!Info.IsTailCall) 896 return false; 897 898 CallingConv::ID CalleeCC = Info.CallConv; 899 MachineFunction &MF = MIRBuilder.getMF(); 900 const Function &CallerF = MF.getFunction(); 901 902 LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n"); 903 904 if (Info.SwiftErrorVReg) { 905 // TODO: We should handle this. 906 // Note that this is also handled by the check for no outgoing arguments. 907 // Proactively disabling this though, because the swifterror handling in 908 // lowerCall inserts a COPY *after* the location of the call. 909 LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n"); 910 return false; 911 } 912 913 if (!mayTailCallThisCC(CalleeCC)) { 914 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); 915 return false; 916 } 917 918 // Byval parameters hand the function a pointer directly into the stack area 919 // we want to reuse during a tail call. Working around this *is* possible (see 920 // X86). 921 // 922 // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try 923 // it? 924 // 925 // On Windows, "inreg" attributes signify non-aggregate indirect returns. 926 // In this case, it is necessary to save/restore X0 in the callee. Tail 927 // call opt interferes with this. So we disable tail call opt when the 928 // caller has an argument with "inreg" attribute. 929 // 930 // FIXME: Check whether the callee also has an "inreg" argument. 931 // 932 // When the caller has a swifterror argument, we don't want to tail call 933 // because would have to move into the swifterror register before the 934 // tail call. 935 if (any_of(CallerF.args(), [](const Argument &A) { 936 return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr(); 937 })) { 938 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, " 939 "inreg, or swifterror arguments\n"); 940 return false; 941 } 942 943 // Externally-defined functions with weak linkage should not be 944 // tail-called on AArch64 when the OS does not support dynamic 945 // pre-emption of symbols, as the AAELF spec requires normal calls 946 // to undefined weak functions to be replaced with a NOP or jump to the 947 // next instruction. The behaviour of branch instructions in this 948 // situation (as used for tail calls) is implementation-defined, so we 949 // cannot rely on the linker replacing the tail call with a return. 950 if (Info.Callee.isGlobal()) { 951 const GlobalValue *GV = Info.Callee.getGlobal(); 952 const Triple &TT = MF.getTarget().getTargetTriple(); 953 if (GV->hasExternalWeakLinkage() && 954 (!TT.isOSWindows() || TT.isOSBinFormatELF() || 955 TT.isOSBinFormatMachO())) { 956 LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function " 957 "with weak linkage for this OS.\n"); 958 return false; 959 } 960 } 961 962 // If we have -tailcallopt, then we're done. 963 if (canGuaranteeTCO(CalleeCC, MF.getTarget().Options.GuaranteedTailCallOpt)) 964 return CalleeCC == CallerF.getCallingConv(); 965 966 // We don't have -tailcallopt, so we're allowed to change the ABI (sibcall). 967 // Try to find cases where we can do that. 968 969 // I want anyone implementing a new calling convention to think long and hard 970 // about this assert. 971 assert((!Info.IsVarArg || CalleeCC == CallingConv::C) && 972 "Unexpected variadic calling convention"); 973 974 // Verify that the incoming and outgoing arguments from the callee are 975 // safe to tail call. 976 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { 977 LLVM_DEBUG( 978 dbgs() 979 << "... Caller and callee have incompatible calling conventions.\n"); 980 return false; 981 } 982 983 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) 984 return false; 985 986 LLVM_DEBUG( 987 dbgs() << "... Call is eligible for tail call optimization.\n"); 988 return true; 989 } 990 991 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 992 bool IsTailCall) { 993 if (!IsTailCall) 994 return IsIndirect ? getBLRCallOpcode(CallerF) : (unsigned)AArch64::BL; 995 996 if (!IsIndirect) 997 return AArch64::TCRETURNdi; 998 999 // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use 1000 // x16 or x17. 1001 if (CallerF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement()) 1002 return AArch64::TCRETURNriBTI; 1003 1004 return AArch64::TCRETURNri; 1005 } 1006 1007 static const uint32_t * 1008 getMaskForArgs(SmallVectorImpl<AArch64CallLowering::ArgInfo> &OutArgs, 1009 AArch64CallLowering::CallLoweringInfo &Info, 1010 const AArch64RegisterInfo &TRI, MachineFunction &MF) { 1011 const uint32_t *Mask; 1012 if (!OutArgs.empty() && OutArgs[0].Flags[0].isReturned()) { 1013 // For 'this' returns, use the X0-preserving mask if applicable 1014 Mask = TRI.getThisReturnPreservedMask(MF, Info.CallConv); 1015 if (!Mask) { 1016 OutArgs[0].Flags[0].setReturned(false); 1017 Mask = TRI.getCallPreservedMask(MF, Info.CallConv); 1018 } 1019 } else { 1020 Mask = TRI.getCallPreservedMask(MF, Info.CallConv); 1021 } 1022 return Mask; 1023 } 1024 1025 bool AArch64CallLowering::lowerTailCall( 1026 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 1027 SmallVectorImpl<ArgInfo> &OutArgs) const { 1028 MachineFunction &MF = MIRBuilder.getMF(); 1029 const Function &F = MF.getFunction(); 1030 MachineRegisterInfo &MRI = MF.getRegInfo(); 1031 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 1032 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 1033 1034 // True when we're tail calling, but without -tailcallopt. 1035 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt && 1036 Info.CallConv != CallingConv::Tail && 1037 Info.CallConv != CallingConv::SwiftTail; 1038 1039 // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64 1040 // register class. Until we can do that, we should fall back here. 1041 if (MF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement()) { 1042 LLVM_DEBUG( 1043 dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n"); 1044 return false; 1045 } 1046 1047 // Find out which ABI gets to decide where things go. 1048 CallingConv::ID CalleeCC = Info.CallConv; 1049 CCAssignFn *AssignFnFixed; 1050 CCAssignFn *AssignFnVarArg; 1051 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1052 1053 MachineInstrBuilder CallSeqStart; 1054 if (!IsSibCall) 1055 CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN); 1056 1057 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true); 1058 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1059 MIB.add(Info.Callee); 1060 1061 // Byte offset for the tail call. When we are sibcalling, this will always 1062 // be 0. 1063 MIB.addImm(0); 1064 1065 // Tell the call which registers are clobbered. 1066 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1067 auto TRI = Subtarget.getRegisterInfo(); 1068 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); 1069 if (Subtarget.hasCustomCallingConv()) 1070 TRI->UpdateCustomCallPreservedMask(MF, &Mask); 1071 MIB.addRegMask(Mask); 1072 1073 if (Info.CFIType) 1074 MIB->setCFIType(MF, Info.CFIType->getZExtValue()); 1075 1076 if (TRI->isAnyArgRegReserved(MF)) 1077 TRI->emitReservedArgRegCallError(MF); 1078 1079 // FPDiff is the byte offset of the call's argument area from the callee's. 1080 // Stores to callee stack arguments will be placed in FixedStackSlots offset 1081 // by this amount for a tail call. In a sibling call it must be 0 because the 1082 // caller will deallocate the entire stack and the callee still expects its 1083 // arguments to begin at SP+0. 1084 int FPDiff = 0; 1085 1086 // This will be 0 for sibcalls, potentially nonzero for tail calls produced 1087 // by -tailcallopt. For sibcalls, the memory operands for the call are 1088 // already available in the caller's incoming argument space. 1089 unsigned NumBytes = 0; 1090 if (!IsSibCall) { 1091 // We aren't sibcalling, so we need to compute FPDiff. We need to do this 1092 // before handling assignments, because FPDiff must be known for memory 1093 // arguments. 1094 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 1095 SmallVector<CCValAssign, 16> OutLocs; 1096 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); 1097 1098 AArch64OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg, 1099 Subtarget, /*IsReturn*/ false); 1100 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) 1101 return false; 1102 1103 // The callee will pop the argument stack as a tail call. Thus, we must 1104 // keep it 16-byte aligned. 1105 NumBytes = alignTo(OutInfo.getStackSize(), 16); 1106 1107 // FPDiff will be negative if this tail call requires more space than we 1108 // would automatically have in our incoming argument space. Positive if we 1109 // actually shrink the stack. 1110 FPDiff = NumReusableBytes - NumBytes; 1111 1112 // Update the required reserved area if this is the tail call requiring the 1113 // most argument stack space. 1114 if (FPDiff < 0 && FuncInfo->getTailCallReservedStack() < (unsigned)-FPDiff) 1115 FuncInfo->setTailCallReservedStack(-FPDiff); 1116 1117 // The stack pointer must be 16-byte aligned at all times it's used for a 1118 // memory operation, which in practice means at *all* times and in 1119 // particular across call boundaries. Therefore our own arguments started at 1120 // a 16-byte aligned SP and the delta applied for the tail call should 1121 // satisfy the same constraint. 1122 assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); 1123 } 1124 1125 const auto &Forwards = FuncInfo->getForwardedMustTailRegParms(); 1126 1127 AArch64OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg, 1128 Subtarget, /*IsReturn*/ false); 1129 1130 // Do the actual argument marshalling. 1131 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, 1132 /*IsTailCall*/ true, FPDiff); 1133 if (!determineAndHandleAssignments(Handler, Assigner, OutArgs, MIRBuilder, 1134 CalleeCC, Info.IsVarArg)) 1135 return false; 1136 1137 Mask = getMaskForArgs(OutArgs, Info, *TRI, MF); 1138 1139 if (Info.IsVarArg && Info.IsMustTailCall) { 1140 // Now we know what's being passed to the function. Add uses to the call for 1141 // the forwarded registers that we *aren't* passing as parameters. This will 1142 // preserve the copies we build earlier. 1143 for (const auto &F : Forwards) { 1144 Register ForwardedReg = F.PReg; 1145 // If the register is already passed, or aliases a register which is 1146 // already being passed, then skip it. 1147 if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) { 1148 if (!Use.isReg()) 1149 return false; 1150 return TRI->regsOverlap(Use.getReg(), ForwardedReg); 1151 })) 1152 continue; 1153 1154 // We aren't passing it already, so we should add it to the call. 1155 MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg)); 1156 MIB.addReg(ForwardedReg, RegState::Implicit); 1157 } 1158 } 1159 1160 // If we have -tailcallopt, we need to adjust the stack. We'll do the call 1161 // sequence start and end here. 1162 if (!IsSibCall) { 1163 MIB->getOperand(1).setImm(FPDiff); 1164 CallSeqStart.addImm(0).addImm(0); 1165 // End the call sequence *before* emitting the call. Normally, we would 1166 // tidy the frame up after the call. However, here, we've laid out the 1167 // parameters so that when SP is reset, they will be in the correct 1168 // location. 1169 MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(0).addImm(0); 1170 } 1171 1172 // Now we can add the actual call instruction to the correct basic block. 1173 MIRBuilder.insertInstr(MIB); 1174 1175 // If Callee is a reg, since it is used by a target specific instruction, 1176 // it must have a register class matching the constraint of that instruction. 1177 if (MIB->getOperand(0).isReg()) 1178 constrainOperandRegClass(MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(), 1179 *MF.getSubtarget().getRegBankInfo(), *MIB, 1180 MIB->getDesc(), MIB->getOperand(0), 0); 1181 1182 MF.getFrameInfo().setHasTailCall(); 1183 Info.LoweredTailCall = true; 1184 return true; 1185 } 1186 1187 bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 1188 CallLoweringInfo &Info) const { 1189 MachineFunction &MF = MIRBuilder.getMF(); 1190 const Function &F = MF.getFunction(); 1191 MachineRegisterInfo &MRI = MF.getRegInfo(); 1192 auto &DL = F.getParent()->getDataLayout(); 1193 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>(); 1194 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1195 1196 // Arm64EC has extra requirements for varargs calls; bail out for now. 1197 if (Info.IsVarArg && Subtarget.isWindowsArm64EC()) 1198 return false; 1199 1200 SmallVector<ArgInfo, 8> OutArgs; 1201 for (auto &OrigArg : Info.OrigArgs) { 1202 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); 1203 // AAPCS requires that we zero-extend i1 to 8 bits by the caller. 1204 auto &Flags = OrigArg.Flags[0]; 1205 if (OrigArg.Ty->isIntegerTy(1) && !Flags.isSExt() && !Flags.isZExt()) { 1206 ArgInfo &OutArg = OutArgs.back(); 1207 assert(OutArg.Regs.size() == 1 && 1208 MRI.getType(OutArg.Regs[0]).getSizeInBits() == 1 && 1209 "Unexpected registers used for i1 arg"); 1210 1211 // We cannot use a ZExt ArgInfo flag here, because it will 1212 // zero-extend the argument to i32 instead of just i8. 1213 OutArg.Regs[0] = 1214 MIRBuilder.buildZExt(LLT::scalar(8), OutArg.Regs[0]).getReg(0); 1215 LLVMContext &Ctx = MF.getFunction().getContext(); 1216 OutArg.Ty = Type::getInt8Ty(Ctx); 1217 } 1218 } 1219 1220 SmallVector<ArgInfo, 8> InArgs; 1221 if (!Info.OrigRet.Ty->isVoidTy()) 1222 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); 1223 1224 // If we can lower as a tail call, do that instead. 1225 bool CanTailCallOpt = 1226 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs); 1227 1228 // We must emit a tail call if we have musttail. 1229 if (Info.IsMustTailCall && !CanTailCallOpt) { 1230 // There are types of incoming/outgoing arguments we can't handle yet, so 1231 // it doesn't make sense to actually die here like in ISelLowering. Instead, 1232 // fall back to SelectionDAG and let it try to handle this. 1233 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 1234 return false; 1235 } 1236 1237 Info.IsTailCall = CanTailCallOpt; 1238 if (CanTailCallOpt) 1239 return lowerTailCall(MIRBuilder, Info, OutArgs); 1240 1241 // Find out which ABI gets to decide where things go. 1242 CCAssignFn *AssignFnFixed; 1243 CCAssignFn *AssignFnVarArg; 1244 std::tie(AssignFnFixed, AssignFnVarArg) = 1245 getAssignFnsForCC(Info.CallConv, TLI); 1246 1247 MachineInstrBuilder CallSeqStart; 1248 CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN); 1249 1250 // Create a temporarily-floating call instruction so we can add the implicit 1251 // uses of arg registers. 1252 1253 unsigned Opc = 0; 1254 // Calls with operand bundle "clang.arc.attachedcall" are special. They should 1255 // be expanded to the call, directly followed by a special marker sequence and 1256 // a call to an ObjC library function. 1257 if (Info.CB && objcarc::hasAttachedCallOpBundle(Info.CB)) 1258 Opc = AArch64::BLR_RVMARKER; 1259 // A call to a returns twice function like setjmp must be followed by a bti 1260 // instruction. 1261 else if (Info.CB && Info.CB->hasFnAttr(Attribute::ReturnsTwice) && 1262 !Subtarget.noBTIAtReturnTwice() && 1263 MF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement()) 1264 Opc = AArch64::BLR_BTI; 1265 else 1266 Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 1267 1268 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1269 unsigned CalleeOpNo = 0; 1270 1271 if (Opc == AArch64::BLR_RVMARKER) { 1272 // Add a target global address for the retainRV/claimRV runtime function 1273 // just before the call target. 1274 Function *ARCFn = *objcarc::getAttachedARCFunction(Info.CB); 1275 MIB.addGlobalAddress(ARCFn); 1276 ++CalleeOpNo; 1277 } else if (Info.CFIType) { 1278 MIB->setCFIType(MF, Info.CFIType->getZExtValue()); 1279 } 1280 1281 MIB.add(Info.Callee); 1282 1283 // Tell the call which registers are clobbered. 1284 const uint32_t *Mask; 1285 const auto *TRI = Subtarget.getRegisterInfo(); 1286 1287 AArch64OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg, 1288 Subtarget, /*IsReturn*/ false); 1289 // Do the actual argument marshalling. 1290 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, /*IsReturn*/ false); 1291 if (!determineAndHandleAssignments(Handler, Assigner, OutArgs, MIRBuilder, 1292 Info.CallConv, Info.IsVarArg)) 1293 return false; 1294 1295 Mask = getMaskForArgs(OutArgs, Info, *TRI, MF); 1296 1297 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) 1298 TRI->UpdateCustomCallPreservedMask(MF, &Mask); 1299 MIB.addRegMask(Mask); 1300 1301 if (TRI->isAnyArgRegReserved(MF)) 1302 TRI->emitReservedArgRegCallError(MF); 1303 1304 // Now we can add the actual call instruction to the correct basic block. 1305 MIRBuilder.insertInstr(MIB); 1306 1307 uint64_t CalleePopBytes = 1308 doesCalleeRestoreStack(Info.CallConv, 1309 MF.getTarget().Options.GuaranteedTailCallOpt) 1310 ? alignTo(Assigner.StackSize, 16) 1311 : 0; 1312 1313 CallSeqStart.addImm(Assigner.StackSize).addImm(0); 1314 MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP) 1315 .addImm(Assigner.StackSize) 1316 .addImm(CalleePopBytes); 1317 1318 // If Callee is a reg, since it is used by a target specific 1319 // instruction, it must have a register class matching the 1320 // constraint of that instruction. 1321 if (MIB->getOperand(CalleeOpNo).isReg()) 1322 constrainOperandRegClass(MF, *TRI, MRI, *Subtarget.getInstrInfo(), 1323 *Subtarget.getRegBankInfo(), *MIB, MIB->getDesc(), 1324 MIB->getOperand(CalleeOpNo), CalleeOpNo); 1325 1326 // Finally we can copy the returned value back into its virtual-register. In 1327 // symmetry with the arguments, the physical register must be an 1328 // implicit-define of the call instruction. 1329 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1330 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv); 1331 CallReturnHandler Handler(MIRBuilder, MRI, MIB); 1332 bool UsingReturnedArg = 1333 !OutArgs.empty() && OutArgs[0].Flags[0].isReturned(); 1334 1335 AArch64OutgoingValueAssigner Assigner(RetAssignFn, RetAssignFn, Subtarget, 1336 /*IsReturn*/ false); 1337 ReturnedArgCallReturnHandler ReturnedArgHandler(MIRBuilder, MRI, MIB); 1338 if (!determineAndHandleAssignments( 1339 UsingReturnedArg ? ReturnedArgHandler : Handler, Assigner, InArgs, 1340 MIRBuilder, Info.CallConv, Info.IsVarArg, 1341 UsingReturnedArg ? ArrayRef(OutArgs[0].Regs) : std::nullopt)) 1342 return false; 1343 } 1344 1345 if (Info.SwiftErrorVReg) { 1346 MIB.addDef(AArch64::X21, RegState::Implicit); 1347 MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21)); 1348 } 1349 1350 if (!Info.CanLowerReturn) { 1351 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1352 Info.DemoteRegister, Info.DemoteStackIndex); 1353 } 1354 return true; 1355 } 1356 1357 bool AArch64CallLowering::isTypeIsValidForThisReturn(EVT Ty) const { 1358 return Ty.getSizeInBits() == 64; 1359 } 1360