xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.h (revision f3087bef11543b42e0d69b708f367097a4118d24)
1 //===- AArch64TargetTransformInfo.h - AArch64 specific TTI ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file a TargetTransformInfo::Concept conforming object specific to the
10 /// AArch64 target machine. It uses the target's detailed information to
11 /// provide more precise answers to certain TTI queries, while letting the
12 /// target independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H
17 #define LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H
18 
19 #include "AArch64.h"
20 #include "AArch64Subtarget.h"
21 #include "AArch64TargetMachine.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/CodeGen/BasicTTIImpl.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include <cstdint>
28 #include <optional>
29 
30 namespace llvm {
31 
32 class APInt;
33 class Instruction;
34 class IntrinsicInst;
35 class Loop;
36 class SCEV;
37 class ScalarEvolution;
38 class Type;
39 class Value;
40 class VectorType;
41 
42 class AArch64TTIImpl : public BasicTTIImplBase<AArch64TTIImpl> {
43   using BaseT = BasicTTIImplBase<AArch64TTIImpl>;
44   using TTI = TargetTransformInfo;
45 
46   friend BaseT;
47 
48   const AArch64Subtarget *ST;
49   const AArch64TargetLowering *TLI;
50 
51   const AArch64Subtarget *getST() const { return ST; }
52   const AArch64TargetLowering *getTLI() const { return TLI; }
53 
54   enum MemIntrinsicType {
55     VECTOR_LDST_TWO_ELEMENTS,
56     VECTOR_LDST_THREE_ELEMENTS,
57     VECTOR_LDST_FOUR_ELEMENTS
58   };
59 
60   bool isWideningInstruction(Type *DstTy, unsigned Opcode,
61                              ArrayRef<const Value *> Args,
62                              Type *SrcOverrideTy = nullptr);
63 
64   // A helper function called by 'getVectorInstrCost'.
65   //
66   // 'Val' and 'Index' are forwarded from 'getVectorInstrCost'; 'HasRealUse'
67   // indicates whether the vector instruction is available in the input IR or
68   // just imaginary in vectorizer passes.
69   InstructionCost getVectorInstrCostHelper(const Instruction *I, Type *Val,
70                                            unsigned Index, bool HasRealUse);
71 
72 public:
73   explicit AArch64TTIImpl(const AArch64TargetMachine *TM, const Function &F)
74       : BaseT(TM, F.getDataLayout()), ST(TM->getSubtargetImpl(F)),
75         TLI(ST->getTargetLowering()) {}
76 
77   bool areInlineCompatible(const Function *Caller,
78                            const Function *Callee) const;
79 
80   bool areTypesABICompatible(const Function *Caller, const Function *Callee,
81                              const ArrayRef<Type *> &Types) const;
82 
83   unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
84                                 unsigned DefaultCallPenalty) const;
85 
86   /// \name Scalar TTI Implementations
87   /// @{
88 
89   using BaseT::getIntImmCost;
90   InstructionCost getIntImmCost(int64_t Val);
91   InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
92                                 TTI::TargetCostKind CostKind);
93   InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
94                                     const APInt &Imm, Type *Ty,
95                                     TTI::TargetCostKind CostKind,
96                                     Instruction *Inst = nullptr);
97   InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
98                                       const APInt &Imm, Type *Ty,
99                                       TTI::TargetCostKind CostKind);
100   TTI::PopcntSupportKind getPopcntSupport(unsigned TyWidth);
101 
102   /// @}
103 
104   /// \name Vector TTI Implementations
105   /// @{
106 
107   bool enableInterleavedAccessVectorization() { return true; }
108 
109   bool enableMaskedInterleavedAccessVectorization() { return ST->hasSVE(); }
110 
111   unsigned getNumberOfRegisters(unsigned ClassID) const {
112     bool Vector = (ClassID == 1);
113     if (Vector) {
114       if (ST->hasNEON())
115         return 32;
116       return 0;
117     }
118     return 31;
119   }
120 
121   InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
122                                         TTI::TargetCostKind CostKind);
123 
124   std::optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
125                                                     IntrinsicInst &II) const;
126 
127   std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
128       InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
129       APInt &UndefElts2, APInt &UndefElts3,
130       std::function<void(Instruction *, unsigned, APInt, APInt &)>
131           SimplifyAndSetOp) const;
132 
133   TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const;
134 
135   unsigned getMinVectorRegisterBitWidth() const {
136     return ST->getMinVectorRegisterBitWidth();
137   }
138 
139   std::optional<unsigned> getVScaleForTuning() const {
140     return ST->getVScaleForTuning();
141   }
142 
143   bool isVScaleKnownToBeAPowerOfTwo() const { return true; }
144 
145   bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const;
146 
147   /// Try to return an estimate cost factor that can be used as a multiplier
148   /// when scalarizing an operation for a vector with ElementCount \p VF.
149   /// For scalable vectors this currently takes the most pessimistic view based
150   /// upon the maximum possible value for vscale.
151   unsigned getMaxNumElements(ElementCount VF) const {
152     if (!VF.isScalable())
153       return VF.getFixedValue();
154 
155     return VF.getKnownMinValue() * ST->getVScaleForTuning();
156   }
157 
158   unsigned getMaxInterleaveFactor(ElementCount VF);
159 
160   bool prefersVectorizedAddressing() const;
161 
162   InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
163                                         Align Alignment, unsigned AddressSpace,
164                                         TTI::TargetCostKind CostKind);
165 
166   InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
167                                          const Value *Ptr, bool VariableMask,
168                                          Align Alignment,
169                                          TTI::TargetCostKind CostKind,
170                                          const Instruction *I = nullptr);
171 
172   bool isExtPartOfAvgExpr(const Instruction *ExtUser, Type *Dst, Type *Src);
173 
174   InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
175                                    TTI::CastContextHint CCH,
176                                    TTI::TargetCostKind CostKind,
177                                    const Instruction *I = nullptr);
178 
179   InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
180                                            VectorType *VecTy, unsigned Index);
181 
182   InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
183                                  const Instruction *I = nullptr);
184 
185   InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
186                                      TTI::TargetCostKind CostKind,
187                                      unsigned Index, Value *Op0, Value *Op1);
188   InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
189                                      TTI::TargetCostKind CostKind,
190                                      unsigned Index);
191 
192   InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
193                                          FastMathFlags FMF,
194                                          TTI::TargetCostKind CostKind);
195 
196   InstructionCost getArithmeticReductionCostSVE(unsigned Opcode,
197                                                 VectorType *ValTy,
198                                                 TTI::TargetCostKind CostKind);
199 
200   InstructionCost getSpliceCost(VectorType *Tp, int Index);
201 
202   InstructionCost getArithmeticInstrCost(
203       unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
204       TTI::OperandValueInfo Op1Info = {TTI::OK_AnyValue, TTI::OP_None},
205       TTI::OperandValueInfo Op2Info = {TTI::OK_AnyValue, TTI::OP_None},
206       ArrayRef<const Value *> Args = std::nullopt,
207       const Instruction *CxtI = nullptr);
208 
209   InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
210                                             const SCEV *Ptr);
211 
212   InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
213                                      CmpInst::Predicate VecPred,
214                                      TTI::TargetCostKind CostKind,
215                                      const Instruction *I = nullptr);
216 
217   TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
218                                                     bool IsZeroCmp) const;
219   bool useNeonVector(const Type *Ty) const;
220 
221   InstructionCost
222   getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
223                   unsigned AddressSpace, TTI::TargetCostKind CostKind,
224                   TTI::OperandValueInfo OpInfo = {TTI::OK_AnyValue, TTI::OP_None},
225                   const Instruction *I = nullptr);
226 
227   InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys);
228 
229   void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
230                                TTI::UnrollingPreferences &UP,
231                                OptimizationRemarkEmitter *ORE);
232 
233   void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
234                              TTI::PeelingPreferences &PP);
235 
236   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
237                                            Type *ExpectedType);
238 
239   bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info);
240 
241   bool isElementTypeLegalForScalableVector(Type *Ty) const {
242     if (Ty->isPointerTy())
243       return true;
244 
245     if (Ty->isBFloatTy() && ST->hasBF16())
246       return true;
247 
248     if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
249       return true;
250 
251     if (Ty->isIntegerTy(1) || Ty->isIntegerTy(8) || Ty->isIntegerTy(16) ||
252         Ty->isIntegerTy(32) || Ty->isIntegerTy(64))
253       return true;
254 
255     return false;
256   }
257 
258   bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) {
259     if (!ST->hasSVE())
260       return false;
261 
262     // For fixed vectors, avoid scalarization if using SVE for them.
263     if (isa<FixedVectorType>(DataType) && !ST->useSVEForFixedLengthVectors() &&
264         DataType->getPrimitiveSizeInBits() != 128)
265       return false; // Fall back to scalarization of masked operations.
266 
267     return isElementTypeLegalForScalableVector(DataType->getScalarType());
268   }
269 
270   bool isLegalMaskedLoad(Type *DataType, Align Alignment) {
271     return isLegalMaskedLoadStore(DataType, Alignment);
272   }
273 
274   bool isLegalMaskedStore(Type *DataType, Align Alignment) {
275     return isLegalMaskedLoadStore(DataType, Alignment);
276   }
277 
278   bool isLegalMaskedGatherScatter(Type *DataType) const {
279     if (!ST->isSVEAvailable())
280       return false;
281 
282     // For fixed vectors, scalarize if not using SVE for them.
283     auto *DataTypeFVTy = dyn_cast<FixedVectorType>(DataType);
284     if (DataTypeFVTy && (!ST->useSVEForFixedLengthVectors() ||
285                          DataTypeFVTy->getNumElements() < 2))
286       return false;
287 
288     return isElementTypeLegalForScalableVector(DataType->getScalarType());
289   }
290 
291   bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
292     return isLegalMaskedGatherScatter(DataType);
293   }
294 
295   bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
296     return isLegalMaskedGatherScatter(DataType);
297   }
298 
299   bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const {
300     // Return true if we can generate a `ld1r` splat load instruction.
301     if (!ST->hasNEON() || NumElements.isScalable())
302       return false;
303     switch (unsigned ElementBits = ElementTy->getScalarSizeInBits()) {
304     case 8:
305     case 16:
306     case 32:
307     case 64: {
308       // We accept bit-widths >= 64bits and elements {8,16,32,64} bits.
309       unsigned VectorBits = NumElements.getFixedValue() * ElementBits;
310       return VectorBits >= 64;
311     }
312     }
313     return false;
314   }
315 
316   bool isLegalNTStoreLoad(Type *DataType, Align Alignment) {
317     // NOTE: The logic below is mostly geared towards LV, which calls it with
318     //       vectors with 2 elements. We might want to improve that, if other
319     //       users show up.
320     // Nontemporal vector loads/stores can be directly lowered to LDNP/STNP, if
321     // the vector can be halved so that each half fits into a register. That's
322     // the case if the element type fits into a register and the number of
323     // elements is a power of 2 > 1.
324     if (auto *DataTypeTy = dyn_cast<FixedVectorType>(DataType)) {
325       unsigned NumElements = DataTypeTy->getNumElements();
326       unsigned EltSize = DataTypeTy->getElementType()->getScalarSizeInBits();
327       return NumElements > 1 && isPowerOf2_64(NumElements) && EltSize >= 8 &&
328              EltSize <= 128 && isPowerOf2_64(EltSize);
329     }
330     return BaseT::isLegalNTStore(DataType, Alignment);
331   }
332 
333   bool isLegalNTStore(Type *DataType, Align Alignment) {
334     return isLegalNTStoreLoad(DataType, Alignment);
335   }
336 
337   bool isLegalNTLoad(Type *DataType, Align Alignment) {
338     // Only supports little-endian targets.
339     if (ST->isLittleEndian())
340       return isLegalNTStoreLoad(DataType, Alignment);
341     return BaseT::isLegalNTLoad(DataType, Alignment);
342   }
343 
344   bool enableOrderedReductions() const { return true; }
345 
346   InstructionCost getInterleavedMemoryOpCost(
347       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
348       Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
349       bool UseMaskForCond = false, bool UseMaskForGaps = false);
350 
351   bool
352   shouldConsiderAddressTypePromotion(const Instruction &I,
353                                      bool &AllowPromotionWithoutCommonHeader);
354 
355   bool shouldExpandReduction(const IntrinsicInst *II) const { return false; }
356 
357   unsigned getGISelRematGlobalCost() const {
358     return 2;
359   }
360 
361   unsigned getMinTripCountTailFoldingThreshold() const {
362     return ST->hasSVE() ? 5 : 0;
363   }
364 
365   TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const {
366     if (ST->hasSVE())
367       return IVUpdateMayOverflow
368                  ? TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck
369                  : TailFoldingStyle::DataAndControlFlow;
370 
371     return TailFoldingStyle::DataWithoutLaneMask;
372   }
373 
374   bool preferFixedOverScalableIfEqualCost() const {
375     return ST->useFixedOverScalableIfEqualCost();
376   }
377 
378   bool preferPredicateOverEpilogue(TailFoldingInfo *TFI);
379 
380   bool supportsScalableVectors() const {
381     return ST->isSVEorStreamingSVEAvailable();
382   }
383 
384   bool enableScalableVectorization() const;
385 
386   bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
387                                    ElementCount VF) const;
388 
389   bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
390                                        TTI::ReductionFlags Flags) const {
391     return ST->hasSVE();
392   }
393 
394   InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
395                                              std::optional<FastMathFlags> FMF,
396                                              TTI::TargetCostKind CostKind);
397 
398   InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
399                                  ArrayRef<int> Mask,
400                                  TTI::TargetCostKind CostKind, int Index,
401                                  VectorType *SubTp,
402                                  ArrayRef<const Value *> Args = std::nullopt,
403                                  const Instruction *CxtI = nullptr);
404 
405   InstructionCost getScalarizationOverhead(VectorType *Ty,
406                                            const APInt &DemandedElts,
407                                            bool Insert, bool Extract,
408                                            TTI::TargetCostKind CostKind);
409 
410   /// Return the cost of the scaling factor used in the addressing
411   /// mode represented by AM for this target, for a load/store
412   /// of the specified type.
413   /// If the AM is supported, the return value must be >= 0.
414   /// If the AM is not supported, it returns a negative value.
415   InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
416                                        StackOffset BaseOffset, bool HasBaseReg,
417                                        int64_t Scale, unsigned AddrSpace) const;
418   /// @}
419 
420   bool enableSelectOptimize() { return ST->enableSelectOptimize(); }
421 
422   bool shouldTreatInstructionLikeSelect(const Instruction *I);
423 
424   unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
425                              Type *ScalarValTy) const {
426     // We can vectorize store v4i8.
427     if (ScalarMemTy->isIntegerTy(8) && isPowerOf2_32(VF) && VF >= 4)
428       return 4;
429 
430     return BaseT::getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
431   }
432 
433   std::optional<unsigned> getMinPageSize() const { return 4096; }
434 
435   bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
436                      const TargetTransformInfo::LSRCost &C2);
437 };
438 
439 } // end namespace llvm
440 
441 #endif // LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H
442