xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp (revision f5b7695d2d5abd735064870ad43f4b9c723940c1)
1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AArch64ExpandImm.h"
10 #include "AArch64TargetTransformInfo.h"
11 #include "MCTargetDesc/AArch64AddressingModes.h"
12 #include "llvm/Analysis/LoopInfo.h"
13 #include "llvm/Analysis/TargetTransformInfo.h"
14 #include "llvm/CodeGen/BasicTTIImpl.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/TargetLowering.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/IntrinsicsAArch64.h"
19 #include "llvm/Support/Debug.h"
20 #include <algorithm>
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "aarch64tti"
24 
25 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
26                                                cl::init(true), cl::Hidden);
27 
28 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
29                                          const Function *Callee) const {
30   const TargetMachine &TM = getTLI()->getTargetMachine();
31 
32   const FeatureBitset &CallerBits =
33       TM.getSubtargetImpl(*Caller)->getFeatureBits();
34   const FeatureBitset &CalleeBits =
35       TM.getSubtargetImpl(*Callee)->getFeatureBits();
36 
37   // Inline a callee if its target-features are a subset of the callers
38   // target-features.
39   return (CallerBits & CalleeBits) == CalleeBits;
40 }
41 
42 /// Calculate the cost of materializing a 64-bit value. This helper
43 /// method might only calculate a fraction of a larger immediate. Therefore it
44 /// is valid to return a cost of ZERO.
45 int AArch64TTIImpl::getIntImmCost(int64_t Val) {
46   // Check if the immediate can be encoded within an instruction.
47   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
48     return 0;
49 
50   if (Val < 0)
51     Val = ~Val;
52 
53   // Calculate how many moves we will need to materialize this constant.
54   SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
55   AArch64_IMM::expandMOVImm(Val, 64, Insn);
56   return Insn.size();
57 }
58 
59 /// Calculate the cost of materializing the given constant.
60 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
61   assert(Ty->isIntegerTy());
62 
63   unsigned BitSize = Ty->getPrimitiveSizeInBits();
64   if (BitSize == 0)
65     return ~0U;
66 
67   // Sign-extend all constants to a multiple of 64-bit.
68   APInt ImmVal = Imm;
69   if (BitSize & 0x3f)
70     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
71 
72   // Split the constant into 64-bit chunks and calculate the cost for each
73   // chunk.
74   int Cost = 0;
75   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
76     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
77     int64_t Val = Tmp.getSExtValue();
78     Cost += getIntImmCost(Val);
79   }
80   // We need at least one instruction to materialze the constant.
81   return std::max(1, Cost);
82 }
83 
84 int AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
85                                       const APInt &Imm, Type *Ty) {
86   assert(Ty->isIntegerTy());
87 
88   unsigned BitSize = Ty->getPrimitiveSizeInBits();
89   // There is no cost model for constants with a bit size of 0. Return TCC_Free
90   // here, so that constant hoisting will ignore this constant.
91   if (BitSize == 0)
92     return TTI::TCC_Free;
93 
94   unsigned ImmIdx = ~0U;
95   switch (Opcode) {
96   default:
97     return TTI::TCC_Free;
98   case Instruction::GetElementPtr:
99     // Always hoist the base address of a GetElementPtr.
100     if (Idx == 0)
101       return 2 * TTI::TCC_Basic;
102     return TTI::TCC_Free;
103   case Instruction::Store:
104     ImmIdx = 0;
105     break;
106   case Instruction::Add:
107   case Instruction::Sub:
108   case Instruction::Mul:
109   case Instruction::UDiv:
110   case Instruction::SDiv:
111   case Instruction::URem:
112   case Instruction::SRem:
113   case Instruction::And:
114   case Instruction::Or:
115   case Instruction::Xor:
116   case Instruction::ICmp:
117     ImmIdx = 1;
118     break;
119   // Always return TCC_Free for the shift value of a shift instruction.
120   case Instruction::Shl:
121   case Instruction::LShr:
122   case Instruction::AShr:
123     if (Idx == 1)
124       return TTI::TCC_Free;
125     break;
126   case Instruction::Trunc:
127   case Instruction::ZExt:
128   case Instruction::SExt:
129   case Instruction::IntToPtr:
130   case Instruction::PtrToInt:
131   case Instruction::BitCast:
132   case Instruction::PHI:
133   case Instruction::Call:
134   case Instruction::Select:
135   case Instruction::Ret:
136   case Instruction::Load:
137     break;
138   }
139 
140   if (Idx == ImmIdx) {
141     int NumConstants = (BitSize + 63) / 64;
142     int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
143     return (Cost <= NumConstants * TTI::TCC_Basic)
144                ? static_cast<int>(TTI::TCC_Free)
145                : Cost;
146   }
147   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
148 }
149 
150 int AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
151                                         const APInt &Imm, Type *Ty) {
152   assert(Ty->isIntegerTy());
153 
154   unsigned BitSize = Ty->getPrimitiveSizeInBits();
155   // There is no cost model for constants with a bit size of 0. Return TCC_Free
156   // here, so that constant hoisting will ignore this constant.
157   if (BitSize == 0)
158     return TTI::TCC_Free;
159 
160   // Most (all?) AArch64 intrinsics do not support folding immediates into the
161   // selected instruction, so we compute the materialization cost for the
162   // immediate directly.
163   if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
164     return AArch64TTIImpl::getIntImmCost(Imm, Ty);
165 
166   switch (IID) {
167   default:
168     return TTI::TCC_Free;
169   case Intrinsic::sadd_with_overflow:
170   case Intrinsic::uadd_with_overflow:
171   case Intrinsic::ssub_with_overflow:
172   case Intrinsic::usub_with_overflow:
173   case Intrinsic::smul_with_overflow:
174   case Intrinsic::umul_with_overflow:
175     if (Idx == 1) {
176       int NumConstants = (BitSize + 63) / 64;
177       int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
178       return (Cost <= NumConstants * TTI::TCC_Basic)
179                  ? static_cast<int>(TTI::TCC_Free)
180                  : Cost;
181     }
182     break;
183   case Intrinsic::experimental_stackmap:
184     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
185       return TTI::TCC_Free;
186     break;
187   case Intrinsic::experimental_patchpoint_void:
188   case Intrinsic::experimental_patchpoint_i64:
189     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
190       return TTI::TCC_Free;
191     break;
192   }
193   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
194 }
195 
196 TargetTransformInfo::PopcntSupportKind
197 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
198   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
199   if (TyWidth == 32 || TyWidth == 64)
200     return TTI::PSK_FastHardware;
201   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
202   return TTI::PSK_Software;
203 }
204 
205 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
206                                            ArrayRef<const Value *> Args) {
207 
208   // A helper that returns a vector type from the given type. The number of
209   // elements in type Ty determine the vector width.
210   auto toVectorTy = [&](Type *ArgTy) {
211     return VectorType::get(ArgTy->getScalarType(),
212                            DstTy->getVectorNumElements());
213   };
214 
215   // Exit early if DstTy is not a vector type whose elements are at least
216   // 16-bits wide.
217   if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
218     return false;
219 
220   // Determine if the operation has a widening variant. We consider both the
221   // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
222   // instructions.
223   //
224   // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
225   //       verify that their extending operands are eliminated during code
226   //       generation.
227   switch (Opcode) {
228   case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
229   case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
230     break;
231   default:
232     return false;
233   }
234 
235   // To be a widening instruction (either the "wide" or "long" versions), the
236   // second operand must be a sign- or zero extend having a single user. We
237   // only consider extends having a single user because they may otherwise not
238   // be eliminated.
239   if (Args.size() != 2 ||
240       (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
241       !Args[1]->hasOneUse())
242     return false;
243   auto *Extend = cast<CastInst>(Args[1]);
244 
245   // Legalize the destination type and ensure it can be used in a widening
246   // operation.
247   auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
248   unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
249   if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
250     return false;
251 
252   // Legalize the source type and ensure it can be used in a widening
253   // operation.
254   Type *SrcTy = toVectorTy(Extend->getSrcTy());
255   auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
256   unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
257   if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
258     return false;
259 
260   // Get the total number of vector elements in the legalized types.
261   unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements();
262   unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements();
263 
264   // Return true if the legalized types have the same number of vector elements
265   // and the destination element type size is twice that of the source type.
266   return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
267 }
268 
269 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
270                                      const Instruction *I) {
271   int ISD = TLI->InstructionOpcodeToISD(Opcode);
272   assert(ISD && "Invalid opcode");
273 
274   // If the cast is observable, and it is used by a widening instruction (e.g.,
275   // uaddl, saddw, etc.), it may be free.
276   if (I && I->hasOneUse()) {
277     auto *SingleUser = cast<Instruction>(*I->user_begin());
278     SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
279     if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
280       // If the cast is the second operand, it is free. We will generate either
281       // a "wide" or "long" version of the widening instruction.
282       if (I == SingleUser->getOperand(1))
283         return 0;
284       // If the cast is not the second operand, it will be free if it looks the
285       // same as the second operand. In this case, we will generate a "long"
286       // version of the widening instruction.
287       if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
288         if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
289             cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
290           return 0;
291     }
292   }
293 
294   EVT SrcTy = TLI->getValueType(DL, Src);
295   EVT DstTy = TLI->getValueType(DL, Dst);
296 
297   if (!SrcTy.isSimple() || !DstTy.isSimple())
298     return BaseT::getCastInstrCost(Opcode, Dst, Src);
299 
300   static const TypeConversionCostTblEntry
301   ConversionTbl[] = {
302     { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
303     { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
304     { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
305     { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
306 
307     // The number of shll instructions for the extension.
308     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
309     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
310     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
311     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
312     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
313     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
314     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
315     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
316     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
317     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
318     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
319     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
320     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
321     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
322     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
323     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
324 
325     // LowerVectorINT_TO_FP:
326     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
327     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
328     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
329     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
330     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
331     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
332 
333     // Complex: to v2f32
334     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
335     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
336     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
337     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
338     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
339     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
340 
341     // Complex: to v4f32
342     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
343     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
344     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
345     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
346 
347     // Complex: to v8f32
348     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
349     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
350     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
351     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
352 
353     // Complex: to v16f32
354     { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
355     { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
356 
357     // Complex: to v2f64
358     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
359     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
360     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
361     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
362     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
363     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
364 
365 
366     // LowerVectorFP_TO_INT
367     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
368     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
369     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
370     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
371     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
372     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
373 
374     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
375     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
376     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
377     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
378     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
379     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
380     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
381 
382     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
383     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
384     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
385     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
386     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
387 
388     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
389     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
390     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
391     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
392     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
393     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
394     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
395   };
396 
397   if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
398                                                  DstTy.getSimpleVT(),
399                                                  SrcTy.getSimpleVT()))
400     return Entry->Cost;
401 
402   return BaseT::getCastInstrCost(Opcode, Dst, Src);
403 }
404 
405 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
406                                              VectorType *VecTy,
407                                              unsigned Index) {
408 
409   // Make sure we were given a valid extend opcode.
410   assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
411          "Invalid opcode");
412 
413   // We are extending an element we extract from a vector, so the source type
414   // of the extend is the element type of the vector.
415   auto *Src = VecTy->getElementType();
416 
417   // Sign- and zero-extends are for integer types only.
418   assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
419 
420   // Get the cost for the extract. We compute the cost (if any) for the extend
421   // below.
422   auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
423 
424   // Legalize the types.
425   auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
426   auto DstVT = TLI->getValueType(DL, Dst);
427   auto SrcVT = TLI->getValueType(DL, Src);
428 
429   // If the resulting type is still a vector and the destination type is legal,
430   // we may get the extension for free. If not, get the default cost for the
431   // extend.
432   if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
433     return Cost + getCastInstrCost(Opcode, Dst, Src);
434 
435   // The destination type should be larger than the element type. If not, get
436   // the default cost for the extend.
437   if (DstVT.getSizeInBits() < SrcVT.getSizeInBits())
438     return Cost + getCastInstrCost(Opcode, Dst, Src);
439 
440   switch (Opcode) {
441   default:
442     llvm_unreachable("Opcode should be either SExt or ZExt");
443 
444   // For sign-extends, we only need a smov, which performs the extension
445   // automatically.
446   case Instruction::SExt:
447     return Cost;
448 
449   // For zero-extends, the extend is performed automatically by a umov unless
450   // the destination type is i64 and the element type is i8 or i16.
451   case Instruction::ZExt:
452     if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
453       return Cost;
454   }
455 
456   // If we are unable to perform the extend for free, get the default cost.
457   return Cost + getCastInstrCost(Opcode, Dst, Src);
458 }
459 
460 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
461                                        unsigned Index) {
462   assert(Val->isVectorTy() && "This must be a vector type");
463 
464   if (Index != -1U) {
465     // Legalize the type.
466     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
467 
468     // This type is legalized to a scalar type.
469     if (!LT.second.isVector())
470       return 0;
471 
472     // The type may be split. Normalize the index to the new type.
473     unsigned Width = LT.second.getVectorNumElements();
474     Index = Index % Width;
475 
476     // The element at index zero is already inside the vector.
477     if (Index == 0)
478       return 0;
479   }
480 
481   // All other insert/extracts cost this much.
482   return ST->getVectorInsertExtractBaseCost();
483 }
484 
485 int AArch64TTIImpl::getArithmeticInstrCost(
486     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
487     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
488     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
489     const Instruction *CxtI) {
490   // Legalize the type.
491   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
492 
493   // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
494   // add in the widening overhead specified by the sub-target. Since the
495   // extends feeding widening instructions are performed automatically, they
496   // aren't present in the generated code and have a zero cost. By adding a
497   // widening overhead here, we attach the total cost of the combined operation
498   // to the widening instruction.
499   int Cost = 0;
500   if (isWideningInstruction(Ty, Opcode, Args))
501     Cost += ST->getWideningBaseCost();
502 
503   int ISD = TLI->InstructionOpcodeToISD(Opcode);
504 
505   switch (ISD) {
506   default:
507     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
508                                                 Opd1PropInfo, Opd2PropInfo);
509   case ISD::SDIV:
510     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
511         Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
512       // On AArch64, scalar signed division by constants power-of-two are
513       // normally expanded to the sequence ADD + CMP + SELECT + SRA.
514       // The OperandValue properties many not be same as that of previous
515       // operation; conservatively assume OP_None.
516       Cost += getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
517                                      TargetTransformInfo::OP_None,
518                                      TargetTransformInfo::OP_None);
519       Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
520                                      TargetTransformInfo::OP_None,
521                                      TargetTransformInfo::OP_None);
522       Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
523                                      TargetTransformInfo::OP_None,
524                                      TargetTransformInfo::OP_None);
525       Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
526                                      TargetTransformInfo::OP_None,
527                                      TargetTransformInfo::OP_None);
528       return Cost;
529     }
530     LLVM_FALLTHROUGH;
531   case ISD::UDIV:
532     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
533       auto VT = TLI->getValueType(DL, Ty);
534       if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
535         // Vector signed division by constant are expanded to the
536         // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
537         // to MULHS + SUB + SRL + ADD + SRL.
538         int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, Opd1Info,
539                                              Opd2Info,
540                                              TargetTransformInfo::OP_None,
541                                              TargetTransformInfo::OP_None);
542         int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info,
543                                              Opd2Info,
544                                              TargetTransformInfo::OP_None,
545                                              TargetTransformInfo::OP_None);
546         int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info,
547                                              Opd2Info,
548                                              TargetTransformInfo::OP_None,
549                                              TargetTransformInfo::OP_None);
550         return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
551       }
552     }
553 
554     Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
555                                           Opd1PropInfo, Opd2PropInfo);
556     if (Ty->isVectorTy()) {
557       // On AArch64, vector divisions are not supported natively and are
558       // expanded into scalar divisions of each pair of elements.
559       Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, Opd1Info,
560                                      Opd2Info, Opd1PropInfo, Opd2PropInfo);
561       Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, Opd1Info,
562                                      Opd2Info, Opd1PropInfo, Opd2PropInfo);
563       // TODO: if one of the arguments is scalar, then it's not necessary to
564       // double the cost of handling the vector elements.
565       Cost += Cost;
566     }
567     return Cost;
568 
569   case ISD::ADD:
570   case ISD::MUL:
571   case ISD::XOR:
572   case ISD::OR:
573   case ISD::AND:
574     // These nodes are marked as 'custom' for combining purposes only.
575     // We know that they are legal. See LowerAdd in ISelLowering.
576     return (Cost + 1) * LT.first;
577   }
578 }
579 
580 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
581                                               const SCEV *Ptr) {
582   // Address computations in vectorized code with non-consecutive addresses will
583   // likely result in more instructions compared to scalar code where the
584   // computation can more often be merged into the index mode. The resulting
585   // extra micro-ops can significantly decrease throughput.
586   unsigned NumVectorInstToHideOverhead = 10;
587   int MaxMergeDistance = 64;
588 
589   if (Ty->isVectorTy() && SE &&
590       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
591     return NumVectorInstToHideOverhead;
592 
593   // In many cases the address computation is not merged into the instruction
594   // addressing mode.
595   return 1;
596 }
597 
598 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
599                                        Type *CondTy, const Instruction *I) {
600 
601   int ISD = TLI->InstructionOpcodeToISD(Opcode);
602   // We don't lower some vector selects well that are wider than the register
603   // width.
604   if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
605     // We would need this many instructions to hide the scalarization happening.
606     const int AmortizationCost = 20;
607     static const TypeConversionCostTblEntry
608     VectorSelectTbl[] = {
609       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
610       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
611       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
612       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
613       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
614       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
615     };
616 
617     EVT SelCondTy = TLI->getValueType(DL, CondTy);
618     EVT SelValTy = TLI->getValueType(DL, ValTy);
619     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
620       if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
621                                                      SelCondTy.getSimpleVT(),
622                                                      SelValTy.getSimpleVT()))
623         return Entry->Cost;
624     }
625   }
626   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
627 }
628 
629 AArch64TTIImpl::TTI::MemCmpExpansionOptions
630 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
631   TTI::MemCmpExpansionOptions Options;
632   Options.AllowOverlappingLoads = !ST->requiresStrictAlign();
633   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
634   Options.NumLoadsPerBlock = Options.MaxNumLoads;
635   // TODO: Though vector loads usually perform well on AArch64, in some targets
636   // they may wake up the FP unit, which raises the power consumption.  Perhaps
637   // they could be used with no holds barred (-O3).
638   Options.LoadSizes = {8, 4, 2, 1};
639   return Options;
640 }
641 
642 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
643                                     MaybeAlign Alignment, unsigned AddressSpace,
644                                     const Instruction *I) {
645   auto LT = TLI->getTypeLegalizationCost(DL, Ty);
646 
647   if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
648       LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
649     // Unaligned stores are extremely inefficient. We don't split all
650     // unaligned 128-bit stores because the negative impact that has shown in
651     // practice on inlined block copy code.
652     // We make such stores expensive so that we will only vectorize if there
653     // are 6 other instructions getting vectorized.
654     const int AmortizationCost = 6;
655 
656     return LT.first * 2 * AmortizationCost;
657   }
658 
659   if (Ty->isVectorTy() && Ty->getVectorElementType()->isIntegerTy(8)) {
660     unsigned ProfitableNumElements;
661     if (Opcode == Instruction::Store)
662       // We use a custom trunc store lowering so v.4b should be profitable.
663       ProfitableNumElements = 4;
664     else
665       // We scalarize the loads because there is not v.4b register and we
666       // have to promote the elements to v.2.
667       ProfitableNumElements = 8;
668 
669     if (Ty->getVectorNumElements() < ProfitableNumElements) {
670       unsigned NumVecElts = Ty->getVectorNumElements();
671       unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
672       // We generate 2 instructions per vector element.
673       return NumVectorizableInstsToAmortize * NumVecElts * 2;
674     }
675   }
676 
677   return LT.first;
678 }
679 
680 int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
681                                                unsigned Factor,
682                                                ArrayRef<unsigned> Indices,
683                                                unsigned Alignment,
684                                                unsigned AddressSpace,
685                                                bool UseMaskForCond,
686                                                bool UseMaskForGaps) {
687   assert(Factor >= 2 && "Invalid interleave factor");
688   assert(isa<VectorType>(VecTy) && "Expect a vector type");
689 
690   if (!UseMaskForCond && !UseMaskForGaps &&
691       Factor <= TLI->getMaxSupportedInterleaveFactor()) {
692     unsigned NumElts = VecTy->getVectorNumElements();
693     auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
694 
695     // ldN/stN only support legal vector types of size 64 or 128 in bits.
696     // Accesses having vector types that are a multiple of 128 bits can be
697     // matched to more than one ldN/stN instruction.
698     if (NumElts % Factor == 0 &&
699         TLI->isLegalInterleavedAccessType(SubVecTy, DL))
700       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
701   }
702 
703   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
704                                            Alignment, AddressSpace,
705                                            UseMaskForCond, UseMaskForGaps);
706 }
707 
708 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
709   int Cost = 0;
710   for (auto *I : Tys) {
711     if (!I->isVectorTy())
712       continue;
713     if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
714       Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0) +
715               getMemoryOpCost(Instruction::Load, I, Align(128), 0);
716   }
717   return Cost;
718 }
719 
720 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
721   return ST->getMaxInterleaveFactor();
722 }
723 
724 // For Falkor, we want to avoid having too many strided loads in a loop since
725 // that can exhaust the HW prefetcher resources.  We adjust the unroller
726 // MaxCount preference below to attempt to ensure unrolling doesn't create too
727 // many strided loads.
728 static void
729 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
730                               TargetTransformInfo::UnrollingPreferences &UP) {
731   enum { MaxStridedLoads = 7 };
732   auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
733     int StridedLoads = 0;
734     // FIXME? We could make this more precise by looking at the CFG and
735     // e.g. not counting loads in each side of an if-then-else diamond.
736     for (const auto BB : L->blocks()) {
737       for (auto &I : *BB) {
738         LoadInst *LMemI = dyn_cast<LoadInst>(&I);
739         if (!LMemI)
740           continue;
741 
742         Value *PtrValue = LMemI->getPointerOperand();
743         if (L->isLoopInvariant(PtrValue))
744           continue;
745 
746         const SCEV *LSCEV = SE.getSCEV(PtrValue);
747         const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
748         if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
749           continue;
750 
751         // FIXME? We could take pairing of unrolled load copies into account
752         // by looking at the AddRec, but we would probably have to limit this
753         // to loops with no stores or other memory optimization barriers.
754         ++StridedLoads;
755         // We've seen enough strided loads that seeing more won't make a
756         // difference.
757         if (StridedLoads > MaxStridedLoads / 2)
758           return StridedLoads;
759       }
760     }
761     return StridedLoads;
762   };
763 
764   int StridedLoads = countStridedLoads(L, SE);
765   LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
766                     << " strided loads\n");
767   // Pick the largest power of 2 unroll count that won't result in too many
768   // strided loads.
769   if (StridedLoads) {
770     UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
771     LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
772                       << UP.MaxCount << '\n');
773   }
774 }
775 
776 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
777                                              TTI::UnrollingPreferences &UP) {
778   // Enable partial unrolling and runtime unrolling.
779   BaseT::getUnrollingPreferences(L, SE, UP);
780 
781   // For inner loop, it is more likely to be a hot one, and the runtime check
782   // can be promoted out from LICM pass, so the overhead is less, let's try
783   // a larger threshold to unroll more loops.
784   if (L->getLoopDepth() > 1)
785     UP.PartialThreshold *= 2;
786 
787   // Disable partial & runtime unrolling on -Os.
788   UP.PartialOptSizeThreshold = 0;
789 
790   if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
791       EnableFalkorHWPFUnrollFix)
792     getFalkorUnrollingPreferences(L, SE, UP);
793 }
794 
795 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
796                                                          Type *ExpectedType) {
797   switch (Inst->getIntrinsicID()) {
798   default:
799     return nullptr;
800   case Intrinsic::aarch64_neon_st2:
801   case Intrinsic::aarch64_neon_st3:
802   case Intrinsic::aarch64_neon_st4: {
803     // Create a struct type
804     StructType *ST = dyn_cast<StructType>(ExpectedType);
805     if (!ST)
806       return nullptr;
807     unsigned NumElts = Inst->getNumArgOperands() - 1;
808     if (ST->getNumElements() != NumElts)
809       return nullptr;
810     for (unsigned i = 0, e = NumElts; i != e; ++i) {
811       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
812         return nullptr;
813     }
814     Value *Res = UndefValue::get(ExpectedType);
815     IRBuilder<> Builder(Inst);
816     for (unsigned i = 0, e = NumElts; i != e; ++i) {
817       Value *L = Inst->getArgOperand(i);
818       Res = Builder.CreateInsertValue(Res, L, i);
819     }
820     return Res;
821   }
822   case Intrinsic::aarch64_neon_ld2:
823   case Intrinsic::aarch64_neon_ld3:
824   case Intrinsic::aarch64_neon_ld4:
825     if (Inst->getType() == ExpectedType)
826       return Inst;
827     return nullptr;
828   }
829 }
830 
831 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
832                                         MemIntrinsicInfo &Info) {
833   switch (Inst->getIntrinsicID()) {
834   default:
835     break;
836   case Intrinsic::aarch64_neon_ld2:
837   case Intrinsic::aarch64_neon_ld3:
838   case Intrinsic::aarch64_neon_ld4:
839     Info.ReadMem = true;
840     Info.WriteMem = false;
841     Info.PtrVal = Inst->getArgOperand(0);
842     break;
843   case Intrinsic::aarch64_neon_st2:
844   case Intrinsic::aarch64_neon_st3:
845   case Intrinsic::aarch64_neon_st4:
846     Info.ReadMem = false;
847     Info.WriteMem = true;
848     Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
849     break;
850   }
851 
852   switch (Inst->getIntrinsicID()) {
853   default:
854     return false;
855   case Intrinsic::aarch64_neon_ld2:
856   case Intrinsic::aarch64_neon_st2:
857     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
858     break;
859   case Intrinsic::aarch64_neon_ld3:
860   case Intrinsic::aarch64_neon_st3:
861     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
862     break;
863   case Intrinsic::aarch64_neon_ld4:
864   case Intrinsic::aarch64_neon_st4:
865     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
866     break;
867   }
868   return true;
869 }
870 
871 /// See if \p I should be considered for address type promotion. We check if \p
872 /// I is a sext with right type and used in memory accesses. If it used in a
873 /// "complex" getelementptr, we allow it to be promoted without finding other
874 /// sext instructions that sign extended the same initial value. A getelementptr
875 /// is considered as "complex" if it has more than 2 operands.
876 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
877     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
878   bool Considerable = false;
879   AllowPromotionWithoutCommonHeader = false;
880   if (!isa<SExtInst>(&I))
881     return false;
882   Type *ConsideredSExtType =
883       Type::getInt64Ty(I.getParent()->getParent()->getContext());
884   if (I.getType() != ConsideredSExtType)
885     return false;
886   // See if the sext is the one with the right type and used in at least one
887   // GetElementPtrInst.
888   for (const User *U : I.users()) {
889     if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
890       Considerable = true;
891       // A getelementptr is considered as "complex" if it has more than 2
892       // operands. We will promote a SExt used in such complex GEP as we
893       // expect some computation to be merged if they are done on 64 bits.
894       if (GEPInst->getNumOperands() > 2) {
895         AllowPromotionWithoutCommonHeader = true;
896         break;
897       }
898     }
899   }
900   return Considerable;
901 }
902 
903 bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
904                                            TTI::ReductionFlags Flags) const {
905   assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type");
906   unsigned ScalarBits = Ty->getScalarSizeInBits();
907   switch (Opcode) {
908   case Instruction::FAdd:
909   case Instruction::FMul:
910   case Instruction::And:
911   case Instruction::Or:
912   case Instruction::Xor:
913   case Instruction::Mul:
914     return false;
915   case Instruction::Add:
916     return ScalarBits * Ty->getVectorNumElements() >= 128;
917   case Instruction::ICmp:
918     return (ScalarBits < 64) &&
919            (ScalarBits * Ty->getVectorNumElements() >= 128);
920   case Instruction::FCmp:
921     return Flags.NoNaN;
922   default:
923     llvm_unreachable("Unhandled reduction opcode");
924   }
925   return false;
926 }
927 
928 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy,
929                                                bool IsPairwiseForm) {
930 
931   if (IsPairwiseForm)
932     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
933 
934   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
935   MVT MTy = LT.second;
936   int ISD = TLI->InstructionOpcodeToISD(Opcode);
937   assert(ISD && "Invalid opcode");
938 
939   // Horizontal adds can use the 'addv' instruction. We model the cost of these
940   // instructions as normal vector adds. This is the only arithmetic vector
941   // reduction operation for which we have an instruction.
942   static const CostTblEntry CostTblNoPairwise[]{
943       {ISD::ADD, MVT::v8i8,  1},
944       {ISD::ADD, MVT::v16i8, 1},
945       {ISD::ADD, MVT::v4i16, 1},
946       {ISD::ADD, MVT::v8i16, 1},
947       {ISD::ADD, MVT::v4i32, 1},
948   };
949 
950   if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
951     return LT.first * Entry->Cost;
952 
953   return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm);
954 }
955 
956 int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
957                                    Type *SubTp) {
958   if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
959       Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc) {
960     static const CostTblEntry ShuffleTbl[] = {
961       // Broadcast shuffle kinds can be performed with 'dup'.
962       { TTI::SK_Broadcast, MVT::v8i8,  1 },
963       { TTI::SK_Broadcast, MVT::v16i8, 1 },
964       { TTI::SK_Broadcast, MVT::v4i16, 1 },
965       { TTI::SK_Broadcast, MVT::v8i16, 1 },
966       { TTI::SK_Broadcast, MVT::v2i32, 1 },
967       { TTI::SK_Broadcast, MVT::v4i32, 1 },
968       { TTI::SK_Broadcast, MVT::v2i64, 1 },
969       { TTI::SK_Broadcast, MVT::v2f32, 1 },
970       { TTI::SK_Broadcast, MVT::v4f32, 1 },
971       { TTI::SK_Broadcast, MVT::v2f64, 1 },
972       // Transpose shuffle kinds can be performed with 'trn1/trn2' and
973       // 'zip1/zip2' instructions.
974       { TTI::SK_Transpose, MVT::v8i8,  1 },
975       { TTI::SK_Transpose, MVT::v16i8, 1 },
976       { TTI::SK_Transpose, MVT::v4i16, 1 },
977       { TTI::SK_Transpose, MVT::v8i16, 1 },
978       { TTI::SK_Transpose, MVT::v2i32, 1 },
979       { TTI::SK_Transpose, MVT::v4i32, 1 },
980       { TTI::SK_Transpose, MVT::v2i64, 1 },
981       { TTI::SK_Transpose, MVT::v2f32, 1 },
982       { TTI::SK_Transpose, MVT::v4f32, 1 },
983       { TTI::SK_Transpose, MVT::v2f64, 1 },
984       // Select shuffle kinds.
985       // TODO: handle vXi8/vXi16.
986       { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
987       { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
988       { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
989       { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
990       { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
991       { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
992       // PermuteSingleSrc shuffle kinds.
993       // TODO: handle vXi8/vXi16.
994       { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
995       { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
996       { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
997       { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
998       { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
999       { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
1000     };
1001     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1002     if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
1003       return LT.first * Entry->Cost;
1004   }
1005 
1006   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
1007 }
1008