xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp (revision 5036d9652a5701d00e9e40ea942c278e9f77d33d)
1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AArch64TargetTransformInfo.h"
10 #include "AArch64ExpandImm.h"
11 #include "AArch64PerfectShuffle.h"
12 #include "MCTargetDesc/AArch64AddressingModes.h"
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/CodeGen/BasicTTIImpl.h"
17 #include "llvm/CodeGen/CostTable.h"
18 #include "llvm/CodeGen/TargetLowering.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/Intrinsics.h"
21 #include "llvm/IR/IntrinsicsAArch64.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Transforms/InstCombine/InstCombiner.h"
25 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
26 #include <algorithm>
27 #include <optional>
28 using namespace llvm;
29 using namespace llvm::PatternMatch;
30 
31 #define DEBUG_TYPE "aarch64tti"
32 
33 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
34                                                cl::init(true), cl::Hidden);
35 
36 static cl::opt<unsigned> SVEGatherOverhead("sve-gather-overhead", cl::init(10),
37                                            cl::Hidden);
38 
39 static cl::opt<unsigned> SVEScatterOverhead("sve-scatter-overhead",
40                                             cl::init(10), cl::Hidden);
41 
42 static cl::opt<unsigned> SVETailFoldInsnThreshold("sve-tail-folding-insn-threshold",
43                                                   cl::init(15), cl::Hidden);
44 
45 static cl::opt<unsigned>
46     NeonNonConstStrideOverhead("neon-nonconst-stride-overhead", cl::init(10),
47                                cl::Hidden);
48 
49 static cl::opt<unsigned> CallPenaltyChangeSM(
50     "call-penalty-sm-change", cl::init(5), cl::Hidden,
51     cl::desc(
52         "Penalty of calling a function that requires a change to PSTATE.SM"));
53 
54 static cl::opt<unsigned> InlineCallPenaltyChangeSM(
55     "inline-call-penalty-sm-change", cl::init(10), cl::Hidden,
56     cl::desc("Penalty of inlining a call that requires a change to PSTATE.SM"));
57 
58 static cl::opt<bool> EnableOrLikeSelectOpt("enable-aarch64-or-like-select",
59                                            cl::init(true), cl::Hidden);
60 
61 static cl::opt<bool> EnableLSRCostOpt("enable-aarch64-lsr-cost-opt",
62                                       cl::init(true), cl::Hidden);
63 
64 // A complete guess as to a reasonable cost.
65 static cl::opt<unsigned>
66     BaseHistCntCost("aarch64-base-histcnt-cost", cl::init(8), cl::Hidden,
67                     cl::desc("The cost of a histcnt instruction"));
68 
69 namespace {
70 class TailFoldingOption {
71   // These bitfields will only ever be set to something non-zero in operator=,
72   // when setting the -sve-tail-folding option. This option should always be of
73   // the form (default|simple|all|disable)[+(Flag1|Flag2|etc)], where here
74   // InitialBits is one of (disabled|all|simple). EnableBits represents
75   // additional flags we're enabling, and DisableBits for those flags we're
76   // disabling. The default flag is tracked in the variable NeedsDefault, since
77   // at the time of setting the option we may not know what the default value
78   // for the CPU is.
79   TailFoldingOpts InitialBits = TailFoldingOpts::Disabled;
80   TailFoldingOpts EnableBits = TailFoldingOpts::Disabled;
81   TailFoldingOpts DisableBits = TailFoldingOpts::Disabled;
82 
83   // This value needs to be initialised to true in case the user does not
84   // explicitly set the -sve-tail-folding option.
85   bool NeedsDefault = true;
86 
87   void setInitialBits(TailFoldingOpts Bits) { InitialBits = Bits; }
88 
89   void setNeedsDefault(bool V) { NeedsDefault = V; }
90 
91   void setEnableBit(TailFoldingOpts Bit) {
92     EnableBits |= Bit;
93     DisableBits &= ~Bit;
94   }
95 
96   void setDisableBit(TailFoldingOpts Bit) {
97     EnableBits &= ~Bit;
98     DisableBits |= Bit;
99   }
100 
101   TailFoldingOpts getBits(TailFoldingOpts DefaultBits) const {
102     TailFoldingOpts Bits = TailFoldingOpts::Disabled;
103 
104     assert((InitialBits == TailFoldingOpts::Disabled || !NeedsDefault) &&
105            "Initial bits should only include one of "
106            "(disabled|all|simple|default)");
107     Bits = NeedsDefault ? DefaultBits : InitialBits;
108     Bits |= EnableBits;
109     Bits &= ~DisableBits;
110 
111     return Bits;
112   }
113 
114   void reportError(std::string Opt) {
115     errs() << "invalid argument '" << Opt
116            << "' to -sve-tail-folding=; the option should be of the form\n"
117               "  (disabled|all|default|simple)[+(reductions|recurrences"
118               "|reverse|noreductions|norecurrences|noreverse)]\n";
119     report_fatal_error("Unrecognised tail-folding option");
120   }
121 
122 public:
123 
124   void operator=(const std::string &Val) {
125     // If the user explicitly sets -sve-tail-folding= then treat as an error.
126     if (Val.empty()) {
127       reportError("");
128       return;
129     }
130 
131     // Since the user is explicitly setting the option we don't automatically
132     // need the default unless they require it.
133     setNeedsDefault(false);
134 
135     SmallVector<StringRef, 4> TailFoldTypes;
136     StringRef(Val).split(TailFoldTypes, '+', -1, false);
137 
138     unsigned StartIdx = 1;
139     if (TailFoldTypes[0] == "disabled")
140       setInitialBits(TailFoldingOpts::Disabled);
141     else if (TailFoldTypes[0] == "all")
142       setInitialBits(TailFoldingOpts::All);
143     else if (TailFoldTypes[0] == "default")
144       setNeedsDefault(true);
145     else if (TailFoldTypes[0] == "simple")
146       setInitialBits(TailFoldingOpts::Simple);
147     else {
148       StartIdx = 0;
149       setInitialBits(TailFoldingOpts::Disabled);
150     }
151 
152     for (unsigned I = StartIdx; I < TailFoldTypes.size(); I++) {
153       if (TailFoldTypes[I] == "reductions")
154         setEnableBit(TailFoldingOpts::Reductions);
155       else if (TailFoldTypes[I] == "recurrences")
156         setEnableBit(TailFoldingOpts::Recurrences);
157       else if (TailFoldTypes[I] == "reverse")
158         setEnableBit(TailFoldingOpts::Reverse);
159       else if (TailFoldTypes[I] == "noreductions")
160         setDisableBit(TailFoldingOpts::Reductions);
161       else if (TailFoldTypes[I] == "norecurrences")
162         setDisableBit(TailFoldingOpts::Recurrences);
163       else if (TailFoldTypes[I] == "noreverse")
164         setDisableBit(TailFoldingOpts::Reverse);
165       else
166         reportError(Val);
167     }
168   }
169 
170   bool satisfies(TailFoldingOpts DefaultBits, TailFoldingOpts Required) const {
171     return (getBits(DefaultBits) & Required) == Required;
172   }
173 };
174 } // namespace
175 
176 TailFoldingOption TailFoldingOptionLoc;
177 
178 cl::opt<TailFoldingOption, true, cl::parser<std::string>> SVETailFolding(
179     "sve-tail-folding",
180     cl::desc(
181         "Control the use of vectorisation using tail-folding for SVE where the"
182         " option is specified in the form (Initial)[+(Flag1|Flag2|...)]:"
183         "\ndisabled      (Initial) No loop types will vectorize using "
184         "tail-folding"
185         "\ndefault       (Initial) Uses the default tail-folding settings for "
186         "the target CPU"
187         "\nall           (Initial) All legal loop types will vectorize using "
188         "tail-folding"
189         "\nsimple        (Initial) Use tail-folding for simple loops (not "
190         "reductions or recurrences)"
191         "\nreductions    Use tail-folding for loops containing reductions"
192         "\nnoreductions  Inverse of above"
193         "\nrecurrences   Use tail-folding for loops containing fixed order "
194         "recurrences"
195         "\nnorecurrences Inverse of above"
196         "\nreverse       Use tail-folding for loops requiring reversed "
197         "predicates"
198         "\nnoreverse     Inverse of above"),
199     cl::location(TailFoldingOptionLoc));
200 
201 // Experimental option that will only be fully functional when the
202 // code-generator is changed to use SVE instead of NEON for all fixed-width
203 // operations.
204 static cl::opt<bool> EnableFixedwidthAutovecInStreamingMode(
205     "enable-fixedwidth-autovec-in-streaming-mode", cl::init(false), cl::Hidden);
206 
207 // Experimental option that will only be fully functional when the cost-model
208 // and code-generator have been changed to avoid using scalable vector
209 // instructions that are not legal in streaming SVE mode.
210 static cl::opt<bool> EnableScalableAutovecInStreamingMode(
211     "enable-scalable-autovec-in-streaming-mode", cl::init(false), cl::Hidden);
212 
213 static bool isSMEABIRoutineCall(const CallInst &CI) {
214   const auto *F = CI.getCalledFunction();
215   return F && StringSwitch<bool>(F->getName())
216                   .Case("__arm_sme_state", true)
217                   .Case("__arm_tpidr2_save", true)
218                   .Case("__arm_tpidr2_restore", true)
219                   .Case("__arm_za_disable", true)
220                   .Default(false);
221 }
222 
223 /// Returns true if the function has explicit operations that can only be
224 /// lowered using incompatible instructions for the selected mode. This also
225 /// returns true if the function F may use or modify ZA state.
226 static bool hasPossibleIncompatibleOps(const Function *F) {
227   for (const BasicBlock &BB : *F) {
228     for (const Instruction &I : BB) {
229       // Be conservative for now and assume that any call to inline asm or to
230       // intrinsics could could result in non-streaming ops (e.g. calls to
231       // @llvm.aarch64.* or @llvm.gather/scatter intrinsics). We can assume that
232       // all native LLVM instructions can be lowered to compatible instructions.
233       if (isa<CallInst>(I) && !I.isDebugOrPseudoInst() &&
234           (cast<CallInst>(I).isInlineAsm() || isa<IntrinsicInst>(I) ||
235            isSMEABIRoutineCall(cast<CallInst>(I))))
236         return true;
237     }
238   }
239   return false;
240 }
241 
242 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
243                                          const Function *Callee) const {
244   SMEAttrs CallerAttrs(*Caller), CalleeAttrs(*Callee);
245 
246   // When inlining, we should consider the body of the function, not the
247   // interface.
248   if (CalleeAttrs.hasStreamingBody()) {
249     CalleeAttrs.set(SMEAttrs::SM_Compatible, false);
250     CalleeAttrs.set(SMEAttrs::SM_Enabled, true);
251   }
252 
253   if (CalleeAttrs.isNewZA())
254     return false;
255 
256   if (CallerAttrs.requiresLazySave(CalleeAttrs) ||
257       CallerAttrs.requiresSMChange(CalleeAttrs) ||
258       CallerAttrs.requiresPreservingZT0(CalleeAttrs)) {
259     if (hasPossibleIncompatibleOps(Callee))
260       return false;
261   }
262 
263   const TargetMachine &TM = getTLI()->getTargetMachine();
264 
265   const FeatureBitset &CallerBits =
266       TM.getSubtargetImpl(*Caller)->getFeatureBits();
267   const FeatureBitset &CalleeBits =
268       TM.getSubtargetImpl(*Callee)->getFeatureBits();
269 
270   // Inline a callee if its target-features are a subset of the callers
271   // target-features.
272   return (CallerBits & CalleeBits) == CalleeBits;
273 }
274 
275 bool AArch64TTIImpl::areTypesABICompatible(
276     const Function *Caller, const Function *Callee,
277     const ArrayRef<Type *> &Types) const {
278   if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
279     return false;
280 
281   // We need to ensure that argument promotion does not attempt to promote
282   // pointers to fixed-length vector types larger than 128 bits like
283   // <8 x float> (and pointers to aggregate types which have such fixed-length
284   // vector type members) into the values of the pointees. Such vector types
285   // are used for SVE VLS but there is no ABI for SVE VLS arguments and the
286   // backend cannot lower such value arguments. The 128-bit fixed-length SVE
287   // types can be safely treated as 128-bit NEON types and they cannot be
288   // distinguished in IR.
289   if (ST->useSVEForFixedLengthVectors() && llvm::any_of(Types, [](Type *Ty) {
290         auto FVTy = dyn_cast<FixedVectorType>(Ty);
291         return FVTy &&
292                FVTy->getScalarSizeInBits() * FVTy->getNumElements() > 128;
293       }))
294     return false;
295 
296   return true;
297 }
298 
299 unsigned
300 AArch64TTIImpl::getInlineCallPenalty(const Function *F, const CallBase &Call,
301                                      unsigned DefaultCallPenalty) const {
302   // This function calculates a penalty for executing Call in F.
303   //
304   // There are two ways this function can be called:
305   // (1)  F:
306   //       call from F -> G (the call here is Call)
307   //
308   // For (1), Call.getCaller() == F, so it will always return a high cost if
309   // a streaming-mode change is required (thus promoting the need to inline the
310   // function)
311   //
312   // (2)  F:
313   //       call from F -> G (the call here is not Call)
314   //      G:
315   //       call from G -> H (the call here is Call)
316   //
317   // For (2), if after inlining the body of G into F the call to H requires a
318   // streaming-mode change, and the call to G from F would also require a
319   // streaming-mode change, then there is benefit to do the streaming-mode
320   // change only once and avoid inlining of G into F.
321   SMEAttrs FAttrs(*F);
322   SMEAttrs CalleeAttrs(Call);
323   if (FAttrs.requiresSMChange(CalleeAttrs)) {
324     if (F == Call.getCaller()) // (1)
325       return CallPenaltyChangeSM * DefaultCallPenalty;
326     if (FAttrs.requiresSMChange(SMEAttrs(*Call.getCaller()))) // (2)
327       return InlineCallPenaltyChangeSM * DefaultCallPenalty;
328   }
329 
330   return DefaultCallPenalty;
331 }
332 
333 bool AArch64TTIImpl::shouldMaximizeVectorBandwidth(
334     TargetTransformInfo::RegisterKind K) const {
335   assert(K != TargetTransformInfo::RGK_Scalar);
336   return (K == TargetTransformInfo::RGK_FixedWidthVector &&
337           ST->isNeonAvailable());
338 }
339 
340 /// Calculate the cost of materializing a 64-bit value. This helper
341 /// method might only calculate a fraction of a larger immediate. Therefore it
342 /// is valid to return a cost of ZERO.
343 InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) {
344   // Check if the immediate can be encoded within an instruction.
345   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
346     return 0;
347 
348   if (Val < 0)
349     Val = ~Val;
350 
351   // Calculate how many moves we will need to materialize this constant.
352   SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
353   AArch64_IMM::expandMOVImm(Val, 64, Insn);
354   return Insn.size();
355 }
356 
357 /// Calculate the cost of materializing the given constant.
358 InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
359                                               TTI::TargetCostKind CostKind) {
360   assert(Ty->isIntegerTy());
361 
362   unsigned BitSize = Ty->getPrimitiveSizeInBits();
363   if (BitSize == 0)
364     return ~0U;
365 
366   // Sign-extend all constants to a multiple of 64-bit.
367   APInt ImmVal = Imm;
368   if (BitSize & 0x3f)
369     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
370 
371   // Split the constant into 64-bit chunks and calculate the cost for each
372   // chunk.
373   InstructionCost Cost = 0;
374   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
375     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
376     int64_t Val = Tmp.getSExtValue();
377     Cost += getIntImmCost(Val);
378   }
379   // We need at least one instruction to materialze the constant.
380   return std::max<InstructionCost>(1, Cost);
381 }
382 
383 InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
384                                                   const APInt &Imm, Type *Ty,
385                                                   TTI::TargetCostKind CostKind,
386                                                   Instruction *Inst) {
387   assert(Ty->isIntegerTy());
388 
389   unsigned BitSize = Ty->getPrimitiveSizeInBits();
390   // There is no cost model for constants with a bit size of 0. Return TCC_Free
391   // here, so that constant hoisting will ignore this constant.
392   if (BitSize == 0)
393     return TTI::TCC_Free;
394 
395   unsigned ImmIdx = ~0U;
396   switch (Opcode) {
397   default:
398     return TTI::TCC_Free;
399   case Instruction::GetElementPtr:
400     // Always hoist the base address of a GetElementPtr.
401     if (Idx == 0)
402       return 2 * TTI::TCC_Basic;
403     return TTI::TCC_Free;
404   case Instruction::Store:
405     ImmIdx = 0;
406     break;
407   case Instruction::Add:
408   case Instruction::Sub:
409   case Instruction::Mul:
410   case Instruction::UDiv:
411   case Instruction::SDiv:
412   case Instruction::URem:
413   case Instruction::SRem:
414   case Instruction::And:
415   case Instruction::Or:
416   case Instruction::Xor:
417   case Instruction::ICmp:
418     ImmIdx = 1;
419     break;
420   // Always return TCC_Free for the shift value of a shift instruction.
421   case Instruction::Shl:
422   case Instruction::LShr:
423   case Instruction::AShr:
424     if (Idx == 1)
425       return TTI::TCC_Free;
426     break;
427   case Instruction::Trunc:
428   case Instruction::ZExt:
429   case Instruction::SExt:
430   case Instruction::IntToPtr:
431   case Instruction::PtrToInt:
432   case Instruction::BitCast:
433   case Instruction::PHI:
434   case Instruction::Call:
435   case Instruction::Select:
436   case Instruction::Ret:
437   case Instruction::Load:
438     break;
439   }
440 
441   if (Idx == ImmIdx) {
442     int NumConstants = (BitSize + 63) / 64;
443     InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
444     return (Cost <= NumConstants * TTI::TCC_Basic)
445                ? static_cast<int>(TTI::TCC_Free)
446                : Cost;
447   }
448   return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
449 }
450 
451 InstructionCost
452 AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
453                                     const APInt &Imm, Type *Ty,
454                                     TTI::TargetCostKind CostKind) {
455   assert(Ty->isIntegerTy());
456 
457   unsigned BitSize = Ty->getPrimitiveSizeInBits();
458   // There is no cost model for constants with a bit size of 0. Return TCC_Free
459   // here, so that constant hoisting will ignore this constant.
460   if (BitSize == 0)
461     return TTI::TCC_Free;
462 
463   // Most (all?) AArch64 intrinsics do not support folding immediates into the
464   // selected instruction, so we compute the materialization cost for the
465   // immediate directly.
466   if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
467     return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
468 
469   switch (IID) {
470   default:
471     return TTI::TCC_Free;
472   case Intrinsic::sadd_with_overflow:
473   case Intrinsic::uadd_with_overflow:
474   case Intrinsic::ssub_with_overflow:
475   case Intrinsic::usub_with_overflow:
476   case Intrinsic::smul_with_overflow:
477   case Intrinsic::umul_with_overflow:
478     if (Idx == 1) {
479       int NumConstants = (BitSize + 63) / 64;
480       InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
481       return (Cost <= NumConstants * TTI::TCC_Basic)
482                  ? static_cast<int>(TTI::TCC_Free)
483                  : Cost;
484     }
485     break;
486   case Intrinsic::experimental_stackmap:
487     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
488       return TTI::TCC_Free;
489     break;
490   case Intrinsic::experimental_patchpoint_void:
491   case Intrinsic::experimental_patchpoint:
492     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
493       return TTI::TCC_Free;
494     break;
495   case Intrinsic::experimental_gc_statepoint:
496     if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
497       return TTI::TCC_Free;
498     break;
499   }
500   return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
501 }
502 
503 TargetTransformInfo::PopcntSupportKind
504 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
505   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
506   if (TyWidth == 32 || TyWidth == 64)
507     return TTI::PSK_FastHardware;
508   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
509   return TTI::PSK_Software;
510 }
511 
512 static bool isUnpackedVectorVT(EVT VecVT) {
513   return VecVT.isScalableVector() &&
514          VecVT.getSizeInBits().getKnownMinValue() < AArch64::SVEBitsPerBlock;
515 }
516 
517 static InstructionCost getHistogramCost(const IntrinsicCostAttributes &ICA) {
518   Type *BucketPtrsTy = ICA.getArgTypes()[0]; // Type of vector of pointers
519   Type *EltTy = ICA.getArgTypes()[1];        // Type of bucket elements
520 
521   // Only allow (32b and 64b) integers or pointers for now...
522   if ((!EltTy->isIntegerTy() && !EltTy->isPointerTy()) ||
523       (EltTy->getScalarSizeInBits() != 32 &&
524        EltTy->getScalarSizeInBits() != 64))
525     return InstructionCost::getInvalid();
526 
527   // FIXME: Hacky check for legal vector types. We can promote smaller types
528   //        but we cannot legalize vectors via splitting for histcnt.
529   // FIXME: We should be able to generate histcnt for fixed-length vectors
530   //        using ptrue with a specific VL.
531   if (VectorType *VTy = dyn_cast<VectorType>(BucketPtrsTy))
532     if ((VTy->getElementCount().getKnownMinValue() != 2 &&
533          VTy->getElementCount().getKnownMinValue() != 4) ||
534         VTy->getPrimitiveSizeInBits().getKnownMinValue() > 128 ||
535         !VTy->isScalableTy())
536       return InstructionCost::getInvalid();
537 
538   return InstructionCost(BaseHistCntCost);
539 }
540 
541 InstructionCost
542 AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
543                                       TTI::TargetCostKind CostKind) {
544   // The code-generator is currently not able to handle scalable vectors
545   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
546   // it. This change will be removed when code-generation for these types is
547   // sufficiently reliable.
548   auto *RetTy = ICA.getReturnType();
549   if (auto *VTy = dyn_cast<ScalableVectorType>(RetTy))
550     if (VTy->getElementCount() == ElementCount::getScalable(1))
551       return InstructionCost::getInvalid();
552 
553   switch (ICA.getID()) {
554   case Intrinsic::experimental_vector_histogram_add:
555     if (!ST->hasSVE2())
556       return InstructionCost::getInvalid();
557     return getHistogramCost(ICA);
558   case Intrinsic::umin:
559   case Intrinsic::umax:
560   case Intrinsic::smin:
561   case Intrinsic::smax: {
562     static const auto ValidMinMaxTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
563                                         MVT::v8i16, MVT::v2i32, MVT::v4i32,
564                                         MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32,
565                                         MVT::nxv2i64};
566     auto LT = getTypeLegalizationCost(RetTy);
567     // v2i64 types get converted to cmp+bif hence the cost of 2
568     if (LT.second == MVT::v2i64)
569       return LT.first * 2;
570     if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }))
571       return LT.first;
572     break;
573   }
574   case Intrinsic::sadd_sat:
575   case Intrinsic::ssub_sat:
576   case Intrinsic::uadd_sat:
577   case Intrinsic::usub_sat: {
578     static const auto ValidSatTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
579                                      MVT::v8i16, MVT::v2i32, MVT::v4i32,
580                                      MVT::v2i64};
581     auto LT = getTypeLegalizationCost(RetTy);
582     // This is a base cost of 1 for the vadd, plus 3 extract shifts if we
583     // need to extend the type, as it uses shr(qadd(shl, shl)).
584     unsigned Instrs =
585         LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4;
586     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
587       return LT.first * Instrs;
588     break;
589   }
590   case Intrinsic::abs: {
591     static const auto ValidAbsTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
592                                      MVT::v8i16, MVT::v2i32, MVT::v4i32,
593                                      MVT::v2i64};
594     auto LT = getTypeLegalizationCost(RetTy);
595     if (any_of(ValidAbsTys, [&LT](MVT M) { return M == LT.second; }))
596       return LT.first;
597     break;
598   }
599   case Intrinsic::bswap: {
600     static const auto ValidAbsTys = {MVT::v4i16, MVT::v8i16, MVT::v2i32,
601                                      MVT::v4i32, MVT::v2i64};
602     auto LT = getTypeLegalizationCost(RetTy);
603     if (any_of(ValidAbsTys, [&LT](MVT M) { return M == LT.second; }) &&
604         LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits())
605       return LT.first;
606     break;
607   }
608   case Intrinsic::experimental_stepvector: {
609     InstructionCost Cost = 1; // Cost of the `index' instruction
610     auto LT = getTypeLegalizationCost(RetTy);
611     // Legalisation of illegal vectors involves an `index' instruction plus
612     // (LT.first - 1) vector adds.
613     if (LT.first > 1) {
614       Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext());
615       InstructionCost AddCost =
616           getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind);
617       Cost += AddCost * (LT.first - 1);
618     }
619     return Cost;
620   }
621   case Intrinsic::vector_extract:
622   case Intrinsic::vector_insert: {
623     // If both the vector and subvector types are legal types and the index
624     // is 0, then this should be a no-op or simple operation; return a
625     // relatively low cost.
626 
627     // If arguments aren't actually supplied, then we cannot determine the
628     // value of the index. We also want to skip predicate types.
629     if (ICA.getArgs().size() != ICA.getArgTypes().size() ||
630         ICA.getReturnType()->getScalarType()->isIntegerTy(1))
631       break;
632 
633     LLVMContext &C = RetTy->getContext();
634     EVT VecVT = getTLI()->getValueType(DL, ICA.getArgTypes()[0]);
635     bool IsExtract = ICA.getID() == Intrinsic::vector_extract;
636     EVT SubVecVT = IsExtract ? getTLI()->getValueType(DL, RetTy)
637                              : getTLI()->getValueType(DL, ICA.getArgTypes()[1]);
638     // Skip this if either the vector or subvector types are unpacked
639     // SVE types; they may get lowered to stack stores and loads.
640     if (isUnpackedVectorVT(VecVT) || isUnpackedVectorVT(SubVecVT))
641       break;
642 
643     TargetLoweringBase::LegalizeKind SubVecLK =
644         getTLI()->getTypeConversion(C, SubVecVT);
645     TargetLoweringBase::LegalizeKind VecLK =
646         getTLI()->getTypeConversion(C, VecVT);
647     const Value *Idx = IsExtract ? ICA.getArgs()[1] : ICA.getArgs()[2];
648     const ConstantInt *CIdx = cast<ConstantInt>(Idx);
649     if (SubVecLK.first == TargetLoweringBase::TypeLegal &&
650         VecLK.first == TargetLoweringBase::TypeLegal && CIdx->isZero())
651       return TTI::TCC_Free;
652     break;
653   }
654   case Intrinsic::bitreverse: {
655     static const CostTblEntry BitreverseTbl[] = {
656         {Intrinsic::bitreverse, MVT::i32, 1},
657         {Intrinsic::bitreverse, MVT::i64, 1},
658         {Intrinsic::bitreverse, MVT::v8i8, 1},
659         {Intrinsic::bitreverse, MVT::v16i8, 1},
660         {Intrinsic::bitreverse, MVT::v4i16, 2},
661         {Intrinsic::bitreverse, MVT::v8i16, 2},
662         {Intrinsic::bitreverse, MVT::v2i32, 2},
663         {Intrinsic::bitreverse, MVT::v4i32, 2},
664         {Intrinsic::bitreverse, MVT::v1i64, 2},
665         {Intrinsic::bitreverse, MVT::v2i64, 2},
666     };
667     const auto LegalisationCost = getTypeLegalizationCost(RetTy);
668     const auto *Entry =
669         CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second);
670     if (Entry) {
671       // Cost Model is using the legal type(i32) that i8 and i16 will be
672       // converted to +1 so that we match the actual lowering cost
673       if (TLI->getValueType(DL, RetTy, true) == MVT::i8 ||
674           TLI->getValueType(DL, RetTy, true) == MVT::i16)
675         return LegalisationCost.first * Entry->Cost + 1;
676 
677       return LegalisationCost.first * Entry->Cost;
678     }
679     break;
680   }
681   case Intrinsic::ctpop: {
682     if (!ST->hasNEON()) {
683       // 32-bit or 64-bit ctpop without NEON is 12 instructions.
684       return getTypeLegalizationCost(RetTy).first * 12;
685     }
686     static const CostTblEntry CtpopCostTbl[] = {
687         {ISD::CTPOP, MVT::v2i64, 4},
688         {ISD::CTPOP, MVT::v4i32, 3},
689         {ISD::CTPOP, MVT::v8i16, 2},
690         {ISD::CTPOP, MVT::v16i8, 1},
691         {ISD::CTPOP, MVT::i64,   4},
692         {ISD::CTPOP, MVT::v2i32, 3},
693         {ISD::CTPOP, MVT::v4i16, 2},
694         {ISD::CTPOP, MVT::v8i8,  1},
695         {ISD::CTPOP, MVT::i32,   5},
696     };
697     auto LT = getTypeLegalizationCost(RetTy);
698     MVT MTy = LT.second;
699     if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) {
700       // Extra cost of +1 when illegal vector types are legalized by promoting
701       // the integer type.
702       int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() !=
703                                             RetTy->getScalarSizeInBits()
704                           ? 1
705                           : 0;
706       return LT.first * Entry->Cost + ExtraCost;
707     }
708     break;
709   }
710   case Intrinsic::sadd_with_overflow:
711   case Intrinsic::uadd_with_overflow:
712   case Intrinsic::ssub_with_overflow:
713   case Intrinsic::usub_with_overflow:
714   case Intrinsic::smul_with_overflow:
715   case Intrinsic::umul_with_overflow: {
716     static const CostTblEntry WithOverflowCostTbl[] = {
717         {Intrinsic::sadd_with_overflow, MVT::i8, 3},
718         {Intrinsic::uadd_with_overflow, MVT::i8, 3},
719         {Intrinsic::sadd_with_overflow, MVT::i16, 3},
720         {Intrinsic::uadd_with_overflow, MVT::i16, 3},
721         {Intrinsic::sadd_with_overflow, MVT::i32, 1},
722         {Intrinsic::uadd_with_overflow, MVT::i32, 1},
723         {Intrinsic::sadd_with_overflow, MVT::i64, 1},
724         {Intrinsic::uadd_with_overflow, MVT::i64, 1},
725         {Intrinsic::ssub_with_overflow, MVT::i8, 3},
726         {Intrinsic::usub_with_overflow, MVT::i8, 3},
727         {Intrinsic::ssub_with_overflow, MVT::i16, 3},
728         {Intrinsic::usub_with_overflow, MVT::i16, 3},
729         {Intrinsic::ssub_with_overflow, MVT::i32, 1},
730         {Intrinsic::usub_with_overflow, MVT::i32, 1},
731         {Intrinsic::ssub_with_overflow, MVT::i64, 1},
732         {Intrinsic::usub_with_overflow, MVT::i64, 1},
733         {Intrinsic::smul_with_overflow, MVT::i8, 5},
734         {Intrinsic::umul_with_overflow, MVT::i8, 4},
735         {Intrinsic::smul_with_overflow, MVT::i16, 5},
736         {Intrinsic::umul_with_overflow, MVT::i16, 4},
737         {Intrinsic::smul_with_overflow, MVT::i32, 2}, // eg umull;tst
738         {Intrinsic::umul_with_overflow, MVT::i32, 2}, // eg umull;cmp sxtw
739         {Intrinsic::smul_with_overflow, MVT::i64, 3}, // eg mul;smulh;cmp
740         {Intrinsic::umul_with_overflow, MVT::i64, 3}, // eg mul;umulh;cmp asr
741     };
742     EVT MTy = TLI->getValueType(DL, RetTy->getContainedType(0), true);
743     if (MTy.isSimple())
744       if (const auto *Entry = CostTableLookup(WithOverflowCostTbl, ICA.getID(),
745                                               MTy.getSimpleVT()))
746         return Entry->Cost;
747     break;
748   }
749   case Intrinsic::fptosi_sat:
750   case Intrinsic::fptoui_sat: {
751     if (ICA.getArgTypes().empty())
752       break;
753     bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat;
754     auto LT = getTypeLegalizationCost(ICA.getArgTypes()[0]);
755     EVT MTy = TLI->getValueType(DL, RetTy);
756     // Check for the legal types, which are where the size of the input and the
757     // output are the same, or we are using cvt f64->i32 or f32->i64.
758     if ((LT.second == MVT::f32 || LT.second == MVT::f64 ||
759          LT.second == MVT::v2f32 || LT.second == MVT::v4f32 ||
760          LT.second == MVT::v2f64) &&
761         (LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits() ||
762          (LT.second == MVT::f64 && MTy == MVT::i32) ||
763          (LT.second == MVT::f32 && MTy == MVT::i64)))
764       return LT.first;
765     // Similarly for fp16 sizes
766     if (ST->hasFullFP16() &&
767         ((LT.second == MVT::f16 && MTy == MVT::i32) ||
768          ((LT.second == MVT::v4f16 || LT.second == MVT::v8f16) &&
769           (LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits()))))
770       return LT.first;
771 
772     // Otherwise we use a legal convert followed by a min+max
773     if ((LT.second.getScalarType() == MVT::f32 ||
774          LT.second.getScalarType() == MVT::f64 ||
775          (ST->hasFullFP16() && LT.second.getScalarType() == MVT::f16)) &&
776         LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) {
777       Type *LegalTy =
778           Type::getIntNTy(RetTy->getContext(), LT.second.getScalarSizeInBits());
779       if (LT.second.isVector())
780         LegalTy = VectorType::get(LegalTy, LT.second.getVectorElementCount());
781       InstructionCost Cost = 1;
782       IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin : Intrinsic::umin,
783                                     LegalTy, {LegalTy, LegalTy});
784       Cost += getIntrinsicInstrCost(Attrs1, CostKind);
785       IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax : Intrinsic::umax,
786                                     LegalTy, {LegalTy, LegalTy});
787       Cost += getIntrinsicInstrCost(Attrs2, CostKind);
788       return LT.first * Cost;
789     }
790     break;
791   }
792   case Intrinsic::fshl:
793   case Intrinsic::fshr: {
794     if (ICA.getArgs().empty())
795       break;
796 
797     // TODO: Add handling for fshl where third argument is not a constant.
798     const TTI::OperandValueInfo OpInfoZ = TTI::getOperandInfo(ICA.getArgs()[2]);
799     if (!OpInfoZ.isConstant())
800       break;
801 
802     const auto LegalisationCost = getTypeLegalizationCost(RetTy);
803     if (OpInfoZ.isUniform()) {
804       // FIXME: The costs could be lower if the codegen is better.
805       static const CostTblEntry FshlTbl[] = {
806           {Intrinsic::fshl, MVT::v4i32, 3}, // ushr + shl + orr
807           {Intrinsic::fshl, MVT::v2i64, 3}, {Intrinsic::fshl, MVT::v16i8, 4},
808           {Intrinsic::fshl, MVT::v8i16, 4}, {Intrinsic::fshl, MVT::v2i32, 3},
809           {Intrinsic::fshl, MVT::v8i8, 4},  {Intrinsic::fshl, MVT::v4i16, 4}};
810       // Costs for both fshl & fshr are the same, so just pass Intrinsic::fshl
811       // to avoid having to duplicate the costs.
812       const auto *Entry =
813           CostTableLookup(FshlTbl, Intrinsic::fshl, LegalisationCost.second);
814       if (Entry)
815         return LegalisationCost.first * Entry->Cost;
816     }
817 
818     auto TyL = getTypeLegalizationCost(RetTy);
819     if (!RetTy->isIntegerTy())
820       break;
821 
822     // Estimate cost manually, as types like i8 and i16 will get promoted to
823     // i32 and CostTableLookup will ignore the extra conversion cost.
824     bool HigherCost = (RetTy->getScalarSizeInBits() != 32 &&
825                        RetTy->getScalarSizeInBits() < 64) ||
826                       (RetTy->getScalarSizeInBits() % 64 != 0);
827     unsigned ExtraCost = HigherCost ? 1 : 0;
828     if (RetTy->getScalarSizeInBits() == 32 ||
829         RetTy->getScalarSizeInBits() == 64)
830       ExtraCost = 0; // fhsl/fshr for i32 and i64 can be lowered to a single
831                      // extr instruction.
832     else if (HigherCost)
833       ExtraCost = 1;
834     else
835       break;
836     return TyL.first + ExtraCost;
837   }
838   case Intrinsic::get_active_lane_mask: {
839     auto *RetTy = dyn_cast<FixedVectorType>(ICA.getReturnType());
840     if (RetTy) {
841       EVT RetVT = getTLI()->getValueType(DL, RetTy);
842       EVT OpVT = getTLI()->getValueType(DL, ICA.getArgTypes()[0]);
843       if (!getTLI()->shouldExpandGetActiveLaneMask(RetVT, OpVT) &&
844           !getTLI()->isTypeLegal(RetVT)) {
845         // We don't have enough context at this point to determine if the mask
846         // is going to be kept live after the block, which will force the vXi1
847         // type to be expanded to legal vectors of integers, e.g. v4i1->v4i32.
848         // For now, we just assume the vectorizer created this intrinsic and
849         // the result will be the input for a PHI. In this case the cost will
850         // be extremely high for fixed-width vectors.
851         // NOTE: getScalarizationOverhead returns a cost that's far too
852         // pessimistic for the actual generated codegen. In reality there are
853         // two instructions generated per lane.
854         return RetTy->getNumElements() * 2;
855       }
856     }
857     break;
858   }
859   default:
860     break;
861   }
862   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
863 }
864 
865 /// The function will remove redundant reinterprets casting in the presence
866 /// of the control flow
867 static std::optional<Instruction *> processPhiNode(InstCombiner &IC,
868                                                    IntrinsicInst &II) {
869   SmallVector<Instruction *, 32> Worklist;
870   auto RequiredType = II.getType();
871 
872   auto *PN = dyn_cast<PHINode>(II.getArgOperand(0));
873   assert(PN && "Expected Phi Node!");
874 
875   // Don't create a new Phi unless we can remove the old one.
876   if (!PN->hasOneUse())
877     return std::nullopt;
878 
879   for (Value *IncValPhi : PN->incoming_values()) {
880     auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi);
881     if (!Reinterpret ||
882         Reinterpret->getIntrinsicID() !=
883             Intrinsic::aarch64_sve_convert_to_svbool ||
884         RequiredType != Reinterpret->getArgOperand(0)->getType())
885       return std::nullopt;
886   }
887 
888   // Create the new Phi
889   IC.Builder.SetInsertPoint(PN);
890   PHINode *NPN = IC.Builder.CreatePHI(RequiredType, PN->getNumIncomingValues());
891   Worklist.push_back(PN);
892 
893   for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) {
894     auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I));
895     NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I));
896     Worklist.push_back(Reinterpret);
897   }
898 
899   // Cleanup Phi Node and reinterprets
900   return IC.replaceInstUsesWith(II, NPN);
901 }
902 
903 // (from_svbool (binop (to_svbool pred) (svbool_t _) (svbool_t _))))
904 // => (binop (pred) (from_svbool _) (from_svbool _))
905 //
906 // The above transformation eliminates a `to_svbool` in the predicate
907 // operand of bitwise operation `binop` by narrowing the vector width of
908 // the operation. For example, it would convert a `<vscale x 16 x i1>
909 // and` into a `<vscale x 4 x i1> and`. This is profitable because
910 // to_svbool must zero the new lanes during widening, whereas
911 // from_svbool is free.
912 static std::optional<Instruction *>
913 tryCombineFromSVBoolBinOp(InstCombiner &IC, IntrinsicInst &II) {
914   auto BinOp = dyn_cast<IntrinsicInst>(II.getOperand(0));
915   if (!BinOp)
916     return std::nullopt;
917 
918   auto IntrinsicID = BinOp->getIntrinsicID();
919   switch (IntrinsicID) {
920   case Intrinsic::aarch64_sve_and_z:
921   case Intrinsic::aarch64_sve_bic_z:
922   case Intrinsic::aarch64_sve_eor_z:
923   case Intrinsic::aarch64_sve_nand_z:
924   case Intrinsic::aarch64_sve_nor_z:
925   case Intrinsic::aarch64_sve_orn_z:
926   case Intrinsic::aarch64_sve_orr_z:
927     break;
928   default:
929     return std::nullopt;
930   }
931 
932   auto BinOpPred = BinOp->getOperand(0);
933   auto BinOpOp1 = BinOp->getOperand(1);
934   auto BinOpOp2 = BinOp->getOperand(2);
935 
936   auto PredIntr = dyn_cast<IntrinsicInst>(BinOpPred);
937   if (!PredIntr ||
938       PredIntr->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool)
939     return std::nullopt;
940 
941   auto PredOp = PredIntr->getOperand(0);
942   auto PredOpTy = cast<VectorType>(PredOp->getType());
943   if (PredOpTy != II.getType())
944     return std::nullopt;
945 
946   SmallVector<Value *> NarrowedBinOpArgs = {PredOp};
947   auto NarrowBinOpOp1 = IC.Builder.CreateIntrinsic(
948       Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp1});
949   NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
950   if (BinOpOp1 == BinOpOp2)
951     NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
952   else
953     NarrowedBinOpArgs.push_back(IC.Builder.CreateIntrinsic(
954         Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp2}));
955 
956   auto NarrowedBinOp =
957       IC.Builder.CreateIntrinsic(IntrinsicID, {PredOpTy}, NarrowedBinOpArgs);
958   return IC.replaceInstUsesWith(II, NarrowedBinOp);
959 }
960 
961 static std::optional<Instruction *>
962 instCombineConvertFromSVBool(InstCombiner &IC, IntrinsicInst &II) {
963   // If the reinterpret instruction operand is a PHI Node
964   if (isa<PHINode>(II.getArgOperand(0)))
965     return processPhiNode(IC, II);
966 
967   if (auto BinOpCombine = tryCombineFromSVBoolBinOp(IC, II))
968     return BinOpCombine;
969 
970   // Ignore converts to/from svcount_t.
971   if (isa<TargetExtType>(II.getArgOperand(0)->getType()) ||
972       isa<TargetExtType>(II.getType()))
973     return std::nullopt;
974 
975   SmallVector<Instruction *, 32> CandidatesForRemoval;
976   Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr;
977 
978   const auto *IVTy = cast<VectorType>(II.getType());
979 
980   // Walk the chain of conversions.
981   while (Cursor) {
982     // If the type of the cursor has fewer lanes than the final result, zeroing
983     // must take place, which breaks the equivalence chain.
984     const auto *CursorVTy = cast<VectorType>(Cursor->getType());
985     if (CursorVTy->getElementCount().getKnownMinValue() <
986         IVTy->getElementCount().getKnownMinValue())
987       break;
988 
989     // If the cursor has the same type as I, it is a viable replacement.
990     if (Cursor->getType() == IVTy)
991       EarliestReplacement = Cursor;
992 
993     auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor);
994 
995     // If this is not an SVE conversion intrinsic, this is the end of the chain.
996     if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
997                                   Intrinsic::aarch64_sve_convert_to_svbool ||
998                               IntrinsicCursor->getIntrinsicID() ==
999                                   Intrinsic::aarch64_sve_convert_from_svbool))
1000       break;
1001 
1002     CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor);
1003     Cursor = IntrinsicCursor->getOperand(0);
1004   }
1005 
1006   // If no viable replacement in the conversion chain was found, there is
1007   // nothing to do.
1008   if (!EarliestReplacement)
1009     return std::nullopt;
1010 
1011   return IC.replaceInstUsesWith(II, EarliestReplacement);
1012 }
1013 
1014 static bool isAllActivePredicate(Value *Pred) {
1015   // Look through convert.from.svbool(convert.to.svbool(...) chain.
1016   Value *UncastedPred;
1017   if (match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_convert_from_svbool>(
1018                       m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>(
1019                           m_Value(UncastedPred)))))
1020     // If the predicate has the same or less lanes than the uncasted
1021     // predicate then we know the casting has no effect.
1022     if (cast<ScalableVectorType>(Pred->getType())->getMinNumElements() <=
1023         cast<ScalableVectorType>(UncastedPred->getType())->getMinNumElements())
1024       Pred = UncastedPred;
1025 
1026   return match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
1027                          m_ConstantInt<AArch64SVEPredPattern::all>()));
1028 }
1029 
1030 // Erase unary operation where predicate has all inactive lanes
1031 static std::optional<Instruction *>
1032 instCombineSVENoActiveUnaryErase(InstCombiner &IC, IntrinsicInst &II,
1033                                  int PredPos) {
1034   if (match(II.getOperand(PredPos), m_ZeroInt())) {
1035     return IC.eraseInstFromFunction(II);
1036   }
1037   return std::nullopt;
1038 }
1039 
1040 // Simplify unary operation where predicate has all inactive lanes by replacing
1041 // instruction with zeroed object
1042 static std::optional<Instruction *>
1043 instCombineSVENoActiveUnaryZero(InstCombiner &IC, IntrinsicInst &II) {
1044   if (match(II.getOperand(0), m_ZeroInt())) {
1045     Constant *Node;
1046     Type *RetTy = II.getType();
1047     if (RetTy->isStructTy()) {
1048       auto StructT = cast<StructType>(RetTy);
1049       auto VecT = StructT->getElementType(0);
1050       SmallVector<llvm::Constant *, 4> ZerVec;
1051       for (unsigned i = 0; i < StructT->getNumElements(); i++) {
1052         ZerVec.push_back(VecT->isFPOrFPVectorTy() ? ConstantFP::get(VecT, 0.0)
1053                                                   : ConstantInt::get(VecT, 0));
1054       }
1055       Node = ConstantStruct::get(StructT, ZerVec);
1056     } else if (RetTy->isFPOrFPVectorTy())
1057       Node = ConstantFP::get(RetTy, 0.0);
1058     else
1059       Node = ConstantInt::get(II.getType(), 0);
1060 
1061     IC.replaceInstUsesWith(II, Node);
1062     return IC.eraseInstFromFunction(II);
1063   }
1064   return std::nullopt;
1065 }
1066 
1067 static std::optional<Instruction *> instCombineSVESel(InstCombiner &IC,
1068                                                       IntrinsicInst &II) {
1069   // svsel(ptrue, x, y) => x
1070   auto *OpPredicate = II.getOperand(0);
1071   if (isAllActivePredicate(OpPredicate))
1072     return IC.replaceInstUsesWith(II, II.getOperand(1));
1073 
1074   auto Select =
1075       IC.Builder.CreateSelect(OpPredicate, II.getOperand(1), II.getOperand(2));
1076   return IC.replaceInstUsesWith(II, Select);
1077 }
1078 
1079 static std::optional<Instruction *> instCombineSVEDup(InstCombiner &IC,
1080                                                       IntrinsicInst &II) {
1081   IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
1082   if (!Pg)
1083     return std::nullopt;
1084 
1085   if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
1086     return std::nullopt;
1087 
1088   const auto PTruePattern =
1089       cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
1090   if (PTruePattern != AArch64SVEPredPattern::vl1)
1091     return std::nullopt;
1092 
1093   // The intrinsic is inserting into lane zero so use an insert instead.
1094   auto *IdxTy = Type::getInt64Ty(II.getContext());
1095   auto *Insert = InsertElementInst::Create(
1096       II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0));
1097   Insert->insertBefore(&II);
1098   Insert->takeName(&II);
1099 
1100   return IC.replaceInstUsesWith(II, Insert);
1101 }
1102 
1103 static std::optional<Instruction *> instCombineSVEDupX(InstCombiner &IC,
1104                                                        IntrinsicInst &II) {
1105   // Replace DupX with a regular IR splat.
1106   auto *RetTy = cast<ScalableVectorType>(II.getType());
1107   Value *Splat = IC.Builder.CreateVectorSplat(RetTy->getElementCount(),
1108                                               II.getArgOperand(0));
1109   Splat->takeName(&II);
1110   return IC.replaceInstUsesWith(II, Splat);
1111 }
1112 
1113 static std::optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC,
1114                                                         IntrinsicInst &II) {
1115   LLVMContext &Ctx = II.getContext();
1116 
1117   // Check that the predicate is all active
1118   auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
1119   if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
1120     return std::nullopt;
1121 
1122   const auto PTruePattern =
1123       cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
1124   if (PTruePattern != AArch64SVEPredPattern::all)
1125     return std::nullopt;
1126 
1127   // Check that we have a compare of zero..
1128   auto *SplatValue =
1129       dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2)));
1130   if (!SplatValue || !SplatValue->isZero())
1131     return std::nullopt;
1132 
1133   // ..against a dupq
1134   auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
1135   if (!DupQLane ||
1136       DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane)
1137     return std::nullopt;
1138 
1139   // Where the dupq is a lane 0 replicate of a vector insert
1140   if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero())
1141     return std::nullopt;
1142 
1143   auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0));
1144   if (!VecIns || VecIns->getIntrinsicID() != Intrinsic::vector_insert)
1145     return std::nullopt;
1146 
1147   // Where the vector insert is a fixed constant vector insert into undef at
1148   // index zero
1149   if (!isa<UndefValue>(VecIns->getArgOperand(0)))
1150     return std::nullopt;
1151 
1152   if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero())
1153     return std::nullopt;
1154 
1155   auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1));
1156   if (!ConstVec)
1157     return std::nullopt;
1158 
1159   auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType());
1160   auto *OutTy = dyn_cast<ScalableVectorType>(II.getType());
1161   if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements())
1162     return std::nullopt;
1163 
1164   unsigned NumElts = VecTy->getNumElements();
1165   unsigned PredicateBits = 0;
1166 
1167   // Expand intrinsic operands to a 16-bit byte level predicate
1168   for (unsigned I = 0; I < NumElts; ++I) {
1169     auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I));
1170     if (!Arg)
1171       return std::nullopt;
1172     if (!Arg->isZero())
1173       PredicateBits |= 1 << (I * (16 / NumElts));
1174   }
1175 
1176   // If all bits are zero bail early with an empty predicate
1177   if (PredicateBits == 0) {
1178     auto *PFalse = Constant::getNullValue(II.getType());
1179     PFalse->takeName(&II);
1180     return IC.replaceInstUsesWith(II, PFalse);
1181   }
1182 
1183   // Calculate largest predicate type used (where byte predicate is largest)
1184   unsigned Mask = 8;
1185   for (unsigned I = 0; I < 16; ++I)
1186     if ((PredicateBits & (1 << I)) != 0)
1187       Mask |= (I % 8);
1188 
1189   unsigned PredSize = Mask & -Mask;
1190   auto *PredType = ScalableVectorType::get(
1191       Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8));
1192 
1193   // Ensure all relevant bits are set
1194   for (unsigned I = 0; I < 16; I += PredSize)
1195     if ((PredicateBits & (1 << I)) == 0)
1196       return std::nullopt;
1197 
1198   auto *PTruePat =
1199       ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
1200   auto *PTrue = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
1201                                            {PredType}, {PTruePat});
1202   auto *ConvertToSVBool = IC.Builder.CreateIntrinsic(
1203       Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue});
1204   auto *ConvertFromSVBool =
1205       IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool,
1206                                  {II.getType()}, {ConvertToSVBool});
1207 
1208   ConvertFromSVBool->takeName(&II);
1209   return IC.replaceInstUsesWith(II, ConvertFromSVBool);
1210 }
1211 
1212 static std::optional<Instruction *> instCombineSVELast(InstCombiner &IC,
1213                                                        IntrinsicInst &II) {
1214   Value *Pg = II.getArgOperand(0);
1215   Value *Vec = II.getArgOperand(1);
1216   auto IntrinsicID = II.getIntrinsicID();
1217   bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta;
1218 
1219   // lastX(splat(X)) --> X
1220   if (auto *SplatVal = getSplatValue(Vec))
1221     return IC.replaceInstUsesWith(II, SplatVal);
1222 
1223   // If x and/or y is a splat value then:
1224   // lastX (binop (x, y)) --> binop(lastX(x), lastX(y))
1225   Value *LHS, *RHS;
1226   if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) {
1227     if (isSplatValue(LHS) || isSplatValue(RHS)) {
1228       auto *OldBinOp = cast<BinaryOperator>(Vec);
1229       auto OpC = OldBinOp->getOpcode();
1230       auto *NewLHS =
1231           IC.Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS});
1232       auto *NewRHS =
1233           IC.Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS});
1234       auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags(
1235           OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), II.getIterator());
1236       return IC.replaceInstUsesWith(II, NewBinOp);
1237     }
1238   }
1239 
1240   auto *C = dyn_cast<Constant>(Pg);
1241   if (IsAfter && C && C->isNullValue()) {
1242     // The intrinsic is extracting lane 0 so use an extract instead.
1243     auto *IdxTy = Type::getInt64Ty(II.getContext());
1244     auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0));
1245     Extract->insertBefore(&II);
1246     Extract->takeName(&II);
1247     return IC.replaceInstUsesWith(II, Extract);
1248   }
1249 
1250   auto *IntrPG = dyn_cast<IntrinsicInst>(Pg);
1251   if (!IntrPG)
1252     return std::nullopt;
1253 
1254   if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
1255     return std::nullopt;
1256 
1257   const auto PTruePattern =
1258       cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue();
1259 
1260   // Can the intrinsic's predicate be converted to a known constant index?
1261   unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern);
1262   if (!MinNumElts)
1263     return std::nullopt;
1264 
1265   unsigned Idx = MinNumElts - 1;
1266   // Increment the index if extracting the element after the last active
1267   // predicate element.
1268   if (IsAfter)
1269     ++Idx;
1270 
1271   // Ignore extracts whose index is larger than the known minimum vector
1272   // length. NOTE: This is an artificial constraint where we prefer to
1273   // maintain what the user asked for until an alternative is proven faster.
1274   auto *PgVTy = cast<ScalableVectorType>(Pg->getType());
1275   if (Idx >= PgVTy->getMinNumElements())
1276     return std::nullopt;
1277 
1278   // The intrinsic is extracting a fixed lane so use an extract instead.
1279   auto *IdxTy = Type::getInt64Ty(II.getContext());
1280   auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx));
1281   Extract->insertBefore(&II);
1282   Extract->takeName(&II);
1283   return IC.replaceInstUsesWith(II, Extract);
1284 }
1285 
1286 static std::optional<Instruction *> instCombineSVECondLast(InstCombiner &IC,
1287                                                            IntrinsicInst &II) {
1288   // The SIMD&FP variant of CLAST[AB] is significantly faster than the scalar
1289   // integer variant across a variety of micro-architectures. Replace scalar
1290   // integer CLAST[AB] intrinsic with optimal SIMD&FP variant. A simple
1291   // bitcast-to-fp + clast[ab] + bitcast-to-int will cost a cycle or two more
1292   // depending on the micro-architecture, but has been observed as generally
1293   // being faster, particularly when the CLAST[AB] op is a loop-carried
1294   // dependency.
1295   Value *Pg = II.getArgOperand(0);
1296   Value *Fallback = II.getArgOperand(1);
1297   Value *Vec = II.getArgOperand(2);
1298   Type *Ty = II.getType();
1299 
1300   if (!Ty->isIntegerTy())
1301     return std::nullopt;
1302 
1303   Type *FPTy;
1304   switch (cast<IntegerType>(Ty)->getBitWidth()) {
1305   default:
1306     return std::nullopt;
1307   case 16:
1308     FPTy = IC.Builder.getHalfTy();
1309     break;
1310   case 32:
1311     FPTy = IC.Builder.getFloatTy();
1312     break;
1313   case 64:
1314     FPTy = IC.Builder.getDoubleTy();
1315     break;
1316   }
1317 
1318   Value *FPFallBack = IC.Builder.CreateBitCast(Fallback, FPTy);
1319   auto *FPVTy = VectorType::get(
1320       FPTy, cast<VectorType>(Vec->getType())->getElementCount());
1321   Value *FPVec = IC.Builder.CreateBitCast(Vec, FPVTy);
1322   auto *FPII = IC.Builder.CreateIntrinsic(
1323       II.getIntrinsicID(), {FPVec->getType()}, {Pg, FPFallBack, FPVec});
1324   Value *FPIItoInt = IC.Builder.CreateBitCast(FPII, II.getType());
1325   return IC.replaceInstUsesWith(II, FPIItoInt);
1326 }
1327 
1328 static std::optional<Instruction *> instCombineRDFFR(InstCombiner &IC,
1329                                                      IntrinsicInst &II) {
1330   LLVMContext &Ctx = II.getContext();
1331   // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr
1332   // can work with RDFFR_PP for ptest elimination.
1333   auto *AllPat =
1334       ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
1335   auto *PTrue = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
1336                                            {II.getType()}, {AllPat});
1337   auto *RDFFR =
1338       IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue});
1339   RDFFR->takeName(&II);
1340   return IC.replaceInstUsesWith(II, RDFFR);
1341 }
1342 
1343 static std::optional<Instruction *>
1344 instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) {
1345   const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue();
1346 
1347   if (Pattern == AArch64SVEPredPattern::all) {
1348     Constant *StepVal = ConstantInt::get(II.getType(), NumElts);
1349     auto *VScale = IC.Builder.CreateVScale(StepVal);
1350     VScale->takeName(&II);
1351     return IC.replaceInstUsesWith(II, VScale);
1352   }
1353 
1354   unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern);
1355 
1356   return MinNumElts && NumElts >= MinNumElts
1357              ? std::optional<Instruction *>(IC.replaceInstUsesWith(
1358                    II, ConstantInt::get(II.getType(), MinNumElts)))
1359              : std::nullopt;
1360 }
1361 
1362 static std::optional<Instruction *> instCombineSVEPTest(InstCombiner &IC,
1363                                                         IntrinsicInst &II) {
1364   Value *PgVal = II.getArgOperand(0);
1365   Value *OpVal = II.getArgOperand(1);
1366 
1367   // PTEST_<FIRST|LAST>(X, X) is equivalent to PTEST_ANY(X, X).
1368   // Later optimizations prefer this form.
1369   if (PgVal == OpVal &&
1370       (II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_first ||
1371        II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_last)) {
1372     Value *Ops[] = {PgVal, OpVal};
1373     Type *Tys[] = {PgVal->getType()};
1374 
1375     auto *PTest =
1376         IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptest_any, Tys, Ops);
1377     PTest->takeName(&II);
1378 
1379     return IC.replaceInstUsesWith(II, PTest);
1380   }
1381 
1382   IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(PgVal);
1383   IntrinsicInst *Op = dyn_cast<IntrinsicInst>(OpVal);
1384 
1385   if (!Pg || !Op)
1386     return std::nullopt;
1387 
1388   Intrinsic::ID OpIID = Op->getIntrinsicID();
1389 
1390   if (Pg->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
1391       OpIID == Intrinsic::aarch64_sve_convert_to_svbool &&
1392       Pg->getArgOperand(0)->getType() == Op->getArgOperand(0)->getType()) {
1393     Value *Ops[] = {Pg->getArgOperand(0), Op->getArgOperand(0)};
1394     Type *Tys[] = {Pg->getArgOperand(0)->getType()};
1395 
1396     auto *PTest = IC.Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
1397 
1398     PTest->takeName(&II);
1399     return IC.replaceInstUsesWith(II, PTest);
1400   }
1401 
1402   // Transform PTEST_ANY(X=OP(PG,...), X) -> PTEST_ANY(PG, X)).
1403   // Later optimizations may rewrite sequence to use the flag-setting variant
1404   // of instruction X to remove PTEST.
1405   if ((Pg == Op) && (II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_any) &&
1406       ((OpIID == Intrinsic::aarch64_sve_brka_z) ||
1407        (OpIID == Intrinsic::aarch64_sve_brkb_z) ||
1408        (OpIID == Intrinsic::aarch64_sve_brkpa_z) ||
1409        (OpIID == Intrinsic::aarch64_sve_brkpb_z) ||
1410        (OpIID == Intrinsic::aarch64_sve_rdffr_z) ||
1411        (OpIID == Intrinsic::aarch64_sve_and_z) ||
1412        (OpIID == Intrinsic::aarch64_sve_bic_z) ||
1413        (OpIID == Intrinsic::aarch64_sve_eor_z) ||
1414        (OpIID == Intrinsic::aarch64_sve_nand_z) ||
1415        (OpIID == Intrinsic::aarch64_sve_nor_z) ||
1416        (OpIID == Intrinsic::aarch64_sve_orn_z) ||
1417        (OpIID == Intrinsic::aarch64_sve_orr_z))) {
1418     Value *Ops[] = {Pg->getArgOperand(0), Pg};
1419     Type *Tys[] = {Pg->getType()};
1420 
1421     auto *PTest = IC.Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
1422     PTest->takeName(&II);
1423 
1424     return IC.replaceInstUsesWith(II, PTest);
1425   }
1426 
1427   return std::nullopt;
1428 }
1429 
1430 template <Intrinsic::ID MulOpc, typename Intrinsic::ID FuseOpc>
1431 static std::optional<Instruction *>
1432 instCombineSVEVectorFuseMulAddSub(InstCombiner &IC, IntrinsicInst &II,
1433                                   bool MergeIntoAddendOp) {
1434   Value *P = II.getOperand(0);
1435   Value *MulOp0, *MulOp1, *AddendOp, *Mul;
1436   if (MergeIntoAddendOp) {
1437     AddendOp = II.getOperand(1);
1438     Mul = II.getOperand(2);
1439   } else {
1440     AddendOp = II.getOperand(2);
1441     Mul = II.getOperand(1);
1442   }
1443 
1444   if (!match(Mul, m_Intrinsic<MulOpc>(m_Specific(P), m_Value(MulOp0),
1445                                       m_Value(MulOp1))))
1446     return std::nullopt;
1447 
1448   if (!Mul->hasOneUse())
1449     return std::nullopt;
1450 
1451   Instruction *FMFSource = nullptr;
1452   if (II.getType()->isFPOrFPVectorTy()) {
1453     llvm::FastMathFlags FAddFlags = II.getFastMathFlags();
1454     // Stop the combine when the flags on the inputs differ in case dropping
1455     // flags would lead to us missing out on more beneficial optimizations.
1456     if (FAddFlags != cast<CallInst>(Mul)->getFastMathFlags())
1457       return std::nullopt;
1458     if (!FAddFlags.allowContract())
1459       return std::nullopt;
1460     FMFSource = &II;
1461   }
1462 
1463   CallInst *Res;
1464   if (MergeIntoAddendOp)
1465     Res = IC.Builder.CreateIntrinsic(FuseOpc, {II.getType()},
1466                                      {P, AddendOp, MulOp0, MulOp1}, FMFSource);
1467   else
1468     Res = IC.Builder.CreateIntrinsic(FuseOpc, {II.getType()},
1469                                      {P, MulOp0, MulOp1, AddendOp}, FMFSource);
1470 
1471   return IC.replaceInstUsesWith(II, Res);
1472 }
1473 
1474 static std::optional<Instruction *>
1475 instCombineSVELD1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
1476   Value *Pred = II.getOperand(0);
1477   Value *PtrOp = II.getOperand(1);
1478   Type *VecTy = II.getType();
1479 
1480   // Replace by zero constant when all lanes are inactive
1481   if (auto II_NA = instCombineSVENoActiveUnaryZero(IC, II))
1482     return II_NA;
1483 
1484   if (isAllActivePredicate(Pred)) {
1485     LoadInst *Load = IC.Builder.CreateLoad(VecTy, PtrOp);
1486     Load->copyMetadata(II);
1487     return IC.replaceInstUsesWith(II, Load);
1488   }
1489 
1490   CallInst *MaskedLoad =
1491       IC.Builder.CreateMaskedLoad(VecTy, PtrOp, PtrOp->getPointerAlignment(DL),
1492                                   Pred, ConstantAggregateZero::get(VecTy));
1493   MaskedLoad->copyMetadata(II);
1494   return IC.replaceInstUsesWith(II, MaskedLoad);
1495 }
1496 
1497 static std::optional<Instruction *>
1498 instCombineSVEST1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
1499   Value *VecOp = II.getOperand(0);
1500   Value *Pred = II.getOperand(1);
1501   Value *PtrOp = II.getOperand(2);
1502 
1503   if (isAllActivePredicate(Pred)) {
1504     StoreInst *Store = IC.Builder.CreateStore(VecOp, PtrOp);
1505     Store->copyMetadata(II);
1506     return IC.eraseInstFromFunction(II);
1507   }
1508 
1509   CallInst *MaskedStore = IC.Builder.CreateMaskedStore(
1510       VecOp, PtrOp, PtrOp->getPointerAlignment(DL), Pred);
1511   MaskedStore->copyMetadata(II);
1512   return IC.eraseInstFromFunction(II);
1513 }
1514 
1515 static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) {
1516   switch (Intrinsic) {
1517   case Intrinsic::aarch64_sve_fmul_u:
1518     return Instruction::BinaryOps::FMul;
1519   case Intrinsic::aarch64_sve_fadd_u:
1520     return Instruction::BinaryOps::FAdd;
1521   case Intrinsic::aarch64_sve_fsub_u:
1522     return Instruction::BinaryOps::FSub;
1523   default:
1524     return Instruction::BinaryOpsEnd;
1525   }
1526 }
1527 
1528 static std::optional<Instruction *>
1529 instCombineSVEVectorBinOp(InstCombiner &IC, IntrinsicInst &II) {
1530   // Bail due to missing support for ISD::STRICT_ scalable vector operations.
1531   if (II.isStrictFP())
1532     return std::nullopt;
1533 
1534   auto *OpPredicate = II.getOperand(0);
1535   auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID());
1536   if (BinOpCode == Instruction::BinaryOpsEnd ||
1537       !match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
1538                               m_ConstantInt<AArch64SVEPredPattern::all>())))
1539     return std::nullopt;
1540   IRBuilderBase::FastMathFlagGuard FMFGuard(IC.Builder);
1541   IC.Builder.setFastMathFlags(II.getFastMathFlags());
1542   auto BinOp =
1543       IC.Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2));
1544   return IC.replaceInstUsesWith(II, BinOp);
1545 }
1546 
1547 // Canonicalise operations that take an all active predicate (e.g. sve.add ->
1548 // sve.add_u).
1549 static std::optional<Instruction *> instCombineSVEAllActive(IntrinsicInst &II,
1550                                                             Intrinsic::ID IID) {
1551   auto *OpPredicate = II.getOperand(0);
1552   if (!match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
1553                               m_ConstantInt<AArch64SVEPredPattern::all>())))
1554     return std::nullopt;
1555 
1556   auto *Mod = II.getModule();
1557   auto *NewDecl = Intrinsic::getDeclaration(Mod, IID, {II.getType()});
1558   II.setCalledFunction(NewDecl);
1559 
1560   return &II;
1561 }
1562 
1563 // Simplify operations where predicate has all inactive lanes or try to replace
1564 // with _u form when all lanes are active
1565 static std::optional<Instruction *>
1566 instCombineSVEAllOrNoActive(InstCombiner &IC, IntrinsicInst &II,
1567                             Intrinsic::ID IID) {
1568   if (match(II.getOperand(0), m_ZeroInt())) {
1569     //  llvm_ir, pred(0), op1, op2 - Spec says to return op1 when all lanes are
1570     //  inactive for sv[func]_m
1571     return IC.replaceInstUsesWith(II, II.getOperand(1));
1572   }
1573   return instCombineSVEAllActive(II, IID);
1574 }
1575 
1576 static std::optional<Instruction *> instCombineSVEVectorAdd(InstCombiner &IC,
1577                                                             IntrinsicInst &II) {
1578   if (auto II_U =
1579           instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_add_u))
1580     return II_U;
1581   if (auto MLA = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
1582                                                    Intrinsic::aarch64_sve_mla>(
1583           IC, II, true))
1584     return MLA;
1585   if (auto MAD = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
1586                                                    Intrinsic::aarch64_sve_mad>(
1587           IC, II, false))
1588     return MAD;
1589   return std::nullopt;
1590 }
1591 
1592 static std::optional<Instruction *>
1593 instCombineSVEVectorFAdd(InstCombiner &IC, IntrinsicInst &II) {
1594   if (auto II_U =
1595           instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fadd_u))
1596     return II_U;
1597   if (auto FMLA =
1598           instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1599                                             Intrinsic::aarch64_sve_fmla>(IC, II,
1600                                                                          true))
1601     return FMLA;
1602   if (auto FMAD =
1603           instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1604                                             Intrinsic::aarch64_sve_fmad>(IC, II,
1605                                                                          false))
1606     return FMAD;
1607   if (auto FMLA =
1608           instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul_u,
1609                                             Intrinsic::aarch64_sve_fmla>(IC, II,
1610                                                                          true))
1611     return FMLA;
1612   return std::nullopt;
1613 }
1614 
1615 static std::optional<Instruction *>
1616 instCombineSVEVectorFAddU(InstCombiner &IC, IntrinsicInst &II) {
1617   if (auto FMLA =
1618           instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1619                                             Intrinsic::aarch64_sve_fmla>(IC, II,
1620                                                                          true))
1621     return FMLA;
1622   if (auto FMAD =
1623           instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1624                                             Intrinsic::aarch64_sve_fmad>(IC, II,
1625                                                                          false))
1626     return FMAD;
1627   if (auto FMLA_U =
1628           instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul_u,
1629                                             Intrinsic::aarch64_sve_fmla_u>(
1630               IC, II, true))
1631     return FMLA_U;
1632   return instCombineSVEVectorBinOp(IC, II);
1633 }
1634 
1635 static std::optional<Instruction *>
1636 instCombineSVEVectorFSub(InstCombiner &IC, IntrinsicInst &II) {
1637   if (auto II_U =
1638           instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fsub_u))
1639     return II_U;
1640   if (auto FMLS =
1641           instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1642                                             Intrinsic::aarch64_sve_fmls>(IC, II,
1643                                                                          true))
1644     return FMLS;
1645   if (auto FMSB =
1646           instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1647                                             Intrinsic::aarch64_sve_fnmsb>(
1648               IC, II, false))
1649     return FMSB;
1650   if (auto FMLS =
1651           instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul_u,
1652                                             Intrinsic::aarch64_sve_fmls>(IC, II,
1653                                                                          true))
1654     return FMLS;
1655   return std::nullopt;
1656 }
1657 
1658 static std::optional<Instruction *>
1659 instCombineSVEVectorFSubU(InstCombiner &IC, IntrinsicInst &II) {
1660   if (auto FMLS =
1661           instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1662                                             Intrinsic::aarch64_sve_fmls>(IC, II,
1663                                                                          true))
1664     return FMLS;
1665   if (auto FMSB =
1666           instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
1667                                             Intrinsic::aarch64_sve_fnmsb>(
1668               IC, II, false))
1669     return FMSB;
1670   if (auto FMLS_U =
1671           instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul_u,
1672                                             Intrinsic::aarch64_sve_fmls_u>(
1673               IC, II, true))
1674     return FMLS_U;
1675   return instCombineSVEVectorBinOp(IC, II);
1676 }
1677 
1678 static std::optional<Instruction *> instCombineSVEVectorSub(InstCombiner &IC,
1679                                                             IntrinsicInst &II) {
1680   if (auto II_U =
1681           instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_sub_u))
1682     return II_U;
1683   if (auto MLS = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
1684                                                    Intrinsic::aarch64_sve_mls>(
1685           IC, II, true))
1686     return MLS;
1687   return std::nullopt;
1688 }
1689 
1690 static std::optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC,
1691                                                             IntrinsicInst &II,
1692                                                             Intrinsic::ID IID) {
1693   auto *OpPredicate = II.getOperand(0);
1694   auto *OpMultiplicand = II.getOperand(1);
1695   auto *OpMultiplier = II.getOperand(2);
1696 
1697   // Return true if a given instruction is a unit splat value, false otherwise.
1698   auto IsUnitSplat = [](auto *I) {
1699     auto *SplatValue = getSplatValue(I);
1700     if (!SplatValue)
1701       return false;
1702     return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
1703   };
1704 
1705   // Return true if a given instruction is an aarch64_sve_dup intrinsic call
1706   // with a unit splat value, false otherwise.
1707   auto IsUnitDup = [](auto *I) {
1708     auto *IntrI = dyn_cast<IntrinsicInst>(I);
1709     if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup)
1710       return false;
1711 
1712     auto *SplatValue = IntrI->getOperand(2);
1713     return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
1714   };
1715 
1716   if (IsUnitSplat(OpMultiplier)) {
1717     // [f]mul pg %n, (dupx 1) => %n
1718     OpMultiplicand->takeName(&II);
1719     return IC.replaceInstUsesWith(II, OpMultiplicand);
1720   } else if (IsUnitDup(OpMultiplier)) {
1721     // [f]mul pg %n, (dup pg 1) => %n
1722     auto *DupInst = cast<IntrinsicInst>(OpMultiplier);
1723     auto *DupPg = DupInst->getOperand(1);
1724     // TODO: this is naive. The optimization is still valid if DupPg
1725     // 'encompasses' OpPredicate, not only if they're the same predicate.
1726     if (OpPredicate == DupPg) {
1727       OpMultiplicand->takeName(&II);
1728       return IC.replaceInstUsesWith(II, OpMultiplicand);
1729     }
1730   }
1731 
1732   return instCombineSVEVectorBinOp(IC, II);
1733 }
1734 
1735 static std::optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC,
1736                                                          IntrinsicInst &II) {
1737   Value *UnpackArg = II.getArgOperand(0);
1738   auto *RetTy = cast<ScalableVectorType>(II.getType());
1739   bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi ||
1740                   II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo;
1741 
1742   // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X))
1743   // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X))
1744   if (auto *ScalarArg = getSplatValue(UnpackArg)) {
1745     ScalarArg =
1746         IC.Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned);
1747     Value *NewVal =
1748         IC.Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg);
1749     NewVal->takeName(&II);
1750     return IC.replaceInstUsesWith(II, NewVal);
1751   }
1752 
1753   return std::nullopt;
1754 }
1755 static std::optional<Instruction *> instCombineSVETBL(InstCombiner &IC,
1756                                                       IntrinsicInst &II) {
1757   auto *OpVal = II.getOperand(0);
1758   auto *OpIndices = II.getOperand(1);
1759   VectorType *VTy = cast<VectorType>(II.getType());
1760 
1761   // Check whether OpIndices is a constant splat value < minimal element count
1762   // of result.
1763   auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices));
1764   if (!SplatValue ||
1765       SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue()))
1766     return std::nullopt;
1767 
1768   // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to
1769   // splat_vector(extractelement(OpVal, SplatValue)) for further optimization.
1770   auto *Extract = IC.Builder.CreateExtractElement(OpVal, SplatValue);
1771   auto *VectorSplat =
1772       IC.Builder.CreateVectorSplat(VTy->getElementCount(), Extract);
1773 
1774   VectorSplat->takeName(&II);
1775   return IC.replaceInstUsesWith(II, VectorSplat);
1776 }
1777 
1778 static std::optional<Instruction *> instCombineSVEUzp1(InstCombiner &IC,
1779                                                        IntrinsicInst &II) {
1780   Value *A, *B;
1781   Type *RetTy = II.getType();
1782   constexpr Intrinsic::ID FromSVB = Intrinsic::aarch64_sve_convert_from_svbool;
1783   constexpr Intrinsic::ID ToSVB = Intrinsic::aarch64_sve_convert_to_svbool;
1784 
1785   // uzp1(to_svbool(A), to_svbool(B)) --> <A, B>
1786   // uzp1(from_svbool(to_svbool(A)), from_svbool(to_svbool(B))) --> <A, B>
1787   if ((match(II.getArgOperand(0),
1788              m_Intrinsic<FromSVB>(m_Intrinsic<ToSVB>(m_Value(A)))) &&
1789        match(II.getArgOperand(1),
1790              m_Intrinsic<FromSVB>(m_Intrinsic<ToSVB>(m_Value(B))))) ||
1791       (match(II.getArgOperand(0), m_Intrinsic<ToSVB>(m_Value(A))) &&
1792        match(II.getArgOperand(1), m_Intrinsic<ToSVB>(m_Value(B))))) {
1793     auto *TyA = cast<ScalableVectorType>(A->getType());
1794     if (TyA == B->getType() &&
1795         RetTy == ScalableVectorType::getDoubleElementsVectorType(TyA)) {
1796       auto *SubVec = IC.Builder.CreateInsertVector(
1797           RetTy, PoisonValue::get(RetTy), A, IC.Builder.getInt64(0));
1798       auto *ConcatVec = IC.Builder.CreateInsertVector(
1799           RetTy, SubVec, B, IC.Builder.getInt64(TyA->getMinNumElements()));
1800       ConcatVec->takeName(&II);
1801       return IC.replaceInstUsesWith(II, ConcatVec);
1802     }
1803   }
1804 
1805   return std::nullopt;
1806 }
1807 
1808 static std::optional<Instruction *> instCombineSVEZip(InstCombiner &IC,
1809                                                       IntrinsicInst &II) {
1810   // zip1(uzp1(A, B), uzp2(A, B)) --> A
1811   // zip2(uzp1(A, B), uzp2(A, B)) --> B
1812   Value *A, *B;
1813   if (match(II.getArgOperand(0),
1814             m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) &&
1815       match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>(
1816                                      m_Specific(A), m_Specific(B))))
1817     return IC.replaceInstUsesWith(
1818         II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B));
1819 
1820   return std::nullopt;
1821 }
1822 
1823 static std::optional<Instruction *>
1824 instCombineLD1GatherIndex(InstCombiner &IC, IntrinsicInst &II) {
1825   Value *Mask = II.getOperand(0);
1826   Value *BasePtr = II.getOperand(1);
1827   Value *Index = II.getOperand(2);
1828   Type *Ty = II.getType();
1829   Value *PassThru = ConstantAggregateZero::get(Ty);
1830 
1831   // Replace by zero constant when all lanes are inactive
1832   if (auto II_NA = instCombineSVENoActiveUnaryZero(IC, II))
1833     return II_NA;
1834 
1835   // Contiguous gather => masked load.
1836   // (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1))
1837   // => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer)
1838   Value *IndexBase;
1839   if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
1840                        m_Value(IndexBase), m_SpecificInt(1)))) {
1841     Align Alignment =
1842         BasePtr->getPointerAlignment(II.getDataLayout());
1843 
1844     Type *VecPtrTy = PointerType::getUnqual(Ty);
1845     Value *Ptr = IC.Builder.CreateGEP(cast<VectorType>(Ty)->getElementType(),
1846                                       BasePtr, IndexBase);
1847     Ptr = IC.Builder.CreateBitCast(Ptr, VecPtrTy);
1848     CallInst *MaskedLoad =
1849         IC.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru);
1850     MaskedLoad->takeName(&II);
1851     return IC.replaceInstUsesWith(II, MaskedLoad);
1852   }
1853 
1854   return std::nullopt;
1855 }
1856 
1857 static std::optional<Instruction *>
1858 instCombineST1ScatterIndex(InstCombiner &IC, IntrinsicInst &II) {
1859   Value *Val = II.getOperand(0);
1860   Value *Mask = II.getOperand(1);
1861   Value *BasePtr = II.getOperand(2);
1862   Value *Index = II.getOperand(3);
1863   Type *Ty = Val->getType();
1864 
1865   // Contiguous scatter => masked store.
1866   // (sve.st1.scatter.index Value Mask BasePtr (sve.index IndexBase 1))
1867   // => (masked.store Value (gep BasePtr IndexBase) Align Mask)
1868   Value *IndexBase;
1869   if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
1870                        m_Value(IndexBase), m_SpecificInt(1)))) {
1871     Align Alignment =
1872         BasePtr->getPointerAlignment(II.getDataLayout());
1873 
1874     Value *Ptr = IC.Builder.CreateGEP(cast<VectorType>(Ty)->getElementType(),
1875                                       BasePtr, IndexBase);
1876     Type *VecPtrTy = PointerType::getUnqual(Ty);
1877     Ptr = IC.Builder.CreateBitCast(Ptr, VecPtrTy);
1878 
1879     (void)IC.Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask);
1880 
1881     return IC.eraseInstFromFunction(II);
1882   }
1883 
1884   return std::nullopt;
1885 }
1886 
1887 static std::optional<Instruction *> instCombineSVESDIV(InstCombiner &IC,
1888                                                        IntrinsicInst &II) {
1889   Type *Int32Ty = IC.Builder.getInt32Ty();
1890   Value *Pred = II.getOperand(0);
1891   Value *Vec = II.getOperand(1);
1892   Value *DivVec = II.getOperand(2);
1893 
1894   Value *SplatValue = getSplatValue(DivVec);
1895   ConstantInt *SplatConstantInt = dyn_cast_or_null<ConstantInt>(SplatValue);
1896   if (!SplatConstantInt)
1897     return std::nullopt;
1898   APInt Divisor = SplatConstantInt->getValue();
1899 
1900   if (Divisor.isPowerOf2()) {
1901     Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
1902     auto ASRD = IC.Builder.CreateIntrinsic(
1903         Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
1904     return IC.replaceInstUsesWith(II, ASRD);
1905   }
1906   if (Divisor.isNegatedPowerOf2()) {
1907     Divisor.negate();
1908     Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
1909     auto ASRD = IC.Builder.CreateIntrinsic(
1910         Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
1911     auto NEG = IC.Builder.CreateIntrinsic(
1912         Intrinsic::aarch64_sve_neg, {ASRD->getType()}, {ASRD, Pred, ASRD});
1913     return IC.replaceInstUsesWith(II, NEG);
1914   }
1915 
1916   return std::nullopt;
1917 }
1918 
1919 bool SimplifyValuePattern(SmallVector<Value *> &Vec, bool AllowPoison) {
1920   size_t VecSize = Vec.size();
1921   if (VecSize == 1)
1922     return true;
1923   if (!isPowerOf2_64(VecSize))
1924     return false;
1925   size_t HalfVecSize = VecSize / 2;
1926 
1927   for (auto LHS = Vec.begin(), RHS = Vec.begin() + HalfVecSize;
1928        RHS != Vec.end(); LHS++, RHS++) {
1929     if (*LHS != nullptr && *RHS != nullptr) {
1930       if (*LHS == *RHS)
1931         continue;
1932       else
1933         return false;
1934     }
1935     if (!AllowPoison)
1936       return false;
1937     if (*LHS == nullptr && *RHS != nullptr)
1938       *LHS = *RHS;
1939   }
1940 
1941   Vec.resize(HalfVecSize);
1942   SimplifyValuePattern(Vec, AllowPoison);
1943   return true;
1944 }
1945 
1946 // Try to simplify dupqlane patterns like dupqlane(f32 A, f32 B, f32 A, f32 B)
1947 // to dupqlane(f64(C)) where C is A concatenated with B
1948 static std::optional<Instruction *> instCombineSVEDupqLane(InstCombiner &IC,
1949                                                            IntrinsicInst &II) {
1950   Value *CurrentInsertElt = nullptr, *Default = nullptr;
1951   if (!match(II.getOperand(0),
1952              m_Intrinsic<Intrinsic::vector_insert>(
1953                  m_Value(Default), m_Value(CurrentInsertElt), m_Value())) ||
1954       !isa<FixedVectorType>(CurrentInsertElt->getType()))
1955     return std::nullopt;
1956   auto IIScalableTy = cast<ScalableVectorType>(II.getType());
1957 
1958   // Insert the scalars into a container ordered by InsertElement index
1959   SmallVector<Value *> Elts(IIScalableTy->getMinNumElements(), nullptr);
1960   while (auto InsertElt = dyn_cast<InsertElementInst>(CurrentInsertElt)) {
1961     auto Idx = cast<ConstantInt>(InsertElt->getOperand(2));
1962     Elts[Idx->getValue().getZExtValue()] = InsertElt->getOperand(1);
1963     CurrentInsertElt = InsertElt->getOperand(0);
1964   }
1965 
1966   bool AllowPoison =
1967       isa<PoisonValue>(CurrentInsertElt) && isa<PoisonValue>(Default);
1968   if (!SimplifyValuePattern(Elts, AllowPoison))
1969     return std::nullopt;
1970 
1971   // Rebuild the simplified chain of InsertElements. e.g. (a, b, a, b) as (a, b)
1972   Value *InsertEltChain = PoisonValue::get(CurrentInsertElt->getType());
1973   for (size_t I = 0; I < Elts.size(); I++) {
1974     if (Elts[I] == nullptr)
1975       continue;
1976     InsertEltChain = IC.Builder.CreateInsertElement(InsertEltChain, Elts[I],
1977                                                     IC.Builder.getInt64(I));
1978   }
1979   if (InsertEltChain == nullptr)
1980     return std::nullopt;
1981 
1982   // Splat the simplified sequence, e.g. (f16 a, f16 b, f16 c, f16 d) as one i64
1983   // value or (f16 a, f16 b) as one i32 value. This requires an InsertSubvector
1984   // be bitcast to a type wide enough to fit the sequence, be splatted, and then
1985   // be narrowed back to the original type.
1986   unsigned PatternWidth = IIScalableTy->getScalarSizeInBits() * Elts.size();
1987   unsigned PatternElementCount = IIScalableTy->getScalarSizeInBits() *
1988                                  IIScalableTy->getMinNumElements() /
1989                                  PatternWidth;
1990 
1991   IntegerType *WideTy = IC.Builder.getIntNTy(PatternWidth);
1992   auto *WideScalableTy = ScalableVectorType::get(WideTy, PatternElementCount);
1993   auto *WideShuffleMaskTy =
1994       ScalableVectorType::get(IC.Builder.getInt32Ty(), PatternElementCount);
1995 
1996   auto ZeroIdx = ConstantInt::get(IC.Builder.getInt64Ty(), APInt(64, 0));
1997   auto InsertSubvector = IC.Builder.CreateInsertVector(
1998       II.getType(), PoisonValue::get(II.getType()), InsertEltChain, ZeroIdx);
1999   auto WideBitcast =
2000       IC.Builder.CreateBitOrPointerCast(InsertSubvector, WideScalableTy);
2001   auto WideShuffleMask = ConstantAggregateZero::get(WideShuffleMaskTy);
2002   auto WideShuffle = IC.Builder.CreateShuffleVector(
2003       WideBitcast, PoisonValue::get(WideScalableTy), WideShuffleMask);
2004   auto NarrowBitcast =
2005       IC.Builder.CreateBitOrPointerCast(WideShuffle, II.getType());
2006 
2007   return IC.replaceInstUsesWith(II, NarrowBitcast);
2008 }
2009 
2010 static std::optional<Instruction *> instCombineMaxMinNM(InstCombiner &IC,
2011                                                         IntrinsicInst &II) {
2012   Value *A = II.getArgOperand(0);
2013   Value *B = II.getArgOperand(1);
2014   if (A == B)
2015     return IC.replaceInstUsesWith(II, A);
2016 
2017   return std::nullopt;
2018 }
2019 
2020 static std::optional<Instruction *> instCombineSVESrshl(InstCombiner &IC,
2021                                                         IntrinsicInst &II) {
2022   Value *Pred = II.getOperand(0);
2023   Value *Vec = II.getOperand(1);
2024   Value *Shift = II.getOperand(2);
2025 
2026   // Convert SRSHL into the simpler LSL intrinsic when fed by an ABS intrinsic.
2027   Value *AbsPred, *MergedValue;
2028   if (!match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_sqabs>(
2029                       m_Value(MergedValue), m_Value(AbsPred), m_Value())) &&
2030       !match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_abs>(
2031                       m_Value(MergedValue), m_Value(AbsPred), m_Value())))
2032 
2033     return std::nullopt;
2034 
2035   // Transform is valid if any of the following are true:
2036   // * The ABS merge value is an undef or non-negative
2037   // * The ABS predicate is all active
2038   // * The ABS predicate and the SRSHL predicates are the same
2039   if (!isa<UndefValue>(MergedValue) && !match(MergedValue, m_NonNegative()) &&
2040       AbsPred != Pred && !isAllActivePredicate(AbsPred))
2041     return std::nullopt;
2042 
2043   // Only valid when the shift amount is non-negative, otherwise the rounding
2044   // behaviour of SRSHL cannot be ignored.
2045   if (!match(Shift, m_NonNegative()))
2046     return std::nullopt;
2047 
2048   auto LSL = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_lsl,
2049                                         {II.getType()}, {Pred, Vec, Shift});
2050 
2051   return IC.replaceInstUsesWith(II, LSL);
2052 }
2053 
2054 std::optional<Instruction *>
2055 AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC,
2056                                      IntrinsicInst &II) const {
2057   Intrinsic::ID IID = II.getIntrinsicID();
2058   switch (IID) {
2059   default:
2060     break;
2061 
2062   case Intrinsic::aarch64_sve_st1_scatter:
2063   case Intrinsic::aarch64_sve_st1_scatter_scalar_offset:
2064   case Intrinsic::aarch64_sve_st1_scatter_sxtw:
2065   case Intrinsic::aarch64_sve_st1_scatter_sxtw_index:
2066   case Intrinsic::aarch64_sve_st1_scatter_uxtw:
2067   case Intrinsic::aarch64_sve_st1_scatter_uxtw_index:
2068   case Intrinsic::aarch64_sve_st1dq:
2069   case Intrinsic::aarch64_sve_st1q_scatter_index:
2070   case Intrinsic::aarch64_sve_st1q_scatter_scalar_offset:
2071   case Intrinsic::aarch64_sve_st1q_scatter_vector_offset:
2072   case Intrinsic::aarch64_sve_st1wq:
2073   case Intrinsic::aarch64_sve_stnt1:
2074   case Intrinsic::aarch64_sve_stnt1_scatter:
2075   case Intrinsic::aarch64_sve_stnt1_scatter_index:
2076   case Intrinsic::aarch64_sve_stnt1_scatter_scalar_offset:
2077   case Intrinsic::aarch64_sve_stnt1_scatter_uxtw:
2078     return instCombineSVENoActiveUnaryErase(IC, II, 1);
2079   case Intrinsic::aarch64_sve_st2:
2080   case Intrinsic::aarch64_sve_st2q:
2081     return instCombineSVENoActiveUnaryErase(IC, II, 2);
2082   case Intrinsic::aarch64_sve_st3:
2083   case Intrinsic::aarch64_sve_st3q:
2084     return instCombineSVENoActiveUnaryErase(IC, II, 3);
2085   case Intrinsic::aarch64_sve_st4:
2086   case Intrinsic::aarch64_sve_st4q:
2087     return instCombineSVENoActiveUnaryErase(IC, II, 4);
2088   case Intrinsic::aarch64_sve_ld1_gather:
2089   case Intrinsic::aarch64_sve_ld1_gather_scalar_offset:
2090   case Intrinsic::aarch64_sve_ld1_gather_sxtw:
2091   case Intrinsic::aarch64_sve_ld1_gather_sxtw_index:
2092   case Intrinsic::aarch64_sve_ld1_gather_uxtw:
2093   case Intrinsic::aarch64_sve_ld1_gather_uxtw_index:
2094   case Intrinsic::aarch64_sve_ld1q_gather_index:
2095   case Intrinsic::aarch64_sve_ld1q_gather_scalar_offset:
2096   case Intrinsic::aarch64_sve_ld1q_gather_vector_offset:
2097   case Intrinsic::aarch64_sve_ld1ro:
2098   case Intrinsic::aarch64_sve_ld1rq:
2099   case Intrinsic::aarch64_sve_ld1udq:
2100   case Intrinsic::aarch64_sve_ld1uwq:
2101   case Intrinsic::aarch64_sve_ld2_sret:
2102   case Intrinsic::aarch64_sve_ld2q_sret:
2103   case Intrinsic::aarch64_sve_ld3_sret:
2104   case Intrinsic::aarch64_sve_ld3q_sret:
2105   case Intrinsic::aarch64_sve_ld4_sret:
2106   case Intrinsic::aarch64_sve_ld4q_sret:
2107   case Intrinsic::aarch64_sve_ldff1:
2108   case Intrinsic::aarch64_sve_ldff1_gather:
2109   case Intrinsic::aarch64_sve_ldff1_gather_index:
2110   case Intrinsic::aarch64_sve_ldff1_gather_scalar_offset:
2111   case Intrinsic::aarch64_sve_ldff1_gather_sxtw:
2112   case Intrinsic::aarch64_sve_ldff1_gather_sxtw_index:
2113   case Intrinsic::aarch64_sve_ldff1_gather_uxtw:
2114   case Intrinsic::aarch64_sve_ldff1_gather_uxtw_index:
2115   case Intrinsic::aarch64_sve_ldnf1:
2116   case Intrinsic::aarch64_sve_ldnt1:
2117   case Intrinsic::aarch64_sve_ldnt1_gather:
2118   case Intrinsic::aarch64_sve_ldnt1_gather_index:
2119   case Intrinsic::aarch64_sve_ldnt1_gather_scalar_offset:
2120   case Intrinsic::aarch64_sve_ldnt1_gather_uxtw:
2121     return instCombineSVENoActiveUnaryZero(IC, II);
2122   case Intrinsic::aarch64_neon_fmaxnm:
2123   case Intrinsic::aarch64_neon_fminnm:
2124     return instCombineMaxMinNM(IC, II);
2125   case Intrinsic::aarch64_sve_convert_from_svbool:
2126     return instCombineConvertFromSVBool(IC, II);
2127   case Intrinsic::aarch64_sve_dup:
2128     return instCombineSVEDup(IC, II);
2129   case Intrinsic::aarch64_sve_dup_x:
2130     return instCombineSVEDupX(IC, II);
2131   case Intrinsic::aarch64_sve_cmpne:
2132   case Intrinsic::aarch64_sve_cmpne_wide:
2133     return instCombineSVECmpNE(IC, II);
2134   case Intrinsic::aarch64_sve_rdffr:
2135     return instCombineRDFFR(IC, II);
2136   case Intrinsic::aarch64_sve_lasta:
2137   case Intrinsic::aarch64_sve_lastb:
2138     return instCombineSVELast(IC, II);
2139   case Intrinsic::aarch64_sve_clasta_n:
2140   case Intrinsic::aarch64_sve_clastb_n:
2141     return instCombineSVECondLast(IC, II);
2142   case Intrinsic::aarch64_sve_cntd:
2143     return instCombineSVECntElts(IC, II, 2);
2144   case Intrinsic::aarch64_sve_cntw:
2145     return instCombineSVECntElts(IC, II, 4);
2146   case Intrinsic::aarch64_sve_cnth:
2147     return instCombineSVECntElts(IC, II, 8);
2148   case Intrinsic::aarch64_sve_cntb:
2149     return instCombineSVECntElts(IC, II, 16);
2150   case Intrinsic::aarch64_sve_ptest_any:
2151   case Intrinsic::aarch64_sve_ptest_first:
2152   case Intrinsic::aarch64_sve_ptest_last:
2153     return instCombineSVEPTest(IC, II);
2154   case Intrinsic::aarch64_sve_fabd:
2155     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fabd_u);
2156   case Intrinsic::aarch64_sve_fadd:
2157     return instCombineSVEVectorFAdd(IC, II);
2158   case Intrinsic::aarch64_sve_fadd_u:
2159     return instCombineSVEVectorFAddU(IC, II);
2160   case Intrinsic::aarch64_sve_fdiv:
2161     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fdiv_u);
2162   case Intrinsic::aarch64_sve_fmax:
2163     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmax_u);
2164   case Intrinsic::aarch64_sve_fmaxnm:
2165     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmaxnm_u);
2166   case Intrinsic::aarch64_sve_fmin:
2167     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmin_u);
2168   case Intrinsic::aarch64_sve_fminnm:
2169     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fminnm_u);
2170   case Intrinsic::aarch64_sve_fmla:
2171     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmla_u);
2172   case Intrinsic::aarch64_sve_fmls:
2173     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmls_u);
2174   case Intrinsic::aarch64_sve_fmul:
2175     if (auto II_U =
2176             instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmul_u))
2177       return II_U;
2178     return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_fmul_u);
2179   case Intrinsic::aarch64_sve_fmul_u:
2180     return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_fmul_u);
2181   case Intrinsic::aarch64_sve_fmulx:
2182     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmulx_u);
2183   case Intrinsic::aarch64_sve_fnmla:
2184     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fnmla_u);
2185   case Intrinsic::aarch64_sve_fnmls:
2186     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fnmls_u);
2187   case Intrinsic::aarch64_sve_fsub:
2188     return instCombineSVEVectorFSub(IC, II);
2189   case Intrinsic::aarch64_sve_fsub_u:
2190     return instCombineSVEVectorFSubU(IC, II);
2191   case Intrinsic::aarch64_sve_add:
2192     return instCombineSVEVectorAdd(IC, II);
2193   case Intrinsic::aarch64_sve_add_u:
2194     return instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul_u,
2195                                              Intrinsic::aarch64_sve_mla_u>(
2196         IC, II, true);
2197   case Intrinsic::aarch64_sve_mla:
2198     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_mla_u);
2199   case Intrinsic::aarch64_sve_mls:
2200     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_mls_u);
2201   case Intrinsic::aarch64_sve_mul:
2202     if (auto II_U =
2203             instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_mul_u))
2204       return II_U;
2205     return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_mul_u);
2206   case Intrinsic::aarch64_sve_mul_u:
2207     return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_mul_u);
2208   case Intrinsic::aarch64_sve_sabd:
2209     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_sabd_u);
2210   case Intrinsic::aarch64_sve_smax:
2211     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_smax_u);
2212   case Intrinsic::aarch64_sve_smin:
2213     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_smin_u);
2214   case Intrinsic::aarch64_sve_smulh:
2215     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_smulh_u);
2216   case Intrinsic::aarch64_sve_sub:
2217     return instCombineSVEVectorSub(IC, II);
2218   case Intrinsic::aarch64_sve_sub_u:
2219     return instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul_u,
2220                                              Intrinsic::aarch64_sve_mls_u>(
2221         IC, II, true);
2222   case Intrinsic::aarch64_sve_uabd:
2223     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_uabd_u);
2224   case Intrinsic::aarch64_sve_umax:
2225     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_umax_u);
2226   case Intrinsic::aarch64_sve_umin:
2227     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_umin_u);
2228   case Intrinsic::aarch64_sve_umulh:
2229     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_umulh_u);
2230   case Intrinsic::aarch64_sve_asr:
2231     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_asr_u);
2232   case Intrinsic::aarch64_sve_lsl:
2233     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_lsl_u);
2234   case Intrinsic::aarch64_sve_lsr:
2235     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_lsr_u);
2236   case Intrinsic::aarch64_sve_and:
2237     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_and_u);
2238   case Intrinsic::aarch64_sve_bic:
2239     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_bic_u);
2240   case Intrinsic::aarch64_sve_eor:
2241     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_eor_u);
2242   case Intrinsic::aarch64_sve_orr:
2243     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_orr_u);
2244   case Intrinsic::aarch64_sve_sqsub:
2245     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_sqsub_u);
2246   case Intrinsic::aarch64_sve_uqsub:
2247     return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_uqsub_u);
2248   case Intrinsic::aarch64_sve_tbl:
2249     return instCombineSVETBL(IC, II);
2250   case Intrinsic::aarch64_sve_uunpkhi:
2251   case Intrinsic::aarch64_sve_uunpklo:
2252   case Intrinsic::aarch64_sve_sunpkhi:
2253   case Intrinsic::aarch64_sve_sunpklo:
2254     return instCombineSVEUnpack(IC, II);
2255   case Intrinsic::aarch64_sve_uzp1:
2256     return instCombineSVEUzp1(IC, II);
2257   case Intrinsic::aarch64_sve_zip1:
2258   case Intrinsic::aarch64_sve_zip2:
2259     return instCombineSVEZip(IC, II);
2260   case Intrinsic::aarch64_sve_ld1_gather_index:
2261     return instCombineLD1GatherIndex(IC, II);
2262   case Intrinsic::aarch64_sve_st1_scatter_index:
2263     return instCombineST1ScatterIndex(IC, II);
2264   case Intrinsic::aarch64_sve_ld1:
2265     return instCombineSVELD1(IC, II, DL);
2266   case Intrinsic::aarch64_sve_st1:
2267     return instCombineSVEST1(IC, II, DL);
2268   case Intrinsic::aarch64_sve_sdiv:
2269     return instCombineSVESDIV(IC, II);
2270   case Intrinsic::aarch64_sve_sel:
2271     return instCombineSVESel(IC, II);
2272   case Intrinsic::aarch64_sve_srshl:
2273     return instCombineSVESrshl(IC, II);
2274   case Intrinsic::aarch64_sve_dupq_lane:
2275     return instCombineSVEDupqLane(IC, II);
2276   }
2277 
2278   return std::nullopt;
2279 }
2280 
2281 std::optional<Value *> AArch64TTIImpl::simplifyDemandedVectorEltsIntrinsic(
2282     InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
2283     APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
2284     std::function<void(Instruction *, unsigned, APInt, APInt &)>
2285         SimplifyAndSetOp) const {
2286   switch (II.getIntrinsicID()) {
2287   default:
2288     break;
2289   case Intrinsic::aarch64_neon_fcvtxn:
2290   case Intrinsic::aarch64_neon_rshrn:
2291   case Intrinsic::aarch64_neon_sqrshrn:
2292   case Intrinsic::aarch64_neon_sqrshrun:
2293   case Intrinsic::aarch64_neon_sqshrn:
2294   case Intrinsic::aarch64_neon_sqshrun:
2295   case Intrinsic::aarch64_neon_sqxtn:
2296   case Intrinsic::aarch64_neon_sqxtun:
2297   case Intrinsic::aarch64_neon_uqrshrn:
2298   case Intrinsic::aarch64_neon_uqshrn:
2299   case Intrinsic::aarch64_neon_uqxtn:
2300     SimplifyAndSetOp(&II, 0, OrigDemandedElts, UndefElts);
2301     break;
2302   }
2303 
2304   return std::nullopt;
2305 }
2306 
2307 bool AArch64TTIImpl::enableScalableVectorization() const {
2308   return ST->isSVEAvailable() || (ST->isSVEorStreamingSVEAvailable() &&
2309                                   EnableScalableAutovecInStreamingMode);
2310 }
2311 
2312 TypeSize
2313 AArch64TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
2314   switch (K) {
2315   case TargetTransformInfo::RGK_Scalar:
2316     return TypeSize::getFixed(64);
2317   case TargetTransformInfo::RGK_FixedWidthVector:
2318     if (ST->useSVEForFixedLengthVectors() &&
2319         (ST->isSVEAvailable() || EnableFixedwidthAutovecInStreamingMode))
2320       return TypeSize::getFixed(
2321           std::max(ST->getMinSVEVectorSizeInBits(), 128u));
2322     else if (ST->isNeonAvailable())
2323       return TypeSize::getFixed(128);
2324     else
2325       return TypeSize::getFixed(0);
2326   case TargetTransformInfo::RGK_ScalableVector:
2327     if (ST->isSVEAvailable() || (ST->isSVEorStreamingSVEAvailable() &&
2328                                  EnableScalableAutovecInStreamingMode))
2329       return TypeSize::getScalable(128);
2330     else
2331       return TypeSize::getScalable(0);
2332   }
2333   llvm_unreachable("Unsupported register kind");
2334 }
2335 
2336 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
2337                                            ArrayRef<const Value *> Args,
2338                                            Type *SrcOverrideTy) {
2339   // A helper that returns a vector type from the given type. The number of
2340   // elements in type Ty determines the vector width.
2341   auto toVectorTy = [&](Type *ArgTy) {
2342     return VectorType::get(ArgTy->getScalarType(),
2343                            cast<VectorType>(DstTy)->getElementCount());
2344   };
2345 
2346   // Exit early if DstTy is not a vector type whose elements are one of [i16,
2347   // i32, i64]. SVE doesn't generally have the same set of instructions to
2348   // perform an extend with the add/sub/mul. There are SMULLB style
2349   // instructions, but they operate on top/bottom, requiring some sort of lane
2350   // interleaving to be used with zext/sext.
2351   unsigned DstEltSize = DstTy->getScalarSizeInBits();
2352   if (!useNeonVector(DstTy) || Args.size() != 2 ||
2353       (DstEltSize != 16 && DstEltSize != 32 && DstEltSize != 64))
2354     return false;
2355 
2356   // Determine if the operation has a widening variant. We consider both the
2357   // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
2358   // instructions.
2359   //
2360   // TODO: Add additional widening operations (e.g., shl, etc.) once we
2361   //       verify that their extending operands are eliminated during code
2362   //       generation.
2363   Type *SrcTy = SrcOverrideTy;
2364   switch (Opcode) {
2365   case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
2366   case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
2367     // The second operand needs to be an extend
2368     if (isa<SExtInst>(Args[1]) || isa<ZExtInst>(Args[1])) {
2369       if (!SrcTy)
2370         SrcTy =
2371             toVectorTy(cast<Instruction>(Args[1])->getOperand(0)->getType());
2372     } else
2373       return false;
2374     break;
2375   case Instruction::Mul: { // SMULL(2), UMULL(2)
2376     // Both operands need to be extends of the same type.
2377     if ((isa<SExtInst>(Args[0]) && isa<SExtInst>(Args[1])) ||
2378         (isa<ZExtInst>(Args[0]) && isa<ZExtInst>(Args[1]))) {
2379       if (!SrcTy)
2380         SrcTy =
2381             toVectorTy(cast<Instruction>(Args[0])->getOperand(0)->getType());
2382     } else if (isa<ZExtInst>(Args[0]) || isa<ZExtInst>(Args[1])) {
2383       // If one of the operands is a Zext and the other has enough zero bits to
2384       // be treated as unsigned, we can still general a umull, meaning the zext
2385       // is free.
2386       KnownBits Known =
2387           computeKnownBits(isa<ZExtInst>(Args[0]) ? Args[1] : Args[0], DL);
2388       if (Args[0]->getType()->getScalarSizeInBits() -
2389               Known.Zero.countLeadingOnes() >
2390           DstTy->getScalarSizeInBits() / 2)
2391         return false;
2392       if (!SrcTy)
2393         SrcTy = toVectorTy(Type::getIntNTy(DstTy->getContext(),
2394                                            DstTy->getScalarSizeInBits() / 2));
2395     } else
2396       return false;
2397     break;
2398   }
2399   default:
2400     return false;
2401   }
2402 
2403   // Legalize the destination type and ensure it can be used in a widening
2404   // operation.
2405   auto DstTyL = getTypeLegalizationCost(DstTy);
2406   if (!DstTyL.second.isVector() || DstEltSize != DstTy->getScalarSizeInBits())
2407     return false;
2408 
2409   // Legalize the source type and ensure it can be used in a widening
2410   // operation.
2411   assert(SrcTy && "Expected some SrcTy");
2412   auto SrcTyL = getTypeLegalizationCost(SrcTy);
2413   unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
2414   if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
2415     return false;
2416 
2417   // Get the total number of vector elements in the legalized types.
2418   InstructionCost NumDstEls =
2419       DstTyL.first * DstTyL.second.getVectorMinNumElements();
2420   InstructionCost NumSrcEls =
2421       SrcTyL.first * SrcTyL.second.getVectorMinNumElements();
2422 
2423   // Return true if the legalized types have the same number of vector elements
2424   // and the destination element type size is twice that of the source type.
2425   return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstEltSize;
2426 }
2427 
2428 // s/urhadd instructions implement the following pattern, making the
2429 // extends free:
2430 //   %x = add ((zext i8 -> i16), 1)
2431 //   %y = (zext i8 -> i16)
2432 //   trunc i16 (lshr (add %x, %y), 1) -> i8
2433 //
2434 bool AArch64TTIImpl::isExtPartOfAvgExpr(const Instruction *ExtUser, Type *Dst,
2435                                         Type *Src) {
2436   // The source should be a legal vector type.
2437   if (!Src->isVectorTy() || !TLI->isTypeLegal(TLI->getValueType(DL, Src)) ||
2438       (Src->isScalableTy() && !ST->hasSVE2()))
2439     return false;
2440 
2441   if (ExtUser->getOpcode() != Instruction::Add || !ExtUser->hasOneUse())
2442     return false;
2443 
2444   // Look for trunc/shl/add before trying to match the pattern.
2445   const Instruction *Add = ExtUser;
2446   auto *AddUser =
2447       dyn_cast_or_null<Instruction>(Add->getUniqueUndroppableUser());
2448   if (AddUser && AddUser->getOpcode() == Instruction::Add)
2449     Add = AddUser;
2450 
2451   auto *Shr = dyn_cast_or_null<Instruction>(Add->getUniqueUndroppableUser());
2452   if (!Shr || Shr->getOpcode() != Instruction::LShr)
2453     return false;
2454 
2455   auto *Trunc = dyn_cast_or_null<Instruction>(Shr->getUniqueUndroppableUser());
2456   if (!Trunc || Trunc->getOpcode() != Instruction::Trunc ||
2457       Src->getScalarSizeInBits() !=
2458           cast<CastInst>(Trunc)->getDestTy()->getScalarSizeInBits())
2459     return false;
2460 
2461   // Try to match the whole pattern. Ext could be either the first or second
2462   // m_ZExtOrSExt matched.
2463   Instruction *Ex1, *Ex2;
2464   if (!(match(Add, m_c_Add(m_Instruction(Ex1),
2465                            m_c_Add(m_Instruction(Ex2), m_SpecificInt(1))))))
2466     return false;
2467 
2468   // Ensure both extends are of the same type
2469   if (match(Ex1, m_ZExtOrSExt(m_Value())) &&
2470       Ex1->getOpcode() == Ex2->getOpcode())
2471     return true;
2472 
2473   return false;
2474 }
2475 
2476 InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
2477                                                  Type *Src,
2478                                                  TTI::CastContextHint CCH,
2479                                                  TTI::TargetCostKind CostKind,
2480                                                  const Instruction *I) {
2481   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2482   assert(ISD && "Invalid opcode");
2483   // If the cast is observable, and it is used by a widening instruction (e.g.,
2484   // uaddl, saddw, etc.), it may be free.
2485   if (I && I->hasOneUser()) {
2486     auto *SingleUser = cast<Instruction>(*I->user_begin());
2487     SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
2488     if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands, Src)) {
2489       // For adds only count the second operand as free if both operands are
2490       // extends but not the same operation. (i.e both operands are not free in
2491       // add(sext, zext)).
2492       if (SingleUser->getOpcode() == Instruction::Add) {
2493         if (I == SingleUser->getOperand(1) ||
2494             (isa<CastInst>(SingleUser->getOperand(1)) &&
2495              cast<CastInst>(SingleUser->getOperand(1))->getOpcode() == Opcode))
2496           return 0;
2497       } else // Others are free so long as isWideningInstruction returned true.
2498         return 0;
2499     }
2500 
2501     // The cast will be free for the s/urhadd instructions
2502     if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
2503         isExtPartOfAvgExpr(SingleUser, Dst, Src))
2504       return 0;
2505   }
2506 
2507   // TODO: Allow non-throughput costs that aren't binary.
2508   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
2509     if (CostKind != TTI::TCK_RecipThroughput)
2510       return Cost == 0 ? 0 : 1;
2511     return Cost;
2512   };
2513 
2514   EVT SrcTy = TLI->getValueType(DL, Src);
2515   EVT DstTy = TLI->getValueType(DL, Dst);
2516 
2517   if (!SrcTy.isSimple() || !DstTy.isSimple())
2518     return AdjustCost(
2519         BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2520 
2521   static const TypeConversionCostTblEntry
2522   ConversionTbl[] = {
2523     { ISD::TRUNCATE, MVT::v2i8,   MVT::v2i64,  1},  // xtn
2524     { ISD::TRUNCATE, MVT::v2i16,  MVT::v2i64,  1},  // xtn
2525     { ISD::TRUNCATE, MVT::v2i32,  MVT::v2i64,  1},  // xtn
2526     { ISD::TRUNCATE, MVT::v4i8,   MVT::v4i32,  1},  // xtn
2527     { ISD::TRUNCATE, MVT::v4i8,   MVT::v4i64,  3},  // 2 xtn + 1 uzp1
2528     { ISD::TRUNCATE, MVT::v4i16,  MVT::v4i32,  1},  // xtn
2529     { ISD::TRUNCATE, MVT::v4i16,  MVT::v4i64,  2},  // 1 uzp1 + 1 xtn
2530     { ISD::TRUNCATE, MVT::v4i32,  MVT::v4i64,  1},  // 1 uzp1
2531     { ISD::TRUNCATE, MVT::v8i8,   MVT::v8i16,  1},  // 1 xtn
2532     { ISD::TRUNCATE, MVT::v8i8,   MVT::v8i32,  2},  // 1 uzp1 + 1 xtn
2533     { ISD::TRUNCATE, MVT::v8i8,   MVT::v8i64,  4},  // 3 x uzp1 + xtn
2534     { ISD::TRUNCATE, MVT::v8i16,  MVT::v8i32,  1},  // 1 uzp1
2535     { ISD::TRUNCATE, MVT::v8i16,  MVT::v8i64,  3},  // 3 x uzp1
2536     { ISD::TRUNCATE, MVT::v8i32,  MVT::v8i64,  2},  // 2 x uzp1
2537     { ISD::TRUNCATE, MVT::v16i8,  MVT::v16i16, 1},  // uzp1
2538     { ISD::TRUNCATE, MVT::v16i8,  MVT::v16i32, 3},  // (2 + 1) x uzp1
2539     { ISD::TRUNCATE, MVT::v16i8,  MVT::v16i64, 7},  // (4 + 2 + 1) x uzp1
2540     { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2},  // 2 x uzp1
2541     { ISD::TRUNCATE, MVT::v16i16, MVT::v16i64, 6},  // (4 + 2) x uzp1
2542     { ISD::TRUNCATE, MVT::v16i32, MVT::v16i64, 4},  // 4 x uzp1
2543 
2544     // Truncations on nxvmiN
2545     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 },
2546     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 },
2547     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 },
2548     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 },
2549     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 },
2550     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 },
2551     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 },
2552     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 },
2553     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 },
2554     { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 },
2555     { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 },
2556     { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 },
2557     { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 },
2558     { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 },
2559     { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 },
2560     { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 },
2561 
2562     // The number of shll instructions for the extension.
2563     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
2564     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
2565     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
2566     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
2567     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
2568     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
2569     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
2570     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
2571     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
2572     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
2573     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
2574     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
2575     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
2576     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
2577     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
2578     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
2579 
2580     // LowerVectorINT_TO_FP:
2581     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
2582     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
2583     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
2584     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
2585     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
2586     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
2587 
2588     // Complex: to v2f32
2589     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
2590     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
2591     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
2592     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
2593     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
2594     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
2595 
2596     // Complex: to v4f32
2597     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
2598     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
2599     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
2600     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
2601 
2602     // Complex: to v8f32
2603     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
2604     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
2605     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
2606     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
2607 
2608     // Complex: to v16f32
2609     { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
2610     { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
2611 
2612     // Complex: to v2f64
2613     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
2614     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
2615     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
2616     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
2617     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
2618     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
2619 
2620     // Complex: to v4f64
2621     { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32,  4 },
2622     { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32,  4 },
2623 
2624     // LowerVectorFP_TO_INT
2625     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
2626     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
2627     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
2628     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
2629     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
2630     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
2631 
2632     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
2633     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
2634     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
2635     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
2636     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
2637     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
2638     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
2639 
2640     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
2641     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
2642     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
2643     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
2644     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
2645 
2646     // Complex, from nxv2f32.
2647     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
2648     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
2649     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
2650     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f32, 1 },
2651     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
2652     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
2653     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
2654     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f32, 1 },
2655 
2656     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
2657     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
2658     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
2659     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
2660     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
2661     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
2662     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
2663 
2664     // Complex, from nxv2f64.
2665     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
2666     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
2667     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
2668     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f64, 1 },
2669     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
2670     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
2671     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
2672     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f64, 1 },
2673 
2674     // Complex, from nxv4f32.
2675     { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
2676     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
2677     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
2678     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f32, 1 },
2679     { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
2680     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
2681     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
2682     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f32, 1 },
2683 
2684     // Complex, from nxv8f64. Illegal -> illegal conversions not required.
2685     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
2686     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f64, 7 },
2687     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
2688     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f64, 7 },
2689 
2690     // Complex, from nxv4f64. Illegal -> illegal conversions not required.
2691     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
2692     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
2693     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f64, 3 },
2694     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
2695     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
2696     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f64, 3 },
2697 
2698     // Complex, from nxv8f32. Illegal -> illegal conversions not required.
2699     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
2700     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f32, 3 },
2701     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
2702     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f32, 3 },
2703 
2704     // Complex, from nxv8f16.
2705     { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
2706     { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
2707     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
2708     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f16, 1 },
2709     { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
2710     { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
2711     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
2712     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f16, 1 },
2713 
2714     // Complex, from nxv4f16.
2715     { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
2716     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
2717     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
2718     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f16, 1 },
2719     { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
2720     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
2721     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
2722     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f16, 1 },
2723 
2724     // Complex, from nxv2f16.
2725     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
2726     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
2727     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
2728     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f16, 1 },
2729     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
2730     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
2731     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
2732     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f16, 1 },
2733 
2734     // Truncate from nxvmf32 to nxvmf16.
2735     { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 },
2736     { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 },
2737     { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 },
2738 
2739     // Truncate from nxvmf64 to nxvmf16.
2740     { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 },
2741     { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 },
2742     { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 },
2743 
2744     // Truncate from nxvmf64 to nxvmf32.
2745     { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 },
2746     { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 },
2747     { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 },
2748 
2749     // Extend from nxvmf16 to nxvmf32.
2750     { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1},
2751     { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1},
2752     { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2},
2753 
2754     // Extend from nxvmf16 to nxvmf64.
2755     { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1},
2756     { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2},
2757     { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4},
2758 
2759     // Extend from nxvmf32 to nxvmf64.
2760     { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1},
2761     { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2},
2762     { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6},
2763 
2764     // Bitcasts from float to integer
2765     { ISD::BITCAST, MVT::nxv2f16, MVT::nxv2i16, 0 },
2766     { ISD::BITCAST, MVT::nxv4f16, MVT::nxv4i16, 0 },
2767     { ISD::BITCAST, MVT::nxv2f32, MVT::nxv2i32, 0 },
2768 
2769     // Bitcasts from integer to float
2770     { ISD::BITCAST, MVT::nxv2i16, MVT::nxv2f16, 0 },
2771     { ISD::BITCAST, MVT::nxv4i16, MVT::nxv4f16, 0 },
2772     { ISD::BITCAST, MVT::nxv2i32, MVT::nxv2f32, 0 },
2773 
2774     // Add cost for extending to illegal -too wide- scalable vectors.
2775     // zero/sign extend are implemented by multiple unpack operations,
2776     // where each operation has a cost of 1.
2777     { ISD::ZERO_EXTEND, MVT::nxv16i16, MVT::nxv16i8, 2},
2778     { ISD::ZERO_EXTEND, MVT::nxv16i32, MVT::nxv16i8, 6},
2779     { ISD::ZERO_EXTEND, MVT::nxv16i64, MVT::nxv16i8, 14},
2780     { ISD::ZERO_EXTEND, MVT::nxv8i32, MVT::nxv8i16, 2},
2781     { ISD::ZERO_EXTEND, MVT::nxv8i64, MVT::nxv8i16, 6},
2782     { ISD::ZERO_EXTEND, MVT::nxv4i64, MVT::nxv4i32, 2},
2783 
2784     { ISD::SIGN_EXTEND, MVT::nxv16i16, MVT::nxv16i8, 2},
2785     { ISD::SIGN_EXTEND, MVT::nxv16i32, MVT::nxv16i8, 6},
2786     { ISD::SIGN_EXTEND, MVT::nxv16i64, MVT::nxv16i8, 14},
2787     { ISD::SIGN_EXTEND, MVT::nxv8i32, MVT::nxv8i16, 2},
2788     { ISD::SIGN_EXTEND, MVT::nxv8i64, MVT::nxv8i16, 6},
2789     { ISD::SIGN_EXTEND, MVT::nxv4i64, MVT::nxv4i32, 2},
2790   };
2791 
2792   // We have to estimate a cost of fixed length operation upon
2793   // SVE registers(operations) with the number of registers required
2794   // for a fixed type to be represented upon SVE registers.
2795   EVT WiderTy = SrcTy.bitsGT(DstTy) ? SrcTy : DstTy;
2796   if (SrcTy.isFixedLengthVector() && DstTy.isFixedLengthVector() &&
2797       SrcTy.getVectorNumElements() == DstTy.getVectorNumElements() &&
2798       ST->useSVEForFixedLengthVectors(WiderTy)) {
2799     std::pair<InstructionCost, MVT> LT =
2800         getTypeLegalizationCost(WiderTy.getTypeForEVT(Dst->getContext()));
2801     unsigned NumElements = AArch64::SVEBitsPerBlock /
2802                            LT.second.getScalarSizeInBits();
2803     return AdjustCost(
2804         LT.first *
2805         getCastInstrCost(
2806             Opcode, ScalableVectorType::get(Dst->getScalarType(), NumElements),
2807             ScalableVectorType::get(Src->getScalarType(), NumElements), CCH,
2808             CostKind, I));
2809   }
2810 
2811   if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
2812                                                  DstTy.getSimpleVT(),
2813                                                  SrcTy.getSimpleVT()))
2814     return AdjustCost(Entry->Cost);
2815 
2816   static const TypeConversionCostTblEntry FP16Tbl[] = {
2817       {ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f16, 1}, // fcvtzs
2818       {ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f16, 1},
2819       {ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f16, 1}, // fcvtzs
2820       {ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f16, 1},
2821       {ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f16, 2}, // fcvtl+fcvtzs
2822       {ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f16, 2},
2823       {ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f16, 2}, // fcvtzs+xtn
2824       {ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f16, 2},
2825       {ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f16, 1}, // fcvtzs
2826       {ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f16, 1},
2827       {ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f16, 4}, // 2*fcvtl+2*fcvtzs
2828       {ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f16, 4},
2829       {ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f16, 3}, // 2*fcvtzs+xtn
2830       {ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f16, 3},
2831       {ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f16, 2}, // 2*fcvtzs
2832       {ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f16, 2},
2833       {ISD::FP_TO_SINT, MVT::v16i32, MVT::v16f16, 8}, // 4*fcvtl+4*fcvtzs
2834       {ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f16, 8},
2835       {ISD::UINT_TO_FP, MVT::v8f16, MVT::v8i8, 2},   // ushll + ucvtf
2836       {ISD::SINT_TO_FP, MVT::v8f16, MVT::v8i8, 2},   // sshll + scvtf
2837       {ISD::UINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * ushl(2) + 2 * ucvtf
2838       {ISD::SINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * sshl(2) + 2 * scvtf
2839   };
2840 
2841   if (ST->hasFullFP16())
2842     if (const auto *Entry = ConvertCostTableLookup(
2843             FP16Tbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
2844       return AdjustCost(Entry->Cost);
2845 
2846   if ((ISD == ISD::ZERO_EXTEND || ISD == ISD::SIGN_EXTEND) &&
2847       CCH == TTI::CastContextHint::Masked &&
2848       ST->isSVEorStreamingSVEAvailable() &&
2849       TLI->getTypeAction(Src->getContext(), SrcTy) ==
2850           TargetLowering::TypePromoteInteger &&
2851       TLI->getTypeAction(Dst->getContext(), DstTy) ==
2852           TargetLowering::TypeSplitVector) {
2853     // The standard behaviour in the backend for these cases is to split the
2854     // extend up into two parts:
2855     //  1. Perform an extending load or masked load up to the legal type.
2856     //  2. Extend the loaded data to the final type.
2857     std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(Src);
2858     Type *LegalTy = EVT(SrcLT.second).getTypeForEVT(Src->getContext());
2859     InstructionCost Part1 = AArch64TTIImpl::getCastInstrCost(
2860         Opcode, LegalTy, Src, CCH, CostKind, I);
2861     InstructionCost Part2 = AArch64TTIImpl::getCastInstrCost(
2862         Opcode, Dst, LegalTy, TTI::CastContextHint::None, CostKind, I);
2863     return Part1 + Part2;
2864   }
2865 
2866   // The BasicTTIImpl version only deals with CCH==TTI::CastContextHint::Normal,
2867   // but we also want to include the TTI::CastContextHint::Masked case too.
2868   if ((ISD == ISD::ZERO_EXTEND || ISD == ISD::SIGN_EXTEND) &&
2869       CCH == TTI::CastContextHint::Masked &&
2870       ST->isSVEorStreamingSVEAvailable() && TLI->isTypeLegal(DstTy))
2871     CCH = TTI::CastContextHint::Normal;
2872 
2873   return AdjustCost(
2874       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
2875 }
2876 
2877 InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode,
2878                                                          Type *Dst,
2879                                                          VectorType *VecTy,
2880                                                          unsigned Index) {
2881 
2882   // Make sure we were given a valid extend opcode.
2883   assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
2884          "Invalid opcode");
2885 
2886   // We are extending an element we extract from a vector, so the source type
2887   // of the extend is the element type of the vector.
2888   auto *Src = VecTy->getElementType();
2889 
2890   // Sign- and zero-extends are for integer types only.
2891   assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
2892 
2893   // Get the cost for the extract. We compute the cost (if any) for the extend
2894   // below.
2895   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
2896   InstructionCost Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy,
2897                                             CostKind, Index, nullptr, nullptr);
2898 
2899   // Legalize the types.
2900   auto VecLT = getTypeLegalizationCost(VecTy);
2901   auto DstVT = TLI->getValueType(DL, Dst);
2902   auto SrcVT = TLI->getValueType(DL, Src);
2903 
2904   // If the resulting type is still a vector and the destination type is legal,
2905   // we may get the extension for free. If not, get the default cost for the
2906   // extend.
2907   if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
2908     return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
2909                                    CostKind);
2910 
2911   // The destination type should be larger than the element type. If not, get
2912   // the default cost for the extend.
2913   if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
2914     return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
2915                                    CostKind);
2916 
2917   switch (Opcode) {
2918   default:
2919     llvm_unreachable("Opcode should be either SExt or ZExt");
2920 
2921   // For sign-extends, we only need a smov, which performs the extension
2922   // automatically.
2923   case Instruction::SExt:
2924     return Cost;
2925 
2926   // For zero-extends, the extend is performed automatically by a umov unless
2927   // the destination type is i64 and the element type is i8 or i16.
2928   case Instruction::ZExt:
2929     if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
2930       return Cost;
2931   }
2932 
2933   // If we are unable to perform the extend for free, get the default cost.
2934   return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
2935                                  CostKind);
2936 }
2937 
2938 InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
2939                                                TTI::TargetCostKind CostKind,
2940                                                const Instruction *I) {
2941   if (CostKind != TTI::TCK_RecipThroughput)
2942     return Opcode == Instruction::PHI ? 0 : 1;
2943   assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
2944   // Branches are assumed to be predicted.
2945   return 0;
2946 }
2947 
2948 InstructionCost AArch64TTIImpl::getVectorInstrCostHelper(const Instruction *I,
2949                                                          Type *Val,
2950                                                          unsigned Index,
2951                                                          bool HasRealUse) {
2952   assert(Val->isVectorTy() && "This must be a vector type");
2953 
2954   if (Index != -1U) {
2955     // Legalize the type.
2956     std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);
2957 
2958     // This type is legalized to a scalar type.
2959     if (!LT.second.isVector())
2960       return 0;
2961 
2962     // The type may be split. For fixed-width vectors we can normalize the
2963     // index to the new type.
2964     if (LT.second.isFixedLengthVector()) {
2965       unsigned Width = LT.second.getVectorNumElements();
2966       Index = Index % Width;
2967     }
2968 
2969     // The element at index zero is already inside the vector.
2970     // - For a physical (HasRealUse==true) insert-element or extract-element
2971     // instruction that extracts integers, an explicit FPR -> GPR move is
2972     // needed. So it has non-zero cost.
2973     // - For the rest of cases (virtual instruction or element type is float),
2974     // consider the instruction free.
2975     if (Index == 0 && (!HasRealUse || !Val->getScalarType()->isIntegerTy()))
2976       return 0;
2977 
2978     // This is recognising a LD1 single-element structure to one lane of one
2979     // register instruction. I.e., if this is an `insertelement` instruction,
2980     // and its second operand is a load, then we will generate a LD1, which
2981     // are expensive instructions.
2982     if (I && dyn_cast<LoadInst>(I->getOperand(1)))
2983       return ST->getVectorInsertExtractBaseCost() + 1;
2984 
2985     // i1 inserts and extract will include an extra cset or cmp of the vector
2986     // value. Increase the cost by 1 to account.
2987     if (Val->getScalarSizeInBits() == 1)
2988       return ST->getVectorInsertExtractBaseCost() + 1;
2989 
2990     // FIXME:
2991     // If the extract-element and insert-element instructions could be
2992     // simplified away (e.g., could be combined into users by looking at use-def
2993     // context), they have no cost. This is not done in the first place for
2994     // compile-time considerations.
2995   }
2996 
2997   // All other insert/extracts cost this much.
2998   return ST->getVectorInsertExtractBaseCost();
2999 }
3000 
3001 InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
3002                                                    TTI::TargetCostKind CostKind,
3003                                                    unsigned Index, Value *Op0,
3004                                                    Value *Op1) {
3005   bool HasRealUse =
3006       Opcode == Instruction::InsertElement && Op0 && !isa<UndefValue>(Op0);
3007   return getVectorInstrCostHelper(nullptr, Val, Index, HasRealUse);
3008 }
3009 
3010 InstructionCost AArch64TTIImpl::getVectorInstrCost(const Instruction &I,
3011                                                    Type *Val,
3012                                                    TTI::TargetCostKind CostKind,
3013                                                    unsigned Index) {
3014   return getVectorInstrCostHelper(&I, Val, Index, true /* HasRealUse */);
3015 }
3016 
3017 InstructionCost AArch64TTIImpl::getScalarizationOverhead(
3018     VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
3019     TTI::TargetCostKind CostKind) {
3020   if (isa<ScalableVectorType>(Ty))
3021     return InstructionCost::getInvalid();
3022   if (Ty->getElementType()->isFloatingPointTy())
3023     return BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
3024                                            CostKind);
3025   return DemandedElts.popcount() * (Insert + Extract) *
3026          ST->getVectorInsertExtractBaseCost();
3027 }
3028 
3029 InstructionCost AArch64TTIImpl::getArithmeticInstrCost(
3030     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
3031     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
3032     ArrayRef<const Value *> Args,
3033     const Instruction *CxtI) {
3034 
3035   // The code-generator is currently not able to handle scalable vectors
3036   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3037   // it. This change will be removed when code-generation for these types is
3038   // sufficiently reliable.
3039   if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
3040     if (VTy->getElementCount() == ElementCount::getScalable(1))
3041       return InstructionCost::getInvalid();
3042 
3043   // TODO: Handle more cost kinds.
3044   if (CostKind != TTI::TCK_RecipThroughput)
3045     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
3046                                          Op2Info, Args, CxtI);
3047 
3048   // Legalize the type.
3049   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
3050   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3051 
3052   switch (ISD) {
3053   default:
3054     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
3055                                          Op2Info);
3056   case ISD::SDIV:
3057     if (Op2Info.isConstant() && Op2Info.isUniform() && Op2Info.isPowerOf2()) {
3058       // On AArch64, scalar signed division by constants power-of-two are
3059       // normally expanded to the sequence ADD + CMP + SELECT + SRA.
3060       // The OperandValue properties many not be same as that of previous
3061       // operation; conservatively assume OP_None.
3062       InstructionCost Cost = getArithmeticInstrCost(
3063           Instruction::Add, Ty, CostKind,
3064           Op1Info.getNoProps(), Op2Info.getNoProps());
3065       Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
3066                                      Op1Info.getNoProps(), Op2Info.getNoProps());
3067       Cost += getArithmeticInstrCost(
3068           Instruction::Select, Ty, CostKind,
3069           Op1Info.getNoProps(), Op2Info.getNoProps());
3070       Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
3071                                      Op1Info.getNoProps(), Op2Info.getNoProps());
3072       return Cost;
3073     }
3074     [[fallthrough]];
3075   case ISD::UDIV: {
3076     if (Op2Info.isConstant() && Op2Info.isUniform()) {
3077       auto VT = TLI->getValueType(DL, Ty);
3078       if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
3079         // Vector signed division by constant are expanded to the
3080         // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
3081         // to MULHS + SUB + SRL + ADD + SRL.
3082         InstructionCost MulCost = getArithmeticInstrCost(
3083             Instruction::Mul, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
3084         InstructionCost AddCost = getArithmeticInstrCost(
3085             Instruction::Add, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
3086         InstructionCost ShrCost = getArithmeticInstrCost(
3087             Instruction::AShr, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
3088         return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
3089       }
3090     }
3091 
3092     InstructionCost Cost = BaseT::getArithmeticInstrCost(
3093         Opcode, Ty, CostKind, Op1Info, Op2Info);
3094     if (Ty->isVectorTy()) {
3095       if (TLI->isOperationLegalOrCustom(ISD, LT.second) && ST->hasSVE()) {
3096         // SDIV/UDIV operations are lowered using SVE, then we can have less
3097         // costs.
3098         if (isa<FixedVectorType>(Ty) && cast<FixedVectorType>(Ty)
3099                                                 ->getPrimitiveSizeInBits()
3100                                                 .getFixedValue() < 128) {
3101           EVT VT = TLI->getValueType(DL, Ty);
3102           static const CostTblEntry DivTbl[]{
3103               {ISD::SDIV, MVT::v2i8, 5},  {ISD::SDIV, MVT::v4i8, 8},
3104               {ISD::SDIV, MVT::v8i8, 8},  {ISD::SDIV, MVT::v2i16, 5},
3105               {ISD::SDIV, MVT::v4i16, 5}, {ISD::SDIV, MVT::v2i32, 1},
3106               {ISD::UDIV, MVT::v2i8, 5},  {ISD::UDIV, MVT::v4i8, 8},
3107               {ISD::UDIV, MVT::v8i8, 8},  {ISD::UDIV, MVT::v2i16, 5},
3108               {ISD::UDIV, MVT::v4i16, 5}, {ISD::UDIV, MVT::v2i32, 1}};
3109 
3110           const auto *Entry = CostTableLookup(DivTbl, ISD, VT.getSimpleVT());
3111           if (nullptr != Entry)
3112             return Entry->Cost;
3113         }
3114         // For 8/16-bit elements, the cost is higher because the type
3115         // requires promotion and possibly splitting:
3116         if (LT.second.getScalarType() == MVT::i8)
3117           Cost *= 8;
3118         else if (LT.second.getScalarType() == MVT::i16)
3119           Cost *= 4;
3120         return Cost;
3121       } else {
3122         // If one of the operands is a uniform constant then the cost for each
3123         // element is Cost for insertion, extraction and division.
3124         // Insertion cost = 2, Extraction Cost = 2, Division = cost for the
3125         // operation with scalar type
3126         if ((Op1Info.isConstant() && Op1Info.isUniform()) ||
3127             (Op2Info.isConstant() && Op2Info.isUniform())) {
3128           if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
3129             InstructionCost DivCost = BaseT::getArithmeticInstrCost(
3130                 Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info);
3131             return (4 + DivCost) * VTy->getNumElements();
3132           }
3133         }
3134         // On AArch64, without SVE, vector divisions are expanded
3135         // into scalar divisions of each pair of elements.
3136         Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty,
3137                                        CostKind, Op1Info, Op2Info);
3138         Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
3139                                        Op1Info, Op2Info);
3140       }
3141 
3142       // TODO: if one of the arguments is scalar, then it's not necessary to
3143       // double the cost of handling the vector elements.
3144       Cost += Cost;
3145     }
3146     return Cost;
3147   }
3148   case ISD::MUL:
3149     // When SVE is available, then we can lower the v2i64 operation using
3150     // the SVE mul instruction, which has a lower cost.
3151     if (LT.second == MVT::v2i64 && ST->hasSVE())
3152       return LT.first;
3153 
3154     // When SVE is not available, there is no MUL.2d instruction,
3155     // which means mul <2 x i64> is expensive as elements are extracted
3156     // from the vectors and the muls scalarized.
3157     // As getScalarizationOverhead is a bit too pessimistic, we
3158     // estimate the cost for a i64 vector directly here, which is:
3159     // - four 2-cost i64 extracts,
3160     // - two 2-cost i64 inserts, and
3161     // - two 1-cost muls.
3162     // So, for a v2i64 with LT.First = 1 the cost is 14, and for a v4i64 with
3163     // LT.first = 2 the cost is 28. If both operands are extensions it will not
3164     // need to scalarize so the cost can be cheaper (smull or umull).
3165     // so the cost can be cheaper (smull or umull).
3166     if (LT.second != MVT::v2i64 || isWideningInstruction(Ty, Opcode, Args))
3167       return LT.first;
3168     return LT.first * 14;
3169   case ISD::ADD:
3170   case ISD::XOR:
3171   case ISD::OR:
3172   case ISD::AND:
3173   case ISD::SRL:
3174   case ISD::SRA:
3175   case ISD::SHL:
3176     // These nodes are marked as 'custom' for combining purposes only.
3177     // We know that they are legal. See LowerAdd in ISelLowering.
3178     return LT.first;
3179 
3180   case ISD::FNEG:
3181   case ISD::FADD:
3182   case ISD::FSUB:
3183     // Increase the cost for half and bfloat types if not architecturally
3184     // supported.
3185     if ((Ty->getScalarType()->isHalfTy() && !ST->hasFullFP16()) ||
3186         (Ty->getScalarType()->isBFloatTy() && !ST->hasBF16()))
3187       return 2 * LT.first;
3188     if (!Ty->getScalarType()->isFP128Ty())
3189       return LT.first;
3190     [[fallthrough]];
3191   case ISD::FMUL:
3192   case ISD::FDIV:
3193     // These nodes are marked as 'custom' just to lower them to SVE.
3194     // We know said lowering will incur no additional cost.
3195     if (!Ty->getScalarType()->isFP128Ty())
3196       return 2 * LT.first;
3197 
3198     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
3199                                          Op2Info);
3200   case ISD::FREM:
3201     // Pass nullptr as fmod/fmodf calls are emitted by the backend even when
3202     // those functions are not declared in the module.
3203     if (!Ty->isVectorTy())
3204       return getCallInstrCost(/*Function*/ nullptr, Ty, {Ty, Ty}, CostKind);
3205     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
3206                                          Op2Info);
3207   }
3208 }
3209 
3210 InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty,
3211                                                           ScalarEvolution *SE,
3212                                                           const SCEV *Ptr) {
3213   // Address computations in vectorized code with non-consecutive addresses will
3214   // likely result in more instructions compared to scalar code where the
3215   // computation can more often be merged into the index mode. The resulting
3216   // extra micro-ops can significantly decrease throughput.
3217   unsigned NumVectorInstToHideOverhead = NeonNonConstStrideOverhead;
3218   int MaxMergeDistance = 64;
3219 
3220   if (Ty->isVectorTy() && SE &&
3221       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
3222     return NumVectorInstToHideOverhead;
3223 
3224   // In many cases the address computation is not merged into the instruction
3225   // addressing mode.
3226   return 1;
3227 }
3228 
3229 InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
3230                                                    Type *CondTy,
3231                                                    CmpInst::Predicate VecPred,
3232                                                    TTI::TargetCostKind CostKind,
3233                                                    const Instruction *I) {
3234   // TODO: Handle other cost kinds.
3235   if (CostKind != TTI::TCK_RecipThroughput)
3236     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
3237                                      I);
3238 
3239   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3240   // We don't lower some vector selects well that are wider than the register
3241   // width.
3242   if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) {
3243     // We would need this many instructions to hide the scalarization happening.
3244     const int AmortizationCost = 20;
3245 
3246     // If VecPred is not set, check if we can get a predicate from the context
3247     // instruction, if its type matches the requested ValTy.
3248     if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) {
3249       CmpInst::Predicate CurrentPred;
3250       if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(),
3251                             m_Value())))
3252         VecPred = CurrentPred;
3253     }
3254     // Check if we have a compare/select chain that can be lowered using
3255     // a (F)CMxx & BFI pair.
3256     if (CmpInst::isIntPredicate(VecPred) || VecPred == CmpInst::FCMP_OLE ||
3257         VecPred == CmpInst::FCMP_OLT || VecPred == CmpInst::FCMP_OGT ||
3258         VecPred == CmpInst::FCMP_OGE || VecPred == CmpInst::FCMP_OEQ ||
3259         VecPred == CmpInst::FCMP_UNE) {
3260       static const auto ValidMinMaxTys = {
3261           MVT::v8i8,  MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32,
3262           MVT::v4i32, MVT::v2i64, MVT::v2f32, MVT::v4f32, MVT::v2f64};
3263       static const auto ValidFP16MinMaxTys = {MVT::v4f16, MVT::v8f16};
3264 
3265       auto LT = getTypeLegalizationCost(ValTy);
3266       if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }) ||
3267           (ST->hasFullFP16() &&
3268            any_of(ValidFP16MinMaxTys, [&LT](MVT M) { return M == LT.second; })))
3269         return LT.first;
3270     }
3271 
3272     static const TypeConversionCostTblEntry
3273     VectorSelectTbl[] = {
3274       { ISD::SELECT, MVT::v2i1, MVT::v2f32, 2 },
3275       { ISD::SELECT, MVT::v2i1, MVT::v2f64, 2 },
3276       { ISD::SELECT, MVT::v4i1, MVT::v4f32, 2 },
3277       { ISD::SELECT, MVT::v4i1, MVT::v4f16, 2 },
3278       { ISD::SELECT, MVT::v8i1, MVT::v8f16, 2 },
3279       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
3280       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
3281       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
3282       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
3283       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
3284       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
3285     };
3286 
3287     EVT SelCondTy = TLI->getValueType(DL, CondTy);
3288     EVT SelValTy = TLI->getValueType(DL, ValTy);
3289     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
3290       if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
3291                                                      SelCondTy.getSimpleVT(),
3292                                                      SelValTy.getSimpleVT()))
3293         return Entry->Cost;
3294     }
3295   }
3296 
3297   if (isa<FixedVectorType>(ValTy) && ISD == ISD::SETCC) {
3298     auto LT = getTypeLegalizationCost(ValTy);
3299     // Cost v4f16 FCmp without FP16 support via converting to v4f32 and back.
3300     if (LT.second == MVT::v4f16 && !ST->hasFullFP16())
3301       return LT.first * 4; // fcvtl + fcvtl + fcmp + xtn
3302   }
3303 
3304   // Treat the icmp in icmp(and, 0) as free, as we can make use of ands.
3305   // FIXME: This can apply to more conditions and add/sub if it can be shown to
3306   // be profitable.
3307   if (ValTy->isIntegerTy() && ISD == ISD::SETCC && I &&
3308       ICmpInst::isEquality(VecPred) &&
3309       TLI->isTypeLegal(TLI->getValueType(DL, ValTy)) &&
3310       match(I->getOperand(1), m_Zero()) &&
3311       match(I->getOperand(0), m_And(m_Value(), m_Value())))
3312     return 0;
3313 
3314   // The base case handles scalable vectors fine for now, since it treats the
3315   // cost as 1 * legalization cost.
3316   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
3317 }
3318 
3319 AArch64TTIImpl::TTI::MemCmpExpansionOptions
3320 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
3321   TTI::MemCmpExpansionOptions Options;
3322   if (ST->requiresStrictAlign()) {
3323     // TODO: Add cost modeling for strict align. Misaligned loads expand to
3324     // a bunch of instructions when strict align is enabled.
3325     return Options;
3326   }
3327   Options.AllowOverlappingLoads = true;
3328   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
3329   Options.NumLoadsPerBlock = Options.MaxNumLoads;
3330   // TODO: Though vector loads usually perform well on AArch64, in some targets
3331   // they may wake up the FP unit, which raises the power consumption.  Perhaps
3332   // they could be used with no holds barred (-O3).
3333   Options.LoadSizes = {8, 4, 2, 1};
3334   Options.AllowedTailExpansions = {3, 5, 6};
3335   return Options;
3336 }
3337 
3338 bool AArch64TTIImpl::prefersVectorizedAddressing() const {
3339   return ST->hasSVE();
3340 }
3341 
3342 InstructionCost
3343 AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
3344                                       Align Alignment, unsigned AddressSpace,
3345                                       TTI::TargetCostKind CostKind) {
3346   if (useNeonVector(Src))
3347     return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
3348                                         CostKind);
3349   auto LT = getTypeLegalizationCost(Src);
3350   if (!LT.first.isValid())
3351     return InstructionCost::getInvalid();
3352 
3353   // Return an invalid cost for element types that we are unable to lower.
3354   auto *VT = cast<VectorType>(Src);
3355   if (VT->getElementType()->isIntegerTy(1))
3356     return InstructionCost::getInvalid();
3357 
3358   // The code-generator is currently not able to handle scalable vectors
3359   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3360   // it. This change will be removed when code-generation for these types is
3361   // sufficiently reliable.
3362   if (VT->getElementCount() == ElementCount::getScalable(1))
3363     return InstructionCost::getInvalid();
3364 
3365   return LT.first;
3366 }
3367 
3368 static unsigned getSVEGatherScatterOverhead(unsigned Opcode) {
3369   return Opcode == Instruction::Load ? SVEGatherOverhead : SVEScatterOverhead;
3370 }
3371 
3372 InstructionCost AArch64TTIImpl::getGatherScatterOpCost(
3373     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
3374     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
3375   if (useNeonVector(DataTy) || !isLegalMaskedGatherScatter(DataTy))
3376     return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
3377                                          Alignment, CostKind, I);
3378   auto *VT = cast<VectorType>(DataTy);
3379   auto LT = getTypeLegalizationCost(DataTy);
3380   if (!LT.first.isValid())
3381     return InstructionCost::getInvalid();
3382 
3383   // Return an invalid cost for element types that we are unable to lower.
3384   if (!LT.second.isVector() ||
3385       !isElementTypeLegalForScalableVector(VT->getElementType()) ||
3386       VT->getElementType()->isIntegerTy(1))
3387     return InstructionCost::getInvalid();
3388 
3389   // The code-generator is currently not able to handle scalable vectors
3390   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3391   // it. This change will be removed when code-generation for these types is
3392   // sufficiently reliable.
3393   if (VT->getElementCount() == ElementCount::getScalable(1))
3394     return InstructionCost::getInvalid();
3395 
3396   ElementCount LegalVF = LT.second.getVectorElementCount();
3397   InstructionCost MemOpCost =
3398       getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind,
3399                       {TTI::OK_AnyValue, TTI::OP_None}, I);
3400   // Add on an overhead cost for using gathers/scatters.
3401   // TODO: At the moment this is applied unilaterally for all CPUs, but at some
3402   // point we may want a per-CPU overhead.
3403   MemOpCost *= getSVEGatherScatterOverhead(Opcode);
3404   return LT.first * MemOpCost * getMaxNumElements(LegalVF);
3405 }
3406 
3407 bool AArch64TTIImpl::useNeonVector(const Type *Ty) const {
3408   return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors();
3409 }
3410 
3411 InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
3412                                                 MaybeAlign Alignment,
3413                                                 unsigned AddressSpace,
3414                                                 TTI::TargetCostKind CostKind,
3415                                                 TTI::OperandValueInfo OpInfo,
3416                                                 const Instruction *I) {
3417   EVT VT = TLI->getValueType(DL, Ty, true);
3418   // Type legalization can't handle structs
3419   if (VT == MVT::Other)
3420     return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
3421                                   CostKind);
3422 
3423   auto LT = getTypeLegalizationCost(Ty);
3424   if (!LT.first.isValid())
3425     return InstructionCost::getInvalid();
3426 
3427   // The code-generator is currently not able to handle scalable vectors
3428   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3429   // it. This change will be removed when code-generation for these types is
3430   // sufficiently reliable.
3431   // We also only support full register predicate loads and stores.
3432   if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
3433     if (VTy->getElementCount() == ElementCount::getScalable(1) ||
3434         (VTy->getElementType()->isIntegerTy(1) &&
3435          !VTy->getElementCount().isKnownMultipleOf(
3436              ElementCount::getScalable(16))))
3437       return InstructionCost::getInvalid();
3438 
3439   // TODO: consider latency as well for TCK_SizeAndLatency.
3440   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
3441     return LT.first;
3442 
3443   if (CostKind != TTI::TCK_RecipThroughput)
3444     return 1;
3445 
3446   if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
3447       LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
3448     // Unaligned stores are extremely inefficient. We don't split all
3449     // unaligned 128-bit stores because the negative impact that has shown in
3450     // practice on inlined block copy code.
3451     // We make such stores expensive so that we will only vectorize if there
3452     // are 6 other instructions getting vectorized.
3453     const int AmortizationCost = 6;
3454 
3455     return LT.first * 2 * AmortizationCost;
3456   }
3457 
3458   // Opaque ptr or ptr vector types are i64s and can be lowered to STP/LDPs.
3459   if (Ty->isPtrOrPtrVectorTy())
3460     return LT.first;
3461 
3462   if (useNeonVector(Ty)) {
3463     // Check truncating stores and extending loads.
3464     if (Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) {
3465       // v4i8 types are lowered to scalar a load/store and sshll/xtn.
3466       if (VT == MVT::v4i8)
3467         return 2;
3468       // Otherwise we need to scalarize.
3469       return cast<FixedVectorType>(Ty)->getNumElements() * 2;
3470     }
3471     EVT EltVT = VT.getVectorElementType();
3472     unsigned EltSize = EltVT.getScalarSizeInBits();
3473     if (!isPowerOf2_32(EltSize) || EltSize < 8 || EltSize > 64 ||
3474         VT.getVectorNumElements() >= (128 / EltSize) || !Alignment ||
3475         *Alignment != Align(1))
3476       return LT.first;
3477     // FIXME: v3i8 lowering currently is very inefficient, due to automatic
3478     // widening to v4i8, which produces suboptimal results.
3479     if (VT.getVectorNumElements() == 3 && EltVT == MVT::i8)
3480       return LT.first;
3481 
3482     // Check non-power-of-2 loads/stores for legal vector element types with
3483     // NEON. Non-power-of-2 memory ops will get broken down to a set of
3484     // operations on smaller power-of-2 ops, including ld1/st1.
3485     LLVMContext &C = Ty->getContext();
3486     InstructionCost Cost(0);
3487     SmallVector<EVT> TypeWorklist;
3488     TypeWorklist.push_back(VT);
3489     while (!TypeWorklist.empty()) {
3490       EVT CurrVT = TypeWorklist.pop_back_val();
3491       unsigned CurrNumElements = CurrVT.getVectorNumElements();
3492       if (isPowerOf2_32(CurrNumElements)) {
3493         Cost += 1;
3494         continue;
3495       }
3496 
3497       unsigned PrevPow2 = NextPowerOf2(CurrNumElements) / 2;
3498       TypeWorklist.push_back(EVT::getVectorVT(C, EltVT, PrevPow2));
3499       TypeWorklist.push_back(
3500           EVT::getVectorVT(C, EltVT, CurrNumElements - PrevPow2));
3501     }
3502     return Cost;
3503   }
3504 
3505   return LT.first;
3506 }
3507 
3508 InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost(
3509     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
3510     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
3511     bool UseMaskForCond, bool UseMaskForGaps) {
3512   assert(Factor >= 2 && "Invalid interleave factor");
3513   auto *VecVTy = cast<VectorType>(VecTy);
3514 
3515   if (VecTy->isScalableTy() && (!ST->hasSVE() || Factor != 2))
3516     return InstructionCost::getInvalid();
3517 
3518   // Vectorization for masked interleaved accesses is only enabled for scalable
3519   // VF.
3520   if (!VecTy->isScalableTy() && (UseMaskForCond || UseMaskForGaps))
3521     return InstructionCost::getInvalid();
3522 
3523   if (!UseMaskForGaps && Factor <= TLI->getMaxSupportedInterleaveFactor()) {
3524     unsigned MinElts = VecVTy->getElementCount().getKnownMinValue();
3525     auto *SubVecTy =
3526         VectorType::get(VecVTy->getElementType(),
3527                         VecVTy->getElementCount().divideCoefficientBy(Factor));
3528 
3529     // ldN/stN only support legal vector types of size 64 or 128 in bits.
3530     // Accesses having vector types that are a multiple of 128 bits can be
3531     // matched to more than one ldN/stN instruction.
3532     bool UseScalable;
3533     if (MinElts % Factor == 0 &&
3534         TLI->isLegalInterleavedAccessType(SubVecTy, DL, UseScalable))
3535       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL, UseScalable);
3536   }
3537 
3538   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
3539                                            Alignment, AddressSpace, CostKind,
3540                                            UseMaskForCond, UseMaskForGaps);
3541 }
3542 
3543 InstructionCost
3544 AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
3545   InstructionCost Cost = 0;
3546   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3547   for (auto *I : Tys) {
3548     if (!I->isVectorTy())
3549       continue;
3550     if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
3551         128)
3552       Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
3553               getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
3554   }
3555   return Cost;
3556 }
3557 
3558 unsigned AArch64TTIImpl::getMaxInterleaveFactor(ElementCount VF) {
3559   return ST->getMaxInterleaveFactor();
3560 }
3561 
3562 // For Falkor, we want to avoid having too many strided loads in a loop since
3563 // that can exhaust the HW prefetcher resources.  We adjust the unroller
3564 // MaxCount preference below to attempt to ensure unrolling doesn't create too
3565 // many strided loads.
3566 static void
3567 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
3568                               TargetTransformInfo::UnrollingPreferences &UP) {
3569   enum { MaxStridedLoads = 7 };
3570   auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
3571     int StridedLoads = 0;
3572     // FIXME? We could make this more precise by looking at the CFG and
3573     // e.g. not counting loads in each side of an if-then-else diamond.
3574     for (const auto BB : L->blocks()) {
3575       for (auto &I : *BB) {
3576         LoadInst *LMemI = dyn_cast<LoadInst>(&I);
3577         if (!LMemI)
3578           continue;
3579 
3580         Value *PtrValue = LMemI->getPointerOperand();
3581         if (L->isLoopInvariant(PtrValue))
3582           continue;
3583 
3584         const SCEV *LSCEV = SE.getSCEV(PtrValue);
3585         const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
3586         if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
3587           continue;
3588 
3589         // FIXME? We could take pairing of unrolled load copies into account
3590         // by looking at the AddRec, but we would probably have to limit this
3591         // to loops with no stores or other memory optimization barriers.
3592         ++StridedLoads;
3593         // We've seen enough strided loads that seeing more won't make a
3594         // difference.
3595         if (StridedLoads > MaxStridedLoads / 2)
3596           return StridedLoads;
3597       }
3598     }
3599     return StridedLoads;
3600   };
3601 
3602   int StridedLoads = countStridedLoads(L, SE);
3603   LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
3604                     << " strided loads\n");
3605   // Pick the largest power of 2 unroll count that won't result in too many
3606   // strided loads.
3607   if (StridedLoads) {
3608     UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
3609     LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
3610                       << UP.MaxCount << '\n');
3611   }
3612 }
3613 
3614 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
3615                                              TTI::UnrollingPreferences &UP,
3616                                              OptimizationRemarkEmitter *ORE) {
3617   // Enable partial unrolling and runtime unrolling.
3618   BaseT::getUnrollingPreferences(L, SE, UP, ORE);
3619 
3620   UP.UpperBound = true;
3621 
3622   // For inner loop, it is more likely to be a hot one, and the runtime check
3623   // can be promoted out from LICM pass, so the overhead is less, let's try
3624   // a larger threshold to unroll more loops.
3625   if (L->getLoopDepth() > 1)
3626     UP.PartialThreshold *= 2;
3627 
3628   // Disable partial & runtime unrolling on -Os.
3629   UP.PartialOptSizeThreshold = 0;
3630 
3631   if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
3632       EnableFalkorHWPFUnrollFix)
3633     getFalkorUnrollingPreferences(L, SE, UP);
3634 
3635   // Scan the loop: don't unroll loops with calls as this could prevent
3636   // inlining. Don't unroll vector loops either, as they don't benefit much from
3637   // unrolling.
3638   for (auto *BB : L->getBlocks()) {
3639     for (auto &I : *BB) {
3640       // Don't unroll vectorised loop.
3641       if (I.getType()->isVectorTy())
3642         return;
3643 
3644       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
3645         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
3646           if (!isLoweredToCall(F))
3647             continue;
3648         }
3649         return;
3650       }
3651     }
3652   }
3653 
3654   // Enable runtime unrolling for in-order models
3655   // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by
3656   // checking for that case, we can ensure that the default behaviour is
3657   // unchanged
3658   if (ST->getProcFamily() != AArch64Subtarget::Others &&
3659       !ST->getSchedModel().isOutOfOrder()) {
3660     UP.Runtime = true;
3661     UP.Partial = true;
3662     UP.UnrollRemainder = true;
3663     UP.DefaultUnrollRuntimeCount = 4;
3664 
3665     UP.UnrollAndJam = true;
3666     UP.UnrollAndJamInnerLoopThreshold = 60;
3667   }
3668 }
3669 
3670 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
3671                                            TTI::PeelingPreferences &PP) {
3672   BaseT::getPeelingPreferences(L, SE, PP);
3673 }
3674 
3675 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
3676                                                          Type *ExpectedType) {
3677   switch (Inst->getIntrinsicID()) {
3678   default:
3679     return nullptr;
3680   case Intrinsic::aarch64_neon_st2:
3681   case Intrinsic::aarch64_neon_st3:
3682   case Intrinsic::aarch64_neon_st4: {
3683     // Create a struct type
3684     StructType *ST = dyn_cast<StructType>(ExpectedType);
3685     if (!ST)
3686       return nullptr;
3687     unsigned NumElts = Inst->arg_size() - 1;
3688     if (ST->getNumElements() != NumElts)
3689       return nullptr;
3690     for (unsigned i = 0, e = NumElts; i != e; ++i) {
3691       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
3692         return nullptr;
3693     }
3694     Value *Res = PoisonValue::get(ExpectedType);
3695     IRBuilder<> Builder(Inst);
3696     for (unsigned i = 0, e = NumElts; i != e; ++i) {
3697       Value *L = Inst->getArgOperand(i);
3698       Res = Builder.CreateInsertValue(Res, L, i);
3699     }
3700     return Res;
3701   }
3702   case Intrinsic::aarch64_neon_ld2:
3703   case Intrinsic::aarch64_neon_ld3:
3704   case Intrinsic::aarch64_neon_ld4:
3705     if (Inst->getType() == ExpectedType)
3706       return Inst;
3707     return nullptr;
3708   }
3709 }
3710 
3711 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
3712                                         MemIntrinsicInfo &Info) {
3713   switch (Inst->getIntrinsicID()) {
3714   default:
3715     break;
3716   case Intrinsic::aarch64_neon_ld2:
3717   case Intrinsic::aarch64_neon_ld3:
3718   case Intrinsic::aarch64_neon_ld4:
3719     Info.ReadMem = true;
3720     Info.WriteMem = false;
3721     Info.PtrVal = Inst->getArgOperand(0);
3722     break;
3723   case Intrinsic::aarch64_neon_st2:
3724   case Intrinsic::aarch64_neon_st3:
3725   case Intrinsic::aarch64_neon_st4:
3726     Info.ReadMem = false;
3727     Info.WriteMem = true;
3728     Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1);
3729     break;
3730   }
3731 
3732   switch (Inst->getIntrinsicID()) {
3733   default:
3734     return false;
3735   case Intrinsic::aarch64_neon_ld2:
3736   case Intrinsic::aarch64_neon_st2:
3737     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
3738     break;
3739   case Intrinsic::aarch64_neon_ld3:
3740   case Intrinsic::aarch64_neon_st3:
3741     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
3742     break;
3743   case Intrinsic::aarch64_neon_ld4:
3744   case Intrinsic::aarch64_neon_st4:
3745     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
3746     break;
3747   }
3748   return true;
3749 }
3750 
3751 /// See if \p I should be considered for address type promotion. We check if \p
3752 /// I is a sext with right type and used in memory accesses. If it used in a
3753 /// "complex" getelementptr, we allow it to be promoted without finding other
3754 /// sext instructions that sign extended the same initial value. A getelementptr
3755 /// is considered as "complex" if it has more than 2 operands.
3756 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
3757     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
3758   bool Considerable = false;
3759   AllowPromotionWithoutCommonHeader = false;
3760   if (!isa<SExtInst>(&I))
3761     return false;
3762   Type *ConsideredSExtType =
3763       Type::getInt64Ty(I.getParent()->getParent()->getContext());
3764   if (I.getType() != ConsideredSExtType)
3765     return false;
3766   // See if the sext is the one with the right type and used in at least one
3767   // GetElementPtrInst.
3768   for (const User *U : I.users()) {
3769     if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
3770       Considerable = true;
3771       // A getelementptr is considered as "complex" if it has more than 2
3772       // operands. We will promote a SExt used in such complex GEP as we
3773       // expect some computation to be merged if they are done on 64 bits.
3774       if (GEPInst->getNumOperands() > 2) {
3775         AllowPromotionWithoutCommonHeader = true;
3776         break;
3777       }
3778     }
3779   }
3780   return Considerable;
3781 }
3782 
3783 bool AArch64TTIImpl::isLegalToVectorizeReduction(
3784     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
3785   if (!VF.isScalable())
3786     return true;
3787 
3788   Type *Ty = RdxDesc.getRecurrenceType();
3789   if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty))
3790     return false;
3791 
3792   switch (RdxDesc.getRecurrenceKind()) {
3793   case RecurKind::Add:
3794   case RecurKind::FAdd:
3795   case RecurKind::And:
3796   case RecurKind::Or:
3797   case RecurKind::Xor:
3798   case RecurKind::SMin:
3799   case RecurKind::SMax:
3800   case RecurKind::UMin:
3801   case RecurKind::UMax:
3802   case RecurKind::FMin:
3803   case RecurKind::FMax:
3804   case RecurKind::FMulAdd:
3805   case RecurKind::IAnyOf:
3806   case RecurKind::FAnyOf:
3807     return true;
3808   default:
3809     return false;
3810   }
3811 }
3812 
3813 InstructionCost
3814 AArch64TTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
3815                                        FastMathFlags FMF,
3816                                        TTI::TargetCostKind CostKind) {
3817   // The code-generator is currently not able to handle scalable vectors
3818   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3819   // it. This change will be removed when code-generation for these types is
3820   // sufficiently reliable.
3821   if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
3822     if (VTy->getElementCount() == ElementCount::getScalable(1))
3823       return InstructionCost::getInvalid();
3824 
3825   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
3826 
3827   if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16())
3828     return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
3829 
3830   InstructionCost LegalizationCost = 0;
3831   if (LT.first > 1) {
3832     Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext());
3833     IntrinsicCostAttributes Attrs(IID, LegalVTy, {LegalVTy, LegalVTy}, FMF);
3834     LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1);
3835   }
3836 
3837   return LegalizationCost + /*Cost of horizontal reduction*/ 2;
3838 }
3839 
3840 InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE(
3841     unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) {
3842   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
3843   InstructionCost LegalizationCost = 0;
3844   if (LT.first > 1) {
3845     Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext());
3846     LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind);
3847     LegalizationCost *= LT.first - 1;
3848   }
3849 
3850   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3851   assert(ISD && "Invalid opcode");
3852   // Add the final reduction cost for the legal horizontal reduction
3853   switch (ISD) {
3854   case ISD::ADD:
3855   case ISD::AND:
3856   case ISD::OR:
3857   case ISD::XOR:
3858   case ISD::FADD:
3859     return LegalizationCost + 2;
3860   default:
3861     return InstructionCost::getInvalid();
3862   }
3863 }
3864 
3865 InstructionCost
3866 AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
3867                                            std::optional<FastMathFlags> FMF,
3868                                            TTI::TargetCostKind CostKind) {
3869   // The code-generator is currently not able to handle scalable vectors
3870   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3871   // it. This change will be removed when code-generation for these types is
3872   // sufficiently reliable.
3873   if (auto *VTy = dyn_cast<ScalableVectorType>(ValTy))
3874     if (VTy->getElementCount() == ElementCount::getScalable(1))
3875       return InstructionCost::getInvalid();
3876 
3877   if (TTI::requiresOrderedReduction(FMF)) {
3878     if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) {
3879       InstructionCost BaseCost =
3880           BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
3881       // Add on extra cost to reflect the extra overhead on some CPUs. We still
3882       // end up vectorizing for more computationally intensive loops.
3883       return BaseCost + FixedVTy->getNumElements();
3884     }
3885 
3886     if (Opcode != Instruction::FAdd)
3887       return InstructionCost::getInvalid();
3888 
3889     auto *VTy = cast<ScalableVectorType>(ValTy);
3890     InstructionCost Cost =
3891         getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind);
3892     Cost *= getMaxNumElements(VTy->getElementCount());
3893     return Cost;
3894   }
3895 
3896   if (isa<ScalableVectorType>(ValTy))
3897     return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind);
3898 
3899   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
3900   MVT MTy = LT.second;
3901   int ISD = TLI->InstructionOpcodeToISD(Opcode);
3902   assert(ISD && "Invalid opcode");
3903 
3904   // Horizontal adds can use the 'addv' instruction. We model the cost of these
3905   // instructions as twice a normal vector add, plus 1 for each legalization
3906   // step (LT.first). This is the only arithmetic vector reduction operation for
3907   // which we have an instruction.
3908   // OR, XOR and AND costs should match the codegen from:
3909   // OR: llvm/test/CodeGen/AArch64/reduce-or.ll
3910   // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll
3911   // AND: llvm/test/CodeGen/AArch64/reduce-and.ll
3912   static const CostTblEntry CostTblNoPairwise[]{
3913       {ISD::ADD, MVT::v8i8,   2},
3914       {ISD::ADD, MVT::v16i8,  2},
3915       {ISD::ADD, MVT::v4i16,  2},
3916       {ISD::ADD, MVT::v8i16,  2},
3917       {ISD::ADD, MVT::v4i32,  2},
3918       {ISD::ADD, MVT::v2i64,  2},
3919       {ISD::OR,  MVT::v8i8,  15},
3920       {ISD::OR,  MVT::v16i8, 17},
3921       {ISD::OR,  MVT::v4i16,  7},
3922       {ISD::OR,  MVT::v8i16,  9},
3923       {ISD::OR,  MVT::v2i32,  3},
3924       {ISD::OR,  MVT::v4i32,  5},
3925       {ISD::OR,  MVT::v2i64,  3},
3926       {ISD::XOR, MVT::v8i8,  15},
3927       {ISD::XOR, MVT::v16i8, 17},
3928       {ISD::XOR, MVT::v4i16,  7},
3929       {ISD::XOR, MVT::v8i16,  9},
3930       {ISD::XOR, MVT::v2i32,  3},
3931       {ISD::XOR, MVT::v4i32,  5},
3932       {ISD::XOR, MVT::v2i64,  3},
3933       {ISD::AND, MVT::v8i8,  15},
3934       {ISD::AND, MVT::v16i8, 17},
3935       {ISD::AND, MVT::v4i16,  7},
3936       {ISD::AND, MVT::v8i16,  9},
3937       {ISD::AND, MVT::v2i32,  3},
3938       {ISD::AND, MVT::v4i32,  5},
3939       {ISD::AND, MVT::v2i64,  3},
3940   };
3941   switch (ISD) {
3942   default:
3943     break;
3944   case ISD::ADD:
3945     if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
3946       return (LT.first - 1) + Entry->Cost;
3947     break;
3948   case ISD::XOR:
3949   case ISD::AND:
3950   case ISD::OR:
3951     const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy);
3952     if (!Entry)
3953       break;
3954     auto *ValVTy = cast<FixedVectorType>(ValTy);
3955     if (MTy.getVectorNumElements() <= ValVTy->getNumElements() &&
3956         isPowerOf2_32(ValVTy->getNumElements())) {
3957       InstructionCost ExtraCost = 0;
3958       if (LT.first != 1) {
3959         // Type needs to be split, so there is an extra cost of LT.first - 1
3960         // arithmetic ops.
3961         auto *Ty = FixedVectorType::get(ValTy->getElementType(),
3962                                         MTy.getVectorNumElements());
3963         ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
3964         ExtraCost *= LT.first - 1;
3965       }
3966       // All and/or/xor of i1 will be lowered with maxv/minv/addv + fmov
3967       auto Cost = ValVTy->getElementType()->isIntegerTy(1) ? 2 : Entry->Cost;
3968       return Cost + ExtraCost;
3969     }
3970     break;
3971   }
3972   return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
3973 }
3974 
3975 InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) {
3976   static const CostTblEntry ShuffleTbl[] = {
3977       { TTI::SK_Splice, MVT::nxv16i8,  1 },
3978       { TTI::SK_Splice, MVT::nxv8i16,  1 },
3979       { TTI::SK_Splice, MVT::nxv4i32,  1 },
3980       { TTI::SK_Splice, MVT::nxv2i64,  1 },
3981       { TTI::SK_Splice, MVT::nxv2f16,  1 },
3982       { TTI::SK_Splice, MVT::nxv4f16,  1 },
3983       { TTI::SK_Splice, MVT::nxv8f16,  1 },
3984       { TTI::SK_Splice, MVT::nxv2bf16, 1 },
3985       { TTI::SK_Splice, MVT::nxv4bf16, 1 },
3986       { TTI::SK_Splice, MVT::nxv8bf16, 1 },
3987       { TTI::SK_Splice, MVT::nxv2f32,  1 },
3988       { TTI::SK_Splice, MVT::nxv4f32,  1 },
3989       { TTI::SK_Splice, MVT::nxv2f64,  1 },
3990   };
3991 
3992   // The code-generator is currently not able to handle scalable vectors
3993   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
3994   // it. This change will be removed when code-generation for these types is
3995   // sufficiently reliable.
3996   if (Tp->getElementCount() == ElementCount::getScalable(1))
3997     return InstructionCost::getInvalid();
3998 
3999   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
4000   Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext());
4001   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
4002   EVT PromotedVT = LT.second.getScalarType() == MVT::i1
4003                        ? TLI->getPromotedVTForPredicate(EVT(LT.second))
4004                        : LT.second;
4005   Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext());
4006   InstructionCost LegalizationCost = 0;
4007   if (Index < 0) {
4008     LegalizationCost =
4009         getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy,
4010                            CmpInst::BAD_ICMP_PREDICATE, CostKind) +
4011         getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy,
4012                            CmpInst::BAD_ICMP_PREDICATE, CostKind);
4013   }
4014 
4015   // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp
4016   // Cost performed on a promoted type.
4017   if (LT.second.getScalarType() == MVT::i1) {
4018     LegalizationCost +=
4019         getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy,
4020                          TTI::CastContextHint::None, CostKind) +
4021         getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy,
4022                          TTI::CastContextHint::None, CostKind);
4023   }
4024   const auto *Entry =
4025       CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT());
4026   assert(Entry && "Illegal Type for Splice");
4027   LegalizationCost += Entry->Cost;
4028   return LegalizationCost * LT.first;
4029 }
4030 
4031 InstructionCost AArch64TTIImpl::getShuffleCost(
4032     TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef<int> Mask,
4033     TTI::TargetCostKind CostKind, int Index, VectorType *SubTp,
4034     ArrayRef<const Value *> Args, const Instruction *CxtI) {
4035   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
4036 
4037   // If we have a Mask, and the LT is being legalized somehow, split the Mask
4038   // into smaller vectors and sum the cost of each shuffle.
4039   if (!Mask.empty() && isa<FixedVectorType>(Tp) && LT.second.isVector() &&
4040       Tp->getScalarSizeInBits() == LT.second.getScalarSizeInBits() &&
4041       Mask.size() > LT.second.getVectorNumElements() && !Index && !SubTp) {
4042 
4043     // Check for LD3/LD4 instructions, which are represented in llvm IR as
4044     // deinterleaving-shuffle(load). The shuffle cost could potentially be free,
4045     // but we model it with a cost of LT.first so that LD3/LD4 have a higher
4046     // cost than just the load.
4047     if (Args.size() >= 1 && isa<LoadInst>(Args[0]) &&
4048         (ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, 3) ||
4049          ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, 4)))
4050       return std::max<InstructionCost>(1, LT.first / 4);
4051 
4052     // Check for ST3/ST4 instructions, which are represented in llvm IR as
4053     // store(interleaving-shuffle). The shuffle cost could potentially be free,
4054     // but we model it with a cost of LT.first so that ST3/ST4 have a higher
4055     // cost than just the store.
4056     if (CxtI && CxtI->hasOneUse() && isa<StoreInst>(*CxtI->user_begin()) &&
4057         (ShuffleVectorInst::isInterleaveMask(
4058              Mask, 4, Tp->getElementCount().getKnownMinValue() * 2) ||
4059          ShuffleVectorInst::isInterleaveMask(
4060              Mask, 3, Tp->getElementCount().getKnownMinValue() * 2)))
4061       return LT.first;
4062 
4063     unsigned TpNumElts = Mask.size();
4064     unsigned LTNumElts = LT.second.getVectorNumElements();
4065     unsigned NumVecs = (TpNumElts + LTNumElts - 1) / LTNumElts;
4066     VectorType *NTp =
4067         VectorType::get(Tp->getScalarType(), LT.second.getVectorElementCount());
4068     InstructionCost Cost;
4069     for (unsigned N = 0; N < NumVecs; N++) {
4070       SmallVector<int> NMask;
4071       // Split the existing mask into chunks of size LTNumElts. Track the source
4072       // sub-vectors to ensure the result has at most 2 inputs.
4073       unsigned Source1, Source2;
4074       unsigned NumSources = 0;
4075       for (unsigned E = 0; E < LTNumElts; E++) {
4076         int MaskElt = (N * LTNumElts + E < TpNumElts) ? Mask[N * LTNumElts + E]
4077                                                       : PoisonMaskElem;
4078         if (MaskElt < 0) {
4079           NMask.push_back(PoisonMaskElem);
4080           continue;
4081         }
4082 
4083         // Calculate which source from the input this comes from and whether it
4084         // is new to us.
4085         unsigned Source = MaskElt / LTNumElts;
4086         if (NumSources == 0) {
4087           Source1 = Source;
4088           NumSources = 1;
4089         } else if (NumSources == 1 && Source != Source1) {
4090           Source2 = Source;
4091           NumSources = 2;
4092         } else if (NumSources >= 2 && Source != Source1 && Source != Source2) {
4093           NumSources++;
4094         }
4095 
4096         // Add to the new mask. For the NumSources>2 case these are not correct,
4097         // but are only used for the modular lane number.
4098         if (Source == Source1)
4099           NMask.push_back(MaskElt % LTNumElts);
4100         else if (Source == Source2)
4101           NMask.push_back(MaskElt % LTNumElts + LTNumElts);
4102         else
4103           NMask.push_back(MaskElt % LTNumElts);
4104       }
4105       // If the sub-mask has at most 2 input sub-vectors then re-cost it using
4106       // getShuffleCost. If not then cost it using the worst case.
4107       if (NumSources <= 2)
4108         Cost += getShuffleCost(NumSources <= 1 ? TTI::SK_PermuteSingleSrc
4109                                                : TTI::SK_PermuteTwoSrc,
4110                                NTp, NMask, CostKind, 0, nullptr, Args, CxtI);
4111       else if (any_of(enumerate(NMask), [&](const auto &ME) {
4112                  return ME.value() % LTNumElts == ME.index();
4113                }))
4114         Cost += LTNumElts - 1;
4115       else
4116         Cost += LTNumElts;
4117     }
4118     return Cost;
4119   }
4120 
4121   Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp);
4122   // Treat extractsubvector as single op permutation.
4123   bool IsExtractSubvector = Kind == TTI::SK_ExtractSubvector;
4124   if (IsExtractSubvector && LT.second.isFixedLengthVector())
4125     Kind = TTI::SK_PermuteSingleSrc;
4126 
4127   // Check for broadcast loads, which are supported by the LD1R instruction.
4128   // In terms of code-size, the shuffle vector is free when a load + dup get
4129   // folded into a LD1R. That's what we check and return here. For performance
4130   // and reciprocal throughput, a LD1R is not completely free. In this case, we
4131   // return the cost for the broadcast below (i.e. 1 for most/all types), so
4132   // that we model the load + dup sequence slightly higher because LD1R is a
4133   // high latency instruction.
4134   if (CostKind == TTI::TCK_CodeSize && Kind == TTI::SK_Broadcast) {
4135     bool IsLoad = !Args.empty() && isa<LoadInst>(Args[0]);
4136     if (IsLoad && LT.second.isVector() &&
4137         isLegalBroadcastLoad(Tp->getElementType(),
4138                              LT.second.getVectorElementCount()))
4139       return 0;
4140   }
4141 
4142   // If we have 4 elements for the shuffle and a Mask, get the cost straight
4143   // from the perfect shuffle tables.
4144   if (Mask.size() == 4 && Tp->getElementCount() == ElementCount::getFixed(4) &&
4145       (Tp->getScalarSizeInBits() == 16 || Tp->getScalarSizeInBits() == 32) &&
4146       all_of(Mask, [](int E) { return E < 8; }))
4147     return getPerfectShuffleCost(Mask);
4148 
4149   // Check for identity masks, which we can treat as free.
4150   if (!Mask.empty() && LT.second.isFixedLengthVector() &&
4151       (Kind == TTI::SK_PermuteTwoSrc || Kind == TTI::SK_PermuteSingleSrc) &&
4152       all_of(enumerate(Mask), [](const auto &M) {
4153         return M.value() < 0 || M.value() == (int)M.index();
4154       }))
4155     return 0;
4156 
4157   // Check for other shuffles that are not SK_ kinds but we have native
4158   // instructions for, for example ZIP and UZP.
4159   unsigned Unused;
4160   if (LT.second.isFixedLengthVector() &&
4161       LT.second.getVectorNumElements() == Mask.size() &&
4162       (Kind == TTI::SK_PermuteTwoSrc || Kind == TTI::SK_PermuteSingleSrc) &&
4163       (isZIPMask(Mask, LT.second.getVectorNumElements(), Unused) ||
4164        isUZPMask(Mask, LT.second.getVectorNumElements(), Unused) ||
4165        // Check for non-zero lane splats
4166        all_of(drop_begin(Mask),
4167               [&Mask](int M) { return M < 0 || M == Mask[0]; })))
4168     return 1;
4169 
4170   if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
4171       Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc ||
4172       Kind == TTI::SK_Reverse || Kind == TTI::SK_Splice) {
4173     static const CostTblEntry ShuffleTbl[] = {
4174         // Broadcast shuffle kinds can be performed with 'dup'.
4175         {TTI::SK_Broadcast, MVT::v8i8, 1},
4176         {TTI::SK_Broadcast, MVT::v16i8, 1},
4177         {TTI::SK_Broadcast, MVT::v4i16, 1},
4178         {TTI::SK_Broadcast, MVT::v8i16, 1},
4179         {TTI::SK_Broadcast, MVT::v2i32, 1},
4180         {TTI::SK_Broadcast, MVT::v4i32, 1},
4181         {TTI::SK_Broadcast, MVT::v2i64, 1},
4182         {TTI::SK_Broadcast, MVT::v4f16, 1},
4183         {TTI::SK_Broadcast, MVT::v8f16, 1},
4184         {TTI::SK_Broadcast, MVT::v2f32, 1},
4185         {TTI::SK_Broadcast, MVT::v4f32, 1},
4186         {TTI::SK_Broadcast, MVT::v2f64, 1},
4187         // Transpose shuffle kinds can be performed with 'trn1/trn2' and
4188         // 'zip1/zip2' instructions.
4189         {TTI::SK_Transpose, MVT::v8i8, 1},
4190         {TTI::SK_Transpose, MVT::v16i8, 1},
4191         {TTI::SK_Transpose, MVT::v4i16, 1},
4192         {TTI::SK_Transpose, MVT::v8i16, 1},
4193         {TTI::SK_Transpose, MVT::v2i32, 1},
4194         {TTI::SK_Transpose, MVT::v4i32, 1},
4195         {TTI::SK_Transpose, MVT::v2i64, 1},
4196         {TTI::SK_Transpose, MVT::v4f16, 1},
4197         {TTI::SK_Transpose, MVT::v8f16, 1},
4198         {TTI::SK_Transpose, MVT::v2f32, 1},
4199         {TTI::SK_Transpose, MVT::v4f32, 1},
4200         {TTI::SK_Transpose, MVT::v2f64, 1},
4201         // Select shuffle kinds.
4202         // TODO: handle vXi8/vXi16.
4203         {TTI::SK_Select, MVT::v2i32, 1}, // mov.
4204         {TTI::SK_Select, MVT::v4i32, 2}, // rev+trn (or similar).
4205         {TTI::SK_Select, MVT::v2i64, 1}, // mov.
4206         {TTI::SK_Select, MVT::v2f32, 1}, // mov.
4207         {TTI::SK_Select, MVT::v4f32, 2}, // rev+trn (or similar).
4208         {TTI::SK_Select, MVT::v2f64, 1}, // mov.
4209         // PermuteSingleSrc shuffle kinds.
4210         {TTI::SK_PermuteSingleSrc, MVT::v2i32, 1}, // mov.
4211         {TTI::SK_PermuteSingleSrc, MVT::v4i32, 3}, // perfectshuffle worst case.
4212         {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // mov.
4213         {TTI::SK_PermuteSingleSrc, MVT::v2f32, 1}, // mov.
4214         {TTI::SK_PermuteSingleSrc, MVT::v4f32, 3}, // perfectshuffle worst case.
4215         {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // mov.
4216         {TTI::SK_PermuteSingleSrc, MVT::v4i16, 3}, // perfectshuffle worst case.
4217         {TTI::SK_PermuteSingleSrc, MVT::v4f16, 3}, // perfectshuffle worst case.
4218         {TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3}, // same
4219         {TTI::SK_PermuteSingleSrc, MVT::v8i16, 8},  // constpool + load + tbl
4220         {TTI::SK_PermuteSingleSrc, MVT::v8f16, 8},  // constpool + load + tbl
4221         {TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8}, // constpool + load + tbl
4222         {TTI::SK_PermuteSingleSrc, MVT::v8i8, 8},   // constpool + load + tbl
4223         {TTI::SK_PermuteSingleSrc, MVT::v16i8, 8},  // constpool + load + tbl
4224         // Reverse can be lowered with `rev`.
4225         {TTI::SK_Reverse, MVT::v2i32, 1}, // REV64
4226         {TTI::SK_Reverse, MVT::v4i32, 2}, // REV64; EXT
4227         {TTI::SK_Reverse, MVT::v2i64, 1}, // EXT
4228         {TTI::SK_Reverse, MVT::v2f32, 1}, // REV64
4229         {TTI::SK_Reverse, MVT::v4f32, 2}, // REV64; EXT
4230         {TTI::SK_Reverse, MVT::v2f64, 1}, // EXT
4231         {TTI::SK_Reverse, MVT::v8f16, 2}, // REV64; EXT
4232         {TTI::SK_Reverse, MVT::v8i16, 2}, // REV64; EXT
4233         {TTI::SK_Reverse, MVT::v16i8, 2}, // REV64; EXT
4234         {TTI::SK_Reverse, MVT::v4f16, 1}, // REV64
4235         {TTI::SK_Reverse, MVT::v4i16, 1}, // REV64
4236         {TTI::SK_Reverse, MVT::v8i8, 1},  // REV64
4237         // Splice can all be lowered as `ext`.
4238         {TTI::SK_Splice, MVT::v2i32, 1},
4239         {TTI::SK_Splice, MVT::v4i32, 1},
4240         {TTI::SK_Splice, MVT::v2i64, 1},
4241         {TTI::SK_Splice, MVT::v2f32, 1},
4242         {TTI::SK_Splice, MVT::v4f32, 1},
4243         {TTI::SK_Splice, MVT::v2f64, 1},
4244         {TTI::SK_Splice, MVT::v8f16, 1},
4245         {TTI::SK_Splice, MVT::v8bf16, 1},
4246         {TTI::SK_Splice, MVT::v8i16, 1},
4247         {TTI::SK_Splice, MVT::v16i8, 1},
4248         {TTI::SK_Splice, MVT::v4bf16, 1},
4249         {TTI::SK_Splice, MVT::v4f16, 1},
4250         {TTI::SK_Splice, MVT::v4i16, 1},
4251         {TTI::SK_Splice, MVT::v8i8, 1},
4252         // Broadcast shuffle kinds for scalable vectors
4253         {TTI::SK_Broadcast, MVT::nxv16i8, 1},
4254         {TTI::SK_Broadcast, MVT::nxv8i16, 1},
4255         {TTI::SK_Broadcast, MVT::nxv4i32, 1},
4256         {TTI::SK_Broadcast, MVT::nxv2i64, 1},
4257         {TTI::SK_Broadcast, MVT::nxv2f16, 1},
4258         {TTI::SK_Broadcast, MVT::nxv4f16, 1},
4259         {TTI::SK_Broadcast, MVT::nxv8f16, 1},
4260         {TTI::SK_Broadcast, MVT::nxv2bf16, 1},
4261         {TTI::SK_Broadcast, MVT::nxv4bf16, 1},
4262         {TTI::SK_Broadcast, MVT::nxv8bf16, 1},
4263         {TTI::SK_Broadcast, MVT::nxv2f32, 1},
4264         {TTI::SK_Broadcast, MVT::nxv4f32, 1},
4265         {TTI::SK_Broadcast, MVT::nxv2f64, 1},
4266         {TTI::SK_Broadcast, MVT::nxv16i1, 1},
4267         {TTI::SK_Broadcast, MVT::nxv8i1, 1},
4268         {TTI::SK_Broadcast, MVT::nxv4i1, 1},
4269         {TTI::SK_Broadcast, MVT::nxv2i1, 1},
4270         // Handle the cases for vector.reverse with scalable vectors
4271         {TTI::SK_Reverse, MVT::nxv16i8, 1},
4272         {TTI::SK_Reverse, MVT::nxv8i16, 1},
4273         {TTI::SK_Reverse, MVT::nxv4i32, 1},
4274         {TTI::SK_Reverse, MVT::nxv2i64, 1},
4275         {TTI::SK_Reverse, MVT::nxv2f16, 1},
4276         {TTI::SK_Reverse, MVT::nxv4f16, 1},
4277         {TTI::SK_Reverse, MVT::nxv8f16, 1},
4278         {TTI::SK_Reverse, MVT::nxv2bf16, 1},
4279         {TTI::SK_Reverse, MVT::nxv4bf16, 1},
4280         {TTI::SK_Reverse, MVT::nxv8bf16, 1},
4281         {TTI::SK_Reverse, MVT::nxv2f32, 1},
4282         {TTI::SK_Reverse, MVT::nxv4f32, 1},
4283         {TTI::SK_Reverse, MVT::nxv2f64, 1},
4284         {TTI::SK_Reverse, MVT::nxv16i1, 1},
4285         {TTI::SK_Reverse, MVT::nxv8i1, 1},
4286         {TTI::SK_Reverse, MVT::nxv4i1, 1},
4287         {TTI::SK_Reverse, MVT::nxv2i1, 1},
4288     };
4289     if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
4290       return LT.first * Entry->Cost;
4291   }
4292 
4293   if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp))
4294     return getSpliceCost(Tp, Index);
4295 
4296   // Inserting a subvector can often be done with either a D, S or H register
4297   // move, so long as the inserted vector is "aligned".
4298   if (Kind == TTI::SK_InsertSubvector && LT.second.isFixedLengthVector() &&
4299       LT.second.getSizeInBits() <= 128 && SubTp) {
4300     std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
4301     if (SubLT.second.isVector()) {
4302       int NumElts = LT.second.getVectorNumElements();
4303       int NumSubElts = SubLT.second.getVectorNumElements();
4304       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
4305         return SubLT.first;
4306     }
4307   }
4308 
4309   // Restore optimal kind.
4310   if (IsExtractSubvector)
4311     Kind = TTI::SK_ExtractSubvector;
4312   return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args,
4313                                CxtI);
4314 }
4315 
4316 static bool containsDecreasingPointers(Loop *TheLoop,
4317                                        PredicatedScalarEvolution *PSE) {
4318   const auto &Strides = DenseMap<Value *, const SCEV *>();
4319   for (BasicBlock *BB : TheLoop->blocks()) {
4320     // Scan the instructions in the block and look for addresses that are
4321     // consecutive and decreasing.
4322     for (Instruction &I : *BB) {
4323       if (isa<LoadInst>(&I) || isa<StoreInst>(&I)) {
4324         Value *Ptr = getLoadStorePointerOperand(&I);
4325         Type *AccessTy = getLoadStoreType(&I);
4326         if (getPtrStride(*PSE, AccessTy, Ptr, TheLoop, Strides, /*Assume=*/true,
4327                          /*ShouldCheckWrap=*/false)
4328                 .value_or(0) < 0)
4329           return true;
4330       }
4331     }
4332   }
4333   return false;
4334 }
4335 
4336 bool AArch64TTIImpl::preferPredicateOverEpilogue(TailFoldingInfo *TFI) {
4337   if (!ST->hasSVE())
4338     return false;
4339 
4340   // We don't currently support vectorisation with interleaving for SVE - with
4341   // such loops we're better off not using tail-folding. This gives us a chance
4342   // to fall back on fixed-width vectorisation using NEON's ld2/st2/etc.
4343   if (TFI->IAI->hasGroups())
4344     return false;
4345 
4346   TailFoldingOpts Required = TailFoldingOpts::Disabled;
4347   if (TFI->LVL->getReductionVars().size())
4348     Required |= TailFoldingOpts::Reductions;
4349   if (TFI->LVL->getFixedOrderRecurrences().size())
4350     Required |= TailFoldingOpts::Recurrences;
4351 
4352   // We call this to discover whether any load/store pointers in the loop have
4353   // negative strides. This will require extra work to reverse the loop
4354   // predicate, which may be expensive.
4355   if (containsDecreasingPointers(TFI->LVL->getLoop(),
4356                                  TFI->LVL->getPredicatedScalarEvolution()))
4357     Required |= TailFoldingOpts::Reverse;
4358   if (Required == TailFoldingOpts::Disabled)
4359     Required |= TailFoldingOpts::Simple;
4360 
4361   if (!TailFoldingOptionLoc.satisfies(ST->getSVETailFoldingDefaultOpts(),
4362                                       Required))
4363     return false;
4364 
4365   // Don't tail-fold for tight loops where we would be better off interleaving
4366   // with an unpredicated loop.
4367   unsigned NumInsns = 0;
4368   for (BasicBlock *BB : TFI->LVL->getLoop()->blocks()) {
4369     NumInsns += BB->sizeWithoutDebug();
4370   }
4371 
4372   // We expect 4 of these to be a IV PHI, IV add, IV compare and branch.
4373   return NumInsns >= SVETailFoldInsnThreshold;
4374 }
4375 
4376 InstructionCost
4377 AArch64TTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
4378                                      StackOffset BaseOffset, bool HasBaseReg,
4379                                      int64_t Scale, unsigned AddrSpace) const {
4380   // Scaling factors are not free at all.
4381   // Operands                     | Rt Latency
4382   // -------------------------------------------
4383   // Rt, [Xn, Xm]                 | 4
4384   // -------------------------------------------
4385   // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
4386   // Rt, [Xn, Wm, <extend> #imm]  |
4387   TargetLoweringBase::AddrMode AM;
4388   AM.BaseGV = BaseGV;
4389   AM.BaseOffs = BaseOffset.getFixed();
4390   AM.HasBaseReg = HasBaseReg;
4391   AM.Scale = Scale;
4392   AM.ScalableOffset = BaseOffset.getScalable();
4393   if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace))
4394     // Scale represents reg2 * scale, thus account for 1 if
4395     // it is not equal to 0 or 1.
4396     return AM.Scale != 0 && AM.Scale != 1;
4397   return -1;
4398 }
4399 
4400 bool AArch64TTIImpl::shouldTreatInstructionLikeSelect(const Instruction *I) {
4401   // For the binary operators (e.g. or) we need to be more careful than
4402   // selects, here we only transform them if they are already at a natural
4403   // break point in the code - the end of a block with an unconditional
4404   // terminator.
4405   if (EnableOrLikeSelectOpt && I->getOpcode() == Instruction::Or &&
4406       isa<BranchInst>(I->getNextNode()) &&
4407       cast<BranchInst>(I->getNextNode())->isUnconditional())
4408     return true;
4409   return BaseT::shouldTreatInstructionLikeSelect(I);
4410 }
4411 
4412 bool AArch64TTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
4413                                    const TargetTransformInfo::LSRCost &C2) {
4414   // AArch64 specific here is adding the number of instructions to the
4415   // comparison (though not as the first consideration, as some targets do)
4416   // along with changing the priority of the base additions.
4417   // TODO: Maybe a more nuanced tradeoff between instruction count
4418   // and number of registers? To be investigated at a later date.
4419   if (EnableLSRCostOpt)
4420     return std::tie(C1.NumRegs, C1.Insns, C1.NumBaseAdds, C1.AddRecCost,
4421                     C1.NumIVMuls, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
4422            std::tie(C2.NumRegs, C2.Insns, C2.NumBaseAdds, C2.AddRecCost,
4423                     C2.NumIVMuls, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
4424 
4425   return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
4426 }
4427