1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MacroFusion.h" 15 #include "AArch64Subtarget.h" 16 #include "AArch64TargetObjectFile.h" 17 #include "AArch64TargetTransformInfo.h" 18 #include "MCTargetDesc/AArch64MCTargetDesc.h" 19 #include "TargetInfo/AArch64TargetInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/CodeGen/CSEConfigBase.h" 24 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 25 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 26 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 27 #include "llvm/CodeGen/GlobalISel/Localizer.h" 28 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 29 #include "llvm/CodeGen/MachineScheduler.h" 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/CodeGen/TargetPassConfig.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/InitializePasses.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCTargetOptions.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CodeGen.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/TargetRegistry.h" 41 #include "llvm/Target/TargetLoweringObjectFile.h" 42 #include "llvm/Target/TargetOptions.h" 43 #include "llvm/Transforms/CFGuard.h" 44 #include "llvm/Transforms/Scalar.h" 45 #include <memory> 46 #include <string> 47 48 using namespace llvm; 49 50 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 51 cl::desc("Enable the CCMP formation pass"), 52 cl::init(true), cl::Hidden); 53 54 static cl::opt<bool> 55 EnableCondBrTuning("aarch64-enable-cond-br-tune", 56 cl::desc("Enable the conditional branch tuning pass"), 57 cl::init(true), cl::Hidden); 58 59 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 60 cl::desc("Enable the machine combiner pass"), 61 cl::init(true), cl::Hidden); 62 63 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 64 cl::desc("Suppress STP for AArch64"), 65 cl::init(true), cl::Hidden); 66 67 static cl::opt<bool> EnableAdvSIMDScalar( 68 "aarch64-enable-simd-scalar", 69 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 70 cl::init(false), cl::Hidden); 71 72 static cl::opt<bool> 73 EnablePromoteConstant("aarch64-enable-promote-const", 74 cl::desc("Enable the promote constant pass"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<bool> EnableCollectLOH( 78 "aarch64-enable-collect-loh", 79 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 80 cl::init(true), cl::Hidden); 81 82 static cl::opt<bool> 83 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 84 cl::desc("Enable the pass that removes dead" 85 " definitons and replaces stores to" 86 " them with stores to the zero" 87 " register"), 88 cl::init(true)); 89 90 static cl::opt<bool> EnableRedundantCopyElimination( 91 "aarch64-enable-copyelim", 92 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 93 cl::Hidden); 94 95 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 96 cl::desc("Enable the load/store pair" 97 " optimization pass"), 98 cl::init(true), cl::Hidden); 99 100 static cl::opt<bool> EnableAtomicTidy( 101 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 102 cl::desc("Run SimplifyCFG after expanding atomic operations" 103 " to make use of cmpxchg flow-based information"), 104 cl::init(true)); 105 106 static cl::opt<bool> 107 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 108 cl::desc("Run early if-conversion"), 109 cl::init(true)); 110 111 static cl::opt<bool> 112 EnableCondOpt("aarch64-enable-condopt", 113 cl::desc("Enable the condition optimizer pass"), 114 cl::init(true), cl::Hidden); 115 116 static cl::opt<bool> 117 EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden, 118 cl::desc("Work around Cortex-A53 erratum 835769"), 119 cl::init(false)); 120 121 static cl::opt<bool> 122 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 123 cl::desc("Enable optimizations on complex GEPs"), 124 cl::init(false)); 125 126 static cl::opt<bool> 127 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 128 cl::desc("Relax out of range conditional branches")); 129 130 static cl::opt<bool> EnableCompressJumpTables( 131 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 132 cl::desc("Use smallest entry possible for jump tables")); 133 134 // FIXME: Unify control over GlobalMerge. 135 static cl::opt<cl::boolOrDefault> 136 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 137 cl::desc("Enable the global merge pass")); 138 139 static cl::opt<bool> 140 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 141 cl::desc("Enable the loop data prefetch pass"), 142 cl::init(true)); 143 144 static cl::opt<int> EnableGlobalISelAtO( 145 "aarch64-enable-global-isel-at-O", cl::Hidden, 146 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 147 cl::init(0)); 148 149 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 150 cl::init(true), cl::Hidden); 151 152 static cl::opt<bool> 153 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 154 cl::desc("Enable the AAcrh64 branch target pass"), 155 cl::init(true)); 156 157 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { 158 // Register the target. 159 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 160 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 161 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 162 RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target()); 163 RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target()); 164 auto PR = PassRegistry::getPassRegistry(); 165 initializeGlobalISel(*PR); 166 initializeAArch64A53Fix835769Pass(*PR); 167 initializeAArch64A57FPLoadBalancingPass(*PR); 168 initializeAArch64AdvSIMDScalarPass(*PR); 169 initializeAArch64BranchTargetsPass(*PR); 170 initializeAArch64CollectLOHPass(*PR); 171 initializeAArch64CompressJumpTablesPass(*PR); 172 initializeAArch64ConditionalComparesPass(*PR); 173 initializeAArch64ConditionOptimizerPass(*PR); 174 initializeAArch64DeadRegisterDefinitionsPass(*PR); 175 initializeAArch64ExpandPseudoPass(*PR); 176 initializeAArch64LoadStoreOptPass(*PR); 177 initializeAArch64SIMDInstrOptPass(*PR); 178 initializeAArch64PreLegalizerCombinerPass(*PR); 179 initializeAArch64PromoteConstantPass(*PR); 180 initializeAArch64RedundantCopyEliminationPass(*PR); 181 initializeAArch64StorePairSuppressPass(*PR); 182 initializeFalkorHWPFFixPass(*PR); 183 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 184 initializeLDTLSCleanupPass(*PR); 185 initializeAArch64SpeculationHardeningPass(*PR); 186 initializeAArch64StackTaggingPass(*PR); 187 initializeAArch64StackTaggingPreRAPass(*PR); 188 } 189 190 //===----------------------------------------------------------------------===// 191 // AArch64 Lowering public interface. 192 //===----------------------------------------------------------------------===// 193 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 194 if (TT.isOSBinFormatMachO()) 195 return std::make_unique<AArch64_MachoTargetObjectFile>(); 196 if (TT.isOSBinFormatCOFF()) 197 return std::make_unique<AArch64_COFFTargetObjectFile>(); 198 199 return std::make_unique<AArch64_ELFTargetObjectFile>(); 200 } 201 202 // Helper function to build a DataLayout string 203 static std::string computeDataLayout(const Triple &TT, 204 const MCTargetOptions &Options, 205 bool LittleEndian) { 206 if (Options.getABIName() == "ilp32") 207 return "e-m:e-p:32:32-i8:8-i16:16-i64:64-S128"; 208 if (TT.isOSBinFormatMachO()) { 209 if (TT.getArch() == Triple::aarch64_32) 210 return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128"; 211 return "e-m:o-i64:64-i128:128-n32:64-S128"; 212 } 213 if (TT.isOSBinFormatCOFF()) 214 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; 215 if (LittleEndian) 216 return "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 217 return "E-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 218 } 219 220 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 221 Optional<Reloc::Model> RM) { 222 // AArch64 Darwin and Windows are always PIC. 223 if (TT.isOSDarwin() || TT.isOSWindows()) 224 return Reloc::PIC_; 225 // On ELF platforms the default static relocation model has a smart enough 226 // linker to cope with referencing external symbols defined in a shared 227 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 228 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) 229 return Reloc::Static; 230 return *RM; 231 } 232 233 static CodeModel::Model 234 getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM, 235 bool JIT) { 236 if (CM) { 237 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 238 *CM != CodeModel::Large) { 239 if (!TT.isOSFuchsia()) 240 report_fatal_error( 241 "Only small, tiny and large code models are allowed on AArch64"); 242 else if (*CM != CodeModel::Kernel) 243 report_fatal_error("Only small, tiny, kernel, and large code models " 244 "are allowed on AArch64"); 245 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 246 report_fatal_error("tiny code model is only supported on ELF"); 247 return *CM; 248 } 249 // The default MCJIT memory managers make no guarantees about where they can 250 // find an executable page; JITed code needs to be able to refer to globals 251 // no matter how far away they are. 252 // We should set the CodeModel::Small for Windows ARM64 in JIT mode, 253 // since with large code model LLVM generating 4 MOV instructions, and 254 // Windows doesn't support relocating these long branch (4 MOVs). 255 if (JIT && !TT.isOSWindows()) 256 return CodeModel::Large; 257 return CodeModel::Small; 258 } 259 260 /// Create an AArch64 architecture model. 261 /// 262 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 263 StringRef CPU, StringRef FS, 264 const TargetOptions &Options, 265 Optional<Reloc::Model> RM, 266 Optional<CodeModel::Model> CM, 267 CodeGenOpt::Level OL, bool JIT, 268 bool LittleEndian) 269 : LLVMTargetMachine(T, 270 computeDataLayout(TT, Options.MCOptions, LittleEndian), 271 TT, CPU, FS, Options, getEffectiveRelocModel(TT, RM), 272 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 273 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 274 initAsmInfo(); 275 276 if (TT.isOSBinFormatMachO()) { 277 this->Options.TrapUnreachable = true; 278 this->Options.NoTrapAfterNoreturn = true; 279 } 280 281 if (getMCAsmInfo()->usesWindowsCFI()) { 282 // Unwinding can get confused if the last instruction in an 283 // exception-handling region (function, funclet, try block, etc.) 284 // is a call. 285 // 286 // FIXME: We could elide the trap if the next instruction would be in 287 // the same region anyway. 288 this->Options.TrapUnreachable = true; 289 } 290 291 if (this->Options.TLSSize == 0) // default 292 this->Options.TLSSize = 24; 293 if ((getCodeModel() == CodeModel::Small || 294 getCodeModel() == CodeModel::Kernel) && 295 this->Options.TLSSize > 32) 296 // for the small (and kernel) code model, the maximum TLS size is 4GiB 297 this->Options.TLSSize = 32; 298 else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) 299 // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) 300 this->Options.TLSSize = 24; 301 302 // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is 303 // MachO/CodeModel::Large, which GlobalISel does not support. 304 if (getOptLevel() <= EnableGlobalISelAtO && 305 TT.getArch() != Triple::aarch64_32 && 306 !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { 307 setGlobalISel(true); 308 setGlobalISelAbort(GlobalISelAbortMode::Disable); 309 } 310 311 // AArch64 supports the MachineOutliner. 312 setMachineOutliner(true); 313 314 // AArch64 supports default outlining behaviour. 315 setSupportsDefaultOutlining(true); 316 } 317 318 AArch64TargetMachine::~AArch64TargetMachine() = default; 319 320 const AArch64Subtarget * 321 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 322 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 323 Attribute FSAttr = F.getFnAttribute("target-features"); 324 325 std::string CPU = !CPUAttr.hasAttribute(Attribute::None) 326 ? CPUAttr.getValueAsString().str() 327 : TargetCPU; 328 std::string FS = !FSAttr.hasAttribute(Attribute::None) 329 ? FSAttr.getValueAsString().str() 330 : TargetFS; 331 332 auto &I = SubtargetMap[CPU + FS]; 333 if (!I) { 334 // This needs to be done before we create a new subtarget since any 335 // creation will depend on the TM and the code generation flags on the 336 // function that reside in TargetOptions. 337 resetTargetOptions(F); 338 I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this, 339 isLittle); 340 } 341 return I.get(); 342 } 343 344 void AArch64leTargetMachine::anchor() { } 345 346 AArch64leTargetMachine::AArch64leTargetMachine( 347 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 348 const TargetOptions &Options, Optional<Reloc::Model> RM, 349 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 350 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 351 352 void AArch64beTargetMachine::anchor() { } 353 354 AArch64beTargetMachine::AArch64beTargetMachine( 355 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 356 const TargetOptions &Options, Optional<Reloc::Model> RM, 357 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 358 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 359 360 namespace { 361 362 /// AArch64 Code Generator Pass Configuration Options. 363 class AArch64PassConfig : public TargetPassConfig { 364 public: 365 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 366 : TargetPassConfig(TM, PM) { 367 if (TM.getOptLevel() != CodeGenOpt::None) 368 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 369 } 370 371 AArch64TargetMachine &getAArch64TargetMachine() const { 372 return getTM<AArch64TargetMachine>(); 373 } 374 375 ScheduleDAGInstrs * 376 createMachineScheduler(MachineSchedContext *C) const override { 377 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 378 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 379 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 380 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 381 if (ST.hasFusion()) 382 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 383 return DAG; 384 } 385 386 ScheduleDAGInstrs * 387 createPostMachineScheduler(MachineSchedContext *C) const override { 388 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 389 if (ST.hasFusion()) { 390 // Run the Macro Fusion after RA again since literals are expanded from 391 // pseudos then (v. addPreSched2()). 392 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 393 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 394 return DAG; 395 } 396 397 return nullptr; 398 } 399 400 void addIRPasses() override; 401 bool addPreISel() override; 402 bool addInstSelector() override; 403 bool addIRTranslator() override; 404 void addPreLegalizeMachineIR() override; 405 bool addLegalizeMachineIR() override; 406 bool addRegBankSelect() override; 407 void addPreGlobalInstructionSelect() override; 408 bool addGlobalInstructionSelect() override; 409 bool addILPOpts() override; 410 void addPreRegAlloc() override; 411 void addPostRegAlloc() override; 412 void addPreSched2() override; 413 void addPreEmitPass() override; 414 415 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 416 }; 417 418 } // end anonymous namespace 419 420 TargetTransformInfo 421 AArch64TargetMachine::getTargetTransformInfo(const Function &F) { 422 return TargetTransformInfo(AArch64TTIImpl(this, F)); 423 } 424 425 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 426 return new AArch64PassConfig(*this, PM); 427 } 428 429 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { 430 return getStandardCSEConfigForOpt(TM->getOptLevel()); 431 } 432 433 void AArch64PassConfig::addIRPasses() { 434 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 435 // ourselves. 436 addPass(createAtomicExpandPass()); 437 438 // Cmpxchg instructions are often used with a subsequent comparison to 439 // determine whether it succeeded. We can exploit existing control-flow in 440 // ldrex/strex loops to simplify this, but it needs tidying up. 441 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 442 addPass(createCFGSimplificationPass(1, true, true, false, true)); 443 444 // Run LoopDataPrefetch 445 // 446 // Run this before LSR to remove the multiplies involved in computing the 447 // pointer values N iterations ahead. 448 if (TM->getOptLevel() != CodeGenOpt::None) { 449 if (EnableLoopDataPrefetch) 450 addPass(createLoopDataPrefetchPass()); 451 if (EnableFalkorHWPFFix) 452 addPass(createFalkorMarkStridedAccessesPass()); 453 } 454 455 TargetPassConfig::addIRPasses(); 456 457 // Match interleaved memory accesses to ldN/stN intrinsics. 458 if (TM->getOptLevel() != CodeGenOpt::None) { 459 addPass(createInterleavedLoadCombinePass()); 460 addPass(createInterleavedAccessPass()); 461 } 462 463 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 464 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 465 // and lower a GEP with multiple indices to either arithmetic operations or 466 // multiple GEPs with single index. 467 addPass(createSeparateConstOffsetFromGEPPass(true)); 468 // Call EarlyCSE pass to find and remove subexpressions in the lowered 469 // result. 470 addPass(createEarlyCSEPass()); 471 // Do loop invariant code motion in case part of the lowered result is 472 // invariant. 473 addPass(createLICMPass()); 474 } 475 476 addPass(createAArch64StackTaggingPass(/* MergeInit = */ TM->getOptLevel() != 477 CodeGenOpt::None)); 478 479 // Add Control Flow Guard checks. 480 if (TM->getTargetTriple().isOSWindows()) 481 addPass(createCFGuardCheckPass()); 482 } 483 484 // Pass Pipeline Configuration 485 bool AArch64PassConfig::addPreISel() { 486 // Run promote constant before global merge, so that the promoted constants 487 // get a chance to be merged 488 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) 489 addPass(createAArch64PromoteConstantPass()); 490 // FIXME: On AArch64, this depends on the type. 491 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 492 // and the offset has to be a multiple of the related size in bytes. 493 if ((TM->getOptLevel() != CodeGenOpt::None && 494 EnableGlobalMerge == cl::BOU_UNSET) || 495 EnableGlobalMerge == cl::BOU_TRUE) { 496 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 497 (EnableGlobalMerge == cl::BOU_UNSET); 498 499 // Merging of extern globals is enabled by default on non-Mach-O as we 500 // expect it to be generally either beneficial or harmless. On Mach-O it 501 // is disabled as we emit the .subsections_via_symbols directive which 502 // means that merging extern globals is not safe. 503 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 504 505 // FIXME: extern global merging is only enabled when we optimise for size 506 // because there are some regressions with it also enabled for performance. 507 if (!OnlyOptimizeForSize) 508 MergeExternalByDefault = false; 509 510 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, 511 MergeExternalByDefault)); 512 } 513 514 return false; 515 } 516 517 bool AArch64PassConfig::addInstSelector() { 518 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 519 520 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 521 // references to _TLS_MODULE_BASE_ as possible. 522 if (TM->getTargetTriple().isOSBinFormatELF() && 523 getOptLevel() != CodeGenOpt::None) 524 addPass(createAArch64CleanupLocalDynamicTLSPass()); 525 526 return false; 527 } 528 529 bool AArch64PassConfig::addIRTranslator() { 530 addPass(new IRTranslator()); 531 return false; 532 } 533 534 void AArch64PassConfig::addPreLegalizeMachineIR() { 535 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 536 addPass(createAArch64PreLegalizeCombiner(IsOptNone)); 537 } 538 539 bool AArch64PassConfig::addLegalizeMachineIR() { 540 addPass(new Legalizer()); 541 return false; 542 } 543 544 bool AArch64PassConfig::addRegBankSelect() { 545 addPass(new RegBankSelect()); 546 return false; 547 } 548 549 void AArch64PassConfig::addPreGlobalInstructionSelect() { 550 addPass(new Localizer()); 551 } 552 553 bool AArch64PassConfig::addGlobalInstructionSelect() { 554 addPass(new InstructionSelect()); 555 return false; 556 } 557 558 bool AArch64PassConfig::addILPOpts() { 559 if (EnableCondOpt) 560 addPass(createAArch64ConditionOptimizerPass()); 561 if (EnableCCMP) 562 addPass(createAArch64ConditionalCompares()); 563 if (EnableMCR) 564 addPass(&MachineCombinerID); 565 if (EnableCondBrTuning) 566 addPass(createAArch64CondBrTuning()); 567 if (EnableEarlyIfConversion) 568 addPass(&EarlyIfConverterID); 569 if (EnableStPairSuppress) 570 addPass(createAArch64StorePairSuppressPass()); 571 addPass(createAArch64SIMDInstrOptPass()); 572 if (TM->getOptLevel() != CodeGenOpt::None) 573 addPass(createAArch64StackTaggingPreRAPass()); 574 return true; 575 } 576 577 void AArch64PassConfig::addPreRegAlloc() { 578 // Change dead register definitions to refer to the zero register. 579 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) 580 addPass(createAArch64DeadRegisterDefinitions()); 581 582 // Use AdvSIMD scalar instructions whenever profitable. 583 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { 584 addPass(createAArch64AdvSIMDScalar()); 585 // The AdvSIMD pass may produce copies that can be rewritten to 586 // be register coalescer friendly. 587 addPass(&PeepholeOptimizerID); 588 } 589 } 590 591 void AArch64PassConfig::addPostRegAlloc() { 592 // Remove redundant copy instructions. 593 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) 594 addPass(createAArch64RedundantCopyEliminationPass()); 595 596 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) 597 // Improve performance for some FP/SIMD code for A57. 598 addPass(createAArch64A57FPLoadBalancing()); 599 } 600 601 void AArch64PassConfig::addPreSched2() { 602 // Expand some pseudo instructions to allow proper scheduling. 603 addPass(createAArch64ExpandPseudoPass()); 604 // Use load/store pair instructions when possible. 605 if (TM->getOptLevel() != CodeGenOpt::None) { 606 if (EnableLoadStoreOpt) 607 addPass(createAArch64LoadStoreOptimizationPass()); 608 } 609 610 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 611 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 612 // Therefore, run the AArch64SpeculationHardeningPass before the 613 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 614 // info. 615 addPass(createAArch64SpeculationHardeningPass()); 616 617 if (TM->getOptLevel() != CodeGenOpt::None) { 618 if (EnableFalkorHWPFFix) 619 addPass(createFalkorHWPFFixPass()); 620 } 621 } 622 623 void AArch64PassConfig::addPreEmitPass() { 624 // Machine Block Placement might have created new opportunities when run 625 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 626 // Run the load/store optimizer once more. 627 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) 628 addPass(createAArch64LoadStoreOptimizationPass()); 629 630 if (EnableA53Fix835769) 631 addPass(createAArch64A53Fix835769()); 632 633 if (EnableBranchTargets) 634 addPass(createAArch64BranchTargetsPass()); 635 636 // Relax conditional branch instructions if they're otherwise out of 637 // range of their destination. 638 if (BranchRelaxation) 639 addPass(&BranchRelaxationPassID); 640 641 // Identify valid longjmp targets for Windows Control Flow Guard. 642 if (TM->getTargetTriple().isOSWindows()) 643 addPass(createCFGuardLongjmpPass()); 644 645 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) 646 addPass(createAArch64CompressJumpTablesPass()); 647 648 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && 649 TM->getTargetTriple().isOSBinFormatMachO()) 650 addPass(createAArch64CollectLOHPass()); 651 } 652