1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MachineFunctionInfo.h" 15 #include "AArch64MacroFusion.h" 16 #include "AArch64Subtarget.h" 17 #include "AArch64TargetObjectFile.h" 18 #include "AArch64TargetTransformInfo.h" 19 #include "MCTargetDesc/AArch64MCTargetDesc.h" 20 #include "TargetInfo/AArch64TargetInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/CodeGen/CSEConfigBase.h" 25 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 26 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 27 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 28 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" 29 #include "llvm/CodeGen/GlobalISel/Localizer.h" 30 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 31 #include "llvm/CodeGen/MIRParser/MIParser.h" 32 #include "llvm/CodeGen/MachineScheduler.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/MCTargetOptions.h" 40 #include "llvm/MC/TargetRegistry.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CodeGen.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Target/TargetLoweringObjectFile.h" 45 #include "llvm/Target/TargetOptions.h" 46 #include "llvm/Transforms/CFGuard.h" 47 #include "llvm/Transforms/Scalar.h" 48 #include <memory> 49 #include <string> 50 51 using namespace llvm; 52 53 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 54 cl::desc("Enable the CCMP formation pass"), 55 cl::init(true), cl::Hidden); 56 57 static cl::opt<bool> 58 EnableCondBrTuning("aarch64-enable-cond-br-tune", 59 cl::desc("Enable the conditional branch tuning pass"), 60 cl::init(true), cl::Hidden); 61 62 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 63 cl::desc("Enable the machine combiner pass"), 64 cl::init(true), cl::Hidden); 65 66 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 67 cl::desc("Suppress STP for AArch64"), 68 cl::init(true), cl::Hidden); 69 70 static cl::opt<bool> EnableAdvSIMDScalar( 71 "aarch64-enable-simd-scalar", 72 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 73 cl::init(false), cl::Hidden); 74 75 static cl::opt<bool> 76 EnablePromoteConstant("aarch64-enable-promote-const", 77 cl::desc("Enable the promote constant pass"), 78 cl::init(true), cl::Hidden); 79 80 static cl::opt<bool> EnableCollectLOH( 81 "aarch64-enable-collect-loh", 82 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 83 cl::init(true), cl::Hidden); 84 85 static cl::opt<bool> 86 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 87 cl::desc("Enable the pass that removes dead" 88 " definitons and replaces stores to" 89 " them with stores to the zero" 90 " register"), 91 cl::init(true)); 92 93 static cl::opt<bool> EnableRedundantCopyElimination( 94 "aarch64-enable-copyelim", 95 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 96 cl::Hidden); 97 98 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 99 cl::desc("Enable the load/store pair" 100 " optimization pass"), 101 cl::init(true), cl::Hidden); 102 103 static cl::opt<bool> EnableAtomicTidy( 104 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 105 cl::desc("Run SimplifyCFG after expanding atomic operations" 106 " to make use of cmpxchg flow-based information"), 107 cl::init(true)); 108 109 static cl::opt<bool> 110 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 111 cl::desc("Run early if-conversion"), 112 cl::init(true)); 113 114 static cl::opt<bool> 115 EnableCondOpt("aarch64-enable-condopt", 116 cl::desc("Enable the condition optimizer pass"), 117 cl::init(true), cl::Hidden); 118 119 static cl::opt<bool> 120 EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden, 121 cl::desc("Work around Cortex-A53 erratum 835769"), 122 cl::init(false)); 123 124 static cl::opt<bool> 125 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 126 cl::desc("Enable optimizations on complex GEPs"), 127 cl::init(false)); 128 129 static cl::opt<bool> 130 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 131 cl::desc("Relax out of range conditional branches")); 132 133 static cl::opt<bool> EnableCompressJumpTables( 134 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 135 cl::desc("Use smallest entry possible for jump tables")); 136 137 // FIXME: Unify control over GlobalMerge. 138 static cl::opt<cl::boolOrDefault> 139 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 140 cl::desc("Enable the global merge pass")); 141 142 static cl::opt<bool> 143 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 144 cl::desc("Enable the loop data prefetch pass"), 145 cl::init(true)); 146 147 static cl::opt<int> EnableGlobalISelAtO( 148 "aarch64-enable-global-isel-at-O", cl::Hidden, 149 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 150 cl::init(0)); 151 152 static cl::opt<bool> 153 EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden, 154 cl::desc("Enable SVE intrinsic opts"), 155 cl::init(true)); 156 157 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 158 cl::init(true), cl::Hidden); 159 160 static cl::opt<bool> 161 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 162 cl::desc("Enable the AArch64 branch target pass"), 163 cl::init(true)); 164 165 static cl::opt<unsigned> SVEVectorBitsMaxOpt( 166 "aarch64-sve-vector-bits-max", 167 cl::desc("Assume SVE vector registers are at most this big, " 168 "with zero meaning no maximum size is assumed."), 169 cl::init(0), cl::Hidden); 170 171 static cl::opt<unsigned> SVEVectorBitsMinOpt( 172 "aarch64-sve-vector-bits-min", 173 cl::desc("Assume SVE vector registers are at least this big, " 174 "with zero meaning no minimum size is assumed."), 175 cl::init(0), cl::Hidden); 176 177 extern cl::opt<bool> EnableHomogeneousPrologEpilog; 178 179 static cl::opt<bool> EnableGISelLoadStoreOptPreLegal( 180 "aarch64-enable-gisel-ldst-prelegal", 181 cl::desc("Enable GlobalISel's pre-legalizer load/store optimization pass"), 182 cl::init(true), cl::Hidden); 183 184 static cl::opt<bool> EnableGISelLoadStoreOptPostLegal( 185 "aarch64-enable-gisel-ldst-postlegal", 186 cl::desc("Enable GlobalISel's post-legalizer load/store optimization pass"), 187 cl::init(false), cl::Hidden); 188 189 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { 190 // Register the target. 191 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 192 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 193 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 194 RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target()); 195 RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target()); 196 auto PR = PassRegistry::getPassRegistry(); 197 initializeGlobalISel(*PR); 198 initializeAArch64A53Fix835769Pass(*PR); 199 initializeAArch64A57FPLoadBalancingPass(*PR); 200 initializeAArch64AdvSIMDScalarPass(*PR); 201 initializeAArch64BranchTargetsPass(*PR); 202 initializeAArch64CollectLOHPass(*PR); 203 initializeAArch64CompressJumpTablesPass(*PR); 204 initializeAArch64ConditionalComparesPass(*PR); 205 initializeAArch64ConditionOptimizerPass(*PR); 206 initializeAArch64DeadRegisterDefinitionsPass(*PR); 207 initializeAArch64ExpandPseudoPass(*PR); 208 initializeAArch64LoadStoreOptPass(*PR); 209 initializeAArch64MIPeepholeOptPass(*PR); 210 initializeAArch64SIMDInstrOptPass(*PR); 211 initializeAArch64O0PreLegalizerCombinerPass(*PR); 212 initializeAArch64PreLegalizerCombinerPass(*PR); 213 initializeAArch64PostLegalizerCombinerPass(*PR); 214 initializeAArch64PostLegalizerLoweringPass(*PR); 215 initializeAArch64PostSelectOptimizePass(*PR); 216 initializeAArch64PromoteConstantPass(*PR); 217 initializeAArch64RedundantCopyEliminationPass(*PR); 218 initializeAArch64StorePairSuppressPass(*PR); 219 initializeFalkorHWPFFixPass(*PR); 220 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 221 initializeLDTLSCleanupPass(*PR); 222 initializeSVEIntrinsicOptsPass(*PR); 223 initializeAArch64SpeculationHardeningPass(*PR); 224 initializeAArch64SLSHardeningPass(*PR); 225 initializeAArch64StackTaggingPass(*PR); 226 initializeAArch64StackTaggingPreRAPass(*PR); 227 initializeAArch64LowerHomogeneousPrologEpilogPass(*PR); 228 } 229 230 //===----------------------------------------------------------------------===// 231 // AArch64 Lowering public interface. 232 //===----------------------------------------------------------------------===// 233 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 234 if (TT.isOSBinFormatMachO()) 235 return std::make_unique<AArch64_MachoTargetObjectFile>(); 236 if (TT.isOSBinFormatCOFF()) 237 return std::make_unique<AArch64_COFFTargetObjectFile>(); 238 239 return std::make_unique<AArch64_ELFTargetObjectFile>(); 240 } 241 242 // Helper function to build a DataLayout string 243 static std::string computeDataLayout(const Triple &TT, 244 const MCTargetOptions &Options, 245 bool LittleEndian) { 246 if (TT.isOSBinFormatMachO()) { 247 if (TT.getArch() == Triple::aarch64_32) 248 return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128"; 249 return "e-m:o-i64:64-i128:128-n32:64-S128"; 250 } 251 if (TT.isOSBinFormatCOFF()) 252 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; 253 std::string Endian = LittleEndian ? "e" : "E"; 254 std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : ""; 255 return Endian + "-m:e" + Ptr32 + 256 "-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 257 } 258 259 static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) { 260 if (CPU.empty() && TT.isArm64e()) 261 return "apple-a12"; 262 return CPU; 263 } 264 265 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 266 Optional<Reloc::Model> RM) { 267 // AArch64 Darwin and Windows are always PIC. 268 if (TT.isOSDarwin() || TT.isOSWindows()) 269 return Reloc::PIC_; 270 // On ELF platforms the default static relocation model has a smart enough 271 // linker to cope with referencing external symbols defined in a shared 272 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 273 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) 274 return Reloc::Static; 275 return *RM; 276 } 277 278 static CodeModel::Model 279 getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM, 280 bool JIT) { 281 if (CM) { 282 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 283 *CM != CodeModel::Large) { 284 report_fatal_error( 285 "Only small, tiny and large code models are allowed on AArch64"); 286 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 287 report_fatal_error("tiny code model is only supported on ELF"); 288 return *CM; 289 } 290 // The default MCJIT memory managers make no guarantees about where they can 291 // find an executable page; JITed code needs to be able to refer to globals 292 // no matter how far away they are. 293 // We should set the CodeModel::Small for Windows ARM64 in JIT mode, 294 // since with large code model LLVM generating 4 MOV instructions, and 295 // Windows doesn't support relocating these long branch (4 MOVs). 296 if (JIT && !TT.isOSWindows()) 297 return CodeModel::Large; 298 return CodeModel::Small; 299 } 300 301 /// Create an AArch64 architecture model. 302 /// 303 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 304 StringRef CPU, StringRef FS, 305 const TargetOptions &Options, 306 Optional<Reloc::Model> RM, 307 Optional<CodeModel::Model> CM, 308 CodeGenOpt::Level OL, bool JIT, 309 bool LittleEndian) 310 : LLVMTargetMachine(T, 311 computeDataLayout(TT, Options.MCOptions, LittleEndian), 312 TT, computeDefaultCPU(TT, CPU), FS, Options, 313 getEffectiveRelocModel(TT, RM), 314 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 315 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 316 initAsmInfo(); 317 318 if (TT.isOSBinFormatMachO()) { 319 this->Options.TrapUnreachable = true; 320 this->Options.NoTrapAfterNoreturn = true; 321 } 322 323 if (getMCAsmInfo()->usesWindowsCFI()) { 324 // Unwinding can get confused if the last instruction in an 325 // exception-handling region (function, funclet, try block, etc.) 326 // is a call. 327 // 328 // FIXME: We could elide the trap if the next instruction would be in 329 // the same region anyway. 330 this->Options.TrapUnreachable = true; 331 } 332 333 if (this->Options.TLSSize == 0) // default 334 this->Options.TLSSize = 24; 335 if ((getCodeModel() == CodeModel::Small || 336 getCodeModel() == CodeModel::Kernel) && 337 this->Options.TLSSize > 32) 338 // for the small (and kernel) code model, the maximum TLS size is 4GiB 339 this->Options.TLSSize = 32; 340 else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) 341 // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) 342 this->Options.TLSSize = 24; 343 344 // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is 345 // MachO/CodeModel::Large, which GlobalISel does not support. 346 if (getOptLevel() <= EnableGlobalISelAtO && 347 TT.getArch() != Triple::aarch64_32 && 348 TT.getEnvironment() != Triple::GNUILP32 && 349 !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { 350 setGlobalISel(true); 351 setGlobalISelAbort(GlobalISelAbortMode::Disable); 352 } 353 354 // AArch64 supports the MachineOutliner. 355 setMachineOutliner(true); 356 357 // AArch64 supports default outlining behaviour. 358 setSupportsDefaultOutlining(true); 359 360 // AArch64 supports the debug entry values. 361 setSupportsDebugEntryValues(true); 362 } 363 364 AArch64TargetMachine::~AArch64TargetMachine() = default; 365 366 const AArch64Subtarget * 367 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 368 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 369 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 370 Attribute FSAttr = F.getFnAttribute("target-features"); 371 372 std::string CPU = 373 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 374 std::string TuneCPU = 375 TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU; 376 std::string FS = 377 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 378 379 SmallString<512> Key; 380 381 unsigned MinSVEVectorSize = 0; 382 unsigned MaxSVEVectorSize = 0; 383 Attribute VScaleRangeAttr = F.getFnAttribute(Attribute::VScaleRange); 384 if (VScaleRangeAttr.isValid()) { 385 std::tie(MinSVEVectorSize, MaxSVEVectorSize) = 386 VScaleRangeAttr.getVScaleRangeArgs(); 387 MinSVEVectorSize *= 128; 388 MaxSVEVectorSize *= 128; 389 } else { 390 MinSVEVectorSize = SVEVectorBitsMinOpt; 391 MaxSVEVectorSize = SVEVectorBitsMaxOpt; 392 } 393 394 assert(MinSVEVectorSize % 128 == 0 && 395 "SVE requires vector length in multiples of 128!"); 396 assert(MaxSVEVectorSize % 128 == 0 && 397 "SVE requires vector length in multiples of 128!"); 398 assert((MaxSVEVectorSize >= MinSVEVectorSize || MaxSVEVectorSize == 0) && 399 "Minimum SVE vector size should not be larger than its maximum!"); 400 401 // Sanitize user input in case of no asserts 402 if (MaxSVEVectorSize == 0) 403 MinSVEVectorSize = (MinSVEVectorSize / 128) * 128; 404 else { 405 MinSVEVectorSize = 406 (std::min(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; 407 MaxSVEVectorSize = 408 (std::max(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; 409 } 410 411 Key += "SVEMin"; 412 Key += std::to_string(MinSVEVectorSize); 413 Key += "SVEMax"; 414 Key += std::to_string(MaxSVEVectorSize); 415 Key += CPU; 416 Key += TuneCPU; 417 Key += FS; 418 419 auto &I = SubtargetMap[Key]; 420 if (!I) { 421 // This needs to be done before we create a new subtarget since any 422 // creation will depend on the TM and the code generation flags on the 423 // function that reside in TargetOptions. 424 resetTargetOptions(F); 425 I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, TuneCPU, FS, 426 *this, isLittle, MinSVEVectorSize, 427 MaxSVEVectorSize); 428 } 429 return I.get(); 430 } 431 432 void AArch64leTargetMachine::anchor() { } 433 434 AArch64leTargetMachine::AArch64leTargetMachine( 435 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 436 const TargetOptions &Options, Optional<Reloc::Model> RM, 437 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 438 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 439 440 void AArch64beTargetMachine::anchor() { } 441 442 AArch64beTargetMachine::AArch64beTargetMachine( 443 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 444 const TargetOptions &Options, Optional<Reloc::Model> RM, 445 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 446 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 447 448 namespace { 449 450 /// AArch64 Code Generator Pass Configuration Options. 451 class AArch64PassConfig : public TargetPassConfig { 452 public: 453 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 454 : TargetPassConfig(TM, PM) { 455 if (TM.getOptLevel() != CodeGenOpt::None) 456 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 457 } 458 459 AArch64TargetMachine &getAArch64TargetMachine() const { 460 return getTM<AArch64TargetMachine>(); 461 } 462 463 ScheduleDAGInstrs * 464 createMachineScheduler(MachineSchedContext *C) const override { 465 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 466 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 467 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 468 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 469 if (ST.hasFusion()) 470 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 471 return DAG; 472 } 473 474 ScheduleDAGInstrs * 475 createPostMachineScheduler(MachineSchedContext *C) const override { 476 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 477 if (ST.hasFusion()) { 478 // Run the Macro Fusion after RA again since literals are expanded from 479 // pseudos then (v. addPreSched2()). 480 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 481 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 482 return DAG; 483 } 484 485 return nullptr; 486 } 487 488 void addIRPasses() override; 489 bool addPreISel() override; 490 void addCodeGenPrepare() override; 491 bool addInstSelector() override; 492 bool addIRTranslator() override; 493 void addPreLegalizeMachineIR() override; 494 bool addLegalizeMachineIR() override; 495 void addPreRegBankSelect() override; 496 bool addRegBankSelect() override; 497 void addPreGlobalInstructionSelect() override; 498 bool addGlobalInstructionSelect() override; 499 void addMachineSSAOptimization() override; 500 bool addILPOpts() override; 501 void addPreRegAlloc() override; 502 void addPostRegAlloc() override; 503 void addPreSched2() override; 504 void addPreEmitPass() override; 505 void addPreEmitPass2() override; 506 507 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 508 }; 509 510 } // end anonymous namespace 511 512 TargetTransformInfo 513 AArch64TargetMachine::getTargetTransformInfo(const Function &F) { 514 return TargetTransformInfo(AArch64TTIImpl(this, F)); 515 } 516 517 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 518 return new AArch64PassConfig(*this, PM); 519 } 520 521 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { 522 return getStandardCSEConfigForOpt(TM->getOptLevel()); 523 } 524 525 void AArch64PassConfig::addIRPasses() { 526 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 527 // ourselves. 528 addPass(createAtomicExpandPass()); 529 530 // Expand any SVE vector library calls that we can't code generate directly. 531 if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive) 532 addPass(createSVEIntrinsicOptsPass()); 533 534 // Cmpxchg instructions are often used with a subsequent comparison to 535 // determine whether it succeeded. We can exploit existing control-flow in 536 // ldrex/strex loops to simplify this, but it needs tidying up. 537 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 538 addPass(createCFGSimplificationPass(SimplifyCFGOptions() 539 .forwardSwitchCondToPhi(true) 540 .convertSwitchToLookupTable(true) 541 .needCanonicalLoops(false) 542 .hoistCommonInsts(true) 543 .sinkCommonInsts(true))); 544 545 // Run LoopDataPrefetch 546 // 547 // Run this before LSR to remove the multiplies involved in computing the 548 // pointer values N iterations ahead. 549 if (TM->getOptLevel() != CodeGenOpt::None) { 550 if (EnableLoopDataPrefetch) 551 addPass(createLoopDataPrefetchPass()); 552 if (EnableFalkorHWPFFix) 553 addPass(createFalkorMarkStridedAccessesPass()); 554 } 555 556 TargetPassConfig::addIRPasses(); 557 558 addPass(createAArch64StackTaggingPass( 559 /*IsOptNone=*/TM->getOptLevel() == CodeGenOpt::None)); 560 561 // Match interleaved memory accesses to ldN/stN intrinsics. 562 if (TM->getOptLevel() != CodeGenOpt::None) { 563 addPass(createInterleavedLoadCombinePass()); 564 addPass(createInterleavedAccessPass()); 565 } 566 567 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 568 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 569 // and lower a GEP with multiple indices to either arithmetic operations or 570 // multiple GEPs with single index. 571 addPass(createSeparateConstOffsetFromGEPPass(true)); 572 // Call EarlyCSE pass to find and remove subexpressions in the lowered 573 // result. 574 addPass(createEarlyCSEPass()); 575 // Do loop invariant code motion in case part of the lowered result is 576 // invariant. 577 addPass(createLICMPass()); 578 } 579 580 // Add Control Flow Guard checks. 581 if (TM->getTargetTriple().isOSWindows()) 582 addPass(createCFGuardCheckPass()); 583 } 584 585 // Pass Pipeline Configuration 586 bool AArch64PassConfig::addPreISel() { 587 // Run promote constant before global merge, so that the promoted constants 588 // get a chance to be merged 589 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) 590 addPass(createAArch64PromoteConstantPass()); 591 // FIXME: On AArch64, this depends on the type. 592 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 593 // and the offset has to be a multiple of the related size in bytes. 594 if ((TM->getOptLevel() != CodeGenOpt::None && 595 EnableGlobalMerge == cl::BOU_UNSET) || 596 EnableGlobalMerge == cl::BOU_TRUE) { 597 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 598 (EnableGlobalMerge == cl::BOU_UNSET); 599 600 // Merging of extern globals is enabled by default on non-Mach-O as we 601 // expect it to be generally either beneficial or harmless. On Mach-O it 602 // is disabled as we emit the .subsections_via_symbols directive which 603 // means that merging extern globals is not safe. 604 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 605 606 // FIXME: extern global merging is only enabled when we optimise for size 607 // because there are some regressions with it also enabled for performance. 608 if (!OnlyOptimizeForSize) 609 MergeExternalByDefault = false; 610 611 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, 612 MergeExternalByDefault)); 613 } 614 615 return false; 616 } 617 618 void AArch64PassConfig::addCodeGenPrepare() { 619 if (getOptLevel() != CodeGenOpt::None) 620 addPass(createTypePromotionPass()); 621 TargetPassConfig::addCodeGenPrepare(); 622 } 623 624 bool AArch64PassConfig::addInstSelector() { 625 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 626 627 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 628 // references to _TLS_MODULE_BASE_ as possible. 629 if (TM->getTargetTriple().isOSBinFormatELF() && 630 getOptLevel() != CodeGenOpt::None) 631 addPass(createAArch64CleanupLocalDynamicTLSPass()); 632 633 return false; 634 } 635 636 bool AArch64PassConfig::addIRTranslator() { 637 addPass(new IRTranslator(getOptLevel())); 638 return false; 639 } 640 641 void AArch64PassConfig::addPreLegalizeMachineIR() { 642 if (getOptLevel() == CodeGenOpt::None) 643 addPass(createAArch64O0PreLegalizerCombiner()); 644 else { 645 addPass(createAArch64PreLegalizerCombiner()); 646 if (EnableGISelLoadStoreOptPreLegal) 647 addPass(new LoadStoreOpt()); 648 } 649 } 650 651 bool AArch64PassConfig::addLegalizeMachineIR() { 652 addPass(new Legalizer()); 653 return false; 654 } 655 656 void AArch64PassConfig::addPreRegBankSelect() { 657 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 658 if (!IsOptNone) { 659 addPass(createAArch64PostLegalizerCombiner(IsOptNone)); 660 if (EnableGISelLoadStoreOptPostLegal) 661 addPass(new LoadStoreOpt()); 662 } 663 addPass(createAArch64PostLegalizerLowering()); 664 } 665 666 bool AArch64PassConfig::addRegBankSelect() { 667 addPass(new RegBankSelect()); 668 return false; 669 } 670 671 void AArch64PassConfig::addPreGlobalInstructionSelect() { 672 addPass(new Localizer()); 673 } 674 675 bool AArch64PassConfig::addGlobalInstructionSelect() { 676 addPass(new InstructionSelect(getOptLevel())); 677 if (getOptLevel() != CodeGenOpt::None) 678 addPass(createAArch64PostSelectOptimize()); 679 return false; 680 } 681 682 void AArch64PassConfig::addMachineSSAOptimization() { 683 // Run default MachineSSAOptimization first. 684 TargetPassConfig::addMachineSSAOptimization(); 685 686 if (TM->getOptLevel() != CodeGenOpt::None) 687 addPass(createAArch64MIPeepholeOptPass()); 688 } 689 690 bool AArch64PassConfig::addILPOpts() { 691 if (EnableCondOpt) 692 addPass(createAArch64ConditionOptimizerPass()); 693 if (EnableCCMP) 694 addPass(createAArch64ConditionalCompares()); 695 if (EnableMCR) 696 addPass(&MachineCombinerID); 697 if (EnableCondBrTuning) 698 addPass(createAArch64CondBrTuning()); 699 if (EnableEarlyIfConversion) 700 addPass(&EarlyIfConverterID); 701 if (EnableStPairSuppress) 702 addPass(createAArch64StorePairSuppressPass()); 703 addPass(createAArch64SIMDInstrOptPass()); 704 if (TM->getOptLevel() != CodeGenOpt::None) 705 addPass(createAArch64StackTaggingPreRAPass()); 706 return true; 707 } 708 709 void AArch64PassConfig::addPreRegAlloc() { 710 // Change dead register definitions to refer to the zero register. 711 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) 712 addPass(createAArch64DeadRegisterDefinitions()); 713 714 // Use AdvSIMD scalar instructions whenever profitable. 715 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { 716 addPass(createAArch64AdvSIMDScalar()); 717 // The AdvSIMD pass may produce copies that can be rewritten to 718 // be register coalescer friendly. 719 addPass(&PeepholeOptimizerID); 720 } 721 } 722 723 void AArch64PassConfig::addPostRegAlloc() { 724 // Remove redundant copy instructions. 725 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) 726 addPass(createAArch64RedundantCopyEliminationPass()); 727 728 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) 729 // Improve performance for some FP/SIMD code for A57. 730 addPass(createAArch64A57FPLoadBalancing()); 731 } 732 733 void AArch64PassConfig::addPreSched2() { 734 // Lower homogeneous frame instructions 735 if (EnableHomogeneousPrologEpilog) 736 addPass(createAArch64LowerHomogeneousPrologEpilogPass()); 737 // Expand some pseudo instructions to allow proper scheduling. 738 addPass(createAArch64ExpandPseudoPass()); 739 // Use load/store pair instructions when possible. 740 if (TM->getOptLevel() != CodeGenOpt::None) { 741 if (EnableLoadStoreOpt) 742 addPass(createAArch64LoadStoreOptimizationPass()); 743 } 744 745 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 746 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 747 // Therefore, run the AArch64SpeculationHardeningPass before the 748 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 749 // info. 750 addPass(createAArch64SpeculationHardeningPass()); 751 752 addPass(createAArch64IndirectThunks()); 753 addPass(createAArch64SLSHardeningPass()); 754 755 if (TM->getOptLevel() != CodeGenOpt::None) { 756 if (EnableFalkorHWPFFix) 757 addPass(createFalkorHWPFFixPass()); 758 } 759 } 760 761 void AArch64PassConfig::addPreEmitPass() { 762 // Machine Block Placement might have created new opportunities when run 763 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 764 // Run the load/store optimizer once more. 765 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) 766 addPass(createAArch64LoadStoreOptimizationPass()); 767 768 if (EnableA53Fix835769) 769 addPass(createAArch64A53Fix835769()); 770 771 if (EnableBranchTargets) 772 addPass(createAArch64BranchTargetsPass()); 773 774 // Relax conditional branch instructions if they're otherwise out of 775 // range of their destination. 776 if (BranchRelaxation) 777 addPass(&BranchRelaxationPassID); 778 779 if (TM->getTargetTriple().isOSWindows()) { 780 // Identify valid longjmp targets for Windows Control Flow Guard. 781 addPass(createCFGuardLongjmpPass()); 782 // Identify valid eh continuation targets for Windows EHCont Guard. 783 addPass(createEHContGuardCatchretPass()); 784 } 785 786 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) 787 addPass(createAArch64CompressJumpTablesPass()); 788 789 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && 790 TM->getTargetTriple().isOSBinFormatMachO()) 791 addPass(createAArch64CollectLOHPass()); 792 } 793 794 void AArch64PassConfig::addPreEmitPass2() { 795 // SVE bundles move prefixes with destructive operations. BLR_RVMARKER pseudo 796 // instructions are lowered to bundles as well. 797 addPass(createUnpackMachineBundles(nullptr)); 798 } 799 800 yaml::MachineFunctionInfo * 801 AArch64TargetMachine::createDefaultFuncInfoYAML() const { 802 return new yaml::AArch64FunctionInfo(); 803 } 804 805 yaml::MachineFunctionInfo * 806 AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 807 const auto *MFI = MF.getInfo<AArch64FunctionInfo>(); 808 return new yaml::AArch64FunctionInfo(*MFI); 809 } 810 811 bool AArch64TargetMachine::parseMachineFunctionInfo( 812 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 813 SMDiagnostic &Error, SMRange &SourceRange) const { 814 const auto &YamlMFI = 815 reinterpret_cast<const yaml::AArch64FunctionInfo &>(MFI); 816 MachineFunction &MF = PFS.MF; 817 MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI); 818 return false; 819 } 820