1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MachineFunctionInfo.h" 15 #include "AArch64MachineScheduler.h" 16 #include "AArch64MacroFusion.h" 17 #include "AArch64Subtarget.h" 18 #include "AArch64TargetObjectFile.h" 19 #include "AArch64TargetTransformInfo.h" 20 #include "MCTargetDesc/AArch64MCTargetDesc.h" 21 #include "TargetInfo/AArch64TargetInfo.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/CodeGen/CFIFixup.h" 25 #include "llvm/CodeGen/CSEConfigBase.h" 26 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 29 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 30 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" 31 #include "llvm/CodeGen/GlobalISel/Localizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/MIRParser/MIParser.h" 34 #include "llvm/CodeGen/MachineScheduler.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/MC/MCTargetOptions.h" 43 #include "llvm/MC/TargetRegistry.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CodeGen.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/TargetParser/Triple.h" 50 #include "llvm/Transforms/CFGuard.h" 51 #include "llvm/Transforms/Scalar.h" 52 #include <memory> 53 #include <optional> 54 #include <string> 55 56 using namespace llvm; 57 58 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 59 cl::desc("Enable the CCMP formation pass"), 60 cl::init(true), cl::Hidden); 61 62 static cl::opt<bool> 63 EnableCondBrTuning("aarch64-enable-cond-br-tune", 64 cl::desc("Enable the conditional branch tuning pass"), 65 cl::init(true), cl::Hidden); 66 67 static cl::opt<bool> EnableAArch64CopyPropagation( 68 "aarch64-enable-copy-propagation", 69 cl::desc("Enable the copy propagation with AArch64 copy instr"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 73 cl::desc("Enable the machine combiner pass"), 74 cl::init(true), cl::Hidden); 75 76 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 77 cl::desc("Suppress STP for AArch64"), 78 cl::init(true), cl::Hidden); 79 80 static cl::opt<bool> EnableAdvSIMDScalar( 81 "aarch64-enable-simd-scalar", 82 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 83 cl::init(false), cl::Hidden); 84 85 static cl::opt<bool> 86 EnablePromoteConstant("aarch64-enable-promote-const", 87 cl::desc("Enable the promote constant pass"), 88 cl::init(true), cl::Hidden); 89 90 static cl::opt<bool> EnableCollectLOH( 91 "aarch64-enable-collect-loh", 92 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 93 cl::init(true), cl::Hidden); 94 95 static cl::opt<bool> 96 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 97 cl::desc("Enable the pass that removes dead" 98 " definitons and replaces stores to" 99 " them with stores to the zero" 100 " register"), 101 cl::init(true)); 102 103 static cl::opt<bool> EnableRedundantCopyElimination( 104 "aarch64-enable-copyelim", 105 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 106 cl::Hidden); 107 108 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 109 cl::desc("Enable the load/store pair" 110 " optimization pass"), 111 cl::init(true), cl::Hidden); 112 113 static cl::opt<bool> EnableAtomicTidy( 114 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 115 cl::desc("Run SimplifyCFG after expanding atomic operations" 116 " to make use of cmpxchg flow-based information"), 117 cl::init(true)); 118 119 static cl::opt<bool> 120 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 121 cl::desc("Run early if-conversion"), 122 cl::init(true)); 123 124 static cl::opt<bool> 125 EnableCondOpt("aarch64-enable-condopt", 126 cl::desc("Enable the condition optimizer pass"), 127 cl::init(true), cl::Hidden); 128 129 static cl::opt<bool> 130 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 131 cl::desc("Enable optimizations on complex GEPs"), 132 cl::init(false)); 133 134 static cl::opt<bool> 135 EnableSelectOpt("aarch64-select-opt", cl::Hidden, 136 cl::desc("Enable select to branch optimizations"), 137 cl::init(true)); 138 139 static cl::opt<bool> 140 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 141 cl::desc("Relax out of range conditional branches")); 142 143 static cl::opt<bool> EnableCompressJumpTables( 144 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 145 cl::desc("Use smallest entry possible for jump tables")); 146 147 // FIXME: Unify control over GlobalMerge. 148 static cl::opt<cl::boolOrDefault> 149 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 150 cl::desc("Enable the global merge pass")); 151 152 static cl::opt<bool> 153 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 154 cl::desc("Enable the loop data prefetch pass"), 155 cl::init(true)); 156 157 static cl::opt<int> EnableGlobalISelAtO( 158 "aarch64-enable-global-isel-at-O", cl::Hidden, 159 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 160 cl::init(0)); 161 162 static cl::opt<bool> 163 EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden, 164 cl::desc("Enable SVE intrinsic opts"), 165 cl::init(true)); 166 167 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 168 cl::init(true), cl::Hidden); 169 170 static cl::opt<bool> 171 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 172 cl::desc("Enable the AArch64 branch target pass"), 173 cl::init(true)); 174 175 static cl::opt<unsigned> SVEVectorBitsMaxOpt( 176 "aarch64-sve-vector-bits-max", 177 cl::desc("Assume SVE vector registers are at most this big, " 178 "with zero meaning no maximum size is assumed."), 179 cl::init(0), cl::Hidden); 180 181 static cl::opt<unsigned> SVEVectorBitsMinOpt( 182 "aarch64-sve-vector-bits-min", 183 cl::desc("Assume SVE vector registers are at least this big, " 184 "with zero meaning no minimum size is assumed."), 185 cl::init(0), cl::Hidden); 186 187 extern cl::opt<bool> EnableHomogeneousPrologEpilog; 188 189 static cl::opt<bool> EnableGISelLoadStoreOptPreLegal( 190 "aarch64-enable-gisel-ldst-prelegal", 191 cl::desc("Enable GlobalISel's pre-legalizer load/store optimization pass"), 192 cl::init(true), cl::Hidden); 193 194 static cl::opt<bool> EnableGISelLoadStoreOptPostLegal( 195 "aarch64-enable-gisel-ldst-postlegal", 196 cl::desc("Enable GlobalISel's post-legalizer load/store optimization pass"), 197 cl::init(false), cl::Hidden); 198 199 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { 200 // Register the target. 201 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 202 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 203 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 204 RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target()); 205 RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target()); 206 auto PR = PassRegistry::getPassRegistry(); 207 initializeGlobalISel(*PR); 208 initializeAArch64A53Fix835769Pass(*PR); 209 initializeAArch64A57FPLoadBalancingPass(*PR); 210 initializeAArch64AdvSIMDScalarPass(*PR); 211 initializeAArch64BranchTargetsPass(*PR); 212 initializeAArch64CollectLOHPass(*PR); 213 initializeAArch64CompressJumpTablesPass(*PR); 214 initializeAArch64ConditionalComparesPass(*PR); 215 initializeAArch64ConditionOptimizerPass(*PR); 216 initializeAArch64DeadRegisterDefinitionsPass(*PR); 217 initializeAArch64ExpandPseudoPass(*PR); 218 initializeAArch64LoadStoreOptPass(*PR); 219 initializeAArch64MIPeepholeOptPass(*PR); 220 initializeAArch64SIMDInstrOptPass(*PR); 221 initializeAArch64O0PreLegalizerCombinerPass(*PR); 222 initializeAArch64PreLegalizerCombinerPass(*PR); 223 initializeAArch64PostLegalizerCombinerPass(*PR); 224 initializeAArch64PostLegalizerLoweringPass(*PR); 225 initializeAArch64PostSelectOptimizePass(*PR); 226 initializeAArch64PromoteConstantPass(*PR); 227 initializeAArch64RedundantCopyEliminationPass(*PR); 228 initializeAArch64StorePairSuppressPass(*PR); 229 initializeFalkorHWPFFixPass(*PR); 230 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 231 initializeLDTLSCleanupPass(*PR); 232 initializeKCFIPass(*PR); 233 initializeSMEABIPass(*PR); 234 initializeSVEIntrinsicOptsPass(*PR); 235 initializeAArch64SpeculationHardeningPass(*PR); 236 initializeAArch64SLSHardeningPass(*PR); 237 initializeAArch64StackTaggingPass(*PR); 238 initializeAArch64StackTaggingPreRAPass(*PR); 239 initializeAArch64LowerHomogeneousPrologEpilogPass(*PR); 240 initializeAArch64DAGToDAGISelPass(*PR); 241 initializeAArch64GlobalsTaggingPass(*PR); 242 } 243 244 //===----------------------------------------------------------------------===// 245 // AArch64 Lowering public interface. 246 //===----------------------------------------------------------------------===// 247 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 248 if (TT.isOSBinFormatMachO()) 249 return std::make_unique<AArch64_MachoTargetObjectFile>(); 250 if (TT.isOSBinFormatCOFF()) 251 return std::make_unique<AArch64_COFFTargetObjectFile>(); 252 253 return std::make_unique<AArch64_ELFTargetObjectFile>(); 254 } 255 256 // Helper function to build a DataLayout string 257 static std::string computeDataLayout(const Triple &TT, 258 const MCTargetOptions &Options, 259 bool LittleEndian) { 260 if (TT.isOSBinFormatMachO()) { 261 if (TT.getArch() == Triple::aarch64_32) 262 return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128"; 263 return "e-m:o-i64:64-i128:128-n32:64-S128"; 264 } 265 if (TT.isOSBinFormatCOFF()) 266 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; 267 std::string Endian = LittleEndian ? "e" : "E"; 268 std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : ""; 269 return Endian + "-m:e" + Ptr32 + 270 "-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 271 } 272 273 static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) { 274 if (CPU.empty() && TT.isArm64e()) 275 return "apple-a12"; 276 return CPU; 277 } 278 279 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 280 std::optional<Reloc::Model> RM) { 281 // AArch64 Darwin and Windows are always PIC. 282 if (TT.isOSDarwin() || TT.isOSWindows()) 283 return Reloc::PIC_; 284 // On ELF platforms the default static relocation model has a smart enough 285 // linker to cope with referencing external symbols defined in a shared 286 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 287 if (!RM || *RM == Reloc::DynamicNoPIC) 288 return Reloc::Static; 289 return *RM; 290 } 291 292 static CodeModel::Model 293 getEffectiveAArch64CodeModel(const Triple &TT, 294 std::optional<CodeModel::Model> CM, bool JIT) { 295 if (CM) { 296 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 297 *CM != CodeModel::Large) { 298 report_fatal_error( 299 "Only small, tiny and large code models are allowed on AArch64"); 300 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 301 report_fatal_error("tiny code model is only supported on ELF"); 302 return *CM; 303 } 304 // The default MCJIT memory managers make no guarantees about where they can 305 // find an executable page; JITed code needs to be able to refer to globals 306 // no matter how far away they are. 307 // We should set the CodeModel::Small for Windows ARM64 in JIT mode, 308 // since with large code model LLVM generating 4 MOV instructions, and 309 // Windows doesn't support relocating these long branch (4 MOVs). 310 if (JIT && !TT.isOSWindows()) 311 return CodeModel::Large; 312 return CodeModel::Small; 313 } 314 315 /// Create an AArch64 architecture model. 316 /// 317 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 318 StringRef CPU, StringRef FS, 319 const TargetOptions &Options, 320 std::optional<Reloc::Model> RM, 321 std::optional<CodeModel::Model> CM, 322 CodeGenOpt::Level OL, bool JIT, 323 bool LittleEndian) 324 : LLVMTargetMachine(T, 325 computeDataLayout(TT, Options.MCOptions, LittleEndian), 326 TT, computeDefaultCPU(TT, CPU), FS, Options, 327 getEffectiveRelocModel(TT, RM), 328 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 329 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 330 initAsmInfo(); 331 332 if (TT.isOSBinFormatMachO()) { 333 this->Options.TrapUnreachable = true; 334 this->Options.NoTrapAfterNoreturn = true; 335 } 336 337 if (getMCAsmInfo()->usesWindowsCFI()) { 338 // Unwinding can get confused if the last instruction in an 339 // exception-handling region (function, funclet, try block, etc.) 340 // is a call. 341 // 342 // FIXME: We could elide the trap if the next instruction would be in 343 // the same region anyway. 344 this->Options.TrapUnreachable = true; 345 } 346 347 if (this->Options.TLSSize == 0) // default 348 this->Options.TLSSize = 24; 349 if ((getCodeModel() == CodeModel::Small || 350 getCodeModel() == CodeModel::Kernel) && 351 this->Options.TLSSize > 32) 352 // for the small (and kernel) code model, the maximum TLS size is 4GiB 353 this->Options.TLSSize = 32; 354 else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) 355 // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) 356 this->Options.TLSSize = 24; 357 358 // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is 359 // MachO/CodeModel::Large, which GlobalISel does not support. 360 if (getOptLevel() <= EnableGlobalISelAtO && 361 TT.getArch() != Triple::aarch64_32 && 362 TT.getEnvironment() != Triple::GNUILP32 && 363 !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { 364 setGlobalISel(true); 365 setGlobalISelAbort(GlobalISelAbortMode::Disable); 366 } 367 368 // AArch64 supports the MachineOutliner. 369 setMachineOutliner(true); 370 371 // AArch64 supports default outlining behaviour. 372 setSupportsDefaultOutlining(true); 373 374 // AArch64 supports the debug entry values. 375 setSupportsDebugEntryValues(true); 376 377 // AArch64 supports fixing up the DWARF unwind information. 378 if (!getMCAsmInfo()->usesWindowsCFI()) 379 setCFIFixup(true); 380 } 381 382 AArch64TargetMachine::~AArch64TargetMachine() = default; 383 384 const AArch64Subtarget * 385 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 386 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 387 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 388 Attribute FSAttr = F.getFnAttribute("target-features"); 389 390 StringRef CPU = CPUAttr.isValid() ? CPUAttr.getValueAsString() : TargetCPU; 391 StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString() : CPU; 392 StringRef FS = FSAttr.isValid() ? FSAttr.getValueAsString() : TargetFS; 393 394 bool StreamingSVEMode = F.hasFnAttribute("aarch64_pstate_sm_enabled") || 395 F.hasFnAttribute("aarch64_pstate_sm_body"); 396 bool StreamingCompatibleSVEMode = 397 F.hasFnAttribute("aarch64_pstate_sm_compatible"); 398 399 unsigned MinSVEVectorSize = 0; 400 unsigned MaxSVEVectorSize = 0; 401 Attribute VScaleRangeAttr = F.getFnAttribute(Attribute::VScaleRange); 402 if (VScaleRangeAttr.isValid()) { 403 std::optional<unsigned> VScaleMax = VScaleRangeAttr.getVScaleRangeMax(); 404 MinSVEVectorSize = VScaleRangeAttr.getVScaleRangeMin() * 128; 405 MaxSVEVectorSize = VScaleMax ? *VScaleMax * 128 : 0; 406 } else { 407 MinSVEVectorSize = SVEVectorBitsMinOpt; 408 MaxSVEVectorSize = SVEVectorBitsMaxOpt; 409 } 410 411 assert(MinSVEVectorSize % 128 == 0 && 412 "SVE requires vector length in multiples of 128!"); 413 assert(MaxSVEVectorSize % 128 == 0 && 414 "SVE requires vector length in multiples of 128!"); 415 assert((MaxSVEVectorSize >= MinSVEVectorSize || MaxSVEVectorSize == 0) && 416 "Minimum SVE vector size should not be larger than its maximum!"); 417 418 // Sanitize user input in case of no asserts 419 if (MaxSVEVectorSize == 0) 420 MinSVEVectorSize = (MinSVEVectorSize / 128) * 128; 421 else { 422 MinSVEVectorSize = 423 (std::min(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; 424 MaxSVEVectorSize = 425 (std::max(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; 426 } 427 428 SmallString<512> Key; 429 raw_svector_ostream(Key) << "SVEMin" << MinSVEVectorSize << "SVEMax" 430 << MaxSVEVectorSize 431 << "StreamingSVEMode=" << StreamingSVEMode 432 << "StreamingCompatibleSVEMode=" 433 << StreamingCompatibleSVEMode << CPU << TuneCPU 434 << FS; 435 436 auto &I = SubtargetMap[Key]; 437 if (!I) { 438 // This needs to be done before we create a new subtarget since any 439 // creation will depend on the TM and the code generation flags on the 440 // function that reside in TargetOptions. 441 resetTargetOptions(F); 442 I = std::make_unique<AArch64Subtarget>( 443 TargetTriple, CPU, TuneCPU, FS, *this, isLittle, MinSVEVectorSize, 444 MaxSVEVectorSize, StreamingSVEMode, StreamingCompatibleSVEMode); 445 } 446 447 assert((!StreamingSVEMode || I->hasSME()) && 448 "Expected SME to be available"); 449 assert((!StreamingCompatibleSVEMode || I->hasSVEorSME()) && 450 "Expected SVE or SME to be available"); 451 452 return I.get(); 453 } 454 455 void AArch64leTargetMachine::anchor() { } 456 457 AArch64leTargetMachine::AArch64leTargetMachine( 458 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 459 const TargetOptions &Options, std::optional<Reloc::Model> RM, 460 std::optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 461 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 462 463 void AArch64beTargetMachine::anchor() { } 464 465 AArch64beTargetMachine::AArch64beTargetMachine( 466 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 467 const TargetOptions &Options, std::optional<Reloc::Model> RM, 468 std::optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 469 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 470 471 namespace { 472 473 /// AArch64 Code Generator Pass Configuration Options. 474 class AArch64PassConfig : public TargetPassConfig { 475 public: 476 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 477 : TargetPassConfig(TM, PM) { 478 if (TM.getOptLevel() != CodeGenOpt::None) 479 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 480 } 481 482 AArch64TargetMachine &getAArch64TargetMachine() const { 483 return getTM<AArch64TargetMachine>(); 484 } 485 486 ScheduleDAGInstrs * 487 createMachineScheduler(MachineSchedContext *C) const override { 488 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 489 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 490 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 491 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 492 if (ST.hasFusion()) 493 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 494 return DAG; 495 } 496 497 ScheduleDAGInstrs * 498 createPostMachineScheduler(MachineSchedContext *C) const override { 499 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 500 ScheduleDAGMI *DAG = 501 new ScheduleDAGMI(C, std::make_unique<AArch64PostRASchedStrategy>(C), 502 /* RemoveKillFlags=*/true); 503 if (ST.hasFusion()) { 504 // Run the Macro Fusion after RA again since literals are expanded from 505 // pseudos then (v. addPreSched2()). 506 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 507 return DAG; 508 } 509 510 return DAG; 511 } 512 513 void addIRPasses() override; 514 bool addPreISel() override; 515 void addCodeGenPrepare() override; 516 bool addInstSelector() override; 517 bool addIRTranslator() override; 518 void addPreLegalizeMachineIR() override; 519 bool addLegalizeMachineIR() override; 520 void addPreRegBankSelect() override; 521 bool addRegBankSelect() override; 522 bool addGlobalInstructionSelect() override; 523 void addMachineSSAOptimization() override; 524 bool addILPOpts() override; 525 void addPreRegAlloc() override; 526 void addPostRegAlloc() override; 527 void addPreSched2() override; 528 void addPreEmitPass() override; 529 void addPostBBSections() override; 530 void addPreEmitPass2() override; 531 532 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 533 }; 534 535 } // end anonymous namespace 536 537 TargetTransformInfo 538 AArch64TargetMachine::getTargetTransformInfo(const Function &F) const { 539 return TargetTransformInfo(AArch64TTIImpl(this, F)); 540 } 541 542 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 543 return new AArch64PassConfig(*this, PM); 544 } 545 546 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { 547 return getStandardCSEConfigForOpt(TM->getOptLevel()); 548 } 549 550 void AArch64PassConfig::addIRPasses() { 551 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 552 // ourselves. 553 addPass(createAtomicExpandPass()); 554 555 // Expand any SVE vector library calls that we can't code generate directly. 556 if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive) 557 addPass(createSVEIntrinsicOptsPass()); 558 559 // Cmpxchg instructions are often used with a subsequent comparison to 560 // determine whether it succeeded. We can exploit existing control-flow in 561 // ldrex/strex loops to simplify this, but it needs tidying up. 562 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 563 addPass(createCFGSimplificationPass(SimplifyCFGOptions() 564 .forwardSwitchCondToPhi(true) 565 .convertSwitchRangeToICmp(true) 566 .convertSwitchToLookupTable(true) 567 .needCanonicalLoops(false) 568 .hoistCommonInsts(true) 569 .sinkCommonInsts(true))); 570 571 // Run LoopDataPrefetch 572 // 573 // Run this before LSR to remove the multiplies involved in computing the 574 // pointer values N iterations ahead. 575 if (TM->getOptLevel() != CodeGenOpt::None) { 576 if (EnableLoopDataPrefetch) 577 addPass(createLoopDataPrefetchPass()); 578 if (EnableFalkorHWPFFix) 579 addPass(createFalkorMarkStridedAccessesPass()); 580 } 581 582 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 583 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 584 // and lower a GEP with multiple indices to either arithmetic operations or 585 // multiple GEPs with single index. 586 addPass(createSeparateConstOffsetFromGEPPass(true)); 587 // Call EarlyCSE pass to find and remove subexpressions in the lowered 588 // result. 589 addPass(createEarlyCSEPass()); 590 // Do loop invariant code motion in case part of the lowered result is 591 // invariant. 592 addPass(createLICMPass()); 593 } 594 595 TargetPassConfig::addIRPasses(); 596 597 if (getOptLevel() == CodeGenOpt::Aggressive && EnableSelectOpt) 598 addPass(createSelectOptimizePass()); 599 600 addPass(createAArch64GlobalsTaggingPass()); 601 addPass(createAArch64StackTaggingPass( 602 /*IsOptNone=*/TM->getOptLevel() == CodeGenOpt::None)); 603 604 // Match complex arithmetic patterns 605 if (TM->getOptLevel() >= CodeGenOpt::Default) 606 addPass(createComplexDeinterleavingPass(TM)); 607 608 // Match interleaved memory accesses to ldN/stN intrinsics. 609 if (TM->getOptLevel() != CodeGenOpt::None) { 610 addPass(createInterleavedLoadCombinePass()); 611 addPass(createInterleavedAccessPass()); 612 } 613 614 // Expand any functions marked with SME attributes which require special 615 // changes for the calling convention or that require the lazy-saving 616 // mechanism specified in the SME ABI. 617 addPass(createSMEABIPass()); 618 619 // Add Control Flow Guard checks. 620 if (TM->getTargetTriple().isOSWindows()) 621 addPass(createCFGuardCheckPass()); 622 623 if (TM->Options.JMCInstrument) 624 addPass(createJMCInstrumenterPass()); 625 } 626 627 // Pass Pipeline Configuration 628 bool AArch64PassConfig::addPreISel() { 629 // Run promote constant before global merge, so that the promoted constants 630 // get a chance to be merged 631 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) 632 addPass(createAArch64PromoteConstantPass()); 633 // FIXME: On AArch64, this depends on the type. 634 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 635 // and the offset has to be a multiple of the related size in bytes. 636 if ((TM->getOptLevel() != CodeGenOpt::None && 637 EnableGlobalMerge == cl::BOU_UNSET) || 638 EnableGlobalMerge == cl::BOU_TRUE) { 639 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 640 (EnableGlobalMerge == cl::BOU_UNSET); 641 642 // Merging of extern globals is enabled by default on non-Mach-O as we 643 // expect it to be generally either beneficial or harmless. On Mach-O it 644 // is disabled as we emit the .subsections_via_symbols directive which 645 // means that merging extern globals is not safe. 646 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 647 648 // FIXME: extern global merging is only enabled when we optimise for size 649 // because there are some regressions with it also enabled for performance. 650 if (!OnlyOptimizeForSize) 651 MergeExternalByDefault = false; 652 653 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, 654 MergeExternalByDefault)); 655 } 656 657 return false; 658 } 659 660 void AArch64PassConfig::addCodeGenPrepare() { 661 if (getOptLevel() != CodeGenOpt::None) 662 addPass(createTypePromotionLegacyPass()); 663 TargetPassConfig::addCodeGenPrepare(); 664 } 665 666 bool AArch64PassConfig::addInstSelector() { 667 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 668 669 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 670 // references to _TLS_MODULE_BASE_ as possible. 671 if (TM->getTargetTriple().isOSBinFormatELF() && 672 getOptLevel() != CodeGenOpt::None) 673 addPass(createAArch64CleanupLocalDynamicTLSPass()); 674 675 return false; 676 } 677 678 bool AArch64PassConfig::addIRTranslator() { 679 addPass(new IRTranslator(getOptLevel())); 680 return false; 681 } 682 683 void AArch64PassConfig::addPreLegalizeMachineIR() { 684 if (getOptLevel() == CodeGenOpt::None) { 685 addPass(createAArch64O0PreLegalizerCombiner()); 686 addPass(new Localizer()); 687 } else { 688 addPass(createAArch64PreLegalizerCombiner()); 689 addPass(new Localizer()); 690 if (EnableGISelLoadStoreOptPreLegal) 691 addPass(new LoadStoreOpt()); 692 } 693 } 694 695 bool AArch64PassConfig::addLegalizeMachineIR() { 696 addPass(new Legalizer()); 697 return false; 698 } 699 700 void AArch64PassConfig::addPreRegBankSelect() { 701 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 702 if (!IsOptNone) { 703 addPass(createAArch64PostLegalizerCombiner(IsOptNone)); 704 if (EnableGISelLoadStoreOptPostLegal) 705 addPass(new LoadStoreOpt()); 706 } 707 addPass(createAArch64PostLegalizerLowering()); 708 } 709 710 bool AArch64PassConfig::addRegBankSelect() { 711 addPass(new RegBankSelect()); 712 return false; 713 } 714 715 bool AArch64PassConfig::addGlobalInstructionSelect() { 716 addPass(new InstructionSelect(getOptLevel())); 717 if (getOptLevel() != CodeGenOpt::None) 718 addPass(createAArch64PostSelectOptimize()); 719 return false; 720 } 721 722 void AArch64PassConfig::addMachineSSAOptimization() { 723 // Run default MachineSSAOptimization first. 724 TargetPassConfig::addMachineSSAOptimization(); 725 726 if (TM->getOptLevel() != CodeGenOpt::None) 727 addPass(createAArch64MIPeepholeOptPass()); 728 } 729 730 bool AArch64PassConfig::addILPOpts() { 731 if (EnableCondOpt) 732 addPass(createAArch64ConditionOptimizerPass()); 733 if (EnableCCMP) 734 addPass(createAArch64ConditionalCompares()); 735 if (EnableMCR) 736 addPass(&MachineCombinerID); 737 if (EnableCondBrTuning) 738 addPass(createAArch64CondBrTuning()); 739 if (EnableEarlyIfConversion) 740 addPass(&EarlyIfConverterID); 741 if (EnableStPairSuppress) 742 addPass(createAArch64StorePairSuppressPass()); 743 addPass(createAArch64SIMDInstrOptPass()); 744 if (TM->getOptLevel() != CodeGenOpt::None) 745 addPass(createAArch64StackTaggingPreRAPass()); 746 return true; 747 } 748 749 void AArch64PassConfig::addPreRegAlloc() { 750 // Change dead register definitions to refer to the zero register. 751 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) 752 addPass(createAArch64DeadRegisterDefinitions()); 753 754 // Use AdvSIMD scalar instructions whenever profitable. 755 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { 756 addPass(createAArch64AdvSIMDScalar()); 757 // The AdvSIMD pass may produce copies that can be rewritten to 758 // be register coalescer friendly. 759 addPass(&PeepholeOptimizerID); 760 } 761 } 762 763 void AArch64PassConfig::addPostRegAlloc() { 764 // Remove redundant copy instructions. 765 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) 766 addPass(createAArch64RedundantCopyEliminationPass()); 767 768 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) 769 // Improve performance for some FP/SIMD code for A57. 770 addPass(createAArch64A57FPLoadBalancing()); 771 } 772 773 void AArch64PassConfig::addPreSched2() { 774 // Lower homogeneous frame instructions 775 if (EnableHomogeneousPrologEpilog) 776 addPass(createAArch64LowerHomogeneousPrologEpilogPass()); 777 // Expand some pseudo instructions to allow proper scheduling. 778 addPass(createAArch64ExpandPseudoPass()); 779 // Use load/store pair instructions when possible. 780 if (TM->getOptLevel() != CodeGenOpt::None) { 781 if (EnableLoadStoreOpt) 782 addPass(createAArch64LoadStoreOptimizationPass()); 783 } 784 // Emit KCFI checks for indirect calls. 785 addPass(createKCFIPass()); 786 787 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 788 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 789 // Therefore, run the AArch64SpeculationHardeningPass before the 790 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 791 // info. 792 addPass(createAArch64SpeculationHardeningPass()); 793 794 addPass(createAArch64IndirectThunks()); 795 addPass(createAArch64SLSHardeningPass()); 796 797 if (TM->getOptLevel() != CodeGenOpt::None) { 798 if (EnableFalkorHWPFFix) 799 addPass(createFalkorHWPFFixPass()); 800 } 801 } 802 803 void AArch64PassConfig::addPreEmitPass() { 804 // Machine Block Placement might have created new opportunities when run 805 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 806 // Run the load/store optimizer once more. 807 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) 808 addPass(createAArch64LoadStoreOptimizationPass()); 809 810 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && 811 EnableAArch64CopyPropagation) 812 addPass(createMachineCopyPropagationPass(true)); 813 814 addPass(createAArch64A53Fix835769()); 815 816 if (EnableBranchTargets) 817 addPass(createAArch64BranchTargetsPass()); 818 819 if (TM->getTargetTriple().isOSWindows()) { 820 // Identify valid longjmp targets for Windows Control Flow Guard. 821 addPass(createCFGuardLongjmpPass()); 822 // Identify valid eh continuation targets for Windows EHCont Guard. 823 addPass(createEHContGuardCatchretPass()); 824 } 825 826 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && 827 TM->getTargetTriple().isOSBinFormatMachO()) 828 addPass(createAArch64CollectLOHPass()); 829 } 830 831 void AArch64PassConfig::addPostBBSections() { 832 // Relax conditional branch instructions if they're otherwise out of 833 // range of their destination. 834 if (BranchRelaxation) 835 addPass(&BranchRelaxationPassID); 836 837 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) 838 addPass(createAArch64CompressJumpTablesPass()); 839 } 840 841 void AArch64PassConfig::addPreEmitPass2() { 842 // SVE bundles move prefixes with destructive operations. BLR_RVMARKER pseudo 843 // instructions are lowered to bundles as well. 844 addPass(createUnpackMachineBundles(nullptr)); 845 } 846 847 MachineFunctionInfo *AArch64TargetMachine::createMachineFunctionInfo( 848 BumpPtrAllocator &Allocator, const Function &F, 849 const TargetSubtargetInfo *STI) const { 850 return AArch64FunctionInfo::create<AArch64FunctionInfo>( 851 Allocator, F, static_cast<const AArch64Subtarget *>(STI)); 852 } 853 854 yaml::MachineFunctionInfo * 855 AArch64TargetMachine::createDefaultFuncInfoYAML() const { 856 return new yaml::AArch64FunctionInfo(); 857 } 858 859 yaml::MachineFunctionInfo * 860 AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 861 const auto *MFI = MF.getInfo<AArch64FunctionInfo>(); 862 return new yaml::AArch64FunctionInfo(*MFI); 863 } 864 865 bool AArch64TargetMachine::parseMachineFunctionInfo( 866 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 867 SMDiagnostic &Error, SMRange &SourceRange) const { 868 const auto &YamlMFI = static_cast<const yaml::AArch64FunctionInfo &>(MFI); 869 MachineFunction &MF = PFS.MF; 870 MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI); 871 return false; 872 } 873