1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MachineFunctionInfo.h" 15 #include "AArch64MachineScheduler.h" 16 #include "AArch64MacroFusion.h" 17 #include "AArch64Subtarget.h" 18 #include "AArch64TargetObjectFile.h" 19 #include "AArch64TargetTransformInfo.h" 20 #include "MCTargetDesc/AArch64MCTargetDesc.h" 21 #include "TargetInfo/AArch64TargetInfo.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/CFIFixup.h" 26 #include "llvm/CodeGen/CSEConfigBase.h" 27 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 28 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 30 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 31 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" 32 #include "llvm/CodeGen/GlobalISel/Localizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/MC/MCTargetOptions.h" 44 #include "llvm/MC/TargetRegistry.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Passes/PassBuilder.h" 47 #include "llvm/Support/CodeGen.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Target/TargetLoweringObjectFile.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/TargetParser/Triple.h" 52 #include "llvm/Transforms/CFGuard.h" 53 #include "llvm/Transforms/Scalar.h" 54 #include "llvm/Transforms/Vectorize/LoopIdiomVectorize.h" 55 #include <memory> 56 #include <optional> 57 #include <string> 58 59 using namespace llvm; 60 61 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 62 cl::desc("Enable the CCMP formation pass"), 63 cl::init(true), cl::Hidden); 64 65 static cl::opt<bool> 66 EnableCondBrTuning("aarch64-enable-cond-br-tune", 67 cl::desc("Enable the conditional branch tuning pass"), 68 cl::init(true), cl::Hidden); 69 70 static cl::opt<bool> EnableAArch64CopyPropagation( 71 "aarch64-enable-copy-propagation", 72 cl::desc("Enable the copy propagation with AArch64 copy instr"), 73 cl::init(true), cl::Hidden); 74 75 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 76 cl::desc("Enable the machine combiner pass"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 80 cl::desc("Suppress STP for AArch64"), 81 cl::init(true), cl::Hidden); 82 83 static cl::opt<bool> EnableAdvSIMDScalar( 84 "aarch64-enable-simd-scalar", 85 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 86 cl::init(false), cl::Hidden); 87 88 static cl::opt<bool> 89 EnablePromoteConstant("aarch64-enable-promote-const", 90 cl::desc("Enable the promote constant pass"), 91 cl::init(true), cl::Hidden); 92 93 static cl::opt<bool> EnableCollectLOH( 94 "aarch64-enable-collect-loh", 95 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 96 cl::init(true), cl::Hidden); 97 98 static cl::opt<bool> 99 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 100 cl::desc("Enable the pass that removes dead" 101 " definitons and replaces stores to" 102 " them with stores to the zero" 103 " register"), 104 cl::init(true)); 105 106 static cl::opt<bool> EnableRedundantCopyElimination( 107 "aarch64-enable-copyelim", 108 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 109 cl::Hidden); 110 111 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 112 cl::desc("Enable the load/store pair" 113 " optimization pass"), 114 cl::init(true), cl::Hidden); 115 116 static cl::opt<bool> EnableAtomicTidy( 117 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 118 cl::desc("Run SimplifyCFG after expanding atomic operations" 119 " to make use of cmpxchg flow-based information"), 120 cl::init(true)); 121 122 static cl::opt<bool> 123 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 124 cl::desc("Run early if-conversion"), 125 cl::init(true)); 126 127 static cl::opt<bool> 128 EnableCondOpt("aarch64-enable-condopt", 129 cl::desc("Enable the condition optimizer pass"), 130 cl::init(true), cl::Hidden); 131 132 static cl::opt<bool> 133 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 134 cl::desc("Enable optimizations on complex GEPs"), 135 cl::init(false)); 136 137 static cl::opt<bool> 138 EnableSelectOpt("aarch64-select-opt", cl::Hidden, 139 cl::desc("Enable select to branch optimizations"), 140 cl::init(true)); 141 142 static cl::opt<bool> 143 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 144 cl::desc("Relax out of range conditional branches")); 145 146 static cl::opt<bool> EnableCompressJumpTables( 147 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 148 cl::desc("Use smallest entry possible for jump tables")); 149 150 // FIXME: Unify control over GlobalMerge. 151 static cl::opt<cl::boolOrDefault> 152 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 153 cl::desc("Enable the global merge pass")); 154 155 static cl::opt<bool> 156 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 157 cl::desc("Enable the loop data prefetch pass"), 158 cl::init(true)); 159 160 static cl::opt<int> EnableGlobalISelAtO( 161 "aarch64-enable-global-isel-at-O", cl::Hidden, 162 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 163 cl::init(0)); 164 165 static cl::opt<bool> 166 EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden, 167 cl::desc("Enable SVE intrinsic opts"), 168 cl::init(true)); 169 170 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 171 cl::init(true), cl::Hidden); 172 173 static cl::opt<bool> 174 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 175 cl::desc("Enable the AArch64 branch target pass"), 176 cl::init(true)); 177 178 static cl::opt<unsigned> SVEVectorBitsMaxOpt( 179 "aarch64-sve-vector-bits-max", 180 cl::desc("Assume SVE vector registers are at most this big, " 181 "with zero meaning no maximum size is assumed."), 182 cl::init(0), cl::Hidden); 183 184 static cl::opt<unsigned> SVEVectorBitsMinOpt( 185 "aarch64-sve-vector-bits-min", 186 cl::desc("Assume SVE vector registers are at least this big, " 187 "with zero meaning no minimum size is assumed."), 188 cl::init(0), cl::Hidden); 189 190 static cl::opt<bool> ForceStreaming( 191 "force-streaming", 192 cl::desc("Force the use of streaming code for all functions"), 193 cl::init(false), cl::Hidden); 194 195 static cl::opt<bool> ForceStreamingCompatible( 196 "force-streaming-compatible", 197 cl::desc("Force the use of streaming-compatible code for all functions"), 198 cl::init(false), cl::Hidden); 199 200 extern cl::opt<bool> EnableHomogeneousPrologEpilog; 201 202 static cl::opt<bool> EnableGISelLoadStoreOptPreLegal( 203 "aarch64-enable-gisel-ldst-prelegal", 204 cl::desc("Enable GlobalISel's pre-legalizer load/store optimization pass"), 205 cl::init(true), cl::Hidden); 206 207 static cl::opt<bool> EnableGISelLoadStoreOptPostLegal( 208 "aarch64-enable-gisel-ldst-postlegal", 209 cl::desc("Enable GlobalISel's post-legalizer load/store optimization pass"), 210 cl::init(false), cl::Hidden); 211 212 static cl::opt<bool> 213 EnableSinkFold("aarch64-enable-sink-fold", 214 cl::desc("Enable sinking and folding of instruction copies"), 215 cl::init(true), cl::Hidden); 216 217 static cl::opt<bool> 218 EnableMachinePipeliner("aarch64-enable-pipeliner", 219 cl::desc("Enable Machine Pipeliner for AArch64"), 220 cl::init(false), cl::Hidden); 221 222 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { 223 // Register the target. 224 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 225 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 226 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 227 RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target()); 228 RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target()); 229 auto PR = PassRegistry::getPassRegistry(); 230 initializeGlobalISel(*PR); 231 initializeAArch64A53Fix835769Pass(*PR); 232 initializeAArch64A57FPLoadBalancingPass(*PR); 233 initializeAArch64AdvSIMDScalarPass(*PR); 234 initializeAArch64BranchTargetsPass(*PR); 235 initializeAArch64CollectLOHPass(*PR); 236 initializeAArch64CompressJumpTablesPass(*PR); 237 initializeAArch64ConditionalComparesPass(*PR); 238 initializeAArch64ConditionOptimizerPass(*PR); 239 initializeAArch64DeadRegisterDefinitionsPass(*PR); 240 initializeAArch64ExpandPseudoPass(*PR); 241 initializeAArch64LoadStoreOptPass(*PR); 242 initializeAArch64MIPeepholeOptPass(*PR); 243 initializeAArch64SIMDInstrOptPass(*PR); 244 initializeAArch64O0PreLegalizerCombinerPass(*PR); 245 initializeAArch64PreLegalizerCombinerPass(*PR); 246 initializeAArch64PointerAuthPass(*PR); 247 initializeAArch64PostCoalescerPass(*PR); 248 initializeAArch64PostLegalizerCombinerPass(*PR); 249 initializeAArch64PostLegalizerLoweringPass(*PR); 250 initializeAArch64PostSelectOptimizePass(*PR); 251 initializeAArch64PromoteConstantPass(*PR); 252 initializeAArch64RedundantCopyEliminationPass(*PR); 253 initializeAArch64StorePairSuppressPass(*PR); 254 initializeFalkorHWPFFixPass(*PR); 255 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 256 initializeLDTLSCleanupPass(*PR); 257 initializeKCFIPass(*PR); 258 initializeSMEABIPass(*PR); 259 initializeSVEIntrinsicOptsPass(*PR); 260 initializeAArch64SpeculationHardeningPass(*PR); 261 initializeAArch64SLSHardeningPass(*PR); 262 initializeAArch64StackTaggingPass(*PR); 263 initializeAArch64StackTaggingPreRAPass(*PR); 264 initializeAArch64LowerHomogeneousPrologEpilogPass(*PR); 265 initializeAArch64DAGToDAGISelLegacyPass(*PR); 266 initializeAArch64GlobalsTaggingPass(*PR); 267 } 268 269 //===----------------------------------------------------------------------===// 270 // AArch64 Lowering public interface. 271 //===----------------------------------------------------------------------===// 272 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 273 if (TT.isOSBinFormatMachO()) 274 return std::make_unique<AArch64_MachoTargetObjectFile>(); 275 if (TT.isOSBinFormatCOFF()) 276 return std::make_unique<AArch64_COFFTargetObjectFile>(); 277 278 return std::make_unique<AArch64_ELFTargetObjectFile>(); 279 } 280 281 // Helper function to build a DataLayout string 282 static std::string computeDataLayout(const Triple &TT, 283 const MCTargetOptions &Options, 284 bool LittleEndian) { 285 if (TT.isOSBinFormatMachO()) { 286 if (TT.getArch() == Triple::aarch64_32) 287 return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128-Fn32"; 288 return "e-m:o-i64:64-i128:128-n32:64-S128-Fn32"; 289 } 290 if (TT.isOSBinFormatCOFF()) 291 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128-Fn32"; 292 std::string Endian = LittleEndian ? "e" : "E"; 293 std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : ""; 294 return Endian + "-m:e" + Ptr32 + 295 "-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128-Fn32"; 296 } 297 298 static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) { 299 if (CPU.empty() && TT.isArm64e()) 300 return "apple-a12"; 301 return CPU; 302 } 303 304 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 305 std::optional<Reloc::Model> RM) { 306 // AArch64 Darwin and Windows are always PIC. 307 if (TT.isOSDarwin() || TT.isOSWindows()) 308 return Reloc::PIC_; 309 // On ELF platforms the default static relocation model has a smart enough 310 // linker to cope with referencing external symbols defined in a shared 311 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 312 if (!RM || *RM == Reloc::DynamicNoPIC) 313 return Reloc::Static; 314 return *RM; 315 } 316 317 static CodeModel::Model 318 getEffectiveAArch64CodeModel(const Triple &TT, 319 std::optional<CodeModel::Model> CM, bool JIT) { 320 if (CM) { 321 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 322 *CM != CodeModel::Large) { 323 report_fatal_error( 324 "Only small, tiny and large code models are allowed on AArch64"); 325 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 326 report_fatal_error("tiny code model is only supported on ELF"); 327 return *CM; 328 } 329 // The default MCJIT memory managers make no guarantees about where they can 330 // find an executable page; JITed code needs to be able to refer to globals 331 // no matter how far away they are. 332 // We should set the CodeModel::Small for Windows ARM64 in JIT mode, 333 // since with large code model LLVM generating 4 MOV instructions, and 334 // Windows doesn't support relocating these long branch (4 MOVs). 335 if (JIT && !TT.isOSWindows()) 336 return CodeModel::Large; 337 return CodeModel::Small; 338 } 339 340 /// Create an AArch64 architecture model. 341 /// 342 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 343 StringRef CPU, StringRef FS, 344 const TargetOptions &Options, 345 std::optional<Reloc::Model> RM, 346 std::optional<CodeModel::Model> CM, 347 CodeGenOptLevel OL, bool JIT, 348 bool LittleEndian) 349 : LLVMTargetMachine(T, 350 computeDataLayout(TT, Options.MCOptions, LittleEndian), 351 TT, computeDefaultCPU(TT, CPU), FS, Options, 352 getEffectiveRelocModel(TT, RM), 353 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 354 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 355 initAsmInfo(); 356 357 if (TT.isOSBinFormatMachO()) { 358 this->Options.TrapUnreachable = true; 359 this->Options.NoTrapAfterNoreturn = true; 360 } 361 362 if (getMCAsmInfo()->usesWindowsCFI()) { 363 // Unwinding can get confused if the last instruction in an 364 // exception-handling region (function, funclet, try block, etc.) 365 // is a call. 366 // 367 // FIXME: We could elide the trap if the next instruction would be in 368 // the same region anyway. 369 this->Options.TrapUnreachable = true; 370 } 371 372 if (this->Options.TLSSize == 0) // default 373 this->Options.TLSSize = 24; 374 if ((getCodeModel() == CodeModel::Small || 375 getCodeModel() == CodeModel::Kernel) && 376 this->Options.TLSSize > 32) 377 // for the small (and kernel) code model, the maximum TLS size is 4GiB 378 this->Options.TLSSize = 32; 379 else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) 380 // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) 381 this->Options.TLSSize = 24; 382 383 // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is 384 // MachO/CodeModel::Large, which GlobalISel does not support. 385 if (static_cast<int>(getOptLevel()) <= EnableGlobalISelAtO && 386 TT.getArch() != Triple::aarch64_32 && 387 TT.getEnvironment() != Triple::GNUILP32 && 388 !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { 389 setGlobalISel(true); 390 setGlobalISelAbort(GlobalISelAbortMode::Disable); 391 } 392 393 // AArch64 supports the MachineOutliner. 394 setMachineOutliner(true); 395 396 // AArch64 supports default outlining behaviour. 397 setSupportsDefaultOutlining(true); 398 399 // AArch64 supports the debug entry values. 400 setSupportsDebugEntryValues(true); 401 402 // AArch64 supports fixing up the DWARF unwind information. 403 if (!getMCAsmInfo()->usesWindowsCFI()) 404 setCFIFixup(true); 405 } 406 407 AArch64TargetMachine::~AArch64TargetMachine() = default; 408 409 const AArch64Subtarget * 410 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 411 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 412 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 413 Attribute FSAttr = F.getFnAttribute("target-features"); 414 415 StringRef CPU = CPUAttr.isValid() ? CPUAttr.getValueAsString() : TargetCPU; 416 StringRef TuneCPU = TuneAttr.isValid() ? TuneAttr.getValueAsString() : CPU; 417 StringRef FS = FSAttr.isValid() ? FSAttr.getValueAsString() : TargetFS; 418 bool HasMinSize = F.hasMinSize(); 419 420 bool IsStreaming = ForceStreaming || 421 F.hasFnAttribute("aarch64_pstate_sm_enabled") || 422 F.hasFnAttribute("aarch64_pstate_sm_body"); 423 bool IsStreamingCompatible = ForceStreamingCompatible || 424 F.hasFnAttribute("aarch64_pstate_sm_compatible"); 425 426 unsigned MinSVEVectorSize = 0; 427 unsigned MaxSVEVectorSize = 0; 428 if (F.hasFnAttribute(Attribute::VScaleRange)) { 429 ConstantRange CR = getVScaleRange(&F, 64); 430 MinSVEVectorSize = CR.getUnsignedMin().getZExtValue() * 128; 431 MaxSVEVectorSize = CR.getUnsignedMax().getZExtValue() * 128; 432 } else { 433 MinSVEVectorSize = SVEVectorBitsMinOpt; 434 MaxSVEVectorSize = SVEVectorBitsMaxOpt; 435 } 436 437 assert(MinSVEVectorSize % 128 == 0 && 438 "SVE requires vector length in multiples of 128!"); 439 assert(MaxSVEVectorSize % 128 == 0 && 440 "SVE requires vector length in multiples of 128!"); 441 assert((MaxSVEVectorSize >= MinSVEVectorSize || MaxSVEVectorSize == 0) && 442 "Minimum SVE vector size should not be larger than its maximum!"); 443 444 // Sanitize user input in case of no asserts 445 if (MaxSVEVectorSize != 0) { 446 MinSVEVectorSize = std::min(MinSVEVectorSize, MaxSVEVectorSize); 447 MaxSVEVectorSize = std::max(MinSVEVectorSize, MaxSVEVectorSize); 448 } 449 450 SmallString<512> Key; 451 raw_svector_ostream(Key) << "SVEMin" << MinSVEVectorSize << "SVEMax" 452 << MaxSVEVectorSize << "IsStreaming=" << IsStreaming 453 << "IsStreamingCompatible=" << IsStreamingCompatible 454 << CPU << TuneCPU << FS 455 << "HasMinSize=" << HasMinSize; 456 457 auto &I = SubtargetMap[Key]; 458 if (!I) { 459 // This needs to be done before we create a new subtarget since any 460 // creation will depend on the TM and the code generation flags on the 461 // function that reside in TargetOptions. 462 resetTargetOptions(F); 463 I = std::make_unique<AArch64Subtarget>( 464 TargetTriple, CPU, TuneCPU, FS, *this, isLittle, MinSVEVectorSize, 465 MaxSVEVectorSize, IsStreaming, IsStreamingCompatible, HasMinSize); 466 } 467 468 assert((!IsStreaming || I->hasSME()) && "Expected SME to be available"); 469 470 return I.get(); 471 } 472 473 void AArch64leTargetMachine::anchor() { } 474 475 AArch64leTargetMachine::AArch64leTargetMachine( 476 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 477 const TargetOptions &Options, std::optional<Reloc::Model> RM, 478 std::optional<CodeModel::Model> CM, CodeGenOptLevel OL, bool JIT) 479 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 480 481 void AArch64beTargetMachine::anchor() { } 482 483 AArch64beTargetMachine::AArch64beTargetMachine( 484 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 485 const TargetOptions &Options, std::optional<Reloc::Model> RM, 486 std::optional<CodeModel::Model> CM, CodeGenOptLevel OL, bool JIT) 487 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 488 489 namespace { 490 491 /// AArch64 Code Generator Pass Configuration Options. 492 class AArch64PassConfig : public TargetPassConfig { 493 public: 494 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 495 : TargetPassConfig(TM, PM) { 496 if (TM.getOptLevel() != CodeGenOptLevel::None) 497 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 498 setEnableSinkAndFold(EnableSinkFold); 499 } 500 501 AArch64TargetMachine &getAArch64TargetMachine() const { 502 return getTM<AArch64TargetMachine>(); 503 } 504 505 ScheduleDAGInstrs * 506 createMachineScheduler(MachineSchedContext *C) const override { 507 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 508 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 509 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 510 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 511 if (ST.hasFusion()) 512 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 513 return DAG; 514 } 515 516 ScheduleDAGInstrs * 517 createPostMachineScheduler(MachineSchedContext *C) const override { 518 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 519 ScheduleDAGMI *DAG = 520 new ScheduleDAGMI(C, std::make_unique<AArch64PostRASchedStrategy>(C), 521 /* RemoveKillFlags=*/true); 522 if (ST.hasFusion()) { 523 // Run the Macro Fusion after RA again since literals are expanded from 524 // pseudos then (v. addPreSched2()). 525 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 526 return DAG; 527 } 528 529 return DAG; 530 } 531 532 void addIRPasses() override; 533 bool addPreISel() override; 534 void addCodeGenPrepare() override; 535 bool addInstSelector() override; 536 bool addIRTranslator() override; 537 void addPreLegalizeMachineIR() override; 538 bool addLegalizeMachineIR() override; 539 void addPreRegBankSelect() override; 540 bool addRegBankSelect() override; 541 bool addGlobalInstructionSelect() override; 542 void addMachineSSAOptimization() override; 543 bool addILPOpts() override; 544 void addPreRegAlloc() override; 545 void addPostRegAlloc() override; 546 void addPreSched2() override; 547 void addPreEmitPass() override; 548 void addPostBBSections() override; 549 void addPreEmitPass2() override; 550 bool addRegAssignAndRewriteOptimized() override; 551 552 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 553 }; 554 555 } // end anonymous namespace 556 557 void AArch64TargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) { 558 559 PB.registerLateLoopOptimizationsEPCallback( 560 [=](LoopPassManager &LPM, OptimizationLevel Level) { 561 LPM.addPass(LoopIdiomVectorizePass()); 562 }); 563 } 564 565 TargetTransformInfo 566 AArch64TargetMachine::getTargetTransformInfo(const Function &F) const { 567 return TargetTransformInfo(AArch64TTIImpl(this, F)); 568 } 569 570 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 571 return new AArch64PassConfig(*this, PM); 572 } 573 574 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { 575 return getStandardCSEConfigForOpt(TM->getOptLevel()); 576 } 577 578 void AArch64PassConfig::addIRPasses() { 579 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 580 // ourselves. 581 addPass(createAtomicExpandLegacyPass()); 582 583 // Expand any SVE vector library calls that we can't code generate directly. 584 if (EnableSVEIntrinsicOpts && 585 TM->getOptLevel() == CodeGenOptLevel::Aggressive) 586 addPass(createSVEIntrinsicOptsPass()); 587 588 // Cmpxchg instructions are often used with a subsequent comparison to 589 // determine whether it succeeded. We can exploit existing control-flow in 590 // ldrex/strex loops to simplify this, but it needs tidying up. 591 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableAtomicTidy) 592 addPass(createCFGSimplificationPass(SimplifyCFGOptions() 593 .forwardSwitchCondToPhi(true) 594 .convertSwitchRangeToICmp(true) 595 .convertSwitchToLookupTable(true) 596 .needCanonicalLoops(false) 597 .hoistCommonInsts(true) 598 .sinkCommonInsts(true))); 599 600 // Run LoopDataPrefetch 601 // 602 // Run this before LSR to remove the multiplies involved in computing the 603 // pointer values N iterations ahead. 604 if (TM->getOptLevel() != CodeGenOptLevel::None) { 605 if (EnableLoopDataPrefetch) 606 addPass(createLoopDataPrefetchPass()); 607 if (EnableFalkorHWPFFix) 608 addPass(createFalkorMarkStridedAccessesPass()); 609 } 610 611 if (EnableGEPOpt) { 612 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 613 // and lower a GEP with multiple indices to either arithmetic operations or 614 // multiple GEPs with single index. 615 addPass(createSeparateConstOffsetFromGEPPass(true)); 616 // Call EarlyCSE pass to find and remove subexpressions in the lowered 617 // result. 618 addPass(createEarlyCSEPass()); 619 // Do loop invariant code motion in case part of the lowered result is 620 // invariant. 621 addPass(createLICMPass()); 622 } 623 624 TargetPassConfig::addIRPasses(); 625 626 if (getOptLevel() == CodeGenOptLevel::Aggressive && EnableSelectOpt) 627 addPass(createSelectOptimizePass()); 628 629 addPass(createAArch64GlobalsTaggingPass()); 630 addPass(createAArch64StackTaggingPass( 631 /*IsOptNone=*/TM->getOptLevel() == CodeGenOptLevel::None)); 632 633 // Match complex arithmetic patterns 634 if (TM->getOptLevel() >= CodeGenOptLevel::Default) 635 addPass(createComplexDeinterleavingPass(TM)); 636 637 // Match interleaved memory accesses to ldN/stN intrinsics. 638 if (TM->getOptLevel() != CodeGenOptLevel::None) { 639 addPass(createInterleavedLoadCombinePass()); 640 addPass(createInterleavedAccessPass()); 641 } 642 643 // Expand any functions marked with SME attributes which require special 644 // changes for the calling convention or that require the lazy-saving 645 // mechanism specified in the SME ABI. 646 addPass(createSMEABIPass()); 647 648 // Add Control Flow Guard checks. 649 if (TM->getTargetTriple().isOSWindows()) { 650 if (TM->getTargetTriple().isWindowsArm64EC()) 651 addPass(createAArch64Arm64ECCallLoweringPass()); 652 else 653 addPass(createCFGuardCheckPass()); 654 } 655 656 if (TM->Options.JMCInstrument) 657 addPass(createJMCInstrumenterPass()); 658 } 659 660 // Pass Pipeline Configuration 661 bool AArch64PassConfig::addPreISel() { 662 // Run promote constant before global merge, so that the promoted constants 663 // get a chance to be merged 664 if (TM->getOptLevel() != CodeGenOptLevel::None && EnablePromoteConstant) 665 addPass(createAArch64PromoteConstantPass()); 666 // FIXME: On AArch64, this depends on the type. 667 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 668 // and the offset has to be a multiple of the related size in bytes. 669 if ((TM->getOptLevel() != CodeGenOptLevel::None && 670 EnableGlobalMerge == cl::BOU_UNSET) || 671 EnableGlobalMerge == cl::BOU_TRUE) { 672 bool OnlyOptimizeForSize = 673 (TM->getOptLevel() < CodeGenOptLevel::Aggressive) && 674 (EnableGlobalMerge == cl::BOU_UNSET); 675 676 // Merging of extern globals is enabled by default on non-Mach-O as we 677 // expect it to be generally either beneficial or harmless. On Mach-O it 678 // is disabled as we emit the .subsections_via_symbols directive which 679 // means that merging extern globals is not safe. 680 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 681 682 // FIXME: extern global merging is only enabled when we optimise for size 683 // because there are some regressions with it also enabled for performance. 684 if (!OnlyOptimizeForSize) 685 MergeExternalByDefault = false; 686 687 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, 688 MergeExternalByDefault)); 689 } 690 691 return false; 692 } 693 694 void AArch64PassConfig::addCodeGenPrepare() { 695 if (getOptLevel() != CodeGenOptLevel::None) 696 addPass(createTypePromotionLegacyPass()); 697 TargetPassConfig::addCodeGenPrepare(); 698 } 699 700 bool AArch64PassConfig::addInstSelector() { 701 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 702 703 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 704 // references to _TLS_MODULE_BASE_ as possible. 705 if (TM->getTargetTriple().isOSBinFormatELF() && 706 getOptLevel() != CodeGenOptLevel::None) 707 addPass(createAArch64CleanupLocalDynamicTLSPass()); 708 709 return false; 710 } 711 712 bool AArch64PassConfig::addIRTranslator() { 713 addPass(new IRTranslator(getOptLevel())); 714 return false; 715 } 716 717 void AArch64PassConfig::addPreLegalizeMachineIR() { 718 if (getOptLevel() == CodeGenOptLevel::None) { 719 addPass(createAArch64O0PreLegalizerCombiner()); 720 addPass(new Localizer()); 721 } else { 722 addPass(createAArch64PreLegalizerCombiner()); 723 addPass(new Localizer()); 724 if (EnableGISelLoadStoreOptPreLegal) 725 addPass(new LoadStoreOpt()); 726 } 727 } 728 729 bool AArch64PassConfig::addLegalizeMachineIR() { 730 addPass(new Legalizer()); 731 return false; 732 } 733 734 void AArch64PassConfig::addPreRegBankSelect() { 735 bool IsOptNone = getOptLevel() == CodeGenOptLevel::None; 736 if (!IsOptNone) { 737 addPass(createAArch64PostLegalizerCombiner(IsOptNone)); 738 if (EnableGISelLoadStoreOptPostLegal) 739 addPass(new LoadStoreOpt()); 740 } 741 addPass(createAArch64PostLegalizerLowering()); 742 } 743 744 bool AArch64PassConfig::addRegBankSelect() { 745 addPass(new RegBankSelect()); 746 return false; 747 } 748 749 bool AArch64PassConfig::addGlobalInstructionSelect() { 750 addPass(new InstructionSelect(getOptLevel())); 751 if (getOptLevel() != CodeGenOptLevel::None) 752 addPass(createAArch64PostSelectOptimize()); 753 return false; 754 } 755 756 void AArch64PassConfig::addMachineSSAOptimization() { 757 // Run default MachineSSAOptimization first. 758 TargetPassConfig::addMachineSSAOptimization(); 759 760 if (TM->getOptLevel() != CodeGenOptLevel::None) 761 addPass(createAArch64MIPeepholeOptPass()); 762 } 763 764 bool AArch64PassConfig::addILPOpts() { 765 if (EnableCondOpt) 766 addPass(createAArch64ConditionOptimizerPass()); 767 if (EnableCCMP) 768 addPass(createAArch64ConditionalCompares()); 769 if (EnableMCR) 770 addPass(&MachineCombinerID); 771 if (EnableCondBrTuning) 772 addPass(createAArch64CondBrTuning()); 773 if (EnableEarlyIfConversion) 774 addPass(&EarlyIfConverterID); 775 if (EnableStPairSuppress) 776 addPass(createAArch64StorePairSuppressPass()); 777 addPass(createAArch64SIMDInstrOptPass()); 778 if (TM->getOptLevel() != CodeGenOptLevel::None) 779 addPass(createAArch64StackTaggingPreRAPass()); 780 return true; 781 } 782 783 void AArch64PassConfig::addPreRegAlloc() { 784 // Change dead register definitions to refer to the zero register. 785 if (TM->getOptLevel() != CodeGenOptLevel::None && 786 EnableDeadRegisterElimination) 787 addPass(createAArch64DeadRegisterDefinitions()); 788 789 // Use AdvSIMD scalar instructions whenever profitable. 790 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableAdvSIMDScalar) { 791 addPass(createAArch64AdvSIMDScalar()); 792 // The AdvSIMD pass may produce copies that can be rewritten to 793 // be register coalescer friendly. 794 addPass(&PeepholeOptimizerID); 795 } 796 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableMachinePipeliner) 797 addPass(&MachinePipelinerID); 798 } 799 800 void AArch64PassConfig::addPostRegAlloc() { 801 // Remove redundant copy instructions. 802 if (TM->getOptLevel() != CodeGenOptLevel::None && 803 EnableRedundantCopyElimination) 804 addPass(createAArch64RedundantCopyEliminationPass()); 805 806 if (TM->getOptLevel() != CodeGenOptLevel::None && usingDefaultRegAlloc()) 807 // Improve performance for some FP/SIMD code for A57. 808 addPass(createAArch64A57FPLoadBalancing()); 809 } 810 811 void AArch64PassConfig::addPreSched2() { 812 // Lower homogeneous frame instructions 813 if (EnableHomogeneousPrologEpilog) 814 addPass(createAArch64LowerHomogeneousPrologEpilogPass()); 815 // Expand some pseudo instructions to allow proper scheduling. 816 addPass(createAArch64ExpandPseudoPass()); 817 // Use load/store pair instructions when possible. 818 if (TM->getOptLevel() != CodeGenOptLevel::None) { 819 if (EnableLoadStoreOpt) 820 addPass(createAArch64LoadStoreOptimizationPass()); 821 } 822 // Emit KCFI checks for indirect calls. 823 addPass(createKCFIPass()); 824 825 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 826 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 827 // Therefore, run the AArch64SpeculationHardeningPass before the 828 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 829 // info. 830 addPass(createAArch64SpeculationHardeningPass()); 831 832 if (TM->getOptLevel() != CodeGenOptLevel::None) { 833 if (EnableFalkorHWPFFix) 834 addPass(createFalkorHWPFFixPass()); 835 } 836 } 837 838 void AArch64PassConfig::addPreEmitPass() { 839 // Machine Block Placement might have created new opportunities when run 840 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 841 // Run the load/store optimizer once more. 842 if (TM->getOptLevel() >= CodeGenOptLevel::Aggressive && EnableLoadStoreOpt) 843 addPass(createAArch64LoadStoreOptimizationPass()); 844 845 if (TM->getOptLevel() >= CodeGenOptLevel::Aggressive && 846 EnableAArch64CopyPropagation) 847 addPass(createMachineCopyPropagationPass(true)); 848 849 addPass(createAArch64A53Fix835769()); 850 851 if (TM->getTargetTriple().isOSWindows()) { 852 // Identify valid longjmp targets for Windows Control Flow Guard. 853 addPass(createCFGuardLongjmpPass()); 854 // Identify valid eh continuation targets for Windows EHCont Guard. 855 addPass(createEHContGuardCatchretPass()); 856 } 857 858 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableCollectLOH && 859 TM->getTargetTriple().isOSBinFormatMachO()) 860 addPass(createAArch64CollectLOHPass()); 861 } 862 863 void AArch64PassConfig::addPostBBSections() { 864 addPass(createAArch64SLSHardeningPass()); 865 addPass(createAArch64PointerAuthPass()); 866 if (EnableBranchTargets) 867 addPass(createAArch64BranchTargetsPass()); 868 // Relax conditional branch instructions if they're otherwise out of 869 // range of their destination. 870 if (BranchRelaxation) 871 addPass(&BranchRelaxationPassID); 872 873 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableCompressJumpTables) 874 addPass(createAArch64CompressJumpTablesPass()); 875 } 876 877 void AArch64PassConfig::addPreEmitPass2() { 878 // SVE bundles move prefixes with destructive operations. BLR_RVMARKER pseudo 879 // instructions are lowered to bundles as well. 880 addPass(createUnpackMachineBundles(nullptr)); 881 } 882 883 bool AArch64PassConfig::addRegAssignAndRewriteOptimized() { 884 addPass(createAArch64PostCoalescerPass()); 885 return TargetPassConfig::addRegAssignAndRewriteOptimized(); 886 } 887 888 MachineFunctionInfo *AArch64TargetMachine::createMachineFunctionInfo( 889 BumpPtrAllocator &Allocator, const Function &F, 890 const TargetSubtargetInfo *STI) const { 891 return AArch64FunctionInfo::create<AArch64FunctionInfo>( 892 Allocator, F, static_cast<const AArch64Subtarget *>(STI)); 893 } 894 895 yaml::MachineFunctionInfo * 896 AArch64TargetMachine::createDefaultFuncInfoYAML() const { 897 return new yaml::AArch64FunctionInfo(); 898 } 899 900 yaml::MachineFunctionInfo * 901 AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 902 const auto *MFI = MF.getInfo<AArch64FunctionInfo>(); 903 return new yaml::AArch64FunctionInfo(*MFI); 904 } 905 906 bool AArch64TargetMachine::parseMachineFunctionInfo( 907 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 908 SMDiagnostic &Error, SMRange &SourceRange) const { 909 const auto &YamlMFI = static_cast<const yaml::AArch64FunctionInfo &>(MFI); 910 MachineFunction &MF = PFS.MF; 911 MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI); 912 return false; 913 } 914