xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64TargetMachine.cpp (revision 19261079b74319502c6ffa1249920079f0f69a72)
1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 //===----------------------------------------------------------------------===//
11 
12 #include "AArch64TargetMachine.h"
13 #include "AArch64.h"
14 #include "AArch64MachineFunctionInfo.h"
15 #include "AArch64MacroFusion.h"
16 #include "AArch64Subtarget.h"
17 #include "AArch64TargetObjectFile.h"
18 #include "AArch64TargetTransformInfo.h"
19 #include "MCTargetDesc/AArch64MCTargetDesc.h"
20 #include "TargetInfo/AArch64TargetInfo.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/CodeGen/CSEConfigBase.h"
25 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
26 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
27 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
28 #include "llvm/CodeGen/GlobalISel/Localizer.h"
29 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
30 #include "llvm/CodeGen/MIRParser/MIParser.h"
31 #include "llvm/CodeGen/MachineScheduler.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/CodeGen/TargetPassConfig.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCTargetOptions.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CodeGen.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/TargetRegistry.h"
43 #include "llvm/Target/TargetLoweringObjectFile.h"
44 #include "llvm/Target/TargetOptions.h"
45 #include "llvm/Transforms/CFGuard.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include <memory>
48 #include <string>
49 
50 using namespace llvm;
51 
52 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp",
53                                 cl::desc("Enable the CCMP formation pass"),
54                                 cl::init(true), cl::Hidden);
55 
56 static cl::opt<bool>
57     EnableCondBrTuning("aarch64-enable-cond-br-tune",
58                        cl::desc("Enable the conditional branch tuning pass"),
59                        cl::init(true), cl::Hidden);
60 
61 static cl::opt<bool> EnableMCR("aarch64-enable-mcr",
62                                cl::desc("Enable the machine combiner pass"),
63                                cl::init(true), cl::Hidden);
64 
65 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress",
66                                           cl::desc("Suppress STP for AArch64"),
67                                           cl::init(true), cl::Hidden);
68 
69 static cl::opt<bool> EnableAdvSIMDScalar(
70     "aarch64-enable-simd-scalar",
71     cl::desc("Enable use of AdvSIMD scalar integer instructions"),
72     cl::init(false), cl::Hidden);
73 
74 static cl::opt<bool>
75     EnablePromoteConstant("aarch64-enable-promote-const",
76                           cl::desc("Enable the promote constant pass"),
77                           cl::init(true), cl::Hidden);
78 
79 static cl::opt<bool> EnableCollectLOH(
80     "aarch64-enable-collect-loh",
81     cl::desc("Enable the pass that emits the linker optimization hints (LOH)"),
82     cl::init(true), cl::Hidden);
83 
84 static cl::opt<bool>
85     EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden,
86                                   cl::desc("Enable the pass that removes dead"
87                                            " definitons and replaces stores to"
88                                            " them with stores to the zero"
89                                            " register"),
90                                   cl::init(true));
91 
92 static cl::opt<bool> EnableRedundantCopyElimination(
93     "aarch64-enable-copyelim",
94     cl::desc("Enable the redundant copy elimination pass"), cl::init(true),
95     cl::Hidden);
96 
97 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt",
98                                         cl::desc("Enable the load/store pair"
99                                                  " optimization pass"),
100                                         cl::init(true), cl::Hidden);
101 
102 static cl::opt<bool> EnableAtomicTidy(
103     "aarch64-enable-atomic-cfg-tidy", cl::Hidden,
104     cl::desc("Run SimplifyCFG after expanding atomic operations"
105              " to make use of cmpxchg flow-based information"),
106     cl::init(true));
107 
108 static cl::opt<bool>
109 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden,
110                         cl::desc("Run early if-conversion"),
111                         cl::init(true));
112 
113 static cl::opt<bool>
114     EnableCondOpt("aarch64-enable-condopt",
115                   cl::desc("Enable the condition optimizer pass"),
116                   cl::init(true), cl::Hidden);
117 
118 static cl::opt<bool>
119 EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden,
120                 cl::desc("Work around Cortex-A53 erratum 835769"),
121                 cl::init(false));
122 
123 static cl::opt<bool>
124     EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden,
125                  cl::desc("Enable optimizations on complex GEPs"),
126                  cl::init(false));
127 
128 static cl::opt<bool>
129     BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true),
130                      cl::desc("Relax out of range conditional branches"));
131 
132 static cl::opt<bool> EnableCompressJumpTables(
133     "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true),
134     cl::desc("Use smallest entry possible for jump tables"));
135 
136 // FIXME: Unify control over GlobalMerge.
137 static cl::opt<cl::boolOrDefault>
138     EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden,
139                       cl::desc("Enable the global merge pass"));
140 
141 static cl::opt<bool>
142     EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden,
143                            cl::desc("Enable the loop data prefetch pass"),
144                            cl::init(true));
145 
146 static cl::opt<int> EnableGlobalISelAtO(
147     "aarch64-enable-global-isel-at-O", cl::Hidden,
148     cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"),
149     cl::init(0));
150 
151 static cl::opt<bool>
152     EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden,
153                            cl::desc("Enable SVE intrinsic opts"),
154                            cl::init(true));
155 
156 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix",
157                                          cl::init(true), cl::Hidden);
158 
159 static cl::opt<bool>
160     EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden,
161                         cl::desc("Enable the AAcrh64 branch target pass"),
162                         cl::init(true));
163 
164 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() {
165   // Register the target.
166   RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget());
167   RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget());
168   RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target());
169   RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target());
170   RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target());
171   auto PR = PassRegistry::getPassRegistry();
172   initializeGlobalISel(*PR);
173   initializeAArch64A53Fix835769Pass(*PR);
174   initializeAArch64A57FPLoadBalancingPass(*PR);
175   initializeAArch64AdvSIMDScalarPass(*PR);
176   initializeAArch64BranchTargetsPass(*PR);
177   initializeAArch64CollectLOHPass(*PR);
178   initializeAArch64CompressJumpTablesPass(*PR);
179   initializeAArch64ConditionalComparesPass(*PR);
180   initializeAArch64ConditionOptimizerPass(*PR);
181   initializeAArch64DeadRegisterDefinitionsPass(*PR);
182   initializeAArch64ExpandPseudoPass(*PR);
183   initializeAArch64LoadStoreOptPass(*PR);
184   initializeAArch64SIMDInstrOptPass(*PR);
185   initializeAArch64PreLegalizerCombinerPass(*PR);
186   initializeAArch64PostLegalizerCombinerPass(*PR);
187   initializeAArch64PostLegalizerLoweringPass(*PR);
188   initializeAArch64PostSelectOptimizePass(*PR);
189   initializeAArch64PromoteConstantPass(*PR);
190   initializeAArch64RedundantCopyEliminationPass(*PR);
191   initializeAArch64StorePairSuppressPass(*PR);
192   initializeFalkorHWPFFixPass(*PR);
193   initializeFalkorMarkStridedAccessesLegacyPass(*PR);
194   initializeLDTLSCleanupPass(*PR);
195   initializeSVEIntrinsicOptsPass(*PR);
196   initializeAArch64SpeculationHardeningPass(*PR);
197   initializeAArch64SLSHardeningPass(*PR);
198   initializeAArch64StackTaggingPass(*PR);
199   initializeAArch64StackTaggingPreRAPass(*PR);
200 }
201 
202 //===----------------------------------------------------------------------===//
203 // AArch64 Lowering public interface.
204 //===----------------------------------------------------------------------===//
205 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
206   if (TT.isOSBinFormatMachO())
207     return std::make_unique<AArch64_MachoTargetObjectFile>();
208   if (TT.isOSBinFormatCOFF())
209     return std::make_unique<AArch64_COFFTargetObjectFile>();
210 
211   return std::make_unique<AArch64_ELFTargetObjectFile>();
212 }
213 
214 // Helper function to build a DataLayout string
215 static std::string computeDataLayout(const Triple &TT,
216                                      const MCTargetOptions &Options,
217                                      bool LittleEndian) {
218   if (TT.isOSBinFormatMachO()) {
219     if (TT.getArch() == Triple::aarch64_32)
220       return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128";
221     return "e-m:o-i64:64-i128:128-n32:64-S128";
222   }
223   if (TT.isOSBinFormatCOFF())
224     return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128";
225   std::string Endian = LittleEndian ? "e" : "E";
226   std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : "";
227   return Endian + "-m:e" + Ptr32 +
228          "-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128";
229 }
230 
231 static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) {
232   if (CPU.empty() && TT.isArm64e())
233     return "apple-a12";
234   return CPU;
235 }
236 
237 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
238                                            Optional<Reloc::Model> RM) {
239   // AArch64 Darwin and Windows are always PIC.
240   if (TT.isOSDarwin() || TT.isOSWindows())
241     return Reloc::PIC_;
242   // On ELF platforms the default static relocation model has a smart enough
243   // linker to cope with referencing external symbols defined in a shared
244   // library. Hence DynamicNoPIC doesn't need to be promoted to PIC.
245   if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
246     return Reloc::Static;
247   return *RM;
248 }
249 
250 static CodeModel::Model
251 getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM,
252                              bool JIT) {
253   if (CM) {
254     if (*CM != CodeModel::Small && *CM != CodeModel::Tiny &&
255         *CM != CodeModel::Large) {
256       report_fatal_error(
257           "Only small, tiny and large code models are allowed on AArch64");
258     } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF())
259       report_fatal_error("tiny code model is only supported on ELF");
260     return *CM;
261   }
262   // The default MCJIT memory managers make no guarantees about where they can
263   // find an executable page; JITed code needs to be able to refer to globals
264   // no matter how far away they are.
265   // We should set the CodeModel::Small for Windows ARM64 in JIT mode,
266   // since with large code model LLVM generating 4 MOV instructions, and
267   // Windows doesn't support relocating these long branch (4 MOVs).
268   if (JIT && !TT.isOSWindows())
269     return CodeModel::Large;
270   return CodeModel::Small;
271 }
272 
273 /// Create an AArch64 architecture model.
274 ///
275 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT,
276                                            StringRef CPU, StringRef FS,
277                                            const TargetOptions &Options,
278                                            Optional<Reloc::Model> RM,
279                                            Optional<CodeModel::Model> CM,
280                                            CodeGenOpt::Level OL, bool JIT,
281                                            bool LittleEndian)
282     : LLVMTargetMachine(T,
283                         computeDataLayout(TT, Options.MCOptions, LittleEndian),
284                         TT, computeDefaultCPU(TT, CPU), FS, Options,
285                         getEffectiveRelocModel(TT, RM),
286                         getEffectiveAArch64CodeModel(TT, CM, JIT), OL),
287       TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) {
288   initAsmInfo();
289 
290   if (TT.isOSBinFormatMachO()) {
291     this->Options.TrapUnreachable = true;
292     this->Options.NoTrapAfterNoreturn = true;
293   }
294 
295   if (getMCAsmInfo()->usesWindowsCFI()) {
296     // Unwinding can get confused if the last instruction in an
297     // exception-handling region (function, funclet, try block, etc.)
298     // is a call.
299     //
300     // FIXME: We could elide the trap if the next instruction would be in
301     // the same region anyway.
302     this->Options.TrapUnreachable = true;
303   }
304 
305   if (this->Options.TLSSize == 0) // default
306     this->Options.TLSSize = 24;
307   if ((getCodeModel() == CodeModel::Small ||
308        getCodeModel() == CodeModel::Kernel) &&
309       this->Options.TLSSize > 32)
310     // for the small (and kernel) code model, the maximum TLS size is 4GiB
311     this->Options.TLSSize = 32;
312   else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24)
313     // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB)
314     this->Options.TLSSize = 24;
315 
316   // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is
317   // MachO/CodeModel::Large, which GlobalISel does not support.
318   if (getOptLevel() <= EnableGlobalISelAtO &&
319       TT.getArch() != Triple::aarch64_32 &&
320       TT.getEnvironment() != Triple::GNUILP32 &&
321       !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) {
322     setGlobalISel(true);
323     setGlobalISelAbort(GlobalISelAbortMode::Disable);
324   }
325 
326   // AArch64 supports the MachineOutliner.
327   setMachineOutliner(true);
328 
329   // AArch64 supports default outlining behaviour.
330   setSupportsDefaultOutlining(true);
331 
332   // AArch64 supports the debug entry values.
333   setSupportsDebugEntryValues(true);
334 }
335 
336 AArch64TargetMachine::~AArch64TargetMachine() = default;
337 
338 const AArch64Subtarget *
339 AArch64TargetMachine::getSubtargetImpl(const Function &F) const {
340   Attribute CPUAttr = F.getFnAttribute("target-cpu");
341   Attribute FSAttr = F.getFnAttribute("target-features");
342 
343   std::string CPU =
344       CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
345   std::string FS =
346       FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
347 
348   auto &I = SubtargetMap[CPU + FS];
349   if (!I) {
350     // This needs to be done before we create a new subtarget since any
351     // creation will depend on the TM and the code generation flags on the
352     // function that reside in TargetOptions.
353     resetTargetOptions(F);
354     I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this,
355                                             isLittle);
356   }
357   return I.get();
358 }
359 
360 void AArch64leTargetMachine::anchor() { }
361 
362 AArch64leTargetMachine::AArch64leTargetMachine(
363     const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
364     const TargetOptions &Options, Optional<Reloc::Model> RM,
365     Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
366     : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {}
367 
368 void AArch64beTargetMachine::anchor() { }
369 
370 AArch64beTargetMachine::AArch64beTargetMachine(
371     const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
372     const TargetOptions &Options, Optional<Reloc::Model> RM,
373     Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
374     : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {}
375 
376 namespace {
377 
378 /// AArch64 Code Generator Pass Configuration Options.
379 class AArch64PassConfig : public TargetPassConfig {
380 public:
381   AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM)
382       : TargetPassConfig(TM, PM) {
383     if (TM.getOptLevel() != CodeGenOpt::None)
384       substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
385   }
386 
387   AArch64TargetMachine &getAArch64TargetMachine() const {
388     return getTM<AArch64TargetMachine>();
389   }
390 
391   ScheduleDAGInstrs *
392   createMachineScheduler(MachineSchedContext *C) const override {
393     const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>();
394     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
395     DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
396     DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
397     if (ST.hasFusion())
398       DAG->addMutation(createAArch64MacroFusionDAGMutation());
399     return DAG;
400   }
401 
402   ScheduleDAGInstrs *
403   createPostMachineScheduler(MachineSchedContext *C) const override {
404     const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>();
405     if (ST.hasFusion()) {
406       // Run the Macro Fusion after RA again since literals are expanded from
407       // pseudos then (v. addPreSched2()).
408       ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
409       DAG->addMutation(createAArch64MacroFusionDAGMutation());
410       return DAG;
411     }
412 
413     return nullptr;
414   }
415 
416   void addIRPasses()  override;
417   bool addPreISel() override;
418   bool addInstSelector() override;
419   bool addIRTranslator() override;
420   void addPreLegalizeMachineIR() override;
421   bool addLegalizeMachineIR() override;
422   void addPreRegBankSelect() override;
423   bool addRegBankSelect() override;
424   void addPreGlobalInstructionSelect() override;
425   bool addGlobalInstructionSelect() override;
426   bool addILPOpts() override;
427   void addPreRegAlloc() override;
428   void addPostRegAlloc() override;
429   void addPreSched2() override;
430   void addPreEmitPass() override;
431 
432   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
433 };
434 
435 } // end anonymous namespace
436 
437 TargetTransformInfo
438 AArch64TargetMachine::getTargetTransformInfo(const Function &F) {
439   return TargetTransformInfo(AArch64TTIImpl(this, F));
440 }
441 
442 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) {
443   return new AArch64PassConfig(*this, PM);
444 }
445 
446 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const {
447   return getStandardCSEConfigForOpt(TM->getOptLevel());
448 }
449 
450 void AArch64PassConfig::addIRPasses() {
451   // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg
452   // ourselves.
453   addPass(createAtomicExpandPass());
454 
455   // Expand any SVE vector library calls that we can't code generate directly.
456   if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive)
457     addPass(createSVEIntrinsicOptsPass());
458 
459   // Cmpxchg instructions are often used with a subsequent comparison to
460   // determine whether it succeeded. We can exploit existing control-flow in
461   // ldrex/strex loops to simplify this, but it needs tidying up.
462   if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
463     addPass(createCFGSimplificationPass(SimplifyCFGOptions()
464                                             .forwardSwitchCondToPhi(true)
465                                             .convertSwitchToLookupTable(true)
466                                             .needCanonicalLoops(false)
467                                             .hoistCommonInsts(true)
468                                             .sinkCommonInsts(true)));
469 
470   // Run LoopDataPrefetch
471   //
472   // Run this before LSR to remove the multiplies involved in computing the
473   // pointer values N iterations ahead.
474   if (TM->getOptLevel() != CodeGenOpt::None) {
475     if (EnableLoopDataPrefetch)
476       addPass(createLoopDataPrefetchPass());
477     if (EnableFalkorHWPFFix)
478       addPass(createFalkorMarkStridedAccessesPass());
479   }
480 
481   TargetPassConfig::addIRPasses();
482 
483   addPass(createAArch64StackTaggingPass(
484       /*IsOptNone=*/TM->getOptLevel() == CodeGenOpt::None));
485 
486   // Match interleaved memory accesses to ldN/stN intrinsics.
487   if (TM->getOptLevel() != CodeGenOpt::None) {
488     addPass(createInterleavedLoadCombinePass());
489     addPass(createInterleavedAccessPass());
490   }
491 
492   if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) {
493     // Call SeparateConstOffsetFromGEP pass to extract constants within indices
494     // and lower a GEP with multiple indices to either arithmetic operations or
495     // multiple GEPs with single index.
496     addPass(createSeparateConstOffsetFromGEPPass(true));
497     // Call EarlyCSE pass to find and remove subexpressions in the lowered
498     // result.
499     addPass(createEarlyCSEPass());
500     // Do loop invariant code motion in case part of the lowered result is
501     // invariant.
502     addPass(createLICMPass());
503   }
504 
505   // Add Control Flow Guard checks.
506   if (TM->getTargetTriple().isOSWindows())
507     addPass(createCFGuardCheckPass());
508 }
509 
510 // Pass Pipeline Configuration
511 bool AArch64PassConfig::addPreISel() {
512   // Run promote constant before global merge, so that the promoted constants
513   // get a chance to be merged
514   if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant)
515     addPass(createAArch64PromoteConstantPass());
516   // FIXME: On AArch64, this depends on the type.
517   // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes().
518   // and the offset has to be a multiple of the related size in bytes.
519   if ((TM->getOptLevel() != CodeGenOpt::None &&
520        EnableGlobalMerge == cl::BOU_UNSET) ||
521       EnableGlobalMerge == cl::BOU_TRUE) {
522     bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
523                                (EnableGlobalMerge == cl::BOU_UNSET);
524 
525     // Merging of extern globals is enabled by default on non-Mach-O as we
526     // expect it to be generally either beneficial or harmless. On Mach-O it
527     // is disabled as we emit the .subsections_via_symbols directive which
528     // means that merging extern globals is not safe.
529     bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
530 
531     // FIXME: extern global merging is only enabled when we optimise for size
532     // because there are some regressions with it also enabled for performance.
533     if (!OnlyOptimizeForSize)
534       MergeExternalByDefault = false;
535 
536     addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize,
537                                   MergeExternalByDefault));
538   }
539 
540   return false;
541 }
542 
543 bool AArch64PassConfig::addInstSelector() {
544   addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel()));
545 
546   // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many
547   // references to _TLS_MODULE_BASE_ as possible.
548   if (TM->getTargetTriple().isOSBinFormatELF() &&
549       getOptLevel() != CodeGenOpt::None)
550     addPass(createAArch64CleanupLocalDynamicTLSPass());
551 
552   return false;
553 }
554 
555 bool AArch64PassConfig::addIRTranslator() {
556   addPass(new IRTranslator(getOptLevel()));
557   return false;
558 }
559 
560 void AArch64PassConfig::addPreLegalizeMachineIR() {
561   bool IsOptNone = getOptLevel() == CodeGenOpt::None;
562   addPass(createAArch64PreLegalizerCombiner(IsOptNone));
563 }
564 
565 bool AArch64PassConfig::addLegalizeMachineIR() {
566   addPass(new Legalizer());
567   return false;
568 }
569 
570 void AArch64PassConfig::addPreRegBankSelect() {
571   bool IsOptNone = getOptLevel() == CodeGenOpt::None;
572   if (!IsOptNone)
573     addPass(createAArch64PostLegalizerCombiner(IsOptNone));
574   addPass(createAArch64PostLegalizerLowering());
575 }
576 
577 bool AArch64PassConfig::addRegBankSelect() {
578   addPass(new RegBankSelect());
579   return false;
580 }
581 
582 void AArch64PassConfig::addPreGlobalInstructionSelect() {
583   addPass(new Localizer());
584 }
585 
586 bool AArch64PassConfig::addGlobalInstructionSelect() {
587   addPass(new InstructionSelect());
588   if (getOptLevel() != CodeGenOpt::None)
589     addPass(createAArch64PostSelectOptimize());
590   return false;
591 }
592 
593 bool AArch64PassConfig::addILPOpts() {
594   if (EnableCondOpt)
595     addPass(createAArch64ConditionOptimizerPass());
596   if (EnableCCMP)
597     addPass(createAArch64ConditionalCompares());
598   if (EnableMCR)
599     addPass(&MachineCombinerID);
600   if (EnableCondBrTuning)
601     addPass(createAArch64CondBrTuning());
602   if (EnableEarlyIfConversion)
603     addPass(&EarlyIfConverterID);
604   if (EnableStPairSuppress)
605     addPass(createAArch64StorePairSuppressPass());
606   addPass(createAArch64SIMDInstrOptPass());
607   if (TM->getOptLevel() != CodeGenOpt::None)
608     addPass(createAArch64StackTaggingPreRAPass());
609   return true;
610 }
611 
612 void AArch64PassConfig::addPreRegAlloc() {
613   // Change dead register definitions to refer to the zero register.
614   if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination)
615     addPass(createAArch64DeadRegisterDefinitions());
616 
617   // Use AdvSIMD scalar instructions whenever profitable.
618   if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) {
619     addPass(createAArch64AdvSIMDScalar());
620     // The AdvSIMD pass may produce copies that can be rewritten to
621     // be register coalescer friendly.
622     addPass(&PeepholeOptimizerID);
623   }
624 }
625 
626 void AArch64PassConfig::addPostRegAlloc() {
627   // Remove redundant copy instructions.
628   if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination)
629     addPass(createAArch64RedundantCopyEliminationPass());
630 
631   if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc())
632     // Improve performance for some FP/SIMD code for A57.
633     addPass(createAArch64A57FPLoadBalancing());
634 }
635 
636 void AArch64PassConfig::addPreSched2() {
637   // Expand some pseudo instructions to allow proper scheduling.
638   addPass(createAArch64ExpandPseudoPass());
639   // Use load/store pair instructions when possible.
640   if (TM->getOptLevel() != CodeGenOpt::None) {
641     if (EnableLoadStoreOpt)
642       addPass(createAArch64LoadStoreOptimizationPass());
643   }
644 
645   // The AArch64SpeculationHardeningPass destroys dominator tree and natural
646   // loop info, which is needed for the FalkorHWPFFixPass and also later on.
647   // Therefore, run the AArch64SpeculationHardeningPass before the
648   // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop
649   // info.
650   addPass(createAArch64SpeculationHardeningPass());
651 
652   addPass(createAArch64IndirectThunks());
653   addPass(createAArch64SLSHardeningPass());
654 
655   if (TM->getOptLevel() != CodeGenOpt::None) {
656     if (EnableFalkorHWPFFix)
657       addPass(createFalkorHWPFFixPass());
658   }
659 }
660 
661 void AArch64PassConfig::addPreEmitPass() {
662   // Machine Block Placement might have created new opportunities when run
663   // at O3, where the Tail Duplication Threshold is set to 4 instructions.
664   // Run the load/store optimizer once more.
665   if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt)
666     addPass(createAArch64LoadStoreOptimizationPass());
667 
668   if (EnableA53Fix835769)
669     addPass(createAArch64A53Fix835769());
670 
671   if (EnableBranchTargets)
672     addPass(createAArch64BranchTargetsPass());
673 
674   // Relax conditional branch instructions if they're otherwise out of
675   // range of their destination.
676   if (BranchRelaxation)
677     addPass(&BranchRelaxationPassID);
678 
679   // Identify valid longjmp targets for Windows Control Flow Guard.
680   if (TM->getTargetTriple().isOSWindows())
681     addPass(createCFGuardLongjmpPass());
682 
683   if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables)
684     addPass(createAArch64CompressJumpTablesPass());
685 
686   if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH &&
687       TM->getTargetTriple().isOSBinFormatMachO())
688     addPass(createAArch64CollectLOHPass());
689 
690   // SVE bundles move prefixes with destructive operations.
691   addPass(createUnpackMachineBundles(nullptr));
692 }
693 
694 yaml::MachineFunctionInfo *
695 AArch64TargetMachine::createDefaultFuncInfoYAML() const {
696   return new yaml::AArch64FunctionInfo();
697 }
698 
699 yaml::MachineFunctionInfo *
700 AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
701   const auto *MFI = MF.getInfo<AArch64FunctionInfo>();
702   return new yaml::AArch64FunctionInfo(*MFI);
703 }
704 
705 bool AArch64TargetMachine::parseMachineFunctionInfo(
706     const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
707     SMDiagnostic &Error, SMRange &SourceRange) const {
708   const auto &YamlMFI =
709       reinterpret_cast<const yaml::AArch64FunctionInfo &>(MFI);
710   MachineFunction &MF = PFS.MF;
711   MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI);
712   return false;
713 }
714