xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64Subtarget.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AArch64 specific subclass of TargetSubtarget.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "AArch64Subtarget.h"
14 
15 #include "AArch64.h"
16 #include "AArch64InstrInfo.h"
17 #include "AArch64PBQPRegAlloc.h"
18 #include "AArch64TargetMachine.h"
19 #include "GISel/AArch64CallLowering.h"
20 #include "GISel/AArch64LegalizerInfo.h"
21 #include "GISel/AArch64RegisterBankInfo.h"
22 #include "MCTargetDesc/AArch64AddressingModes.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
24 #include "llvm/CodeGen/MachineScheduler.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/Support/TargetParser.h"
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "aarch64-subtarget"
31 
32 #define GET_SUBTARGETINFO_CTOR
33 #define GET_SUBTARGETINFO_TARGET_DESC
34 #include "AArch64GenSubtargetInfo.inc"
35 
36 static cl::opt<bool>
37 EnableEarlyIfConvert("aarch64-early-ifcvt", cl::desc("Enable the early if "
38                      "converter pass"), cl::init(true), cl::Hidden);
39 
40 // If OS supports TBI, use this flag to enable it.
41 static cl::opt<bool>
42 UseAddressTopByteIgnored("aarch64-use-tbi", cl::desc("Assume that top byte of "
43                          "an address is ignored"), cl::init(false), cl::Hidden);
44 
45 static cl::opt<bool>
46     UseNonLazyBind("aarch64-enable-nonlazybind",
47                    cl::desc("Call nonlazybind functions via direct GOT load"),
48                    cl::init(false), cl::Hidden);
49 
50 static cl::opt<unsigned> SVEVectorBitsMax(
51     "aarch64-sve-vector-bits-max",
52     cl::desc("Assume SVE vector registers are at most this big, "
53              "with zero meaning no maximum size is assumed."),
54     cl::init(0), cl::Hidden);
55 
56 static cl::opt<unsigned> SVEVectorBitsMin(
57     "aarch64-sve-vector-bits-min",
58     cl::desc("Assume SVE vector registers are at least this big, "
59              "with zero meaning no minimum size is assumed."),
60     cl::init(0), cl::Hidden);
61 
62 AArch64Subtarget &
63 AArch64Subtarget::initializeSubtargetDependencies(StringRef FS,
64                                                   StringRef CPUString) {
65   // Determine default and user-specified characteristics
66 
67   if (CPUString.empty())
68     CPUString = "generic";
69 
70   ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FS);
71   initializeProperties();
72 
73   return *this;
74 }
75 
76 void AArch64Subtarget::initializeProperties() {
77   // Initialize CPU specific properties. We should add a tablegen feature for
78   // this in the future so we can specify it together with the subtarget
79   // features.
80   switch (ARMProcFamily) {
81   case Others:
82     break;
83   case Carmel:
84     CacheLineSize = 64;
85     break;
86   case CortexA35:
87     break;
88   case CortexA53:
89     PrefFunctionLogAlignment = 3;
90     break;
91   case CortexA55:
92     break;
93   case CortexA57:
94     MaxInterleaveFactor = 4;
95     PrefFunctionLogAlignment = 4;
96     break;
97   case CortexA65:
98     PrefFunctionLogAlignment = 3;
99     break;
100   case CortexA72:
101   case CortexA73:
102   case CortexA75:
103   case CortexA76:
104   case CortexA77:
105   case CortexA78:
106   case CortexA78C:
107   case CortexR82:
108   case CortexX1:
109     PrefFunctionLogAlignment = 4;
110     break;
111   case A64FX:
112     CacheLineSize = 256;
113     PrefFunctionLogAlignment = 3;
114     PrefLoopLogAlignment = 2;
115     MaxInterleaveFactor = 4;
116     PrefetchDistance = 128;
117     MinPrefetchStride = 1024;
118     MaxPrefetchIterationsAhead = 4;
119     break;
120   case AppleA7:
121   case AppleA10:
122   case AppleA11:
123   case AppleA12:
124   case AppleA13:
125   case AppleA14:
126     CacheLineSize = 64;
127     PrefetchDistance = 280;
128     MinPrefetchStride = 2048;
129     MaxPrefetchIterationsAhead = 3;
130     break;
131   case ExynosM3:
132     MaxInterleaveFactor = 4;
133     MaxJumpTableSize = 20;
134     PrefFunctionLogAlignment = 5;
135     PrefLoopLogAlignment = 4;
136     break;
137   case Falkor:
138     MaxInterleaveFactor = 4;
139     // FIXME: remove this to enable 64-bit SLP if performance looks good.
140     MinVectorRegisterBitWidth = 128;
141     CacheLineSize = 128;
142     PrefetchDistance = 820;
143     MinPrefetchStride = 2048;
144     MaxPrefetchIterationsAhead = 8;
145     break;
146   case Kryo:
147     MaxInterleaveFactor = 4;
148     VectorInsertExtractBaseCost = 2;
149     CacheLineSize = 128;
150     PrefetchDistance = 740;
151     MinPrefetchStride = 1024;
152     MaxPrefetchIterationsAhead = 11;
153     // FIXME: remove this to enable 64-bit SLP if performance looks good.
154     MinVectorRegisterBitWidth = 128;
155     break;
156   case NeoverseE1:
157     PrefFunctionLogAlignment = 3;
158     break;
159   case NeoverseN1:
160   case NeoverseN2:
161   case NeoverseV1:
162     PrefFunctionLogAlignment = 4;
163     break;
164   case Saphira:
165     MaxInterleaveFactor = 4;
166     // FIXME: remove this to enable 64-bit SLP if performance looks good.
167     MinVectorRegisterBitWidth = 128;
168     break;
169   case ThunderX2T99:
170     CacheLineSize = 64;
171     PrefFunctionLogAlignment = 3;
172     PrefLoopLogAlignment = 2;
173     MaxInterleaveFactor = 4;
174     PrefetchDistance = 128;
175     MinPrefetchStride = 1024;
176     MaxPrefetchIterationsAhead = 4;
177     // FIXME: remove this to enable 64-bit SLP if performance looks good.
178     MinVectorRegisterBitWidth = 128;
179     break;
180   case ThunderX:
181   case ThunderXT88:
182   case ThunderXT81:
183   case ThunderXT83:
184     CacheLineSize = 128;
185     PrefFunctionLogAlignment = 3;
186     PrefLoopLogAlignment = 2;
187     // FIXME: remove this to enable 64-bit SLP if performance looks good.
188     MinVectorRegisterBitWidth = 128;
189     break;
190   case TSV110:
191     CacheLineSize = 64;
192     PrefFunctionLogAlignment = 4;
193     PrefLoopLogAlignment = 2;
194     break;
195   case ThunderX3T110:
196     CacheLineSize = 64;
197     PrefFunctionLogAlignment = 4;
198     PrefLoopLogAlignment = 2;
199     MaxInterleaveFactor = 4;
200     PrefetchDistance = 128;
201     MinPrefetchStride = 1024;
202     MaxPrefetchIterationsAhead = 4;
203     // FIXME: remove this to enable 64-bit SLP if performance looks good.
204     MinVectorRegisterBitWidth = 128;
205     break;
206   }
207 }
208 
209 AArch64Subtarget::AArch64Subtarget(const Triple &TT, const std::string &CPU,
210                                    const std::string &FS,
211                                    const TargetMachine &TM, bool LittleEndian)
212     : AArch64GenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
213       ReserveXRegister(AArch64::GPR64commonRegClass.getNumRegs()),
214       CustomCallSavedXRegs(AArch64::GPR64commonRegClass.getNumRegs()),
215       IsLittle(LittleEndian),
216       TargetTriple(TT), FrameLowering(),
217       InstrInfo(initializeSubtargetDependencies(FS, CPU)), TSInfo(),
218       TLInfo(TM, *this) {
219   if (AArch64::isX18ReservedByDefault(TT))
220     ReserveXRegister.set(18);
221 
222   CallLoweringInfo.reset(new AArch64CallLowering(*getTargetLowering()));
223   InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
224   Legalizer.reset(new AArch64LegalizerInfo(*this));
225 
226   auto *RBI = new AArch64RegisterBankInfo(*getRegisterInfo());
227 
228   // FIXME: At this point, we can't rely on Subtarget having RBI.
229   // It's awkward to mix passing RBI and the Subtarget; should we pass
230   // TII/TRI as well?
231   InstSelector.reset(createAArch64InstructionSelector(
232       *static_cast<const AArch64TargetMachine *>(&TM), *this, *RBI));
233 
234   RegBankInfo.reset(RBI);
235 }
236 
237 const CallLowering *AArch64Subtarget::getCallLowering() const {
238   return CallLoweringInfo.get();
239 }
240 
241 const InlineAsmLowering *AArch64Subtarget::getInlineAsmLowering() const {
242   return InlineAsmLoweringInfo.get();
243 }
244 
245 InstructionSelector *AArch64Subtarget::getInstructionSelector() const {
246   return InstSelector.get();
247 }
248 
249 const LegalizerInfo *AArch64Subtarget::getLegalizerInfo() const {
250   return Legalizer.get();
251 }
252 
253 const RegisterBankInfo *AArch64Subtarget::getRegBankInfo() const {
254   return RegBankInfo.get();
255 }
256 
257 /// Find the target operand flags that describe how a global value should be
258 /// referenced for the current subtarget.
259 unsigned
260 AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV,
261                                           const TargetMachine &TM) const {
262   // MachO large model always goes via a GOT, simply to get a single 8-byte
263   // absolute relocation on all global addresses.
264   if (TM.getCodeModel() == CodeModel::Large && isTargetMachO())
265     return AArch64II::MO_GOT;
266 
267   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) {
268     if (GV->hasDLLImportStorageClass())
269       return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT;
270     if (getTargetTriple().isOSWindows())
271       return AArch64II::MO_GOT | AArch64II::MO_COFFSTUB;
272     return AArch64II::MO_GOT;
273   }
274 
275   // The small code model's direct accesses use ADRP, which cannot
276   // necessarily produce the value 0 (if the code is above 4GB).
277   // Same for the tiny code model, where we have a pc relative LDR.
278   if ((useSmallAddressing() || TM.getCodeModel() == CodeModel::Tiny) &&
279       GV->hasExternalWeakLinkage())
280     return AArch64II::MO_GOT;
281 
282   // References to tagged globals are marked with MO_NC | MO_TAGGED to indicate
283   // that their nominal addresses are tagged and outside of the code model. In
284   // AArch64ExpandPseudo::expandMI we emit an additional instruction to set the
285   // tag if necessary based on MO_TAGGED.
286   if (AllowTaggedGlobals && !isa<FunctionType>(GV->getValueType()))
287     return AArch64II::MO_NC | AArch64II::MO_TAGGED;
288 
289   return AArch64II::MO_NO_FLAG;
290 }
291 
292 unsigned AArch64Subtarget::classifyGlobalFunctionReference(
293     const GlobalValue *GV, const TargetMachine &TM) const {
294   // MachO large model always goes via a GOT, because we don't have the
295   // relocations available to do anything else..
296   if (TM.getCodeModel() == CodeModel::Large && isTargetMachO() &&
297       !GV->hasInternalLinkage())
298     return AArch64II::MO_GOT;
299 
300   // NonLazyBind goes via GOT unless we know it's available locally.
301   auto *F = dyn_cast<Function>(GV);
302   if (UseNonLazyBind && F && F->hasFnAttribute(Attribute::NonLazyBind) &&
303       !TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
304     return AArch64II::MO_GOT;
305 
306   // Use ClassifyGlobalReference for setting MO_DLLIMPORT/MO_COFFSTUB.
307   if (getTargetTriple().isOSWindows())
308     return ClassifyGlobalReference(GV, TM);
309 
310   return AArch64II::MO_NO_FLAG;
311 }
312 
313 void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
314                                            unsigned NumRegionInstrs) const {
315   // LNT run (at least on Cyclone) showed reasonably significant gains for
316   // bi-directional scheduling. 253.perlbmk.
317   Policy.OnlyTopDown = false;
318   Policy.OnlyBottomUp = false;
319   // Enabling or Disabling the latency heuristic is a close call: It seems to
320   // help nearly no benchmark on out-of-order architectures, on the other hand
321   // it regresses register pressure on a few benchmarking.
322   Policy.DisableLatencyHeuristic = DisableLatencySchedHeuristic;
323 }
324 
325 bool AArch64Subtarget::enableEarlyIfConversion() const {
326   return EnableEarlyIfConvert;
327 }
328 
329 bool AArch64Subtarget::supportsAddressTopByteIgnored() const {
330   if (!UseAddressTopByteIgnored)
331     return false;
332 
333   if (TargetTriple.isiOS()) {
334     unsigned Major, Minor, Micro;
335     TargetTriple.getiOSVersion(Major, Minor, Micro);
336     return Major >= 8;
337   }
338 
339   return false;
340 }
341 
342 std::unique_ptr<PBQPRAConstraint>
343 AArch64Subtarget::getCustomPBQPConstraints() const {
344   return balanceFPOps() ? std::make_unique<A57ChainingConstraint>() : nullptr;
345 }
346 
347 void AArch64Subtarget::mirFileLoaded(MachineFunction &MF) const {
348   // We usually compute max call frame size after ISel. Do the computation now
349   // if the .mir file didn't specify it. Note that this will probably give you
350   // bogus values after PEI has eliminated the callframe setup/destroy pseudo
351   // instructions, specify explicitly if you need it to be correct.
352   MachineFrameInfo &MFI = MF.getFrameInfo();
353   if (!MFI.isMaxCallFrameSizeComputed())
354     MFI.computeMaxCallFrameSize(MF);
355 }
356 
357 unsigned AArch64Subtarget::getMaxSVEVectorSizeInBits() const {
358   assert(HasSVE && "Tried to get SVE vector length without SVE support!");
359   assert(SVEVectorBitsMax % 128 == 0 &&
360          "SVE requires vector length in multiples of 128!");
361   assert((SVEVectorBitsMax >= SVEVectorBitsMin || SVEVectorBitsMax == 0) &&
362          "Minimum SVE vector size should not be larger than its maximum!");
363   if (SVEVectorBitsMax == 0)
364     return 0;
365   return (std::max(SVEVectorBitsMin, SVEVectorBitsMax) / 128) * 128;
366 }
367 
368 unsigned AArch64Subtarget::getMinSVEVectorSizeInBits() const {
369   assert(HasSVE && "Tried to get SVE vector length without SVE support!");
370   assert(SVEVectorBitsMin % 128 == 0 &&
371          "SVE requires vector length in multiples of 128!");
372   assert((SVEVectorBitsMax >= SVEVectorBitsMin || SVEVectorBitsMax == 0) &&
373          "Minimum SVE vector size should not be larger than its maximum!");
374   if (SVEVectorBitsMax == 0)
375     return (SVEVectorBitsMin / 128) * 128;
376   return (std::min(SVEVectorBitsMin, SVEVectorBitsMax) / 128) * 128;
377 }
378 
379 bool AArch64Subtarget::useSVEForFixedLengthVectors() const {
380   // Prefer NEON unless larger SVE registers are available.
381   return hasSVE() && getMinSVEVectorSizeInBits() >= 256;
382 }
383