1//==- AArch64SchedKryo.td - Qualcomm Kryo Scheduling Defs ---*- tablegen -*-==// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file defines the machine model for Qualcomm Kryo to support 10// instruction scheduling and other instruction cost heuristics. 11// 12//===----------------------------------------------------------------------===// 13 14//===----------------------------------------------------------------------===// 15// The issue width is set to five, matching the five issue queues for expanded 16// uops. Now, the latency spreadsheet has information based on fragmented uops, 17// but these do not actually take up an issue queue. 18 19def KryoModel : SchedMachineModel { 20 let IssueWidth = 5; // 5-wide issue for expanded uops 21 let MicroOpBufferSize = 128; // Out-of-order with temporary unified issue buffer 22 let LoadLatency = 4; // Optimistic load latency 23 let MispredictPenalty = 14; // Fetch + Decode/Rename/Dispatch + Branch 24 25 // Enable partial & runtime unrolling. The magic number is chosen based on 26 // experiments and benchmarking data. 27 let LoopMicroOpBufferSize = 16; 28 let CompleteModel = 1; 29 30 list<Predicate> UnsupportedFeatures = !listconcat(SVEUnsupported.F, 31 PAUnsupported.F, 32 SMEUnsupported.F); 33 // FIXME: Remove when all errors have been fixed. 34 let FullInstRWOverlapCheck = 0; 35} 36 37//===----------------------------------------------------------------------===// 38// Define each kind of processor resource and number available on Kryo. 39 40let SchedModel = KryoModel in { 41 def KryoUnitXA : ProcResource<1>; // Type X(A) micro-ops 42 def KryoUnitXB : ProcResource<1>; // Type X(B) micro-ops 43 def KryoUnitYA : ProcResource<1>; // Type Y(A) micro-ops 44 def KryoUnitYB : ProcResource<1>; // Type Y(B) micro-ops 45 def KryoUnitX : ProcResGroup<[KryoUnitXA, // Type X micro-ops 46 KryoUnitXB]>; 47 def KryoUnitY : ProcResGroup<[KryoUnitYA, // Type Y micro-ops 48 KryoUnitYB]>; 49 def KryoUnitXY : ProcResGroup<[KryoUnitXA, // Type XY micro-ops 50 KryoUnitXB, 51 KryoUnitYA, 52 KryoUnitYB]>; 53 def KryoUnitLSA : ProcResource<1>; // Type LS(A) micro-ops 54 def KryoUnitLSB : ProcResource<1>; // Type LS(B) micro-ops 55 def KryoUnitLS : ProcResGroup<[KryoUnitLSA, // Type LS micro-ops 56 KryoUnitLSB]>; 57} 58 59let SchedModel = KryoModel in { 60 61//===----------------------------------------------------------------------===// 62// Map the target-defined scheduler read/write resources and latency for 63// Kryo. 64 65def : WriteRes<WriteImm, [KryoUnitXY]> { let Latency = 1; } 66def : WriteRes<WriteI, [KryoUnitXY]> { let Latency = 1; } 67def : WriteRes<WriteISReg, [KryoUnitXY, KryoUnitXY]> 68 { let Latency = 2; let NumMicroOps = 2; } 69def : WriteRes<WriteIEReg, [KryoUnitXY, KryoUnitXY]> 70 { let Latency = 2; let NumMicroOps = 2; } 71def : WriteRes<WriteExtr, [KryoUnitXY, KryoUnitX]> 72 { let Latency = 2; let NumMicroOps = 2; } 73def : WriteRes<WriteIS, [KryoUnitXY]> { let Latency = 2; } 74def : WriteRes<WriteID32, [KryoUnitXA, KryoUnitY]> 75 { let Latency = 8; let NumMicroOps = 1; } // Fragent -1 76def : WriteRes<WriteID64, [KryoUnitXA, KryoUnitY]> 77 { let Latency = 8; let NumMicroOps = 1; } // Fragent -1 78def : WriteRes<WriteIM32, [KryoUnitX]> { let Latency = 5; } 79def : WriteRes<WriteIM64, [KryoUnitX]> { let Latency = 5; } 80def : WriteRes<WriteBr, [KryoUnitXY]> { let Latency = 1; } 81def : WriteRes<WriteBrReg, [KryoUnitXY]> { let Latency = 1; } 82def : WriteRes<WriteLD, [KryoUnitLS]> { let Latency = 4; } 83def : WriteRes<WriteST, [KryoUnitLS]> { let Latency = 4; } 84def : WriteRes<WriteSTP, [KryoUnitLS]> { let Latency = 4; } 85def : WriteRes<WriteAdr, [KryoUnitXY]> { let Latency = 6; } 86def : WriteRes<WriteLDIdx, [KryoUnitLS]> { let Latency = 4; } 87def : WriteRes<WriteSTIdx, [KryoUnitLS]> { let Latency = 4; } 88def : WriteRes<WriteF, [KryoUnitXY, KryoUnitXY]> 89 { let Latency = 3; let NumMicroOps = 2; } 90def : WriteRes<WriteFCmp, [KryoUnitXY]> { let Latency = 2; } 91def : WriteRes<WriteFCvt, [KryoUnitX]> { let Latency = 4; } 92def : WriteRes<WriteFCopy, [KryoUnitXY]> { let Latency = 6; } 93def : WriteRes<WriteFImm, [KryoUnitXY]> { let Latency = 6; } 94def : WriteRes<WriteFMul, [KryoUnitX, KryoUnitX]> 95 { let Latency = 6; let NumMicroOps = 2; } 96def : WriteRes<WriteFDiv, [KryoUnitXA, KryoUnitY]> 97 { let Latency = 12; let NumMicroOps = 2; } // Fragent -1 / NoRSV +1 98def : WriteRes<WriteV, [KryoUnitXY]> { let Latency = 6; } 99def : WriteRes<WriteVLD, [KryoUnitLS]> { let Latency = 4; } 100def : WriteRes<WriteVST, [KryoUnitLS]> { let Latency = 4; } 101 102def : WriteRes<WriteSys, []> { let Latency = 1; } 103def : WriteRes<WriteBarrier, []> { let Latency = 1; } 104def : WriteRes<WriteHint, []> { let Latency = 1; } 105 106def : WriteRes<WriteLDHi, []> { let Latency = 4; } 107 108def : WriteRes<WriteAtomic, []> { let Unsupported = 1; } 109 110// No forwarding logic is modelled yet. 111def : ReadAdvance<ReadI, 0>; 112def : ReadAdvance<ReadISReg, 0>; 113def : ReadAdvance<ReadIEReg, 0>; 114def : ReadAdvance<ReadIM, 0>; 115def : ReadAdvance<ReadIMA, 0>; 116def : ReadAdvance<ReadID, 0>; 117def : ReadAdvance<ReadExtrHi, 0>; 118def : ReadAdvance<ReadAdrBase, 0>; 119def : ReadAdvance<ReadVLD, 0>; 120 121 122//===----------------------------------------------------------------------===// 123// Specialize the coarse model by associating instruction groups with the 124// subtarget-defined types. As the modeled is refined, this will override most 125// of the above SchedWriteRes and SchedAlias mappings. 126 127// Miscellaneous 128// ----------------------------------------------------------------------------- 129 130def : InstRW<[WriteI], (instrs COPY)>; 131 132 133// Detailed Refinedments 134// ----------------------------------------------------------------------------- 135include "AArch64SchedKryoDetails.td" 136 137 138} // SchedModel = KryoModel 139