1//==- AArch64SchedCortexA55.td - ARM Cortex-A55 Scheduling Definitions -*- tablegen -*-=// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file defines the machine model for the ARM Cortex-A55 processors. 10// 11//===----------------------------------------------------------------------===// 12 13// ===---------------------------------------------------------------------===// 14// The following definitions describe the per-operand machine model. 15// This works with MachineScheduler. See MCSchedModel.h for details. 16 17// Cortex-A55 machine model for scheduling and other instruction cost heuristics. 18def CortexA55Model : SchedMachineModel { 19 let MicroOpBufferSize = 0; // The Cortex-A55 is an in-order processor 20 let IssueWidth = 2; // It dual-issues under most circumstances 21 let LoadLatency = 4; // Cycles for loads to access the cache. The 22 // optimisation guide shows that most loads have 23 // a latency of 3, but some have a latency of 4 24 // or 5. Setting it 4 looked to be good trade-off. 25 let MispredictPenalty = 8; // A branch direction mispredict. 26 let PostRAScheduler = 1; // Enable PostRA scheduler pass. 27 let CompleteModel = 0; // Covers instructions applicable to Cortex-A55. 28 29 list<Predicate> UnsupportedFeatures = [HasSVE]; 30 31 // FIXME: Remove when all errors have been fixed. 32 let FullInstRWOverlapCheck = 0; 33} 34 35//===----------------------------------------------------------------------===// 36// Define each kind of processor resource and number available. 37 38// Modeling each pipeline as a ProcResource using the BufferSize = 0 since the 39// Cortex-A55 is in-order. 40 41def CortexA55UnitALU : ProcResource<2> { let BufferSize = 0; } // Int ALU 42def CortexA55UnitMAC : ProcResource<1> { let BufferSize = 0; } // Int MAC, 64-bi wide 43def CortexA55UnitDiv : ProcResource<1> { let BufferSize = 0; } // Int Division, not pipelined 44def CortexA55UnitLd : ProcResource<1> { let BufferSize = 0; } // Load pipe 45def CortexA55UnitSt : ProcResource<1> { let BufferSize = 0; } // Store pipe 46def CortexA55UnitB : ProcResource<1> { let BufferSize = 0; } // Branch 47 48// The FP DIV/SQRT instructions execute totally differently from the FP ALU 49// instructions, which can mostly be dual-issued; that's why for now we model 50// them with 2 resources. 51def CortexA55UnitFPALU : ProcResource<2> { let BufferSize = 0; } // FP ALU 52def CortexA55UnitFPMAC : ProcResource<2> { let BufferSize = 0; } // FP MAC 53def CortexA55UnitFPDIV : ProcResource<1> { let BufferSize = 0; } // FP Div/SQRT, 64/128 54 55//===----------------------------------------------------------------------===// 56// Subtarget-specific SchedWrite types 57 58let SchedModel = CortexA55Model in { 59 60// These latencies are modeled without taking into account forwarding paths 61// (the software optimisation guide lists latencies taking into account 62// typical forwarding paths). 63def : WriteRes<WriteImm, [CortexA55UnitALU]> { let Latency = 3; } // MOVN, MOVZ 64def : WriteRes<WriteI, [CortexA55UnitALU]> { let Latency = 3; } // ALU 65def : WriteRes<WriteISReg, [CortexA55UnitALU]> { let Latency = 3; } // ALU of Shifted-Reg 66def : WriteRes<WriteIEReg, [CortexA55UnitALU]> { let Latency = 3; } // ALU of Extended-Reg 67def : WriteRes<WriteExtr, [CortexA55UnitALU]> { let Latency = 3; } // EXTR from a reg pair 68def : WriteRes<WriteIS, [CortexA55UnitALU]> { let Latency = 3; } // Shift/Scale 69 70// MAC 71def : WriteRes<WriteIM32, [CortexA55UnitMAC]> { let Latency = 4; } // 32-bit Multiply 72def : WriteRes<WriteIM64, [CortexA55UnitMAC]> { let Latency = 4; } // 64-bit Multiply 73 74// Div 75def : WriteRes<WriteID32, [CortexA55UnitDiv]> { 76 let Latency = 8; let ResourceCycles = [8]; 77} 78def : WriteRes<WriteID64, [CortexA55UnitDiv]> { 79 let Latency = 8; let ResourceCycles = [8]; 80} 81 82// Load 83def : WriteRes<WriteLD, [CortexA55UnitLd]> { let Latency = 3; } 84def : WriteRes<WriteLDIdx, [CortexA55UnitLd]> { let Latency = 4; } 85def : WriteRes<WriteLDHi, [CortexA55UnitLd]> { let Latency = 5; } 86 87// Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd 88// below, choosing the median of 3 which makes the latency 6. 89// An extra cycle is needed to get the swizzling right. 90def : WriteRes<WriteVLD, [CortexA55UnitLd]> { let Latency = 6; 91 let ResourceCycles = [3]; } 92def CortexA55WriteVLD1 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; } 93def CortexA55WriteVLD1SI : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; let SingleIssue = 1; } 94def CortexA55WriteVLD2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5; 95 let ResourceCycles = [2]; } 96def CortexA55WriteVLD3 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 6; 97 let ResourceCycles = [3]; } 98def CortexA55WriteVLD4 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 7; 99 let ResourceCycles = [4]; } 100def CortexA55WriteVLD5 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 8; 101 let ResourceCycles = [5]; } 102def CortexA55WriteVLD6 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 9; 103 let ResourceCycles = [6]; } 104def CortexA55WriteVLD7 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 10; 105 let ResourceCycles = [7]; } 106def CortexA55WriteVLD8 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 11; 107 let ResourceCycles = [8]; } 108 109def CortexA55WriteLDP1 : SchedWriteRes<[]> { let Latency = 4; } 110def CortexA55WriteLDP2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5; } 111def CortexA55WriteLDP4 : SchedWriteRes<[CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd]> { let Latency = 6; } 112 113// Pre/Post Indexing - Performed as part of address generation 114def : WriteRes<WriteAdr, []> { let Latency = 0; } 115 116// Store 117let RetireOOO = 1 in { 118def : WriteRes<WriteST, [CortexA55UnitSt]> { let Latency = 1; } 119def : WriteRes<WriteSTP, [CortexA55UnitSt]> { let Latency = 1; } 120def : WriteRes<WriteSTIdx, [CortexA55UnitSt]> { let Latency = 1; } 121} 122def : WriteRes<WriteSTX, [CortexA55UnitSt]> { let Latency = 4; } 123 124// Vector Store - Similar to vector loads, can take 1-3 cycles to issue. 125def : WriteRes<WriteVST, [CortexA55UnitSt]> { let Latency = 5; 126 let ResourceCycles = [2];} 127def CortexA55WriteVST1 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 4; } 128def CortexA55WriteVST2 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5; 129 let ResourceCycles = [2]; } 130def CortexA55WriteVST3 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 6; 131 let ResourceCycles = [3]; } 132def CortexA55WriteVST4 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5; 133 let ResourceCycles = [4]; } 134 135def : WriteRes<WriteAtomic, []> { let Unsupported = 1; } 136 137// Branch 138def : WriteRes<WriteBr, [CortexA55UnitB]>; 139def : WriteRes<WriteBrReg, [CortexA55UnitB]>; 140def : WriteRes<WriteSys, [CortexA55UnitB]>; 141def : WriteRes<WriteBarrier, [CortexA55UnitB]>; 142def : WriteRes<WriteHint, [CortexA55UnitB]>; 143 144// FP ALU 145// As WriteF result is produced in F5 and it can be mostly forwarded 146// to consumer at F1, the effectively latency is set as 4. 147def : WriteRes<WriteF, [CortexA55UnitFPALU]> { let Latency = 4; } 148def : WriteRes<WriteFCmp, [CortexA55UnitFPALU]> { let Latency = 3; } 149def : WriteRes<WriteFCvt, [CortexA55UnitFPALU]> { let Latency = 4; } 150def : WriteRes<WriteFCopy, [CortexA55UnitFPALU]> { let Latency = 3; } 151def : WriteRes<WriteFImm, [CortexA55UnitFPALU]> { let Latency = 3; } 152def : WriteRes<WriteV, [CortexA55UnitFPALU]> { let Latency = 4; } 153 154// FP ALU specific new schedwrite definitions 155def CortexA55WriteFPALU_F3 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 3;} 156def CortexA55WriteFPALU_F4 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 4;} 157def CortexA55WriteFPALU_F5 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 5;} 158 159// FP Mul, Div, Sqrt. Div/Sqrt are not pipelined 160def : WriteRes<WriteFMul, [CortexA55UnitFPMAC]> { let Latency = 4; } 161 162let RetireOOO = 1 in { 163def : WriteRes<WriteFDiv, [CortexA55UnitFPDIV]> { let Latency = 22; 164 let ResourceCycles = [29]; } 165def CortexA55WriteFMAC : SchedWriteRes<[CortexA55UnitFPMAC]> { let Latency = 4; } 166def CortexA55WriteFDivHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8; 167 let ResourceCycles = [5]; } 168def CortexA55WriteFDivSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 13; 169 let ResourceCycles = [10]; } 170def CortexA55WriteFDivDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22; 171 let ResourceCycles = [19]; } 172def CortexA55WriteFSqrtHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8; 173 let ResourceCycles = [5]; } 174def CortexA55WriteFSqrtSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 12; 175 let ResourceCycles = [9]; } 176def CortexA55WriteFSqrtDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22; 177 let ResourceCycles = [19]; } 178} 179//===----------------------------------------------------------------------===// 180// Subtarget-specific SchedRead types. 181 182def : ReadAdvance<ReadVLD, 0>; 183def : ReadAdvance<ReadExtrHi, 1>; 184def : ReadAdvance<ReadAdrBase, 1>; 185 186// ALU - ALU input operands are generally needed in EX1. An operand produced in 187// in say EX2 can be forwarded for consumption to ALU in EX1, thereby 188// allowing back-to-back ALU operations such as add. If an operand requires 189// a shift, it will, however, be required in ISS stage. 190def : ReadAdvance<ReadI, 2, [WriteImm,WriteI, 191 WriteISReg, WriteIEReg,WriteIS, 192 WriteID32,WriteID64, 193 WriteIM32,WriteIM64]>; 194// Shifted operand 195def CortexA55ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI, 196 WriteISReg, WriteIEReg,WriteIS, 197 WriteID32,WriteID64, 198 WriteIM32,WriteIM64]>; 199def CortexA55ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI, 200 WriteISReg, WriteIEReg,WriteIS, 201 WriteID32,WriteID64, 202 WriteIM32,WriteIM64]>; 203def CortexA55ReadISReg : SchedReadVariant<[ 204 SchedVar<RegShiftedPred, [CortexA55ReadShifted]>, 205 SchedVar<NoSchedPred, [CortexA55ReadNotShifted]>]>; 206def : SchedAlias<ReadISReg, CortexA55ReadISReg>; 207 208def CortexA55ReadIEReg : SchedReadVariant<[ 209 SchedVar<RegExtendedPred, [CortexA55ReadShifted]>, 210 SchedVar<NoSchedPred, [CortexA55ReadNotShifted]>]>; 211def : SchedAlias<ReadIEReg, CortexA55ReadIEReg>; 212 213// MUL 214def : ReadAdvance<ReadIM, 1, [WriteImm,WriteI, 215 WriteISReg, WriteIEReg,WriteIS, 216 WriteID32,WriteID64, 217 WriteIM32,WriteIM64]>; 218def : ReadAdvance<ReadIMA, 2, [WriteImm,WriteI, 219 WriteISReg, WriteIEReg,WriteIS, 220 WriteID32,WriteID64, 221 WriteIM32,WriteIM64]>; 222 223// Div 224def : ReadAdvance<ReadID, 1, [WriteImm,WriteI, 225 WriteISReg, WriteIEReg,WriteIS, 226 WriteID32,WriteID64, 227 WriteIM32,WriteIM64]>; 228 229//===----------------------------------------------------------------------===// 230// Subtarget-specific InstRWs. 231 232//--- 233// Miscellaneous 234//--- 235def : InstRW<[CortexA55WriteVLD1SI,CortexA55WriteLDP1], (instregex "LDPS?W")>; 236def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP1], (instregex "LDPS[^W]")>; 237def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP2], (instregex "LDP(X|D)")>; 238def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP4], (instregex "LDPQ")>; 239def : InstRW<[WriteI], (instrs COPY)>; 240//--- 241// Vector Loads - 64-bit per cycle 242//--- 243// 1-element structures 244def : InstRW<[CortexA55WriteVLD1], (instregex "LD1i(8|16|32|64)$")>; // single element 245def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // replicate 246def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d)$")>; 247def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Onev(16b|8h|4s|2d)$")>; 248def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d)$")>; // multiple structures 249def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Twov(16b|8h|4s|2d)$")>; 250def : InstRW<[CortexA55WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d)$")>; 251def : InstRW<[CortexA55WriteVLD6], (instregex "LD1Threev(16b|8h|4s|2d)$")>; 252def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d)$")>; 253def : InstRW<[CortexA55WriteVLD8], (instregex "LD1Fourv(16b|8h|4s|2d)$")>; 254 255def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1i(8|16|32|64)_POST$")>; 256def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 257def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1Onev(8b|4h|2s|1d)_POST$")>; 258def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD1Onev(16b|8h|4s|2d)_POST$")>; 259def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD1Twov(8b|4h|2s|1d)_POST$")>; 260def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD1Twov(16b|8h|4s|2d)_POST$")>; 261def : InstRW<[CortexA55WriteVLD3, WriteAdr], (instregex "LD1Threev(8b|4h|2s|1d)_POST$")>; 262def : InstRW<[CortexA55WriteVLD6, WriteAdr], (instregex "LD1Threev(16b|8h|4s|2d)_POST$")>; 263def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD1Fourv(8b|4h|2s|1d)_POST$")>; 264def : InstRW<[CortexA55WriteVLD8, WriteAdr], (instregex "LD1Fourv(16b|8h|4s|2d)_POST$")>; 265 266// 2-element structures 267def : InstRW<[CortexA55WriteVLD2], (instregex "LD2i(8|16|32|64)$")>; 268def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 269def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Twov(8b|4h|2s)$")>; 270def : InstRW<[CortexA55WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)$")>; 271 272def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2i(8|16|32|64)(_POST)?$")>; 273def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>; 274def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2Twov(8b|4h|2s)(_POST)?$")>; 275def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD2Twov(16b|8h|4s|2d)(_POST)?$")>; 276 277// 3-element structures 278def : InstRW<[CortexA55WriteVLD2], (instregex "LD3i(8|16|32|64)$")>; 279def : InstRW<[CortexA55WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 280def : InstRW<[CortexA55WriteVLD3], (instregex "LD3Threev(8b|4h|2s|1d)$")>; 281def : InstRW<[CortexA55WriteVLD6], (instregex "LD3Threev(16b|8h|4s|2d)$")>; 282 283def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD3i(8|16|32|64)_POST$")>; 284def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 285def : InstRW<[CortexA55WriteVLD3, WriteAdr], (instregex "LD3Threev(8b|4h|2s|1d)_POST$")>; 286def : InstRW<[CortexA55WriteVLD6, WriteAdr], (instregex "LD3Threev(16b|8h|4s|2d)_POST$")>; 287 288// 4-element structures 289def : InstRW<[CortexA55WriteVLD2], (instregex "LD4i(8|16|32|64)$")>; // load single 4-el structure to one lane of 4 regs. 290def : InstRW<[CortexA55WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // load single 4-el structure, replicate to all lanes of 4 regs. 291def : InstRW<[CortexA55WriteVLD4], (instregex "LD4Fourv(8b|4h|2s|1d)$")>; // load multiple 4-el structures to 4 regs. 292def : InstRW<[CortexA55WriteVLD8], (instregex "LD4Fourv(16b|8h|4s|2d)$")>; 293 294def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD4i(8|16|32|64)_POST$")>; 295def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 296def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD4Fourv(8b|4h|2s|1d)_POST$")>; 297def : InstRW<[CortexA55WriteVLD8, WriteAdr], (instregex "LD4Fourv(16b|8h|4s|2d)_POST$")>; 298 299//--- 300// Vector Stores 301//--- 302def : InstRW<[CortexA55WriteVST1], (instregex "ST1i(8|16|32|64)$")>; 303def : InstRW<[CortexA55WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 304def : InstRW<[CortexA55WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 305def : InstRW<[CortexA55WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 306def : InstRW<[CortexA55WriteVST4], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 307def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1i(8|16|32|64)_POST$")>; 308def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 309def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 310def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 311def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 312 313def : InstRW<[CortexA55WriteVST2], (instregex "ST2i(8|16|32|64)$")>; 314def : InstRW<[CortexA55WriteVST2], (instregex "ST2Twov(8b|4h|2s)$")>; 315def : InstRW<[CortexA55WriteVST4], (instregex "ST2Twov(16b|8h|4s|2d)$")>; 316def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST2i(8|16|32|64)_POST$")>; 317def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST2Twov(8b|4h|2s)_POST$")>; 318def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>; 319 320def : InstRW<[CortexA55WriteVST2], (instregex "ST3i(8|16|32|64)$")>; 321def : InstRW<[CortexA55WriteVST4], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 322def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST3i(8|16|32|64)_POST$")>; 323def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST3Threev(8b|4h|2s|1d|2d|16b|8h|4s|4d)_POST$")>; 324 325def : InstRW<[CortexA55WriteVST2], (instregex "ST4i(8|16|32|64)$")>; 326def : InstRW<[CortexA55WriteVST4], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 327def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST4i(8|16|32|64)_POST$")>; 328def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 329 330//--- 331// Floating Point Conversions, MAC, DIV, SQRT 332//--- 333def : InstRW<[CortexA55WriteFPALU_F3], (instregex "^FCVT[ALMNPZ][SU](S|U)?(W|X)")>; 334def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^FCVT(X)?[ALMNPXZ](S|U|N)?v")>; 335 336def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(S|U)(W|X)(H|S|D)")>; 337def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(h|s|d)")>; 338def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTFv")>; 339 340def : InstRW<[CortexA55WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>; 341def : InstRW<[CortexA55WriteFMAC], (instregex "^FML(A|S).*")>; 342def : InstRW<[CortexA55WriteFDivHP], (instrs FDIVHrr)>; 343def : InstRW<[CortexA55WriteFDivSP], (instrs FDIVSrr)>; 344def : InstRW<[CortexA55WriteFDivDP], (instrs FDIVDrr)>; 345def : InstRW<[CortexA55WriteFDivHP], (instregex "^FDIVv.*16$")>; 346def : InstRW<[CortexA55WriteFDivSP], (instregex "^FDIVv.*32$")>; 347def : InstRW<[CortexA55WriteFDivDP], (instregex "^FDIVv.*64$")>; 348def : InstRW<[CortexA55WriteFSqrtHP], (instregex "^.*SQRT.*16$")>; 349def : InstRW<[CortexA55WriteFSqrtSP], (instregex "^.*SQRT.*32$")>; 350def : InstRW<[CortexA55WriteFSqrtDP], (instregex "^.*SQRT.*64$")>; 351 352} 353