xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64SchedA55.td (revision 7fdf597e96a02165cfe22ff357b857d5fa15ed8a)
1//==- AArch64SchedCortexA55.td - ARM Cortex-A55 Scheduling Definitions -*- tablegen -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the machine model for the ARM Cortex-A55 processors. Note
10// that this schedule is currently used as the default for -mcpu=generic. As a
11// result, some of the modelling decision made do not precisely model the
12// Cortex-A55, instead aiming to be a good compromise between different cpus.
13//
14//===----------------------------------------------------------------------===//
15
16// ===---------------------------------------------------------------------===//
17// The following definitions describe the per-operand machine model.
18// This works with MachineScheduler. See MCSchedModel.h for details.
19
20// Cortex-A55 machine model for scheduling and other instruction cost heuristics.
21def CortexA55Model : SchedMachineModel {
22  let MicroOpBufferSize = 0;  // The Cortex-A55 is an in-order processor
23  let IssueWidth = 2;         // It dual-issues under most circumstances
24  let LoadLatency = 4;        // Cycles for loads to access the cache. The
25                              // optimisation guide shows that most loads have
26                              // a latency of 3, but some have a latency of 4
27                              // or 5. Setting it 4 looked to be good trade-off.
28  let MispredictPenalty = 8;  // A branch direction mispredict.
29  let PostRAScheduler = 1;    // Enable PostRA scheduler pass.
30  let CompleteModel = 0;      // Covers instructions applicable to Cortex-A55.
31
32  list<Predicate> UnsupportedFeatures = [HasSVE, HasMTE];
33
34  // FIXME: Remove when all errors have been fixed.
35  let FullInstRWOverlapCheck = 0;
36}
37
38//===----------------------------------------------------------------------===//
39// Define each kind of processor resource and number available.
40
41// Modeling each pipeline as a ProcResource using the BufferSize = 0 since the
42// Cortex-A55 is in-order.
43
44def CortexA55UnitALU    : ProcResource<2> { let BufferSize = 0; } // Int ALU
45def CortexA55UnitMAC    : ProcResource<1> { let BufferSize = 0; } // Int MAC, 64-bi wide
46def CortexA55UnitDiv    : ProcResource<1> { let BufferSize = 0; } // Int Division, not pipelined
47def CortexA55UnitLd     : ProcResource<1> { let BufferSize = 0; } // Load pipe
48def CortexA55UnitSt     : ProcResource<1> { let BufferSize = 0; } // Store pipe
49def CortexA55UnitB      : ProcResource<1> { let BufferSize = 0; } // Branch
50
51// The FP DIV/SQRT instructions execute totally differently from the FP ALU
52// instructions, which can mostly be dual-issued; that's why for now we model
53// them with 2 resources.
54def CortexA55UnitFPALU  : ProcResource<2> { let BufferSize = 0; } // FP ALU
55def CortexA55UnitFPMAC  : ProcResource<2> { let BufferSize = 0; } // FP MAC
56def CortexA55UnitFPDIV  : ProcResource<1> { let BufferSize = 0; } // FP Div/SQRT, 64/128
57
58//===----------------------------------------------------------------------===//
59// Subtarget-specific SchedWrite types
60
61let SchedModel = CortexA55Model in {
62
63// These latencies are modeled without taking into account forwarding paths
64// (the software optimisation guide lists latencies taking into account
65// typical forwarding paths).
66def : WriteRes<WriteImm, [CortexA55UnitALU]> { let Latency = 3; }    // MOVN, MOVZ
67def : WriteRes<WriteI, [CortexA55UnitALU]> { let Latency = 3; }      // ALU
68def : WriteRes<WriteISReg, [CortexA55UnitALU]> { let Latency = 3; }  // ALU of Shifted-Reg
69def : WriteRes<WriteIEReg, [CortexA55UnitALU]> { let Latency = 3; }  // ALU of Extended-Reg
70def : WriteRes<WriteExtr, [CortexA55UnitALU]> { let Latency = 3; }   // EXTR from a reg pair
71def : WriteRes<WriteIS, [CortexA55UnitALU]> { let Latency = 3; }     // Shift/Scale
72
73// MAC
74def : WriteRes<WriteIM32, [CortexA55UnitMAC]> { let Latency = 4; }   // 32-bit Multiply
75def : WriteRes<WriteIM64, [CortexA55UnitMAC]> { let Latency = 4; }   // 64-bit Multiply
76
77// Div
78def : WriteRes<WriteID32, [CortexA55UnitDiv]> {
79  let Latency = 8; let ReleaseAtCycles = [8];
80}
81def : WriteRes<WriteID64, [CortexA55UnitDiv]> {
82  let Latency = 8; let ReleaseAtCycles = [8];
83}
84
85// Load
86def : WriteRes<WriteLD, [CortexA55UnitLd]> { let Latency = 3; }
87def : WriteRes<WriteLDIdx, [CortexA55UnitLd]> { let Latency = 4; }
88def : WriteRes<WriteLDHi, [CortexA55UnitLd]> { let Latency = 5; }
89
90// Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd
91//               below, choosing the median of 3 which makes the latency 6.
92// An extra cycle is needed to get the swizzling right.
93def : WriteRes<WriteVLD, [CortexA55UnitLd]> { let Latency = 6;
94                                           let ReleaseAtCycles = [3]; }
95def CortexA55WriteVLD1 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; }
96def CortexA55WriteVLD1SI : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; let SingleIssue = 1; }
97def CortexA55WriteVLD2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5;
98                                                  let ReleaseAtCycles = [2]; }
99def CortexA55WriteVLD3 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 6;
100                                                  let ReleaseAtCycles = [3]; }
101def CortexA55WriteVLD4 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 7;
102                                                  let ReleaseAtCycles = [4]; }
103def CortexA55WriteVLD5 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 8;
104                                                  let ReleaseAtCycles = [5]; }
105def CortexA55WriteVLD6 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 9;
106                                                  let ReleaseAtCycles = [6]; }
107def CortexA55WriteVLD7 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 10;
108                                                  let ReleaseAtCycles = [7]; }
109def CortexA55WriteVLD8 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 11;
110                                                  let ReleaseAtCycles = [8]; }
111
112def CortexA55WriteLDP1 : SchedWriteRes<[]> { let Latency = 4; }
113def CortexA55WriteLDP2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5; }
114def CortexA55WriteLDP4 : SchedWriteRes<[CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd]> { let Latency = 6; }
115
116// Pre/Post Indexing - Performed as part of address generation
117def : WriteRes<WriteAdr, []> { let Latency = 0; }
118
119// Store
120let RetireOOO = 1 in {
121def : WriteRes<WriteST, [CortexA55UnitSt]> { let Latency = 1; }
122def : WriteRes<WriteSTP, [CortexA55UnitSt]> { let Latency = 1; }
123def : WriteRes<WriteSTIdx, [CortexA55UnitSt]> { let Latency = 1; }
124}
125def : WriteRes<WriteSTX, [CortexA55UnitSt]> { let Latency = 4; }
126
127// Vector Store - Similar to vector loads, can take 1-3 cycles to issue.
128def : WriteRes<WriteVST, [CortexA55UnitSt]> { let Latency = 5;
129                                          let ReleaseAtCycles = [2];}
130def CortexA55WriteVST1 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 4; }
131def CortexA55WriteVST2 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5;
132                                                  let ReleaseAtCycles = [2]; }
133def CortexA55WriteVST3 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 6;
134                                                  let ReleaseAtCycles = [3]; }
135def CortexA55WriteVST4 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5;
136                                                  let ReleaseAtCycles = [4]; }
137
138def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
139
140// Branch
141def : WriteRes<WriteBr, [CortexA55UnitB]>;
142def : WriteRes<WriteBrReg, [CortexA55UnitB]>;
143def : WriteRes<WriteSys, [CortexA55UnitB]>;
144def : WriteRes<WriteBarrier, [CortexA55UnitB]>;
145def : WriteRes<WriteHint, [CortexA55UnitB]>;
146
147// FP ALU
148//   As WriteF result is produced in F5 and it can be mostly forwarded
149//   to consumer at F1, the effectively latency is set as 4.
150def : WriteRes<WriteF, [CortexA55UnitFPALU]> { let Latency = 4; }
151def : WriteRes<WriteFCmp, [CortexA55UnitFPALU]> { let Latency = 3; }
152def : WriteRes<WriteFCvt, [CortexA55UnitFPALU]> { let Latency = 4; }
153def : WriteRes<WriteFCopy, [CortexA55UnitFPALU]> { let Latency = 3; }
154def : WriteRes<WriteFImm, [CortexA55UnitFPALU]> { let Latency = 3; }
155
156// NEON
157class CortexA55WriteVd<int n, ProcResourceKind res> : SchedWriteRes<[res]> {
158  let Latency = n;
159}
160class CortexA55WriteVq<int n, ProcResourceKind res> : SchedWriteRes<[res, res]> {
161  let Latency = n;
162  let BeginGroup = 1;
163}
164def CortexA55WriteDotScVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>;
165def CortexA55WriteDotVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>;
166def CortexA55WriteDotVd_4 : CortexA55WriteVd<4, CortexA55UnitFPALU>;
167def CortexA55WriteMlaLVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>;
168def CortexA55WriteMlaIxVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>;
169def CortexA55WriteMlaVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>;
170def CortexA55WriteMlaVd_4 : CortexA55WriteVd<4, CortexA55UnitFPALU>;
171def CortexA55WriteAluVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>;
172def CortexA55WriteAluVd_3 : CortexA55WriteVd<3, CortexA55UnitFPALU>;
173def CortexA55WriteAluVq_3 : CortexA55WriteVq<3, CortexA55UnitFPALU>;
174def CortexA55WriteAluVd_2 : CortexA55WriteVd<2, CortexA55UnitFPALU>;
175def CortexA55WriteAluVq_2 : CortexA55WriteVq<2, CortexA55UnitFPALU>;
176def CortexA55WriteAluVd_1 : CortexA55WriteVd<1, CortexA55UnitFPALU>;
177def CortexA55WriteAluVq_1 : CortexA55WriteVq<1, CortexA55UnitFPALU>;
178def : SchedAlias<WriteVd, CortexA55WriteVd<4, CortexA55UnitFPALU>>;
179def : SchedAlias<WriteVq, CortexA55WriteVq<4, CortexA55UnitFPALU>>;
180
181// FP ALU specific new schedwrite definitions
182def CortexA55WriteFPALU_F2 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 2;}
183def CortexA55WriteFPALU_F3 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 3;}
184def CortexA55WriteFPALU_F4 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 4;}
185def CortexA55WriteFPALU_F5 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 5;}
186
187// FP Mul, Div, Sqrt. Div/Sqrt are not pipelined
188def : WriteRes<WriteFMul, [CortexA55UnitFPMAC]> { let Latency = 4; }
189
190let RetireOOO = 1 in {
191def : WriteRes<WriteFDiv, [CortexA55UnitFPDIV]> { let Latency = 22;
192                                            let ReleaseAtCycles = [29]; }
193def CortexA55WriteFMAC : SchedWriteRes<[CortexA55UnitFPMAC]> { let Latency = 4; }
194def CortexA55WriteFDivHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8;
195                                                     let ReleaseAtCycles = [5]; }
196def CortexA55WriteFDivSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 13;
197                                                     let ReleaseAtCycles = [10]; }
198def CortexA55WriteFDivDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22;
199                                                     let ReleaseAtCycles = [19]; }
200def CortexA55WriteFSqrtHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8;
201                                                      let ReleaseAtCycles = [5]; }
202def CortexA55WriteFSqrtSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 12;
203                                                      let ReleaseAtCycles = [9]; }
204def CortexA55WriteFSqrtDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22;
205                                                      let ReleaseAtCycles = [19]; }
206}
207//===----------------------------------------------------------------------===//
208// Subtarget-specific SchedRead types.
209
210def : ReadAdvance<ReadVLD, 0>;
211def : ReadAdvance<ReadExtrHi, 1>;
212def : ReadAdvance<ReadAdrBase, 1>;
213def : ReadAdvance<ReadST, 1>;
214
215// ALU - ALU input operands are generally needed in EX1. An operand produced in
216//       in say EX2 can be forwarded for consumption to ALU in EX1, thereby
217//       allowing back-to-back ALU operations such as add. If an operand requires
218//       a shift, it will, however, be required in ISS stage.
219def : ReadAdvance<ReadI, 2, [WriteImm,WriteI,
220                             WriteISReg, WriteIEReg,WriteIS,
221                             WriteID32,WriteID64,
222                             WriteIM32,WriteIM64]>;
223// Shifted operand
224def CortexA55ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI,
225                                          WriteISReg, WriteIEReg,WriteIS,
226                                          WriteID32,WriteID64,
227                                          WriteIM32,WriteIM64]>;
228def CortexA55ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI,
229                                             WriteISReg, WriteIEReg,WriteIS,
230                                             WriteID32,WriteID64,
231                                             WriteIM32,WriteIM64]>;
232def CortexA55ReadISReg : SchedReadVariant<[
233        SchedVar<RegShiftedPred, [CortexA55ReadShifted]>,
234        SchedVar<NoSchedPred, [CortexA55ReadNotShifted]>]>;
235def : SchedAlias<ReadISReg, CortexA55ReadISReg>;
236
237def CortexA55ReadIEReg : SchedReadVariant<[
238        SchedVar<RegExtendedPred, [CortexA55ReadShifted]>,
239        SchedVar<NoSchedPred, [CortexA55ReadNotShifted]>]>;
240def : SchedAlias<ReadIEReg, CortexA55ReadIEReg>;
241
242// MUL
243def : ReadAdvance<ReadIM, 1, [WriteImm,WriteI,
244                              WriteISReg, WriteIEReg,WriteIS,
245                              WriteID32,WriteID64,
246                              WriteIM32,WriteIM64]>;
247def : ReadAdvance<ReadIMA, 2, [WriteImm,WriteI,
248                               WriteISReg, WriteIEReg,WriteIS,
249                               WriteID32,WriteID64,
250                               WriteIM32,WriteIM64]>;
251
252// Div
253def : ReadAdvance<ReadID, 1, [WriteImm,WriteI,
254                              WriteISReg, WriteIEReg,WriteIS,
255                              WriteID32,WriteID64,
256                              WriteIM32,WriteIM64]>;
257
258//===----------------------------------------------------------------------===//
259// Subtarget-specific InstRWs.
260
261//---
262// Miscellaneous
263//---
264def : InstRW<[CortexA55WriteVLD1SI,CortexA55WriteLDP1], (instregex "LDPS?Wi")>;
265def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP1], (instregex "LDPSi")>;
266def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP2], (instregex "LDP(X|D)i")>;
267def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP4], (instregex "LDPQi")>;
268def : InstRW<[WriteAdr, CortexA55WriteVLD1SI,CortexA55WriteLDP1], (instregex "LDPS?W(pre|post)")>;
269def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP1], (instregex "LDPS(pre|post)")>;
270def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP2], (instregex "LDP(X|D)(pre|post)")>;
271def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP4], (instregex "LDPQ(pre|post)")>;
272def : InstRW<[WriteI], (instrs COPY)>;
273//---
274// Vector Loads - 64-bit per cycle
275//---
276//   1-element structures
277def : InstRW<[CortexA55WriteVLD1], (instregex "LD1i(8|16|32|64)$")>;                // single element
278def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // replicate
279def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d)$")>;
280def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Onev(16b|8h|4s|2d)$")>;
281def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d)$")>; // multiple structures
282def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Twov(16b|8h|4s|2d)$")>;
283def : InstRW<[CortexA55WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d)$")>;
284def : InstRW<[CortexA55WriteVLD6], (instregex "LD1Threev(16b|8h|4s|2d)$")>;
285def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d)$")>;
286def : InstRW<[CortexA55WriteVLD8], (instregex "LD1Fourv(16b|8h|4s|2d)$")>;
287
288def : InstRW<[WriteAdr, CortexA55WriteVLD1], (instregex "LD1i(8|16|32|64)_POST$")>;
289def : InstRW<[WriteAdr, CortexA55WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
290def : InstRW<[WriteAdr, CortexA55WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d)_POST$")>;
291def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD1Onev(16b|8h|4s|2d)_POST$")>;
292def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d)_POST$")>;
293def : InstRW<[WriteAdr, CortexA55WriteVLD4], (instregex "LD1Twov(16b|8h|4s|2d)_POST$")>;
294def : InstRW<[WriteAdr, CortexA55WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d)_POST$")>;
295def : InstRW<[WriteAdr, CortexA55WriteVLD6], (instregex "LD1Threev(16b|8h|4s|2d)_POST$")>;
296def : InstRW<[WriteAdr, CortexA55WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d)_POST$")>;
297def : InstRW<[WriteAdr, CortexA55WriteVLD8], (instregex "LD1Fourv(16b|8h|4s|2d)_POST$")>;
298
299//    2-element structures
300def : InstRW<[CortexA55WriteVLD2], (instregex "LD2i(8|16|32|64)$")>;
301def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
302def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Twov(8b|4h|2s)$")>;
303def : InstRW<[CortexA55WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)$")>;
304
305def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD2i(8|16|32|64)(_POST)?$")>;
306def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
307def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD2Twov(8b|4h|2s)(_POST)?$")>;
308def : InstRW<[WriteAdr, CortexA55WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)(_POST)?$")>;
309
310//    3-element structures
311def : InstRW<[CortexA55WriteVLD2], (instregex "LD3i(8|16|32|64)$")>;
312def : InstRW<[CortexA55WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
313def : InstRW<[CortexA55WriteVLD3], (instregex "LD3Threev(8b|4h|2s|1d)$")>;
314def : InstRW<[CortexA55WriteVLD6], (instregex "LD3Threev(16b|8h|4s|2d)$")>;
315
316def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD3i(8|16|32|64)_POST$")>;
317def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
318def : InstRW<[WriteAdr, CortexA55WriteVLD3], (instregex "LD3Threev(8b|4h|2s|1d)_POST$")>;
319def : InstRW<[WriteAdr, CortexA55WriteVLD6], (instregex "LD3Threev(16b|8h|4s|2d)_POST$")>;
320
321//    4-element structures
322def : InstRW<[CortexA55WriteVLD2], (instregex "LD4i(8|16|32|64)$")>;                // load single 4-el structure to one lane of 4 regs.
323def : InstRW<[CortexA55WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // load single 4-el structure, replicate to all lanes of 4 regs.
324def : InstRW<[CortexA55WriteVLD4], (instregex "LD4Fourv(8b|4h|2s|1d)$")>;           // load multiple 4-el structures to 4 regs.
325def : InstRW<[CortexA55WriteVLD8], (instregex "LD4Fourv(16b|8h|4s|2d)$")>;
326
327def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD4i(8|16|32|64)_POST$")>;
328def : InstRW<[WriteAdr, CortexA55WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
329def : InstRW<[WriteAdr, CortexA55WriteVLD4], (instregex "LD4Fourv(8b|4h|2s|1d)_POST$")>;
330def : InstRW<[WriteAdr, CortexA55WriteVLD8], (instregex "LD4Fourv(16b|8h|4s|2d)_POST$")>;
331
332//---
333// Vector Stores
334//---
335def : InstRW<[CortexA55WriteVST1], (instregex "ST1i(8|16|32|64)$")>;
336def : InstRW<[CortexA55WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
337def : InstRW<[CortexA55WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
338def : InstRW<[CortexA55WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
339def : InstRW<[CortexA55WriteVST4], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
340def : InstRW<[WriteAdr, CortexA55WriteVST1], (instregex "ST1i(8|16|32|64)_POST$")>;
341def : InstRW<[WriteAdr, CortexA55WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
342def : InstRW<[WriteAdr, CortexA55WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
343def : InstRW<[WriteAdr, CortexA55WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
344def : InstRW<[WriteAdr, CortexA55WriteVST4], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
345
346def : InstRW<[CortexA55WriteVST2], (instregex "ST2i(8|16|32|64)$")>;
347def : InstRW<[CortexA55WriteVST2], (instregex "ST2Twov(8b|4h|2s)$")>;
348def : InstRW<[CortexA55WriteVST4], (instregex "ST2Twov(16b|8h|4s|2d)$")>;
349def : InstRW<[WriteAdr, CortexA55WriteVST2], (instregex "ST2i(8|16|32|64)_POST$")>;
350def : InstRW<[WriteAdr, CortexA55WriteVST2], (instregex "ST2Twov(8b|4h|2s)_POST$")>;
351def : InstRW<[WriteAdr, CortexA55WriteVST4], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>;
352
353def : InstRW<[CortexA55WriteVST2], (instregex "ST3i(8|16|32|64)$")>;
354def : InstRW<[CortexA55WriteVST4], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
355def : InstRW<[WriteAdr, CortexA55WriteVST2], (instregex "ST3i(8|16|32|64)_POST$")>;
356def : InstRW<[WriteAdr, CortexA55WriteVST4], (instregex "ST3Threev(8b|4h|2s|1d|2d|16b|8h|4s|4d)_POST$")>;
357
358def : InstRW<[CortexA55WriteVST2], (instregex "ST4i(8|16|32|64)$")>;
359def : InstRW<[CortexA55WriteVST4], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
360def : InstRW<[WriteAdr, CortexA55WriteVST2], (instregex "ST4i(8|16|32|64)_POST$")>;
361def : InstRW<[WriteAdr, CortexA55WriteVST4], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
362
363//---
364// Floating Point Conversions, MAC, DIV, SQRT
365//---
366def : InstRW<[CortexA55WriteFPALU_F2], (instregex "^DUP(v2i64|v4i32|v8i16|v16i8)")>;
367def : InstRW<[CortexA55WriteFPALU_F2], (instregex "^XTN")>;
368def : InstRW<[CortexA55WriteFPALU_F3], (instregex "^FCVT[ALMNPZ][SU](S|U)?(W|X)")>;
369def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^FCVT(X)?[ALMNPXZ](S|U|N)?v")>;
370
371def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(S|U)(W|X)(H|S|D)")>;
372def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(h|s|d)")>;
373def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTFv")>;
374
375def : InstRW<[CortexA55WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>;
376def : InstRW<[CortexA55WriteFMAC], (instregex "^FML(A|S).*")>;
377def : InstRW<[CortexA55WriteFDivHP], (instrs FDIVHrr)>;
378def : InstRW<[CortexA55WriteFDivSP], (instrs FDIVSrr)>;
379def : InstRW<[CortexA55WriteFDivDP], (instrs FDIVDrr)>;
380def : InstRW<[CortexA55WriteFDivHP], (instregex "^FDIVv.*16$")>;
381def : InstRW<[CortexA55WriteFDivSP], (instregex "^FDIVv.*32$")>;
382def : InstRW<[CortexA55WriteFDivDP], (instregex "^FDIVv.*64$")>;
383def : InstRW<[CortexA55WriteFSqrtHP], (instregex "^.*SQRT.*16$")>;
384def : InstRW<[CortexA55WriteFSqrtSP], (instregex "^.*SQRT.*32$")>;
385def : InstRW<[CortexA55WriteFSqrtDP], (instregex "^.*SQRT.*64$")>;
386
387// 4.15. Advanced SIMD integer instructions
388// ASIMD absolute diff
389def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]ABDv(2i32|4i16|8i8)")>;
390def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]ABDv(16i8|4i32|8i16)")>;
391// ASIMD absolute diff accum
392def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]ABAL?v")>;
393// ASIMD absolute diff long
394def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]ABDLv")>;
395// ASIMD arith #1
396def : InstRW<[CortexA55WriteAluVd_2], (instregex "(ADD|SUB|NEG)v(1i64|2i32|4i16|8i8)",
397  "[SU]R?HADDv(2i32|4i16|8i8)", "[SU]HSUBv(2i32|4i16|8i8)")>;
398def : InstRW<[CortexA55WriteAluVq_2], (instregex "(ADD|SUB|NEG)v(2i64|4i32|8i16|16i8)",
399  "[SU]R?HADDv(8i16|4i32|16i8)", "[SU]HSUBv(8i16|4i32|16i8)")>;
400// ASIMD arith #2
401def : InstRW<[CortexA55WriteAluVd_3], (instregex "ABSv(1i64|2i32|4i16|8i8)$",
402  "[SU]ADDLPv(2i32_v1i64|4i16_v2i32|8i8_v4i16)$",
403  "([SU]QADD|[SU]QSUB|SQNEG|SUQADD|USQADD)v(1i16|1i32|1i64|1i8|2i32|4i16|8i8)$",
404  "ADDPv(2i32|4i16|8i8)$")>;
405def : InstRW<[CortexA55WriteAluVq_3], (instregex "ABSv(2i64|4i32|8i16|16i8)$",
406  "[SU]ADDLPv(16i8_v8i16|4i32_v2i64|8i16_v4i32)$",
407  "([SU]QADD|[SU]QSUB|SQNEG|SUQADD|USQADD)v(16i8|2i64|4i32|8i16)$",
408  "ADDPv(16i8|2i64|4i32|8i16)$")>;
409// ASIMD arith #3
410def : InstRW<[CortexA55WriteAluVq_3], (instregex  "SADDLv", "UADDLv", "SADDWv",
411  "UADDWv", "SSUBLv", "USUBLv", "SSUBWv", "USUBWv", "ADDHNv", "SUBHNv")>;
412// ASIMD arith #5
413def : InstRW<[CortexA55WriteAluVq_4], (instregex "RADDHNv", "RSUBHNv")>;
414// ASIMD arith, reduce
415def : InstRW<[CortexA55WriteAluVq_3], (instregex  "ADDVv", "SADDLVv", "UADDLVv")>;
416// ASIMD compare #1
417def : InstRW<[CortexA55WriteAluVd_2], (instregex "CM(EQ|GE|GT|HI|HS|LE|LT)v(1i64|2i32|4i16|8i8)")>;
418def : InstRW<[CortexA55WriteAluVq_2], (instregex "CM(EQ|GE|GT|HI|HS|LE|LT)v(2i64|4i32|8i16|16i8)")>;
419// ASIMD compare #2
420def : InstRW<[CortexA55WriteAluVd_3], (instregex "CMTSTv(1i64|2i32|4i16|8i8)")>;
421def : InstRW<[CortexA55WriteAluVq_3], (instregex "CMTSTv(2i64|4i32|8i16|16i8)")>;
422// ASIMD logical $1
423def : InstRW<[CortexA55WriteAluVd_1], (instregex "(AND|EOR|NOT|ORN)v8i8",
424  "(ORR|BIC)v(2i32|4i16|8i8)$", "MVNIv(2i|2s|4i16)")>;
425def : InstRW<[CortexA55WriteAluVq_1], (instregex "(AND|EOR|NOT|ORN)v16i8",
426  "(ORR|BIC)v(16i8|4i32|8i16)$", "MVNIv(4i32|4s|8i16)")>;
427// ASIMD max/min, basic
428def : InstRW<[CortexA55WriteAluVd_2], (instregex "[SU](MIN|MAX)P?v(2i32|4i16|8i8)")>;
429def : InstRW<[CortexA55WriteAluVq_2], (instregex "[SU](MIN|MAX)P?v(16i8|4i132|8i16)")>;
430// SIMD max/min, reduce
431def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU](MAX|MIN)Vv")>;
432// ASIMD multiply, by element
433def : InstRW<[CortexA55WriteAluVq_4], (instregex "MULv(2i32|4i16|4i32|8i16)_indexed$",
434  "SQR?DMULHv(1i16|1i32|2i32|4i16|4i32|8i16)_indexed$")>;
435// ASIMD multiply
436def : InstRW<[CortexA55WriteAluVd_3], (instrs PMULv8i8)>;
437def : InstRW<[CortexA55WriteAluVq_3], (instrs PMULv16i8)>;
438// ASIMD multiply accumulate
439def : InstRW<[CortexA55WriteMlaVd_4], (instregex "ML[AS]v(2i32|4i16|8i8)$")>;
440def : InstRW<[CortexA55WriteMlaVq_4], (instregex "ML[AS]v(16i8|4i32|8i16)$")>;
441def : InstRW<[CortexA55WriteMlaIxVq_4], (instregex "ML[AS]v(2i32|4i16|4i32|8i16)_indexed$")>;
442// ASIMD multiply accumulate half
443def : InstRW<[CortexA55WriteAluVq_4], (instregex "SQRDML[AS]H[vi]")>;
444// ASIMD multiply accumulate long
445def : InstRW<[CortexA55WriteMlaLVq_4], (instregex "[SU]ML[AS]Lv")>;
446// ASIMD multiply accumulate long #2
447def : InstRW<[CortexA55WriteAluVq_4], (instregex "SQDML[AS]L[iv]")>;
448// ASIMD dot product
449def : InstRW<[CortexA55WriteDotVd_4], (instregex "[SU]DOTv8i8")>;
450def : InstRW<[CortexA55WriteDotVq_4], (instregex "[SU]DOTv16i8")>;
451// ASIMD dot product, by scalar
452def : InstRW<[CortexA55WriteDotScVq_4], (instregex "[SU]DOTlanev")>;
453// ASIMD multiply long
454def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]MULLv", "SQDMULL[iv]")>;
455// ASIMD polynomial (8x8) multiply long
456def : InstRW<[CortexA55WriteAluVq_3], (instrs PMULLv8i8, PMULLv16i8)>;
457// ASIMD pairwise add and accumulate
458def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]ADALPv")>;
459// ASIMD shift accumulate
460def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]SRA(d|v2i32|v4i16|v8i8)")>;
461def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]SRAv(16i8|2i64|4i32|8i16)")>;
462// ASIMD shift accumulate #2
463def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]RSRA[vd]")>;
464// ASIMD shift by immed
465def : InstRW<[CortexA55WriteAluVd_2], (instregex "SHLd$", "SHLv",
466  "SLId$", "SRId$", "[SU]SHR[vd]", "SHRNv")>;
467// ASIMD shift by immed
468// SXTL and UXTL are aliases for SHLL
469def : InstRW<[CortexA55WriteAluVq_2], (instregex "[US]?SHLLv")>;
470// ASIMD shift by immed #2
471def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]RSHR(d|v2i32|v4i16|v8i8)",
472  "RSHRNv(2i32|4i16|8i8)")>;
473def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]RSHRv(16i8|2i64|4i32|8i16)",
474  "RSHRNv(16i8|4i32|8i16)")>;
475// ASIMD shift by register
476def : InstRW<[CortexA55WriteAluVd_2], (instregex "[SU]SHLv(1i64|2i32|4i16|8i8)")>;
477def : InstRW<[CortexA55WriteAluVq_2], (instregex "[SU]SHLv(2i64|4i32|8i16|16i8)")>;
478// ASIMD shift by register #2
479def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]RSHLv(1i64|2i32|4i16|8i8)")>;
480def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]RSHLv(2i64|4i32|8i16|16i8)")>;
481
482}
483