1//==- AArch64SchedCortexA55.td - ARM Cortex-A55 Scheduling Definitions -*- tablegen -*-=// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file defines the machine model for the ARM Cortex-A55 processors. Note 10// that this schedule is currently used as the default for -mcpu=generic. As a 11// result, some of the modelling decision made do not precisely model the 12// Cortex-A55, instead aiming to be a good compromise between different cpus. 13// 14//===----------------------------------------------------------------------===// 15 16// ===---------------------------------------------------------------------===// 17// The following definitions describe the per-operand machine model. 18// This works with MachineScheduler. See MCSchedModel.h for details. 19 20// Cortex-A55 machine model for scheduling and other instruction cost heuristics. 21def CortexA55Model : SchedMachineModel { 22 let MicroOpBufferSize = 0; // The Cortex-A55 is an in-order processor 23 let IssueWidth = 2; // It dual-issues under most circumstances 24 let LoadLatency = 4; // Cycles for loads to access the cache. The 25 // optimisation guide shows that most loads have 26 // a latency of 3, but some have a latency of 4 27 // or 5. Setting it 4 looked to be good trade-off. 28 let MispredictPenalty = 8; // A branch direction mispredict. 29 let PostRAScheduler = 1; // Enable PostRA scheduler pass. 30 let CompleteModel = 0; // Covers instructions applicable to Cortex-A55. 31 32 list<Predicate> UnsupportedFeatures = [HasSVE, HasMTE]; 33 34 // FIXME: Remove when all errors have been fixed. 35 let FullInstRWOverlapCheck = 0; 36} 37 38//===----------------------------------------------------------------------===// 39// Define each kind of processor resource and number available. 40 41// Modeling each pipeline as a ProcResource using the BufferSize = 0 since the 42// Cortex-A55 is in-order. 43 44def CortexA55UnitALU : ProcResource<2> { let BufferSize = 0; } // Int ALU 45def CortexA55UnitMAC : ProcResource<1> { let BufferSize = 0; } // Int MAC, 64-bi wide 46def CortexA55UnitDiv : ProcResource<1> { let BufferSize = 0; } // Int Division, not pipelined 47def CortexA55UnitLd : ProcResource<1> { let BufferSize = 0; } // Load pipe 48def CortexA55UnitSt : ProcResource<1> { let BufferSize = 0; } // Store pipe 49def CortexA55UnitB : ProcResource<1> { let BufferSize = 0; } // Branch 50 51// The FP DIV/SQRT instructions execute totally differently from the FP ALU 52// instructions, which can mostly be dual-issued; that's why for now we model 53// them with 2 resources. 54def CortexA55UnitFPALU : ProcResource<2> { let BufferSize = 0; } // FP ALU 55def CortexA55UnitFPMAC : ProcResource<2> { let BufferSize = 0; } // FP MAC 56def CortexA55UnitFPDIV : ProcResource<1> { let BufferSize = 0; } // FP Div/SQRT, 64/128 57 58//===----------------------------------------------------------------------===// 59// Subtarget-specific SchedWrite types 60 61let SchedModel = CortexA55Model in { 62 63// These latencies are modeled without taking into account forwarding paths 64// (the software optimisation guide lists latencies taking into account 65// typical forwarding paths). 66def : WriteRes<WriteImm, [CortexA55UnitALU]> { let Latency = 3; } // MOVN, MOVZ 67def : WriteRes<WriteI, [CortexA55UnitALU]> { let Latency = 3; } // ALU 68def : WriteRes<WriteISReg, [CortexA55UnitALU]> { let Latency = 3; } // ALU of Shifted-Reg 69def : WriteRes<WriteIEReg, [CortexA55UnitALU]> { let Latency = 3; } // ALU of Extended-Reg 70def : WriteRes<WriteExtr, [CortexA55UnitALU]> { let Latency = 3; } // EXTR from a reg pair 71def : WriteRes<WriteIS, [CortexA55UnitALU]> { let Latency = 3; } // Shift/Scale 72 73// MAC 74def : WriteRes<WriteIM32, [CortexA55UnitMAC]> { let Latency = 4; } // 32-bit Multiply 75def : WriteRes<WriteIM64, [CortexA55UnitMAC]> { let Latency = 4; } // 64-bit Multiply 76 77// Div 78def : WriteRes<WriteID32, [CortexA55UnitDiv]> { 79 let Latency = 8; let ResourceCycles = [8]; 80} 81def : WriteRes<WriteID64, [CortexA55UnitDiv]> { 82 let Latency = 8; let ResourceCycles = [8]; 83} 84 85// Load 86def : WriteRes<WriteLD, [CortexA55UnitLd]> { let Latency = 3; } 87def : WriteRes<WriteLDIdx, [CortexA55UnitLd]> { let Latency = 4; } 88def : WriteRes<WriteLDHi, [CortexA55UnitLd]> { let Latency = 5; } 89 90// Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd 91// below, choosing the median of 3 which makes the latency 6. 92// An extra cycle is needed to get the swizzling right. 93def : WriteRes<WriteVLD, [CortexA55UnitLd]> { let Latency = 6; 94 let ResourceCycles = [3]; } 95def CortexA55WriteVLD1 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; } 96def CortexA55WriteVLD1SI : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; let SingleIssue = 1; } 97def CortexA55WriteVLD2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5; 98 let ResourceCycles = [2]; } 99def CortexA55WriteVLD3 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 6; 100 let ResourceCycles = [3]; } 101def CortexA55WriteVLD4 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 7; 102 let ResourceCycles = [4]; } 103def CortexA55WriteVLD5 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 8; 104 let ResourceCycles = [5]; } 105def CortexA55WriteVLD6 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 9; 106 let ResourceCycles = [6]; } 107def CortexA55WriteVLD7 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 10; 108 let ResourceCycles = [7]; } 109def CortexA55WriteVLD8 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 11; 110 let ResourceCycles = [8]; } 111 112def CortexA55WriteLDP1 : SchedWriteRes<[]> { let Latency = 4; } 113def CortexA55WriteLDP2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5; } 114def CortexA55WriteLDP4 : SchedWriteRes<[CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd]> { let Latency = 6; } 115 116// Pre/Post Indexing - Performed as part of address generation 117def : WriteRes<WriteAdr, []> { let Latency = 0; } 118 119// Store 120let RetireOOO = 1 in { 121def : WriteRes<WriteST, [CortexA55UnitSt]> { let Latency = 1; } 122def : WriteRes<WriteSTP, [CortexA55UnitSt]> { let Latency = 1; } 123def : WriteRes<WriteSTIdx, [CortexA55UnitSt]> { let Latency = 1; } 124} 125def : WriteRes<WriteSTX, [CortexA55UnitSt]> { let Latency = 4; } 126 127// Vector Store - Similar to vector loads, can take 1-3 cycles to issue. 128def : WriteRes<WriteVST, [CortexA55UnitSt]> { let Latency = 5; 129 let ResourceCycles = [2];} 130def CortexA55WriteVST1 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 4; } 131def CortexA55WriteVST2 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5; 132 let ResourceCycles = [2]; } 133def CortexA55WriteVST3 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 6; 134 let ResourceCycles = [3]; } 135def CortexA55WriteVST4 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5; 136 let ResourceCycles = [4]; } 137 138def : WriteRes<WriteAtomic, []> { let Unsupported = 1; } 139 140// Branch 141def : WriteRes<WriteBr, [CortexA55UnitB]>; 142def : WriteRes<WriteBrReg, [CortexA55UnitB]>; 143def : WriteRes<WriteSys, [CortexA55UnitB]>; 144def : WriteRes<WriteBarrier, [CortexA55UnitB]>; 145def : WriteRes<WriteHint, [CortexA55UnitB]>; 146 147// FP ALU 148// As WriteF result is produced in F5 and it can be mostly forwarded 149// to consumer at F1, the effectively latency is set as 4. 150def : WriteRes<WriteF, [CortexA55UnitFPALU]> { let Latency = 4; } 151def : WriteRes<WriteFCmp, [CortexA55UnitFPALU]> { let Latency = 3; } 152def : WriteRes<WriteFCvt, [CortexA55UnitFPALU]> { let Latency = 4; } 153def : WriteRes<WriteFCopy, [CortexA55UnitFPALU]> { let Latency = 3; } 154def : WriteRes<WriteFImm, [CortexA55UnitFPALU]> { let Latency = 3; } 155 156// NEON 157class CortexA55WriteVd<int n, ProcResourceKind res> : SchedWriteRes<[res]> { 158 let Latency = n; 159} 160class CortexA55WriteVq<int n, ProcResourceKind res> : SchedWriteRes<[res, res]> { 161 let Latency = n; 162 let BeginGroup = 1; 163} 164def CortexA55WriteDotScVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; 165def CortexA55WriteDotVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; 166def CortexA55WriteDotVd_4 : CortexA55WriteVd<4, CortexA55UnitFPALU>; 167def CortexA55WriteMlaLVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; 168def CortexA55WriteMlaIxVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; 169def CortexA55WriteMlaVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; 170def CortexA55WriteMlaVd_4 : CortexA55WriteVd<4, CortexA55UnitFPALU>; 171def CortexA55WriteAluVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; 172def CortexA55WriteAluVd_3 : CortexA55WriteVd<3, CortexA55UnitFPALU>; 173def CortexA55WriteAluVq_3 : CortexA55WriteVq<3, CortexA55UnitFPALU>; 174def CortexA55WriteAluVd_2 : CortexA55WriteVd<2, CortexA55UnitFPALU>; 175def CortexA55WriteAluVq_2 : CortexA55WriteVq<2, CortexA55UnitFPALU>; 176def CortexA55WriteAluVd_1 : CortexA55WriteVd<1, CortexA55UnitFPALU>; 177def CortexA55WriteAluVq_1 : CortexA55WriteVq<1, CortexA55UnitFPALU>; 178def : SchedAlias<WriteVd, CortexA55WriteVd<4, CortexA55UnitFPALU>>; 179def : SchedAlias<WriteVq, CortexA55WriteVq<4, CortexA55UnitFPALU>>; 180 181// FP ALU specific new schedwrite definitions 182def CortexA55WriteFPALU_F2 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 2;} 183def CortexA55WriteFPALU_F3 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 3;} 184def CortexA55WriteFPALU_F4 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 4;} 185def CortexA55WriteFPALU_F5 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 5;} 186 187// FP Mul, Div, Sqrt. Div/Sqrt are not pipelined 188def : WriteRes<WriteFMul, [CortexA55UnitFPMAC]> { let Latency = 4; } 189 190let RetireOOO = 1 in { 191def : WriteRes<WriteFDiv, [CortexA55UnitFPDIV]> { let Latency = 22; 192 let ResourceCycles = [29]; } 193def CortexA55WriteFMAC : SchedWriteRes<[CortexA55UnitFPMAC]> { let Latency = 4; } 194def CortexA55WriteFDivHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8; 195 let ResourceCycles = [5]; } 196def CortexA55WriteFDivSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 13; 197 let ResourceCycles = [10]; } 198def CortexA55WriteFDivDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22; 199 let ResourceCycles = [19]; } 200def CortexA55WriteFSqrtHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8; 201 let ResourceCycles = [5]; } 202def CortexA55WriteFSqrtSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 12; 203 let ResourceCycles = [9]; } 204def CortexA55WriteFSqrtDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22; 205 let ResourceCycles = [19]; } 206} 207//===----------------------------------------------------------------------===// 208// Subtarget-specific SchedRead types. 209 210def : ReadAdvance<ReadVLD, 0>; 211def : ReadAdvance<ReadExtrHi, 1>; 212def : ReadAdvance<ReadAdrBase, 1>; 213def : ReadAdvance<ReadST, 1>; 214 215// ALU - ALU input operands are generally needed in EX1. An operand produced in 216// in say EX2 can be forwarded for consumption to ALU in EX1, thereby 217// allowing back-to-back ALU operations such as add. If an operand requires 218// a shift, it will, however, be required in ISS stage. 219def : ReadAdvance<ReadI, 2, [WriteImm,WriteI, 220 WriteISReg, WriteIEReg,WriteIS, 221 WriteID32,WriteID64, 222 WriteIM32,WriteIM64]>; 223// Shifted operand 224def CortexA55ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI, 225 WriteISReg, WriteIEReg,WriteIS, 226 WriteID32,WriteID64, 227 WriteIM32,WriteIM64]>; 228def CortexA55ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI, 229 WriteISReg, WriteIEReg,WriteIS, 230 WriteID32,WriteID64, 231 WriteIM32,WriteIM64]>; 232def CortexA55ReadISReg : SchedReadVariant<[ 233 SchedVar<RegShiftedPred, [CortexA55ReadShifted]>, 234 SchedVar<NoSchedPred, [CortexA55ReadNotShifted]>]>; 235def : SchedAlias<ReadISReg, CortexA55ReadISReg>; 236 237def CortexA55ReadIEReg : SchedReadVariant<[ 238 SchedVar<RegExtendedPred, [CortexA55ReadShifted]>, 239 SchedVar<NoSchedPred, [CortexA55ReadNotShifted]>]>; 240def : SchedAlias<ReadIEReg, CortexA55ReadIEReg>; 241 242// MUL 243def : ReadAdvance<ReadIM, 1, [WriteImm,WriteI, 244 WriteISReg, WriteIEReg,WriteIS, 245 WriteID32,WriteID64, 246 WriteIM32,WriteIM64]>; 247def : ReadAdvance<ReadIMA, 2, [WriteImm,WriteI, 248 WriteISReg, WriteIEReg,WriteIS, 249 WriteID32,WriteID64, 250 WriteIM32,WriteIM64]>; 251 252// Div 253def : ReadAdvance<ReadID, 1, [WriteImm,WriteI, 254 WriteISReg, WriteIEReg,WriteIS, 255 WriteID32,WriteID64, 256 WriteIM32,WriteIM64]>; 257 258//===----------------------------------------------------------------------===// 259// Subtarget-specific InstRWs. 260 261//--- 262// Miscellaneous 263//--- 264def : InstRW<[CortexA55WriteVLD1SI,CortexA55WriteLDP1], (instregex "LDPS?Wi")>; 265def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP1], (instregex "LDPSi")>; 266def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP2], (instregex "LDP(X|D)i")>; 267def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP4], (instregex "LDPQi")>; 268def : InstRW<[WriteAdr, CortexA55WriteVLD1SI,CortexA55WriteLDP1], (instregex "LDPS?W(pre|post)")>; 269def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP1], (instregex "LDPS(pre|post)")>; 270def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP2], (instregex "LDP(X|D)(pre|post)")>; 271def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP4], (instregex "LDPQ(pre|post)")>; 272def : InstRW<[WriteI], (instrs COPY)>; 273//--- 274// Vector Loads - 64-bit per cycle 275//--- 276// 1-element structures 277def : InstRW<[CortexA55WriteVLD1], (instregex "LD1i(8|16|32|64)$")>; // single element 278def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // replicate 279def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d)$")>; 280def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Onev(16b|8h|4s|2d)$")>; 281def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d)$")>; // multiple structures 282def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Twov(16b|8h|4s|2d)$")>; 283def : InstRW<[CortexA55WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d)$")>; 284def : InstRW<[CortexA55WriteVLD6], (instregex "LD1Threev(16b|8h|4s|2d)$")>; 285def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d)$")>; 286def : InstRW<[CortexA55WriteVLD8], (instregex "LD1Fourv(16b|8h|4s|2d)$")>; 287 288def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1i(8|16|32|64)_POST$")>; 289def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 290def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1Onev(8b|4h|2s|1d)_POST$")>; 291def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD1Onev(16b|8h|4s|2d)_POST$")>; 292def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD1Twov(8b|4h|2s|1d)_POST$")>; 293def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD1Twov(16b|8h|4s|2d)_POST$")>; 294def : InstRW<[CortexA55WriteVLD3, WriteAdr], (instregex "LD1Threev(8b|4h|2s|1d)_POST$")>; 295def : InstRW<[CortexA55WriteVLD6, WriteAdr], (instregex "LD1Threev(16b|8h|4s|2d)_POST$")>; 296def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD1Fourv(8b|4h|2s|1d)_POST$")>; 297def : InstRW<[CortexA55WriteVLD8, WriteAdr], (instregex "LD1Fourv(16b|8h|4s|2d)_POST$")>; 298 299// 2-element structures 300def : InstRW<[CortexA55WriteVLD2], (instregex "LD2i(8|16|32|64)$")>; 301def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 302def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Twov(8b|4h|2s)$")>; 303def : InstRW<[CortexA55WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)$")>; 304 305def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2i(8|16|32|64)(_POST)?$")>; 306def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>; 307def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2Twov(8b|4h|2s)(_POST)?$")>; 308def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD2Twov(16b|8h|4s|2d)(_POST)?$")>; 309 310// 3-element structures 311def : InstRW<[CortexA55WriteVLD2], (instregex "LD3i(8|16|32|64)$")>; 312def : InstRW<[CortexA55WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 313def : InstRW<[CortexA55WriteVLD3], (instregex "LD3Threev(8b|4h|2s|1d)$")>; 314def : InstRW<[CortexA55WriteVLD6], (instregex "LD3Threev(16b|8h|4s|2d)$")>; 315 316def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD3i(8|16|32|64)_POST$")>; 317def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 318def : InstRW<[CortexA55WriteVLD3, WriteAdr], (instregex "LD3Threev(8b|4h|2s|1d)_POST$")>; 319def : InstRW<[CortexA55WriteVLD6, WriteAdr], (instregex "LD3Threev(16b|8h|4s|2d)_POST$")>; 320 321// 4-element structures 322def : InstRW<[CortexA55WriteVLD2], (instregex "LD4i(8|16|32|64)$")>; // load single 4-el structure to one lane of 4 regs. 323def : InstRW<[CortexA55WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // load single 4-el structure, replicate to all lanes of 4 regs. 324def : InstRW<[CortexA55WriteVLD4], (instregex "LD4Fourv(8b|4h|2s|1d)$")>; // load multiple 4-el structures to 4 regs. 325def : InstRW<[CortexA55WriteVLD8], (instregex "LD4Fourv(16b|8h|4s|2d)$")>; 326 327def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD4i(8|16|32|64)_POST$")>; 328def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 329def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD4Fourv(8b|4h|2s|1d)_POST$")>; 330def : InstRW<[CortexA55WriteVLD8, WriteAdr], (instregex "LD4Fourv(16b|8h|4s|2d)_POST$")>; 331 332//--- 333// Vector Stores 334//--- 335def : InstRW<[CortexA55WriteVST1], (instregex "ST1i(8|16|32|64)$")>; 336def : InstRW<[CortexA55WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 337def : InstRW<[CortexA55WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 338def : InstRW<[CortexA55WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 339def : InstRW<[CortexA55WriteVST4], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 340def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1i(8|16|32|64)_POST$")>; 341def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 342def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 343def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 344def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 345 346def : InstRW<[CortexA55WriteVST2], (instregex "ST2i(8|16|32|64)$")>; 347def : InstRW<[CortexA55WriteVST2], (instregex "ST2Twov(8b|4h|2s)$")>; 348def : InstRW<[CortexA55WriteVST4], (instregex "ST2Twov(16b|8h|4s|2d)$")>; 349def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST2i(8|16|32|64)_POST$")>; 350def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST2Twov(8b|4h|2s)_POST$")>; 351def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>; 352 353def : InstRW<[CortexA55WriteVST2], (instregex "ST3i(8|16|32|64)$")>; 354def : InstRW<[CortexA55WriteVST4], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 355def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST3i(8|16|32|64)_POST$")>; 356def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST3Threev(8b|4h|2s|1d|2d|16b|8h|4s|4d)_POST$")>; 357 358def : InstRW<[CortexA55WriteVST2], (instregex "ST4i(8|16|32|64)$")>; 359def : InstRW<[CortexA55WriteVST4], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; 360def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST4i(8|16|32|64)_POST$")>; 361def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; 362 363//--- 364// Floating Point Conversions, MAC, DIV, SQRT 365//--- 366def : InstRW<[CortexA55WriteFPALU_F2], (instregex "^DUP(v2i64|v4i32|v8i16|v16i8)")>; 367def : InstRW<[CortexA55WriteFPALU_F2], (instregex "^XTN")>; 368def : InstRW<[CortexA55WriteFPALU_F3], (instregex "^FCVT[ALMNPZ][SU](S|U)?(W|X)")>; 369def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^FCVT(X)?[ALMNPXZ](S|U|N)?v")>; 370 371def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(S|U)(W|X)(H|S|D)")>; 372def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(h|s|d)")>; 373def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTFv")>; 374 375def : InstRW<[CortexA55WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>; 376def : InstRW<[CortexA55WriteFMAC], (instregex "^FML(A|S).*")>; 377def : InstRW<[CortexA55WriteFDivHP], (instrs FDIVHrr)>; 378def : InstRW<[CortexA55WriteFDivSP], (instrs FDIVSrr)>; 379def : InstRW<[CortexA55WriteFDivDP], (instrs FDIVDrr)>; 380def : InstRW<[CortexA55WriteFDivHP], (instregex "^FDIVv.*16$")>; 381def : InstRW<[CortexA55WriteFDivSP], (instregex "^FDIVv.*32$")>; 382def : InstRW<[CortexA55WriteFDivDP], (instregex "^FDIVv.*64$")>; 383def : InstRW<[CortexA55WriteFSqrtHP], (instregex "^.*SQRT.*16$")>; 384def : InstRW<[CortexA55WriteFSqrtSP], (instregex "^.*SQRT.*32$")>; 385def : InstRW<[CortexA55WriteFSqrtDP], (instregex "^.*SQRT.*64$")>; 386 387// 4.15. Advanced SIMD integer instructions 388// ASIMD absolute diff 389def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]ABDv(2i32|4i16|8i8)")>; 390def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]ABDv(16i8|4i32|8i16)")>; 391// ASIMD absolute diff accum 392def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]ABAL?v")>; 393// ASIMD absolute diff long 394def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]ABDLv")>; 395// ASIMD arith #1 396def : InstRW<[CortexA55WriteAluVd_2], (instregex "(ADD|SUB|NEG)v(1i64|2i32|4i16|8i8)", 397 "[SU]R?HADDv(2i32|4i16|8i8)", "[SU]HSUBv(2i32|4i16|8i8)")>; 398def : InstRW<[CortexA55WriteAluVq_2], (instregex "(ADD|SUB|NEG)v(2i64|4i32|8i16|16i8)", 399 "[SU]R?HADDv(8i16|4i32|16i8)", "[SU]HSUBv(8i16|4i32|16i8)")>; 400// ASIMD arith #2 401def : InstRW<[CortexA55WriteAluVd_3], (instregex "ABSv(1i64|2i32|4i16|8i8)$", 402 "[SU]ADDLPv(2i32_v1i64|4i16_v2i32|8i8_v4i16)$", 403 "([SU]QADD|[SU]QSUB|SQNEG|SUQADD|USQADD)v(1i16|1i32|1i64|1i8|2i32|4i16|8i8)$", 404 "ADDPv(2i32|4i16|8i8)$")>; 405def : InstRW<[CortexA55WriteAluVq_3], (instregex "ABSv(2i64|4i32|8i16|16i8)$", 406 "[SU]ADDLPv(16i8_v8i16|4i32_v2i64|8i16_v4i32)$", 407 "([SU]QADD|[SU]QSUB|SQNEG|SUQADD|USQADD)v(16i8|2i64|4i32|8i16)$", 408 "ADDPv(16i8|2i64|4i32|8i16)$")>; 409// ASIMD arith #3 410def : InstRW<[CortexA55WriteAluVq_3], (instregex "SADDLv", "UADDLv", "SADDWv", 411 "UADDWv", "SSUBLv", "USUBLv", "SSUBWv", "USUBWv", "ADDHNv", "SUBHNv")>; 412// ASIMD arith #5 413def : InstRW<[CortexA55WriteAluVq_4], (instregex "RADDHNv", "RSUBHNv")>; 414// ASIMD arith, reduce 415def : InstRW<[CortexA55WriteAluVq_3], (instregex "ADDVv", "SADDLVv", "UADDLVv")>; 416// ASIMD compare #1 417def : InstRW<[CortexA55WriteAluVd_2], (instregex "CM(EQ|GE|GT|HI|HS|LE|LT)v(1i64|2i32|4i16|8i8)")>; 418def : InstRW<[CortexA55WriteAluVq_2], (instregex "CM(EQ|GE|GT|HI|HS|LE|LT)v(2i64|4i32|8i16|16i8)")>; 419// ASIMD compare #2 420def : InstRW<[CortexA55WriteAluVd_3], (instregex "CMTSTv(1i64|2i32|4i16|8i8)")>; 421def : InstRW<[CortexA55WriteAluVq_3], (instregex "CMTSTv(2i64|4i32|8i16|16i8)")>; 422// ASIMD logical $1 423def : InstRW<[CortexA55WriteAluVd_1], (instregex "(AND|EOR|NOT|ORN)v8i8", 424 "(ORR|BIC)v(2i32|4i16|8i8)$", "MVNIv(2i|2s|4i16)")>; 425def : InstRW<[CortexA55WriteAluVq_1], (instregex "(AND|EOR|NOT|ORN)v16i8", 426 "(ORR|BIC)v(16i8|4i32|8i16)$", "MVNIv(4i32|4s|8i16)")>; 427// ASIMD max/min, basic 428def : InstRW<[CortexA55WriteAluVd_2], (instregex "[SU](MIN|MAX)P?v(2i32|4i16|8i8)")>; 429def : InstRW<[CortexA55WriteAluVq_2], (instregex "[SU](MIN|MAX)P?v(16i8|4i132|8i16)")>; 430// SIMD max/min, reduce 431def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU](MAX|MIN)Vv")>; 432// ASIMD multiply, by element 433def : InstRW<[CortexA55WriteAluVq_4], (instregex "MULv(2i32|4i16|4i32|8i16)_indexed$", 434 "SQR?DMULHv(1i16|1i32|2i32|4i16|4i32|8i16)_indexed$")>; 435// ASIMD multiply 436def : InstRW<[CortexA55WriteAluVd_3], (instrs PMULv8i8)>; 437def : InstRW<[CortexA55WriteAluVq_3], (instrs PMULv16i8)>; 438// ASIMD multiply accumulate 439def : InstRW<[CortexA55WriteMlaVd_4], (instregex "ML[AS]v(2i32|4i16|8i8)$")>; 440def : InstRW<[CortexA55WriteMlaVq_4], (instregex "ML[AS]v(16i8|4i32|8i16)$")>; 441def : InstRW<[CortexA55WriteMlaIxVq_4], (instregex "ML[AS]v(2i32|4i16|4i32|8i16)_indexed$")>; 442// ASIMD multiply accumulate half 443def : InstRW<[CortexA55WriteAluVq_4], (instregex "SQRDML[AS]H[vi]")>; 444// ASIMD multiply accumulate long 445def : InstRW<[CortexA55WriteMlaLVq_4], (instregex "[SU]ML[AS]Lv")>; 446// ASIMD multiply accumulate long #2 447def : InstRW<[CortexA55WriteAluVq_4], (instregex "SQDML[AS]L[iv]")>; 448// ASIMD dot product 449def : InstRW<[CortexA55WriteDotVd_4], (instregex "[SU]DOTv8i8")>; 450def : InstRW<[CortexA55WriteDotVq_4], (instregex "[SU]DOTv16i8")>; 451// ASIMD dot product, by scalar 452def : InstRW<[CortexA55WriteDotScVq_4], (instregex "[SU]DOTlanev")>; 453// ASIMD multiply long 454def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]MULLv", "SQDMULL[iv]")>; 455// ASIMD polynomial (8x8) multiply long 456def : InstRW<[CortexA55WriteAluVq_3], (instrs PMULLv8i8, PMULLv16i8)>; 457// ASIMD pairwise add and accumulate 458def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]ADALPv")>; 459// ASIMD shift accumulate 460def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]SRA(d|v2i32|v4i16|v8i8)")>; 461def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]SRAv(16i8|2i64|4i32|8i16)")>; 462// ASIMD shift accumulate #2 463def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]RSRA[vd]")>; 464// ASIMD shift by immed 465def : InstRW<[CortexA55WriteAluVd_2], (instregex "SHLd$", "SHLv", 466 "SLId$", "SRId$", "[SU]SHR[vd]", "SHRNv")>; 467// ASIMD shift by immed 468// SXTL and UXTL are aliases for SHLL 469def : InstRW<[CortexA55WriteAluVq_2], (instregex "[US]?SHLLv")>; 470// ASIMD shift by immed #2 471def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]RSHR(d|v2i32|v4i16|v8i8)", 472 "RSHRNv(2i32|4i16|8i8)")>; 473def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]RSHRv(16i8|2i64|4i32|8i16)", 474 "RSHRNv(16i8|4i32|8i16)")>; 475// ASIMD shift by register 476def : InstRW<[CortexA55WriteAluVd_2], (instregex "[SU]SHLv(1i64|2i32|4i16|8i8)")>; 477def : InstRW<[CortexA55WriteAluVq_2], (instregex "[SU]SHLv(2i64|4i32|8i16|16i8)")>; 478// ASIMD shift by register #2 479def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]RSHLv(1i64|2i32|4i16|8i8)")>; 480def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]RSHLv(2i64|4i32|8i16|16i8)")>; 481 482} 483