xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64SIMDInstrOpt.cpp (revision 35c0a8c449fd2b7f75029ebed5e10852240f0865)
1 //
2 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
3 // See https://llvm.org/LICENSE.txt for license information.
4 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file contains a pass that performs optimization on SIMD instructions
9 // with high latency by splitting them into more efficient series of
10 // instructions.
11 //
12 // 1. Rewrite certain SIMD instructions with vector element due to their
13 // inefficiency on some targets.
14 //
15 // For example:
16 //    fmla v0.4s, v1.4s, v2.s[1]
17 //
18 // Is rewritten into:
19 //    dup v3.4s, v2.s[1]
20 //    fmla v0.4s, v1.4s, v3.4s
21 //
22 // 2. Rewrite interleaved memory access instructions due to their
23 // inefficiency on some targets.
24 //
25 // For example:
26 //    st2 {v0.4s, v1.4s}, addr
27 //
28 // Is rewritten into:
29 //    zip1 v2.4s, v0.4s, v1.4s
30 //    zip2 v3.4s, v0.4s, v1.4s
31 //    stp  q2, q3,  addr
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "AArch64InstrInfo.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetSchedule.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/MC/MCInstrDesc.h"
50 #include "llvm/MC/MCSchedule.h"
51 #include "llvm/Pass.h"
52 #include <unordered_map>
53 #include <map>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "aarch64-simdinstr-opt"
58 
59 STATISTIC(NumModifiedInstr,
60           "Number of SIMD instructions modified");
61 
62 #define AARCH64_VECTOR_BY_ELEMENT_OPT_NAME                                     \
63   "AArch64 SIMD instructions optimization pass"
64 
65 namespace {
66 
67 struct AArch64SIMDInstrOpt : public MachineFunctionPass {
68   static char ID;
69 
70   const TargetInstrInfo *TII;
71   MachineRegisterInfo *MRI;
72   TargetSchedModel SchedModel;
73 
74   // The two maps below are used to cache decisions instead of recomputing:
75   // This is used to cache instruction replacement decisions within function
76   // units and across function units.
77   std::map<std::pair<unsigned, std::string>, bool> SIMDInstrTable;
78   // This is used to cache the decision of whether to leave the interleaved
79   // store instructions replacement pass early or not for a particular target.
80   std::unordered_map<std::string, bool> InterlEarlyExit;
81 
82   typedef enum {
83     VectorElem,
84     Interleave
85   } Subpass;
86 
87   // Instruction represented by OrigOpc is replaced by instructions in ReplOpc.
88   struct InstReplInfo {
89     unsigned OrigOpc;
90 		std::vector<unsigned> ReplOpc;
91     const TargetRegisterClass RC;
92   };
93 
94 #define RuleST2(OpcOrg, OpcR0, OpcR1, OpcR2, RC) \
95   {OpcOrg, {OpcR0, OpcR1, OpcR2}, RC}
96 #define RuleST4(OpcOrg, OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, \
97                 OpcR7, OpcR8, OpcR9, RC) \
98   {OpcOrg, \
99    {OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, OpcR7, OpcR8, OpcR9}, RC}
100 
101   // The Instruction Replacement Table:
102   std::vector<InstReplInfo> IRT = {
103     // ST2 instructions
104     RuleST2(AArch64::ST2Twov2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
105           AArch64::STPQi, AArch64::FPR128RegClass),
106     RuleST2(AArch64::ST2Twov4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
107           AArch64::STPQi, AArch64::FPR128RegClass),
108     RuleST2(AArch64::ST2Twov2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
109           AArch64::STPDi, AArch64::FPR64RegClass),
110     RuleST2(AArch64::ST2Twov8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
111           AArch64::STPQi, AArch64::FPR128RegClass),
112     RuleST2(AArch64::ST2Twov4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
113           AArch64::STPDi, AArch64::FPR64RegClass),
114     RuleST2(AArch64::ST2Twov16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
115           AArch64::STPQi, AArch64::FPR128RegClass),
116     RuleST2(AArch64::ST2Twov8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
117           AArch64::STPDi, AArch64::FPR64RegClass),
118     // ST4 instructions
119     RuleST4(AArch64::ST4Fourv2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
120           AArch64::ZIP1v2i64, AArch64::ZIP2v2i64, AArch64::ZIP1v2i64,
121           AArch64::ZIP2v2i64, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
122           AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
123     RuleST4(AArch64::ST4Fourv4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
124           AArch64::ZIP1v4i32, AArch64::ZIP2v4i32, AArch64::ZIP1v4i32,
125           AArch64::ZIP2v4i32, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
126           AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
127     RuleST4(AArch64::ST4Fourv2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
128           AArch64::ZIP1v2i32, AArch64::ZIP2v2i32, AArch64::ZIP1v2i32,
129           AArch64::ZIP2v2i32, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
130           AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
131     RuleST4(AArch64::ST4Fourv8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
132           AArch64::ZIP1v8i16, AArch64::ZIP2v8i16, AArch64::ZIP1v8i16,
133           AArch64::ZIP2v8i16, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
134           AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
135     RuleST4(AArch64::ST4Fourv4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
136           AArch64::ZIP1v4i16, AArch64::ZIP2v4i16, AArch64::ZIP1v4i16,
137           AArch64::ZIP2v4i16, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
138           AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
139     RuleST4(AArch64::ST4Fourv16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
140           AArch64::ZIP1v16i8, AArch64::ZIP2v16i8, AArch64::ZIP1v16i8,
141           AArch64::ZIP2v16i8, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
142           AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
143     RuleST4(AArch64::ST4Fourv8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
144           AArch64::ZIP1v8i8, AArch64::ZIP2v8i8, AArch64::ZIP1v8i8,
145           AArch64::ZIP2v8i8, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
146           AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass)
147   };
148 
149   // A costly instruction is replaced in this work by N efficient instructions
150   // The maximum of N is curently 10 and it is for ST4 case.
151   static const unsigned MaxNumRepl = 10;
152 
153   AArch64SIMDInstrOpt() : MachineFunctionPass(ID) {
154     initializeAArch64SIMDInstrOptPass(*PassRegistry::getPassRegistry());
155   }
156 
157   /// Based only on latency of instructions, determine if it is cost efficient
158   /// to replace the instruction InstDesc by the instructions stored in the
159   /// array InstDescRepl.
160   /// Return true if replacement is expected to be faster.
161   bool shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
162                          SmallVectorImpl<const MCInstrDesc*> &ReplInstrMCID);
163 
164   /// Determine if we need to exit the instruction replacement optimization
165   /// passes early. This makes sure that no compile time is spent in this pass
166   /// for targets with no need for any of these optimizations.
167   /// Return true if early exit of the pass is recommended.
168   bool shouldExitEarly(MachineFunction *MF, Subpass SP);
169 
170   /// Check whether an equivalent DUP instruction has already been
171   /// created or not.
172   /// Return true when the DUP instruction already exists. In this case,
173   /// DestReg will point to the destination of the already created DUP.
174   bool reuseDUP(MachineInstr &MI, unsigned DupOpcode, unsigned SrcReg,
175                 unsigned LaneNumber, unsigned *DestReg) const;
176 
177   /// Certain SIMD instructions with vector element operand are not efficient.
178   /// Rewrite them into SIMD instructions with vector operands. This rewrite
179   /// is driven by the latency of the instructions.
180   /// Return true if the SIMD instruction is modified.
181   bool optimizeVectElement(MachineInstr &MI);
182 
183   /// Process The REG_SEQUENCE instruction, and extract the source
184   /// operands of the ST2/4 instruction from it.
185   /// Example of such instructions.
186   ///    %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
187   /// Return true when the instruction is processed successfully.
188   bool processSeqRegInst(MachineInstr *DefiningMI, unsigned* StReg,
189                          unsigned* StRegKill, unsigned NumArg) const;
190 
191   /// Load/Store Interleaving instructions are not always beneficial.
192   /// Replace them by ZIP instructionand classical load/store.
193   /// Return true if the SIMD instruction is modified.
194   bool optimizeLdStInterleave(MachineInstr &MI);
195 
196   /// Return the number of useful source registers for this
197   /// instruction (2 for ST2 and 4 for ST4).
198   unsigned determineSrcReg(MachineInstr &MI) const;
199 
200   bool runOnMachineFunction(MachineFunction &Fn) override;
201 
202   StringRef getPassName() const override {
203     return AARCH64_VECTOR_BY_ELEMENT_OPT_NAME;
204   }
205 };
206 
207 char AArch64SIMDInstrOpt::ID = 0;
208 
209 } // end anonymous namespace
210 
211 INITIALIZE_PASS(AArch64SIMDInstrOpt, "aarch64-simdinstr-opt",
212                 AARCH64_VECTOR_BY_ELEMENT_OPT_NAME, false, false)
213 
214 /// Based only on latency of instructions, determine if it is cost efficient
215 /// to replace the instruction InstDesc by the instructions stored in the
216 /// array InstDescRepl.
217 /// Return true if replacement is expected to be faster.
218 bool AArch64SIMDInstrOpt::
219 shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
220                   SmallVectorImpl<const MCInstrDesc*> &InstDescRepl) {
221   // Check if replacement decision is already available in the cached table.
222   // if so, return it.
223   std::string Subtarget = std::string(SchedModel.getSubtargetInfo()->getCPU());
224   auto InstID = std::make_pair(InstDesc->getOpcode(), Subtarget);
225   auto It = SIMDInstrTable.find(InstID);
226   if (It != SIMDInstrTable.end())
227     return It->second;
228 
229   unsigned SCIdx = InstDesc->getSchedClass();
230   const MCSchedClassDesc *SCDesc =
231     SchedModel.getMCSchedModel()->getSchedClassDesc(SCIdx);
232 
233   // If a target does not define resources for the instructions
234   // of interest, then return false for no replacement.
235   const MCSchedClassDesc *SCDescRepl;
236   if (!SCDesc->isValid() || SCDesc->isVariant())
237   {
238     SIMDInstrTable[InstID] = false;
239     return false;
240   }
241   for (const auto *IDesc : InstDescRepl)
242   {
243     SCDescRepl = SchedModel.getMCSchedModel()->getSchedClassDesc(
244       IDesc->getSchedClass());
245     if (!SCDescRepl->isValid() || SCDescRepl->isVariant())
246     {
247       SIMDInstrTable[InstID] = false;
248       return false;
249     }
250   }
251 
252   // Replacement cost.
253   unsigned ReplCost = 0;
254   for (const auto *IDesc :InstDescRepl)
255     ReplCost += SchedModel.computeInstrLatency(IDesc->getOpcode());
256 
257   if (SchedModel.computeInstrLatency(InstDesc->getOpcode()) > ReplCost)
258   {
259     SIMDInstrTable[InstID] = true;
260     return true;
261   }
262   else
263   {
264     SIMDInstrTable[InstID] = false;
265     return false;
266   }
267 }
268 
269 /// Determine if we need to exit this pass for a kind of instruction replacement
270 /// early. This makes sure that no compile time is spent in this pass for
271 /// targets with no need for any of these optimizations beyond performing this
272 /// check.
273 /// Return true if early exit of this pass for a kind of instruction
274 /// replacement is recommended for a target.
275 bool AArch64SIMDInstrOpt::shouldExitEarly(MachineFunction *MF, Subpass SP) {
276   const MCInstrDesc* OriginalMCID;
277   SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
278 
279   switch (SP) {
280   // For this optimization, check by comparing the latency of a representative
281   // instruction to that of the replacement instructions.
282   // TODO: check for all concerned instructions.
283   case VectorElem:
284     OriginalMCID = &TII->get(AArch64::FMLAv4i32_indexed);
285     ReplInstrMCID.push_back(&TII->get(AArch64::DUPv4i32lane));
286     ReplInstrMCID.push_back(&TII->get(AArch64::FMLAv4f32));
287     if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID))
288       return false;
289     break;
290 
291   // For this optimization, check for all concerned instructions.
292   case Interleave:
293     std::string Subtarget =
294         std::string(SchedModel.getSubtargetInfo()->getCPU());
295     auto It = InterlEarlyExit.find(Subtarget);
296     if (It != InterlEarlyExit.end())
297       return It->second;
298 
299     for (auto &I : IRT) {
300       OriginalMCID = &TII->get(I.OrigOpc);
301       for (auto &Repl : I.ReplOpc)
302         ReplInstrMCID.push_back(&TII->get(Repl));
303       if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID)) {
304         InterlEarlyExit[Subtarget] = false;
305         return false;
306       }
307       ReplInstrMCID.clear();
308     }
309     InterlEarlyExit[Subtarget] = true;
310     break;
311   }
312 
313   return true;
314 }
315 
316 /// Check whether an equivalent DUP instruction has already been
317 /// created or not.
318 /// Return true when the DUP instruction already exists. In this case,
319 /// DestReg will point to the destination of the already created DUP.
320 bool AArch64SIMDInstrOpt::reuseDUP(MachineInstr &MI, unsigned DupOpcode,
321                                          unsigned SrcReg, unsigned LaneNumber,
322                                          unsigned *DestReg) const {
323   for (MachineBasicBlock::iterator MII = MI, MIE = MI.getParent()->begin();
324        MII != MIE;) {
325     MII--;
326     MachineInstr *CurrentMI = &*MII;
327 
328     if (CurrentMI->getOpcode() == DupOpcode &&
329         CurrentMI->getNumOperands() == 3 &&
330         CurrentMI->getOperand(1).getReg() == SrcReg &&
331         CurrentMI->getOperand(2).getImm() == LaneNumber) {
332       *DestReg = CurrentMI->getOperand(0).getReg();
333       return true;
334     }
335   }
336 
337   return false;
338 }
339 
340 /// Certain SIMD instructions with vector element operand are not efficient.
341 /// Rewrite them into SIMD instructions with vector operands. This rewrite
342 /// is driven by the latency of the instructions.
343 /// The instruction of concerns are for the time being FMLA, FMLS, FMUL,
344 /// and FMULX and hence they are hardcoded.
345 ///
346 /// For example:
347 ///    fmla v0.4s, v1.4s, v2.s[1]
348 ///
349 /// Is rewritten into
350 ///    dup  v3.4s, v2.s[1]      // DUP not necessary if redundant
351 ///    fmla v0.4s, v1.4s, v3.4s
352 ///
353 /// Return true if the SIMD instruction is modified.
354 bool AArch64SIMDInstrOpt::optimizeVectElement(MachineInstr &MI) {
355   const MCInstrDesc *MulMCID, *DupMCID;
356   const TargetRegisterClass *RC = &AArch64::FPR128RegClass;
357 
358   switch (MI.getOpcode()) {
359   default:
360     return false;
361 
362   // 4X32 instructions
363   case AArch64::FMLAv4i32_indexed:
364     DupMCID = &TII->get(AArch64::DUPv4i32lane);
365     MulMCID = &TII->get(AArch64::FMLAv4f32);
366     break;
367   case AArch64::FMLSv4i32_indexed:
368     DupMCID = &TII->get(AArch64::DUPv4i32lane);
369     MulMCID = &TII->get(AArch64::FMLSv4f32);
370     break;
371   case AArch64::FMULXv4i32_indexed:
372     DupMCID = &TII->get(AArch64::DUPv4i32lane);
373     MulMCID = &TII->get(AArch64::FMULXv4f32);
374     break;
375   case AArch64::FMULv4i32_indexed:
376     DupMCID = &TII->get(AArch64::DUPv4i32lane);
377     MulMCID = &TII->get(AArch64::FMULv4f32);
378     break;
379 
380   // 2X64 instructions
381   case AArch64::FMLAv2i64_indexed:
382     DupMCID = &TII->get(AArch64::DUPv2i64lane);
383     MulMCID = &TII->get(AArch64::FMLAv2f64);
384     break;
385   case AArch64::FMLSv2i64_indexed:
386     DupMCID = &TII->get(AArch64::DUPv2i64lane);
387     MulMCID = &TII->get(AArch64::FMLSv2f64);
388     break;
389   case AArch64::FMULXv2i64_indexed:
390     DupMCID = &TII->get(AArch64::DUPv2i64lane);
391     MulMCID = &TII->get(AArch64::FMULXv2f64);
392     break;
393   case AArch64::FMULv2i64_indexed:
394     DupMCID = &TII->get(AArch64::DUPv2i64lane);
395     MulMCID = &TII->get(AArch64::FMULv2f64);
396     break;
397 
398   // 2X32 instructions
399   case AArch64::FMLAv2i32_indexed:
400     RC = &AArch64::FPR64RegClass;
401     DupMCID = &TII->get(AArch64::DUPv2i32lane);
402     MulMCID = &TII->get(AArch64::FMLAv2f32);
403     break;
404   case AArch64::FMLSv2i32_indexed:
405     RC = &AArch64::FPR64RegClass;
406     DupMCID = &TII->get(AArch64::DUPv2i32lane);
407     MulMCID = &TII->get(AArch64::FMLSv2f32);
408     break;
409   case AArch64::FMULXv2i32_indexed:
410     RC = &AArch64::FPR64RegClass;
411     DupMCID = &TII->get(AArch64::DUPv2i32lane);
412     MulMCID = &TII->get(AArch64::FMULXv2f32);
413     break;
414   case AArch64::FMULv2i32_indexed:
415     RC = &AArch64::FPR64RegClass;
416     DupMCID = &TII->get(AArch64::DUPv2i32lane);
417     MulMCID = &TII->get(AArch64::FMULv2f32);
418     break;
419   }
420 
421   SmallVector<const MCInstrDesc*, 2> ReplInstrMCID;
422   ReplInstrMCID.push_back(DupMCID);
423   ReplInstrMCID.push_back(MulMCID);
424   if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
425                          ReplInstrMCID))
426     return false;
427 
428   const DebugLoc &DL = MI.getDebugLoc();
429   MachineBasicBlock &MBB = *MI.getParent();
430   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
431 
432   // Get the operands of the current SIMD arithmetic instruction.
433   Register MulDest = MI.getOperand(0).getReg();
434   Register SrcReg0 = MI.getOperand(1).getReg();
435   unsigned Src0IsKill = getKillRegState(MI.getOperand(1).isKill());
436   Register SrcReg1 = MI.getOperand(2).getReg();
437   unsigned Src1IsKill = getKillRegState(MI.getOperand(2).isKill());
438   unsigned DupDest;
439 
440   // Instructions of interest have either 4 or 5 operands.
441   if (MI.getNumOperands() == 5) {
442     Register SrcReg2 = MI.getOperand(3).getReg();
443     unsigned Src2IsKill = getKillRegState(MI.getOperand(3).isKill());
444     unsigned LaneNumber = MI.getOperand(4).getImm();
445     // Create a new DUP instruction. Note that if an equivalent DUP instruction
446     // has already been created before, then use that one instead of creating
447     // a new one.
448     if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg2, LaneNumber, &DupDest)) {
449       DupDest = MRI.createVirtualRegister(RC);
450       BuildMI(MBB, MI, DL, *DupMCID, DupDest)
451           .addReg(SrcReg2, Src2IsKill)
452           .addImm(LaneNumber);
453     }
454     BuildMI(MBB, MI, DL, *MulMCID, MulDest)
455         .addReg(SrcReg0, Src0IsKill)
456         .addReg(SrcReg1, Src1IsKill)
457         .addReg(DupDest, Src2IsKill);
458   } else if (MI.getNumOperands() == 4) {
459     unsigned LaneNumber = MI.getOperand(3).getImm();
460     if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg1, LaneNumber, &DupDest)) {
461       DupDest = MRI.createVirtualRegister(RC);
462       BuildMI(MBB, MI, DL, *DupMCID, DupDest)
463           .addReg(SrcReg1, Src1IsKill)
464           .addImm(LaneNumber);
465     }
466     BuildMI(MBB, MI, DL, *MulMCID, MulDest)
467         .addReg(SrcReg0, Src0IsKill)
468         .addReg(DupDest, Src1IsKill);
469   } else {
470     return false;
471   }
472 
473   ++NumModifiedInstr;
474   return true;
475 }
476 
477 /// Load/Store Interleaving instructions are not always beneficial.
478 /// Replace them by ZIP instructions and classical load/store.
479 ///
480 /// For example:
481 ///    st2 {v0.4s, v1.4s}, addr
482 ///
483 /// Is rewritten into:
484 ///    zip1 v2.4s, v0.4s, v1.4s
485 ///    zip2 v3.4s, v0.4s, v1.4s
486 ///    stp  q2, q3, addr
487 //
488 /// For example:
489 ///    st4 {v0.4s, v1.4s, v2.4s, v3.4s}, addr
490 ///
491 /// Is rewritten into:
492 ///    zip1 v4.4s, v0.4s, v2.4s
493 ///    zip2 v5.4s, v0.4s, v2.4s
494 ///    zip1 v6.4s, v1.4s, v3.4s
495 ///    zip2 v7.4s, v1.4s, v3.4s
496 ///    zip1 v8.4s, v4.4s, v6.4s
497 ///    zip2 v9.4s, v4.4s, v6.4s
498 ///    zip1 v10.4s, v5.4s, v7.4s
499 ///    zip2 v11.4s, v5.4s, v7.4s
500 ///    stp  q8, q9, addr
501 ///    stp  q10, q11, addr+32
502 ///
503 /// Currently only instructions related to ST2 and ST4 are considered.
504 /// Other may be added later.
505 /// Return true if the SIMD instruction is modified.
506 bool AArch64SIMDInstrOpt::optimizeLdStInterleave(MachineInstr &MI) {
507 
508   unsigned SeqReg, AddrReg;
509   unsigned StReg[4], StRegKill[4];
510   MachineInstr *DefiningMI;
511   const DebugLoc &DL = MI.getDebugLoc();
512   MachineBasicBlock &MBB = *MI.getParent();
513   SmallVector<unsigned, MaxNumRepl> ZipDest;
514   SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
515 
516   // If current instruction matches any of the rewriting rules, then
517   // gather information about parameters of the new instructions.
518   bool Match = false;
519   for (auto &I : IRT) {
520     if (MI.getOpcode() == I.OrigOpc) {
521       SeqReg  = MI.getOperand(0).getReg();
522       AddrReg = MI.getOperand(1).getReg();
523       DefiningMI = MRI->getUniqueVRegDef(SeqReg);
524       unsigned NumReg = determineSrcReg(MI);
525       if (!processSeqRegInst(DefiningMI, StReg, StRegKill, NumReg))
526         return false;
527 
528       for (auto &Repl : I.ReplOpc) {
529         ReplInstrMCID.push_back(&TII->get(Repl));
530         // Generate destination registers but only for non-store instruction.
531         if (Repl != AArch64::STPQi && Repl != AArch64::STPDi)
532           ZipDest.push_back(MRI->createVirtualRegister(&I.RC));
533       }
534       Match = true;
535       break;
536     }
537   }
538 
539   if (!Match)
540     return false;
541 
542   // Determine if it is profitable to replace MI by the series of instructions
543   // represented in ReplInstrMCID.
544   if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
545                          ReplInstrMCID))
546     return false;
547 
548   // Generate the replacement instructions composed of ZIP1, ZIP2, and STP (at
549   // this point, the code generation is hardcoded and does not rely on the IRT
550   // table used above given that code generation for ST2 replacement is somewhat
551   // different than for ST4 replacement. We could have added more info into the
552   // table related to how we build new instructions but we may be adding more
553   // complexity with that).
554   switch (MI.getOpcode()) {
555   default:
556     return false;
557 
558   case AArch64::ST2Twov16b:
559   case AArch64::ST2Twov8b:
560   case AArch64::ST2Twov8h:
561   case AArch64::ST2Twov4h:
562   case AArch64::ST2Twov4s:
563   case AArch64::ST2Twov2s:
564   case AArch64::ST2Twov2d:
565     // ZIP instructions
566     BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
567         .addReg(StReg[0])
568         .addReg(StReg[1]);
569     BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
570         .addReg(StReg[0], StRegKill[0])
571         .addReg(StReg[1], StRegKill[1]);
572     // STP instructions
573     BuildMI(MBB, MI, DL, *ReplInstrMCID[2])
574         .addReg(ZipDest[0])
575         .addReg(ZipDest[1])
576         .addReg(AddrReg)
577         .addImm(0);
578     break;
579 
580   case AArch64::ST4Fourv16b:
581   case AArch64::ST4Fourv8b:
582   case AArch64::ST4Fourv8h:
583   case AArch64::ST4Fourv4h:
584   case AArch64::ST4Fourv4s:
585   case AArch64::ST4Fourv2s:
586   case AArch64::ST4Fourv2d:
587     // ZIP instructions
588     BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
589         .addReg(StReg[0])
590         .addReg(StReg[2]);
591     BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
592         .addReg(StReg[0], StRegKill[0])
593         .addReg(StReg[2], StRegKill[2]);
594     BuildMI(MBB, MI, DL, *ReplInstrMCID[2], ZipDest[2])
595         .addReg(StReg[1])
596         .addReg(StReg[3]);
597     BuildMI(MBB, MI, DL, *ReplInstrMCID[3], ZipDest[3])
598         .addReg(StReg[1], StRegKill[1])
599         .addReg(StReg[3], StRegKill[3]);
600     BuildMI(MBB, MI, DL, *ReplInstrMCID[4], ZipDest[4])
601         .addReg(ZipDest[0])
602         .addReg(ZipDest[2]);
603     BuildMI(MBB, MI, DL, *ReplInstrMCID[5], ZipDest[5])
604         .addReg(ZipDest[0])
605         .addReg(ZipDest[2]);
606     BuildMI(MBB, MI, DL, *ReplInstrMCID[6], ZipDest[6])
607         .addReg(ZipDest[1])
608         .addReg(ZipDest[3]);
609     BuildMI(MBB, MI, DL, *ReplInstrMCID[7], ZipDest[7])
610         .addReg(ZipDest[1])
611         .addReg(ZipDest[3]);
612     // stp instructions
613     BuildMI(MBB, MI, DL, *ReplInstrMCID[8])
614         .addReg(ZipDest[4])
615         .addReg(ZipDest[5])
616         .addReg(AddrReg)
617         .addImm(0);
618     BuildMI(MBB, MI, DL, *ReplInstrMCID[9])
619         .addReg(ZipDest[6])
620         .addReg(ZipDest[7])
621         .addReg(AddrReg)
622         .addImm(2);
623     break;
624   }
625 
626   ++NumModifiedInstr;
627   return true;
628 }
629 
630 /// Process The REG_SEQUENCE instruction, and extract the source
631 /// operands of the ST2/4 instruction from it.
632 /// Example of such instruction.
633 ///    %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
634 /// Return true when the instruction is processed successfully.
635 bool AArch64SIMDInstrOpt::processSeqRegInst(MachineInstr *DefiningMI,
636      unsigned* StReg, unsigned* StRegKill, unsigned NumArg) const {
637   assert(DefiningMI != nullptr);
638   if (DefiningMI->getOpcode() != AArch64::REG_SEQUENCE)
639     return false;
640 
641   for (unsigned i=0; i<NumArg; i++) {
642     StReg[i]     = DefiningMI->getOperand(2*i+1).getReg();
643     StRegKill[i] = getKillRegState(DefiningMI->getOperand(2*i+1).isKill());
644 
645     // Validation check for the other arguments.
646     if (DefiningMI->getOperand(2*i+2).isImm()) {
647       switch (DefiningMI->getOperand(2*i+2).getImm()) {
648       default:
649         return false;
650 
651       case AArch64::dsub0:
652       case AArch64::dsub1:
653       case AArch64::dsub2:
654       case AArch64::dsub3:
655       case AArch64::qsub0:
656       case AArch64::qsub1:
657       case AArch64::qsub2:
658       case AArch64::qsub3:
659         break;
660       }
661     }
662     else
663       return false;
664   }
665   return true;
666 }
667 
668 /// Return the number of useful source registers for this instruction
669 /// (2 for ST2 and 4 for ST4).
670 unsigned AArch64SIMDInstrOpt::determineSrcReg(MachineInstr &MI) const {
671   switch (MI.getOpcode()) {
672   default:
673     llvm_unreachable("Unsupported instruction for this pass");
674 
675   case AArch64::ST2Twov16b:
676   case AArch64::ST2Twov8b:
677   case AArch64::ST2Twov8h:
678   case AArch64::ST2Twov4h:
679   case AArch64::ST2Twov4s:
680   case AArch64::ST2Twov2s:
681   case AArch64::ST2Twov2d:
682     return 2;
683 
684   case AArch64::ST4Fourv16b:
685   case AArch64::ST4Fourv8b:
686   case AArch64::ST4Fourv8h:
687   case AArch64::ST4Fourv4h:
688   case AArch64::ST4Fourv4s:
689   case AArch64::ST4Fourv2s:
690   case AArch64::ST4Fourv2d:
691     return 4;
692   }
693 }
694 
695 bool AArch64SIMDInstrOpt::runOnMachineFunction(MachineFunction &MF) {
696   if (skipFunction(MF.getFunction()))
697     return false;
698 
699   TII = MF.getSubtarget().getInstrInfo();
700   MRI = &MF.getRegInfo();
701   const TargetSubtargetInfo &ST = MF.getSubtarget();
702   const AArch64InstrInfo *AAII =
703       static_cast<const AArch64InstrInfo *>(ST.getInstrInfo());
704   if (!AAII)
705     return false;
706   SchedModel.init(&ST);
707   if (!SchedModel.hasInstrSchedModel())
708     return false;
709 
710   bool Changed = false;
711   for (auto OptimizationKind : {VectorElem, Interleave}) {
712     if (!shouldExitEarly(&MF, OptimizationKind)) {
713       SmallVector<MachineInstr *, 8> RemoveMIs;
714       for (MachineBasicBlock &MBB : MF) {
715         for (MachineInstr &MI : MBB) {
716           bool InstRewrite;
717           if (OptimizationKind == VectorElem)
718             InstRewrite = optimizeVectElement(MI) ;
719           else
720             InstRewrite = optimizeLdStInterleave(MI);
721           if (InstRewrite) {
722             // Add MI to the list of instructions to be removed given that it
723             // has been replaced.
724             RemoveMIs.push_back(&MI);
725             Changed = true;
726           }
727         }
728       }
729       for (MachineInstr *MI : RemoveMIs)
730         MI->eraseFromParent();
731     }
732   }
733 
734   return Changed;
735 }
736 
737 /// Returns an instance of the high cost ASIMD instruction replacement
738 /// optimization pass.
739 FunctionPass *llvm::createAArch64SIMDInstrOptPass() {
740   return new AArch64SIMDInstrOpt();
741 }
742