xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64SIMDInstrOpt.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //
2 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
3 // See https://llvm.org/LICENSE.txt for license information.
4 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file contains a pass that performs optimization on SIMD instructions
9 // with high latency by splitting them into more efficient series of
10 // instructions.
11 //
12 // 1. Rewrite certain SIMD instructions with vector element due to their
13 // inefficiency on some targets.
14 //
15 // For example:
16 //    fmla v0.4s, v1.4s, v2.s[1]
17 //
18 // Is rewritten into:
19 //    dup v3.4s, v2.s[1]
20 //    fmla v0.4s, v1.4s, v3.4s
21 //
22 // 2. Rewrite interleaved memory access instructions due to their
23 // inefficiency on some targets.
24 //
25 // For example:
26 //    st2 {v0.4s, v1.4s}, addr
27 //
28 // Is rewritten into:
29 //    zip1 v2.4s, v0.4s, v1.4s
30 //    zip2 v3.4s, v0.4s, v1.4s
31 //    stp  q2, q3,  addr
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "AArch64InstrInfo.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetSchedule.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/MC/MCInstrDesc.h"
50 #include "llvm/MC/MCSchedule.h"
51 #include "llvm/Pass.h"
52 #include <unordered_map>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "aarch64-simdinstr-opt"
57 
58 STATISTIC(NumModifiedInstr,
59           "Number of SIMD instructions modified");
60 
61 #define AARCH64_VECTOR_BY_ELEMENT_OPT_NAME                                     \
62   "AArch64 SIMD instructions optimization pass"
63 
64 namespace {
65 
66 struct AArch64SIMDInstrOpt : public MachineFunctionPass {
67   static char ID;
68 
69   const TargetInstrInfo *TII;
70   MachineRegisterInfo *MRI;
71   TargetSchedModel SchedModel;
72 
73   // The two maps below are used to cache decisions instead of recomputing:
74   // This is used to cache instruction replacement decisions within function
75   // units and across function units.
76   std::map<std::pair<unsigned, std::string>, bool> SIMDInstrTable;
77   // This is used to cache the decision of whether to leave the interleaved
78   // store instructions replacement pass early or not for a particular target.
79   std::unordered_map<std::string, bool> InterlEarlyExit;
80 
81   typedef enum {
82     VectorElem,
83     Interleave
84   } Subpass;
85 
86   // Instruction represented by OrigOpc is replaced by instructions in ReplOpc.
87   struct InstReplInfo {
88     unsigned OrigOpc;
89 		std::vector<unsigned> ReplOpc;
90     const TargetRegisterClass RC;
91   };
92 
93 #define RuleST2(OpcOrg, OpcR0, OpcR1, OpcR2, RC) \
94   {OpcOrg, {OpcR0, OpcR1, OpcR2}, RC}
95 #define RuleST4(OpcOrg, OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, \
96                 OpcR7, OpcR8, OpcR9, RC) \
97   {OpcOrg, \
98    {OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, OpcR7, OpcR8, OpcR9}, RC}
99 
100   // The Instruction Replacement Table:
101   std::vector<InstReplInfo> IRT = {
102     // ST2 instructions
103     RuleST2(AArch64::ST2Twov2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
104           AArch64::STPQi, AArch64::FPR128RegClass),
105     RuleST2(AArch64::ST2Twov4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
106           AArch64::STPQi, AArch64::FPR128RegClass),
107     RuleST2(AArch64::ST2Twov2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
108           AArch64::STPDi, AArch64::FPR64RegClass),
109     RuleST2(AArch64::ST2Twov8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
110           AArch64::STPQi, AArch64::FPR128RegClass),
111     RuleST2(AArch64::ST2Twov4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
112           AArch64::STPDi, AArch64::FPR64RegClass),
113     RuleST2(AArch64::ST2Twov16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
114           AArch64::STPQi, AArch64::FPR128RegClass),
115     RuleST2(AArch64::ST2Twov8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
116           AArch64::STPDi, AArch64::FPR64RegClass),
117     // ST4 instructions
118     RuleST4(AArch64::ST4Fourv2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
119           AArch64::ZIP1v2i64, AArch64::ZIP2v2i64, AArch64::ZIP1v2i64,
120           AArch64::ZIP2v2i64, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
121           AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
122     RuleST4(AArch64::ST4Fourv4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
123           AArch64::ZIP1v4i32, AArch64::ZIP2v4i32, AArch64::ZIP1v4i32,
124           AArch64::ZIP2v4i32, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
125           AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
126     RuleST4(AArch64::ST4Fourv2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
127           AArch64::ZIP1v2i32, AArch64::ZIP2v2i32, AArch64::ZIP1v2i32,
128           AArch64::ZIP2v2i32, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
129           AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
130     RuleST4(AArch64::ST4Fourv8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
131           AArch64::ZIP1v8i16, AArch64::ZIP2v8i16, AArch64::ZIP1v8i16,
132           AArch64::ZIP2v8i16, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
133           AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
134     RuleST4(AArch64::ST4Fourv4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
135           AArch64::ZIP1v4i16, AArch64::ZIP2v4i16, AArch64::ZIP1v4i16,
136           AArch64::ZIP2v4i16, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
137           AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
138     RuleST4(AArch64::ST4Fourv16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
139           AArch64::ZIP1v16i8, AArch64::ZIP2v16i8, AArch64::ZIP1v16i8,
140           AArch64::ZIP2v16i8, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
141           AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
142     RuleST4(AArch64::ST4Fourv8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
143           AArch64::ZIP1v8i8, AArch64::ZIP2v8i8, AArch64::ZIP1v8i8,
144           AArch64::ZIP2v8i8, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
145           AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass)
146   };
147 
148   // A costly instruction is replaced in this work by N efficient instructions
149   // The maximum of N is curently 10 and it is for ST4 case.
150   static const unsigned MaxNumRepl = 10;
151 
152   AArch64SIMDInstrOpt() : MachineFunctionPass(ID) {
153     initializeAArch64SIMDInstrOptPass(*PassRegistry::getPassRegistry());
154   }
155 
156   /// Based only on latency of instructions, determine if it is cost efficient
157   /// to replace the instruction InstDesc by the instructions stored in the
158   /// array InstDescRepl.
159   /// Return true if replacement is expected to be faster.
160   bool shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
161                          SmallVectorImpl<const MCInstrDesc*> &ReplInstrMCID);
162 
163   /// Determine if we need to exit the instruction replacement optimization
164   /// passes early. This makes sure that no compile time is spent in this pass
165   /// for targets with no need for any of these optimizations.
166   /// Return true if early exit of the pass is recommended.
167   bool shouldExitEarly(MachineFunction *MF, Subpass SP);
168 
169   /// Check whether an equivalent DUP instruction has already been
170   /// created or not.
171   /// Return true when the DUP instruction already exists. In this case,
172   /// DestReg will point to the destination of the already created DUP.
173   bool reuseDUP(MachineInstr &MI, unsigned DupOpcode, unsigned SrcReg,
174                 unsigned LaneNumber, unsigned *DestReg) const;
175 
176   /// Certain SIMD instructions with vector element operand are not efficient.
177   /// Rewrite them into SIMD instructions with vector operands. This rewrite
178   /// is driven by the latency of the instructions.
179   /// Return true if the SIMD instruction is modified.
180   bool optimizeVectElement(MachineInstr &MI);
181 
182   /// Process The REG_SEQUENCE instruction, and extract the source
183   /// operands of the ST2/4 instruction from it.
184   /// Example of such instructions.
185   ///    %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
186   /// Return true when the instruction is processed successfully.
187   bool processSeqRegInst(MachineInstr *DefiningMI, unsigned* StReg,
188                          unsigned* StRegKill, unsigned NumArg) const;
189 
190   /// Load/Store Interleaving instructions are not always beneficial.
191   /// Replace them by ZIP instructionand classical load/store.
192   /// Return true if the SIMD instruction is modified.
193   bool optimizeLdStInterleave(MachineInstr &MI);
194 
195   /// Return the number of useful source registers for this
196   /// instruction (2 for ST2 and 4 for ST4).
197   unsigned determineSrcReg(MachineInstr &MI) const;
198 
199   bool runOnMachineFunction(MachineFunction &Fn) override;
200 
201   StringRef getPassName() const override {
202     return AARCH64_VECTOR_BY_ELEMENT_OPT_NAME;
203   }
204 };
205 
206 char AArch64SIMDInstrOpt::ID = 0;
207 
208 } // end anonymous namespace
209 
210 INITIALIZE_PASS(AArch64SIMDInstrOpt, "aarch64-simdinstr-opt",
211                 AARCH64_VECTOR_BY_ELEMENT_OPT_NAME, false, false)
212 
213 /// Based only on latency of instructions, determine if it is cost efficient
214 /// to replace the instruction InstDesc by the instructions stored in the
215 /// array InstDescRepl.
216 /// Return true if replacement is expected to be faster.
217 bool AArch64SIMDInstrOpt::
218 shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
219                   SmallVectorImpl<const MCInstrDesc*> &InstDescRepl) {
220   // Check if replacement decision is already available in the cached table.
221   // if so, return it.
222   std::string Subtarget = std::string(SchedModel.getSubtargetInfo()->getCPU());
223   auto InstID = std::make_pair(InstDesc->getOpcode(), Subtarget);
224   auto It = SIMDInstrTable.find(InstID);
225   if (It != SIMDInstrTable.end())
226     return It->second;
227 
228   unsigned SCIdx = InstDesc->getSchedClass();
229   const MCSchedClassDesc *SCDesc =
230     SchedModel.getMCSchedModel()->getSchedClassDesc(SCIdx);
231 
232   // If a target does not define resources for the instructions
233   // of interest, then return false for no replacement.
234   const MCSchedClassDesc *SCDescRepl;
235   if (!SCDesc->isValid() || SCDesc->isVariant())
236   {
237     SIMDInstrTable[InstID] = false;
238     return false;
239   }
240   for (auto IDesc : InstDescRepl)
241   {
242     SCDescRepl = SchedModel.getMCSchedModel()->getSchedClassDesc(
243       IDesc->getSchedClass());
244     if (!SCDescRepl->isValid() || SCDescRepl->isVariant())
245     {
246       SIMDInstrTable[InstID] = false;
247       return false;
248     }
249   }
250 
251   // Replacement cost.
252   unsigned ReplCost = 0;
253   for (auto IDesc :InstDescRepl)
254     ReplCost += SchedModel.computeInstrLatency(IDesc->getOpcode());
255 
256   if (SchedModel.computeInstrLatency(InstDesc->getOpcode()) > ReplCost)
257   {
258     SIMDInstrTable[InstID] = true;
259     return true;
260   }
261   else
262   {
263     SIMDInstrTable[InstID] = false;
264     return false;
265   }
266 }
267 
268 /// Determine if we need to exit this pass for a kind of instruction replacement
269 /// early. This makes sure that no compile time is spent in this pass for
270 /// targets with no need for any of these optimizations beyond performing this
271 /// check.
272 /// Return true if early exit of this pass for a kind of instruction
273 /// replacement is recommended for a target.
274 bool AArch64SIMDInstrOpt::shouldExitEarly(MachineFunction *MF, Subpass SP) {
275   const MCInstrDesc* OriginalMCID;
276   SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
277 
278   switch (SP) {
279   // For this optimization, check by comparing the latency of a representative
280   // instruction to that of the replacement instructions.
281   // TODO: check for all concerned instructions.
282   case VectorElem:
283     OriginalMCID = &TII->get(AArch64::FMLAv4i32_indexed);
284     ReplInstrMCID.push_back(&TII->get(AArch64::DUPv4i32lane));
285     ReplInstrMCID.push_back(&TII->get(AArch64::FMLAv4f32));
286     if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID))
287       return false;
288     break;
289 
290   // For this optimization, check for all concerned instructions.
291   case Interleave:
292     std::string Subtarget =
293         std::string(SchedModel.getSubtargetInfo()->getCPU());
294     auto It = InterlEarlyExit.find(Subtarget);
295     if (It != InterlEarlyExit.end())
296       return It->second;
297 
298     for (auto &I : IRT) {
299       OriginalMCID = &TII->get(I.OrigOpc);
300       for (auto &Repl : I.ReplOpc)
301         ReplInstrMCID.push_back(&TII->get(Repl));
302       if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID)) {
303         InterlEarlyExit[Subtarget] = false;
304         return false;
305       }
306       ReplInstrMCID.clear();
307     }
308     InterlEarlyExit[Subtarget] = true;
309     break;
310   }
311 
312   return true;
313 }
314 
315 /// Check whether an equivalent DUP instruction has already been
316 /// created or not.
317 /// Return true when the DUP instruction already exists. In this case,
318 /// DestReg will point to the destination of the already created DUP.
319 bool AArch64SIMDInstrOpt::reuseDUP(MachineInstr &MI, unsigned DupOpcode,
320                                          unsigned SrcReg, unsigned LaneNumber,
321                                          unsigned *DestReg) const {
322   for (MachineBasicBlock::iterator MII = MI, MIE = MI.getParent()->begin();
323        MII != MIE;) {
324     MII--;
325     MachineInstr *CurrentMI = &*MII;
326 
327     if (CurrentMI->getOpcode() == DupOpcode &&
328         CurrentMI->getNumOperands() == 3 &&
329         CurrentMI->getOperand(1).getReg() == SrcReg &&
330         CurrentMI->getOperand(2).getImm() == LaneNumber) {
331       *DestReg = CurrentMI->getOperand(0).getReg();
332       return true;
333     }
334   }
335 
336   return false;
337 }
338 
339 /// Certain SIMD instructions with vector element operand are not efficient.
340 /// Rewrite them into SIMD instructions with vector operands. This rewrite
341 /// is driven by the latency of the instructions.
342 /// The instruction of concerns are for the time being FMLA, FMLS, FMUL,
343 /// and FMULX and hence they are hardcoded.
344 ///
345 /// For example:
346 ///    fmla v0.4s, v1.4s, v2.s[1]
347 ///
348 /// Is rewritten into
349 ///    dup  v3.4s, v2.s[1]      // DUP not necessary if redundant
350 ///    fmla v0.4s, v1.4s, v3.4s
351 ///
352 /// Return true if the SIMD instruction is modified.
353 bool AArch64SIMDInstrOpt::optimizeVectElement(MachineInstr &MI) {
354   const MCInstrDesc *MulMCID, *DupMCID;
355   const TargetRegisterClass *RC = &AArch64::FPR128RegClass;
356 
357   switch (MI.getOpcode()) {
358   default:
359     return false;
360 
361   // 4X32 instructions
362   case AArch64::FMLAv4i32_indexed:
363     DupMCID = &TII->get(AArch64::DUPv4i32lane);
364     MulMCID = &TII->get(AArch64::FMLAv4f32);
365     break;
366   case AArch64::FMLSv4i32_indexed:
367     DupMCID = &TII->get(AArch64::DUPv4i32lane);
368     MulMCID = &TII->get(AArch64::FMLSv4f32);
369     break;
370   case AArch64::FMULXv4i32_indexed:
371     DupMCID = &TII->get(AArch64::DUPv4i32lane);
372     MulMCID = &TII->get(AArch64::FMULXv4f32);
373     break;
374   case AArch64::FMULv4i32_indexed:
375     DupMCID = &TII->get(AArch64::DUPv4i32lane);
376     MulMCID = &TII->get(AArch64::FMULv4f32);
377     break;
378 
379   // 2X64 instructions
380   case AArch64::FMLAv2i64_indexed:
381     DupMCID = &TII->get(AArch64::DUPv2i64lane);
382     MulMCID = &TII->get(AArch64::FMLAv2f64);
383     break;
384   case AArch64::FMLSv2i64_indexed:
385     DupMCID = &TII->get(AArch64::DUPv2i64lane);
386     MulMCID = &TII->get(AArch64::FMLSv2f64);
387     break;
388   case AArch64::FMULXv2i64_indexed:
389     DupMCID = &TII->get(AArch64::DUPv2i64lane);
390     MulMCID = &TII->get(AArch64::FMULXv2f64);
391     break;
392   case AArch64::FMULv2i64_indexed:
393     DupMCID = &TII->get(AArch64::DUPv2i64lane);
394     MulMCID = &TII->get(AArch64::FMULv2f64);
395     break;
396 
397   // 2X32 instructions
398   case AArch64::FMLAv2i32_indexed:
399     RC = &AArch64::FPR64RegClass;
400     DupMCID = &TII->get(AArch64::DUPv2i32lane);
401     MulMCID = &TII->get(AArch64::FMLAv2f32);
402     break;
403   case AArch64::FMLSv2i32_indexed:
404     RC = &AArch64::FPR64RegClass;
405     DupMCID = &TII->get(AArch64::DUPv2i32lane);
406     MulMCID = &TII->get(AArch64::FMLSv2f32);
407     break;
408   case AArch64::FMULXv2i32_indexed:
409     RC = &AArch64::FPR64RegClass;
410     DupMCID = &TII->get(AArch64::DUPv2i32lane);
411     MulMCID = &TII->get(AArch64::FMULXv2f32);
412     break;
413   case AArch64::FMULv2i32_indexed:
414     RC = &AArch64::FPR64RegClass;
415     DupMCID = &TII->get(AArch64::DUPv2i32lane);
416     MulMCID = &TII->get(AArch64::FMULv2f32);
417     break;
418   }
419 
420   SmallVector<const MCInstrDesc*, 2> ReplInstrMCID;
421   ReplInstrMCID.push_back(DupMCID);
422   ReplInstrMCID.push_back(MulMCID);
423   if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
424                          ReplInstrMCID))
425     return false;
426 
427   const DebugLoc &DL = MI.getDebugLoc();
428   MachineBasicBlock &MBB = *MI.getParent();
429   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
430 
431   // Get the operands of the current SIMD arithmetic instruction.
432   Register MulDest = MI.getOperand(0).getReg();
433   Register SrcReg0 = MI.getOperand(1).getReg();
434   unsigned Src0IsKill = getKillRegState(MI.getOperand(1).isKill());
435   Register SrcReg1 = MI.getOperand(2).getReg();
436   unsigned Src1IsKill = getKillRegState(MI.getOperand(2).isKill());
437   unsigned DupDest;
438 
439   // Instructions of interest have either 4 or 5 operands.
440   if (MI.getNumOperands() == 5) {
441     Register SrcReg2 = MI.getOperand(3).getReg();
442     unsigned Src2IsKill = getKillRegState(MI.getOperand(3).isKill());
443     unsigned LaneNumber = MI.getOperand(4).getImm();
444     // Create a new DUP instruction. Note that if an equivalent DUP instruction
445     // has already been created before, then use that one instead of creating
446     // a new one.
447     if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg2, LaneNumber, &DupDest)) {
448       DupDest = MRI.createVirtualRegister(RC);
449       BuildMI(MBB, MI, DL, *DupMCID, DupDest)
450           .addReg(SrcReg2, Src2IsKill)
451           .addImm(LaneNumber);
452     }
453     BuildMI(MBB, MI, DL, *MulMCID, MulDest)
454         .addReg(SrcReg0, Src0IsKill)
455         .addReg(SrcReg1, Src1IsKill)
456         .addReg(DupDest, Src2IsKill);
457   } else if (MI.getNumOperands() == 4) {
458     unsigned LaneNumber = MI.getOperand(3).getImm();
459     if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg1, LaneNumber, &DupDest)) {
460       DupDest = MRI.createVirtualRegister(RC);
461       BuildMI(MBB, MI, DL, *DupMCID, DupDest)
462           .addReg(SrcReg1, Src1IsKill)
463           .addImm(LaneNumber);
464     }
465     BuildMI(MBB, MI, DL, *MulMCID, MulDest)
466         .addReg(SrcReg0, Src0IsKill)
467         .addReg(DupDest, Src1IsKill);
468   } else {
469     return false;
470   }
471 
472   ++NumModifiedInstr;
473   return true;
474 }
475 
476 /// Load/Store Interleaving instructions are not always beneficial.
477 /// Replace them by ZIP instructions and classical load/store.
478 ///
479 /// For example:
480 ///    st2 {v0.4s, v1.4s}, addr
481 ///
482 /// Is rewritten into:
483 ///    zip1 v2.4s, v0.4s, v1.4s
484 ///    zip2 v3.4s, v0.4s, v1.4s
485 ///    stp  q2, q3, addr
486 //
487 /// For example:
488 ///    st4 {v0.4s, v1.4s, v2.4s, v3.4s}, addr
489 ///
490 /// Is rewritten into:
491 ///    zip1 v4.4s, v0.4s, v2.4s
492 ///    zip2 v5.4s, v0.4s, v2.4s
493 ///    zip1 v6.4s, v1.4s, v3.4s
494 ///    zip2 v7.4s, v1.4s, v3.4s
495 ///    zip1 v8.4s, v4.4s, v6.4s
496 ///    zip2 v9.4s, v4.4s, v6.4s
497 ///    zip1 v10.4s, v5.4s, v7.4s
498 ///    zip2 v11.4s, v5.4s, v7.4s
499 ///    stp  q8, q9, addr
500 ///    stp  q10, q11, addr+32
501 ///
502 /// Currently only instructions related to ST2 and ST4 are considered.
503 /// Other may be added later.
504 /// Return true if the SIMD instruction is modified.
505 bool AArch64SIMDInstrOpt::optimizeLdStInterleave(MachineInstr &MI) {
506 
507   unsigned SeqReg, AddrReg;
508   unsigned StReg[4], StRegKill[4];
509   MachineInstr *DefiningMI;
510   const DebugLoc &DL = MI.getDebugLoc();
511   MachineBasicBlock &MBB = *MI.getParent();
512   SmallVector<unsigned, MaxNumRepl> ZipDest;
513   SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
514 
515   // If current instruction matches any of the rewriting rules, then
516   // gather information about parameters of the new instructions.
517   bool Match = false;
518   for (auto &I : IRT) {
519     if (MI.getOpcode() == I.OrigOpc) {
520       SeqReg  = MI.getOperand(0).getReg();
521       AddrReg = MI.getOperand(1).getReg();
522       DefiningMI = MRI->getUniqueVRegDef(SeqReg);
523       unsigned NumReg = determineSrcReg(MI);
524       if (!processSeqRegInst(DefiningMI, StReg, StRegKill, NumReg))
525         return false;
526 
527       for (auto &Repl : I.ReplOpc) {
528         ReplInstrMCID.push_back(&TII->get(Repl));
529         // Generate destination registers but only for non-store instruction.
530         if (Repl != AArch64::STPQi && Repl != AArch64::STPDi)
531           ZipDest.push_back(MRI->createVirtualRegister(&I.RC));
532       }
533       Match = true;
534       break;
535     }
536   }
537 
538   if (!Match)
539     return false;
540 
541   // Determine if it is profitable to replace MI by the series of instructions
542   // represented in ReplInstrMCID.
543   if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
544                          ReplInstrMCID))
545     return false;
546 
547   // Generate the replacement instructions composed of ZIP1, ZIP2, and STP (at
548   // this point, the code generation is hardcoded and does not rely on the IRT
549   // table used above given that code generation for ST2 replacement is somewhat
550   // different than for ST4 replacement. We could have added more info into the
551   // table related to how we build new instructions but we may be adding more
552   // complexity with that).
553   switch (MI.getOpcode()) {
554   default:
555     return false;
556 
557   case AArch64::ST2Twov16b:
558   case AArch64::ST2Twov8b:
559   case AArch64::ST2Twov8h:
560   case AArch64::ST2Twov4h:
561   case AArch64::ST2Twov4s:
562   case AArch64::ST2Twov2s:
563   case AArch64::ST2Twov2d:
564     // ZIP instructions
565     BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
566         .addReg(StReg[0])
567         .addReg(StReg[1]);
568     BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
569         .addReg(StReg[0], StRegKill[0])
570         .addReg(StReg[1], StRegKill[1]);
571     // STP instructions
572     BuildMI(MBB, MI, DL, *ReplInstrMCID[2])
573         .addReg(ZipDest[0])
574         .addReg(ZipDest[1])
575         .addReg(AddrReg)
576         .addImm(0);
577     break;
578 
579   case AArch64::ST4Fourv16b:
580   case AArch64::ST4Fourv8b:
581   case AArch64::ST4Fourv8h:
582   case AArch64::ST4Fourv4h:
583   case AArch64::ST4Fourv4s:
584   case AArch64::ST4Fourv2s:
585   case AArch64::ST4Fourv2d:
586     // ZIP instructions
587     BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
588         .addReg(StReg[0])
589         .addReg(StReg[2]);
590     BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
591         .addReg(StReg[0], StRegKill[0])
592         .addReg(StReg[2], StRegKill[2]);
593     BuildMI(MBB, MI, DL, *ReplInstrMCID[2], ZipDest[2])
594         .addReg(StReg[1])
595         .addReg(StReg[3]);
596     BuildMI(MBB, MI, DL, *ReplInstrMCID[3], ZipDest[3])
597         .addReg(StReg[1], StRegKill[1])
598         .addReg(StReg[3], StRegKill[3]);
599     BuildMI(MBB, MI, DL, *ReplInstrMCID[4], ZipDest[4])
600         .addReg(ZipDest[0])
601         .addReg(ZipDest[2]);
602     BuildMI(MBB, MI, DL, *ReplInstrMCID[5], ZipDest[5])
603         .addReg(ZipDest[0])
604         .addReg(ZipDest[2]);
605     BuildMI(MBB, MI, DL, *ReplInstrMCID[6], ZipDest[6])
606         .addReg(ZipDest[1])
607         .addReg(ZipDest[3]);
608     BuildMI(MBB, MI, DL, *ReplInstrMCID[7], ZipDest[7])
609         .addReg(ZipDest[1])
610         .addReg(ZipDest[3]);
611     // stp instructions
612     BuildMI(MBB, MI, DL, *ReplInstrMCID[8])
613         .addReg(ZipDest[4])
614         .addReg(ZipDest[5])
615         .addReg(AddrReg)
616         .addImm(0);
617     BuildMI(MBB, MI, DL, *ReplInstrMCID[9])
618         .addReg(ZipDest[6])
619         .addReg(ZipDest[7])
620         .addReg(AddrReg)
621         .addImm(2);
622     break;
623   }
624 
625   ++NumModifiedInstr;
626   return true;
627 }
628 
629 /// Process The REG_SEQUENCE instruction, and extract the source
630 /// operands of the ST2/4 instruction from it.
631 /// Example of such instruction.
632 ///    %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
633 /// Return true when the instruction is processed successfully.
634 bool AArch64SIMDInstrOpt::processSeqRegInst(MachineInstr *DefiningMI,
635      unsigned* StReg, unsigned* StRegKill, unsigned NumArg) const {
636   assert (DefiningMI != NULL);
637   if (DefiningMI->getOpcode() != AArch64::REG_SEQUENCE)
638     return false;
639 
640   for (unsigned i=0; i<NumArg; i++) {
641     StReg[i]     = DefiningMI->getOperand(2*i+1).getReg();
642     StRegKill[i] = getKillRegState(DefiningMI->getOperand(2*i+1).isKill());
643 
644     // Sanity check for the other arguments.
645     if (DefiningMI->getOperand(2*i+2).isImm()) {
646       switch (DefiningMI->getOperand(2*i+2).getImm()) {
647       default:
648         return false;
649 
650       case AArch64::dsub0:
651       case AArch64::dsub1:
652       case AArch64::dsub2:
653       case AArch64::dsub3:
654       case AArch64::qsub0:
655       case AArch64::qsub1:
656       case AArch64::qsub2:
657       case AArch64::qsub3:
658         break;
659       }
660     }
661     else
662       return false;
663   }
664   return true;
665 }
666 
667 /// Return the number of useful source registers for this instruction
668 /// (2 for ST2 and 4 for ST4).
669 unsigned AArch64SIMDInstrOpt::determineSrcReg(MachineInstr &MI) const {
670   switch (MI.getOpcode()) {
671   default:
672     llvm_unreachable("Unsupported instruction for this pass");
673 
674   case AArch64::ST2Twov16b:
675   case AArch64::ST2Twov8b:
676   case AArch64::ST2Twov8h:
677   case AArch64::ST2Twov4h:
678   case AArch64::ST2Twov4s:
679   case AArch64::ST2Twov2s:
680   case AArch64::ST2Twov2d:
681     return 2;
682 
683   case AArch64::ST4Fourv16b:
684   case AArch64::ST4Fourv8b:
685   case AArch64::ST4Fourv8h:
686   case AArch64::ST4Fourv4h:
687   case AArch64::ST4Fourv4s:
688   case AArch64::ST4Fourv2s:
689   case AArch64::ST4Fourv2d:
690     return 4;
691   }
692 }
693 
694 bool AArch64SIMDInstrOpt::runOnMachineFunction(MachineFunction &MF) {
695   if (skipFunction(MF.getFunction()))
696     return false;
697 
698   TII = MF.getSubtarget().getInstrInfo();
699   MRI = &MF.getRegInfo();
700   const TargetSubtargetInfo &ST = MF.getSubtarget();
701   const AArch64InstrInfo *AAII =
702       static_cast<const AArch64InstrInfo *>(ST.getInstrInfo());
703   if (!AAII)
704     return false;
705   SchedModel.init(&ST);
706   if (!SchedModel.hasInstrSchedModel())
707     return false;
708 
709   bool Changed = false;
710   for (auto OptimizationKind : {VectorElem, Interleave}) {
711     if (!shouldExitEarly(&MF, OptimizationKind)) {
712       SmallVector<MachineInstr *, 8> RemoveMIs;
713       for (MachineBasicBlock &MBB : MF) {
714         for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
715              MII != MIE;) {
716           MachineInstr &MI = *MII;
717           bool InstRewrite;
718           if (OptimizationKind == VectorElem)
719             InstRewrite = optimizeVectElement(MI) ;
720           else
721             InstRewrite = optimizeLdStInterleave(MI);
722           if (InstRewrite) {
723             // Add MI to the list of instructions to be removed given that it
724             // has been replaced.
725             RemoveMIs.push_back(&MI);
726             Changed = true;
727           }
728           ++MII;
729         }
730       }
731       for (MachineInstr *MI : RemoveMIs)
732         MI->eraseFromParent();
733     }
734   }
735 
736   return Changed;
737 }
738 
739 /// Returns an instance of the high cost ASIMD instruction replacement
740 /// optimization pass.
741 FunctionPass *llvm::createAArch64SIMDInstrOptPass() {
742   return new AArch64SIMDInstrOpt();
743 }
744